
CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Clustering with Neighborhoods is Hard for Squares∗

Georgiy Klimenko† Benjamin Raichel‡

Abstract

In the clustering with neighborhoods problem one is
given a set S of disjoint convex objects in the plane and
an integer parameter k ≥ 0, and the goal is to select a
set C of k center points in the plane so as to minimize
the maximum distance of an object in S to its nearest
center in C. Previously [HKR21] showed that this prob-
lem cannot be approximated within any factor when S
is a set of disjoint line segments, however, when S is a
set of disjoint disks there is a roughly 8.46 approxima-
tion algorithm and a roughly 6.99 approximation lower
bound. In this paper we investigate this significant dis-
crepancy in hardness between these shapes. Specifically,
we show that when S is a set of axis aligned squares of
the same size, the problem again is hard to approximate
within any factor. This surprising fact shows that the
discrepancy is not due to the fatness of the object class,
as one might otherwise naturally suspect.

1 Introduction

Given a set of n points P in a metric space and an inte-
ger parameter k ≥ 0, in the standard k-center clustering
problem the goal is to select a set C of k center points
from the metric space (or in the discrete variant C ⊆ P)
so as to minimize the maximum distance of a point in P
from its nearest center in C. This fundamental problem
and its variations have been well studied in the compu-
tational geometry community. For the standard prob-
lem there is a well known greedy 2-approximation algo-
rithm due to Gonzalez [Gon85], and an iterative scoop-
ing based 2-approximation algorithm due to Hochbaum
and Shmoys [HS85]. Conversely, for general metric
spaces it is NP-hard to approximate within any factor
less than 2, and even for points in the plane the problem
remains hard to approximate within a factor of roughly
1.82 [FG88].

∗A preliminary version of the main proof in this paper ap-
peared in Georgiy Klimenko’s thesis [Kli23]

†Department of Computer Science; University of Texas at Dal-
las; Richardson, TX 75080, USA; gik140030@utdallas.edu; Work
on this paper was partially supported by a NSF CAREER Award
1750780.

‡Department of Computer Science; University
of Texas at Dallas; Richardson, TX 75080, USA;
benjamin.raichel@utdallas.edu; http://utdallas.edu/

~benjamin.raichel. Work on this paper was partially supported
by a NSF CAREER Award 1750780.

While many variants of k-center clustering have been
considered, here we focus on the problem of k-center
clustering with neighborhoods introduced recently in
[HKR21]. In this problem the input is a set S of n
disjoint convex objects in the plane, and the goal is
again to select a set C of k points from the plane so
as to minimize the maximum distance of an object in
S from its nearest center in C. Note that the standard
k-center problem is a special case of k-center clustering
with neighborhoods where S = P is a discrete point set.

In [HKR21] it was shown that clustering with neigh-
borhoods is hard to approximate within any factor when
S is a set of disjoint segments. Conversely, it was also
shown that when S is a set of disjoint disks the problem

is
√
13−

√
3

2−
√
3

≈ 6.99 hard to approximate, and additionally

a near matching (5 + 2
√
3) ≈ 8.46 approximation algo-

rithm was given. In other words, for disks the problem
is APX-complete.

The clustering with neighborhoods problem can be
equivalently defined as finding k equal radius balls of
the smallest possible radius such that every object has
non-empty intersection with at least one of the balls.
Alternatively, one could require that each object is en-
tirely contained in one of the balls. This however, im-
plies that the optimal radius is at least the radius of the
largest object, whereas in our case the optimal radius
can be arbitrarily smaller. This significantly and prov-
ably changes the hardness of the two problems. Specifi-
cally, Xu and Xu [XX10] considered k-center clustering
on point sets where given points sets S1, . . . , Sn the goal
is to find k balls of minimum radius such that each Si

is entirely contained in one of the balls. For this prob-
lem they achieved a (1 +

√
3)-approximation, whereas

clustering with neighborhoods cannot in general be ap-
proximated within any factor in polynomial time unless
P = NP.

