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ABSTRACT

Partial correlations (PCs) and the related inverse covariance
matrix adopted by graphical lasso, are widely applicable tools
for learning graph connectivity given nodal observations. The
resultant estimators however, can be sensitive to outliers. Ro-
bust approaches developed so far to cope with outliers do
not (explicitly) account for nonlinear interactions possibly
present among nodal processes. This can hurt the identifica-
tion of graph connectivity, merely due to model mismatch.
To overcome this limitation, a novel formulation of robust PC
is introduced based on nonlinear kernel functions. The pro-
posed scheme leverages robust ridge regression techniques,
spectral Fourier feature based kernel approximants, and ro-
bust association measures. Numerical tests on synthetic and
real data illustrate the potential of the novel approach.

Index Terms— Robust statistics, kernel-based methods,
network topology inference

1. INTRODUCTION

Inferring the structure of a graph from nodal observations is
an important task in a wide gamut of disciplines including ge-
nomics, where regulation relations among genes are learned
from gene expression profiles, and neuroscience, where rela-
tions among regions of the brain are deduced from time series
acquired by various brain imaging modalities [5, 15, 2].

PC-based structure estimators aim at introducing an edge
between a pair of nodes only if their relation is a direct one,
that is not one mediated through additional nodes. This is ac-
complished by partialing out the effect of the remaining nodes
by means of linear regression [11]. In the absence of non-
linear mediation effects and outliers, (linear) PC achieves its
goal. Nonlinear influences are widely present though, and
they can be found, for instance, in the context of interaction
modeling among species in ecological networks [4]. Real
world data is also oftentimes contaminated with outlying ob-
servations. Finally, note that the presence of nonlinearities
and outliers are, of course, by no means mutually exclusive.

Prior works. Robust approaches to learning PC-based con-
nectivity either directly estimate the PC coefficients between
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pairs of nodes [19], or estimate the inverse covariance matrix
instead1 via robust variants of the graphical lasso (GL) [24,
7, 3]. Both classes of methods however, are not designed to
account for nonlinear mediation effects. The former explic-
itly rely on linear regression. The latter typically boil down
to using a robust estimate of some first-order central product-
moment between nodal observations (such as the covariance
or correlation) as the input, in place of the covariance matrix,
to a GL problem; see e.g., [3, 24, 7]. Using only first-order
information however, is generally not sufficient for modeling
nonlinear mediating dependencies among nodal observations.
On the other hand, the available nonlinear PC approaches are
not designed to be robust to outliers [10].

To overcome the limitations of existing approaches, the
present work introduces a robust PC criterion that also ac-
counts for nonlinear mediating influences among nodes. To
that end, first, nonlinear modeling functions are employed,
instead of the linear ones considered by plain PC. Nonpara-
metric nonlinear regression estimators are then approximated
by parametric ones, through the use of spectral Fourier fea-
tures, what enables scalability. To limit the effect of ‘out-
liers,’ a highly robust ridge regression scheme will be lever-
aged. As the goal of this scheme is to obtain an estimator that
accurately describes ‘inliers,’ outlying fit residuals may be ob-
tained for outlying observations. A robust counterpart of the
Pearson correlation coefficient shall thus be leveraged in or-
der to correctly assess the association between said residuals,
and finally obtain our robust partial correlation measure.

Contributions. The present work is the first to jointly address
the presence of nonlinear mediation effects and outliers in the
context of PC-based learning of graph structure. As part of
the novel approach, a highly robust and scalable approximate
kernel ridge regression scheme is also outlined.

Notation. The all-ones vector is denoted by 1, while I stands
for the identity matrix. The indicator function is given by
1{·}, and bac denotes the largest integer that is less than or
equal to a. The binomial coefficient is given by

(
n
k

)
, and [T ] is

shorthand for the set {1, 2, . . . , T}. Finally, ‖A‖F stands for
the Frobenius norm of matrix A, ‖x‖p denotes the `p norm
of the vector x, and x> stands for its transpose.

1Linear PCs are expressible in terms of inverse covariance matrix entries.
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2. PRELIMINARIES

Consider a network of multiple interconnected agents with
each agent represented by a vertex (node) ν ∈ V , where V
denotes the set of all nodes. Node ν is represented by a vec-
tor of observations (features) xν := [xν [1], . . . , xν [T ]]>. For
each pair of nodes (i, j), we wish to assess the association
between the corresponding nodal vectors xi and xj , while ac-
counting also for the (i, j) connectivity through the remaining
nodes [11]. Our ultimate goal is outlier-resilient identifica-
tion of these pairwise associations, as they collectively yield a
robust (weighted) estimate of the overall graph connectivity.

To define the (sample) partial correlation coefficient, let
x̂i|V\ij , x̂j|V\ij denote the estimated vectors at nodes i, j ∈ V
using linear regression of all but the (i, j) nodes [11]. In par-
ticular, the regression model postulated in PC for node i is
xi[t] = fi|V\ij(χ\ij [t]) + εi|V\ij [t], where fi|V\ij is a linear
function and χ\ij [t] collects the observations at all nodes ex-
cept for i, j at time t. As we will be focusing on the arbitrary
pair (i, j), we will selectively drop |V\ij from our notation
hereafter. Letting x̃i := xi − x̂i and similarly for x̃j , the
sample PC coefficient of xi,xj with respect to the observa-
tions at the remaining nodes {xk}k∈V/ij is given by

%̂ij :=
(x̃i − ¯̃xi)

>(x̃j − ¯̃xj)

‖x̃i − ¯̃xi‖2‖ x̃j − ¯̃xj‖2
(1)

where ¯̃xi := T−1
∑T
t=1 x̃i[t]1. Note that (1) corresponds to

the Pearson correlation coefficient between the residual vec-
tors {x̃i, x̃j}. The magnitude |%̂ij | indicates the strength of
the association purely between nodes i