Motivation and Contribution. As discussed above,
clustering with neighborhoods is hard to approximate
within any factor when the objects are disjoint line seg-
ments, however, when the objects are disks there is a
constant factor approximation. This intriguingly large
hardness gap between segments and disks begs the ques-
tion, what geometric feature accounts for this gap? One
may naturally suspect (as the authors did), that the
difference is due to fatness, as segments are arbitrarily
skinny objects whereas disks are fat. It is well known

123

35th Canadian Conference on Computational Geometry, 2023

that this basic geometric property can often make a sig-
nificant difference in the difficulty of a problem (e.g.
[Cha03]). Surprisingly, however, in this paper we show
that when the objects are disjoint squares (one of the
simplest classes of fat objects), not only does the con-
stant factor approximation algorithm break down, but
in fact the problem is again hard to approximate within
any factor, as was the case for line segments. Moreover,
we show this is true even when the squares are axis
aligned and all of equal size. Indeed, this paper shows
the hardness gap is not due fatness, but rather roughly
speaking concerns more how pointed the objects are.
(More precisely, it concerns how closely one can place
three disjoint objects to a single point.)

2 Preliminaries

Given points x, y ∈ R
d, ||x−y|| denotes their Euclidean

distance. Given two closed sets X,Y ⊂ R
d, ||X − Y || =

minx∈X,y∈Y ||x− y|| denotes their distance. For a point
x and a value r ≥ 0, let B(x, r) denote the closed ball
centered at x and with radius r. [HKR21] considered
the following problem.

Problem 1 (Clustering with Neighborhoods)
Given a set S of n disjoint convex objects in the plane,
and an integer parameter k ≥ 0, find a set of k points C
(called centers) which minimize the maximum distance
to a convex object in S. That is,

C = arg min
C′⊂R2,|C′|=k

max
S∈S

||S − C ′||.

Let C be any set of k points, and let r = maxS∈S ||S−
C||. We refer to r as the radius of the solution C, since
r is the minimum radius such that the set of all balls
B(c, r) for c ∈ C, intersect all S ∈ S. If C is an op-
timal solution then we refer to its radius ropt as the
optimal radius. Let S, k be an instance of Problem 1
with optimal radius ropt. For a value α ≥ 1, we refer
to a polynomial time algorithm as an α-approximation
algorithm if it returns a solution C of size k such that
the radius is ≤ αropt.

3 Hardness for Squares

In this section we argue that it is hard to approximate
Problem 1 within any factor when S is a set of axis
aligned squares of the same size. Our hardness results
use a construction similar to the one from [FG88], where
they reduce from the problem of planar vertex cover
where the maximum degree of a vertex is three. This
problem is known to be NP-complete [GJ77], and we
denote this problem as P3VC. We remark that the high
level approach of reducing from P3VC used in [FG88]

has inspired many other hardness reduction for geomet-
ric problems, including the prior reductions for cluster-
ing with neighborhoods for the cases of segments and
disks [HKR21].

Let G, k be an instance of P3VC, and consider
a straight line embedding of G. In particular, in
O(n log n) time one can compute an straight line em-
bedding of G where the vertices are on a 2n− 4×n− 2
grid [FPP90]. We now scale this graph by a polynomial
factor large enough to ensure two properties. First, for
every edge of G there is a portion of that edge which
has length at least say 100 and the closest other edge or
vertex is distance at least 100. Call this the free zone
of the edge. Second, for each vertex of G, there is a
ball centered at that vertex, such that this ball only
intersects the at most 3 adjacent edges of that vertex,
does not intersect the free zones of those edges, and the
intersection points of the edges with the boundary of
the ball are at least distance 10 apart from one another.
Call this the free zone of the vertex. Note ensuring
these two properties only requires scaling by a polyno-
mial factor since the graph was initially embedded on a
roughly n× n grid.
We now describe how to replace each edge of G with

a sequence of unit squares. Roughly speaking this se-
quence of unit squares will be the unit grid cells that
the edge overlaps, i.e. the standard pixelized represen-
tation of the edge. However, there will be several key
differences, particularly inside the free zone of each edge
and vertex, which we describe below. Outside the free
zones we will simply include the unit squares of the grid
cells intersected by the edge, except when the edge in-
tersects 3 of the 4 grid cells adjacent to a grid point. In
this case will will only include the diagonally adjacent
squares. See Figure 3.1. Note in general there may be

Figure 3.1: Left: A portion of an edge. Middle: Grid
cells intersected. Right: When three cells adjacent to a
grid point are intersected, only the diagonally adjacent
pair is kept.

Figure 3.2: Left: Two cases with consecutive grid points
where 3 adjacent grid cells are intersected. Right: It-
eratively removing intersected grid cells so that no grid
point is adjacent to more than 2.

124

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Figure 3.3: Left: The first two squares of each of the three edges adjacent to a vertex. Right: A routing of the square
sequence for each adjacent edge which leads to the intersection point of that edge with the ball.

multiple grid points in a row where 3 of the 4 adjacent
grid cell squares are intersected. Thus to be more pre-
cise, going from left to right, we iteratively remove the
third adjacent grid cell square (again the square that is
not in the diagonal pair), until all grid points are ad-
jacent to at most 2 remaining intersected squares. See
Figure 3.2.

Now we describe the construction within the free zone
of a given vertex v, with adjacent edges e1, e2, e3. (If v
has fewer adjacent edges the construction is only sim-
pler.) Within the free zone of v we cannot simply pix-
elize the edges as described above, since the angle of
the adjacent edges might be such that say e1 and e2
initially pass through the same neighboring grid cell of
v. Instead we enforce that the square sequence for each
edge start on a distinct square adjacent to v, and more-
over, the second square in the sequence for each edge
continue in this diagonal direction from v. (This con-
dition on the second square in the sequence of the edge
ensures that squares from different edges are only ad-
jacent at v itself.) See Figure 3.3. As described above
when defining the free zone of v there exists a ball cen-
tered at v such that the points of intersection of e1, e2, e3
with the boundary of this ball are at least distance 10
apart from one another. This ample spacing ensures
that we can route the sequences of squares we are con-
structing for each edge such that squares from different
edges stay at least distance 1 apart from each other (ex-
cept at v itself) and that the square sequence for each
edge ends up on its respective intersection point on the
ball boundary. See Figure 3.3.

Finally, the last part of the construction concerns the
free zone of each edge. So consider a given edge e. If e
consists of a sequence of an odd number of squares after
applying the above pixelization process to e along with
the above modifications in the vertex free zones of its
endpoints, then we leave the free zone of e untouched

(i.e. it is just pixelized like the rest of e). However, if e
consists of a sequence of an even number of squares then
in the free zone we make the following modification so
that the total number of squares is odd. We consider
two cases. First, if within the free zone the sequence of
squares has at least 6 consecutive squares which are hor-
izontally adjacent (or 6 which are vertically adjacent),
then we replace these 6 squares with the parity shifting
gadget show in Figure 3.4 (where if the 6 squares where
vertically adjacent we rotate the gadget 90 degrees).

Figure 3.4: Left: 6 horizontally adjacent squares. Right:
Parity gadget replacing the 6 squares with 7 squares.
The horizontal gaps between squares on the top and
bottom rows have length exactly 1/2.

s s

s
′

s
′

Figure 3.5: Left: Pixelized edge. Right: Replacing the
portion of the pixelized edge between s and s′ with an
L shaped sequence of squares. Note the figure is not to
scale, as the portion replaced did not have at least 12
squares.

Otherwise, if there are not 6 horizontally adjacent
squares then we replace a portion of the square sequence
in the free zone with an L shaped sequence, see Fig-
ure 3.5. In particular, viewing the squares in the se-
quence as ordered from left to right, pick a square s
whose previous adjacent square is diagonally adjacent.
Next pick a square s′ which is at least 12 squares after

125

35th Canadian Conference on Computational Geometry, 2023

s in the sequence and such that the square after s′ is
diagonally adjacent. Now replace all squares between s
and s′ with an L shaped sequence consisting of single
run of horizontally adjacent squares followed by a run of
vertically adjacent squares (again see Figure 3.5). Now
if this new sequence of squares between s and s′ has
a different parity than the original sequence between s
and s′ then we are done. Otherwise, either the horizon-
tal or vertical portion of this L shaped sequence must
have at least 6 squares and thus we can insert the same
parity gadget described above into this portion of the L
shaped sequence.

Let 0 < ε � 1/4 be some value. For the final step
in our construction, we now shrink all of the above cre-
ated squares (about their respective centerpoints) such
that two squares diagonally adjacent to the same grid
point are distance 2ε apart from one another. (Note
this means horizontally or vertically adjacent squares
are 2ε/

√
2 apart.)

So given an instance G, k of P3VC, we construct an
instance S, κ of Problem 1 where S is determined from
G as described above and κ = k + (|S| − |E|)/2. We
first argue if G has a vertex cover of size k then for
our instance of Problem 1 there is a solution of radius
ε. First, for any vertex v in the vertex cover we cre-
ate a center, and place it at the location of v in the
embedding. By the way we shrunk the squares, B(v, ε)
will intersect the (at most) three adjacent initial squares
of v’s adjacent edge sequences. We now cover the re-
maining squares with (|S| − |E|)/2 centers. For any
edge e ∈ E let ne be the number of squares used for
e in the above construction. Observe that as we al-
ready placed centers at vertices corresponding to a ver-
tex cover of the edges, at least one square of each edge
is already covered, and so there are at most ne − 1 con-
secutive squares that need to be covered. (Note ne − 1
is even.) However, as consecutive squares are at most
2ε apart on each edge, these ne − 1 squares can be cov-
ered with (ne − 1)/2 balls of radius ε by covering the
squares in pairs. Thus the total number of centers used
is k +

∑
e∈E(ne − 1)/2 = k + (|S| − |E|)/2 = κ.

Now suppose the minimum vertex cover of G requires
> k vertices. In this case we argue that our instance
of Problem 1 requires more than κ centers if we limit
to balls with radius < 1/4. Call any two squares in
S neighboring if they are consecutive on an edge or if
they are squares on the v end of two edges adjacent to
a vertex v. By construction, neighboring squares have
distance ≤ 2ε from each other. For a pair of squares
which are not neighboring their distance is at least 1/2.
Specifically, within the free zone of a vertex we ensured
squares from different edges were at least unit distance
apart (except at the vertex). Also, squares from dif-
fering edges remain at least unit distance apart outside
of the free zones of vertices. For two squares from the

same edge, the pixelization process enforces at least unit
distance for non-adjacent squares. The same holds for
inserting L shaped sequences in the free zone of an edge.
Thus all that remains is the parity gadget, where the
closest two non-adjacent squares can be is exactly 1/2.

By the above, limiting to radius < 1/4 therefore im-
plies that, other than at the (up to) three neighboring
squares at a vertex, any ball either covers just a single
square, or a pair of neighboring squares. An edge e with
ne squares thus requires at least dne/2e = 1+(ne−1)/2
balls to cover it. Moreover, a ball can only cover both
a square of e and e′ if those squares are on the v end of
two edges adjacent to v. Let Ez be the subset of edges
with at least one square covered by such a ball (i.e. a
ball corresponding to a vertex), and let z be the number
of such balls. Then the total number of balls required
is

≥ z +
∑

e∈Ez

(ne − 1)/2 +
∑

e∈E\Ez

(1 + (ne − 1)/2)

= z + (|S| − |E|)/2 + |E \ Ez| = z + (κ− k) + |E \ Ez|,

which is more than κ when z + |E \ Ez| > k. Notice,
however, there is a vertex cover of G of size z + |E \
Ez|, consisting of the vertices that z counted, and one
vertex from either end of each edge in E \ Ez. Thus
as the minimum vertex cover has size > k, we have
z + |E \ Ez| > k as desired.

Therefore, if we could approximate the minimum ra-
dius of our Problem 1 instance within any factor less

than 1/4
ε = 1

4ε then we can determine whether the cor-
responding vertex cover instance had a solution with
≤ k vertices. However, we are free to make ε > 0 as
small we want, and thus 1

4ε as large as we want, so long
as this quantity (or more precisely a lower bound on it)
is computable in polynomial time. Thus we have the
following theorem.

Theorem 2 Problem 1 cannot be approximated within
any factor in polynomial time unless P = NP, even when
restricting to the set of instances in which S is a set of
axis aligned squares of the same size.

References

[Cha03] T. M. Chan. Polynomial-time approximation
schemes for packing and piercing fat objects.
J. Algorithms, 46(2):178–189, 2003.

[FG88] T. Feder and D. H. Greene. Optimal algo-
rithms for approximate clustering. In 20th
Annual ACM Symposium on Theory of Com-
puting (STOC), pages 434–444. ACM, 1988.

[FPP90] H. De Fraysseix, J. Pach, and R. Pollack. How
to draw a planar graph on a grid. Comb.,
10(1):41–51, 1990.

126

CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

[GJ77] M. R. Garey and D. S. Johnson. The rec-
tilinear steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics,
32(4):826–834, 1977.

[Gon85] T. F. Gonzalez. Clustering to minimize the
maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

[HKR21] H. Huang, G. Klimenko, and B. Raichel. Clus-
tering with neighborhoods. In 32nd Interna-
tional Symposium on Algorithms and Compu-
tation (ISAAC), volume 212 of LIPIcs, pages
6:1–6:17, 2021.

[HS85] D. S. Hochbaum and D. B. Shmoys. A
best possible heuristic for the k -center prob-
lem. Mathematics of Operations Research,
10(2):180–184, 1985.

[Kli23] G. Klimenko. Convex hull simplification and
geometric hardness. The University of Texas
at Dallas, 2023.

[XX10] G. Xu and J. Xu. Efficient approximation al-
gorithms for clustering point-sets. Computa-
tional Geometry, 43(1):59–66, 2010.

127

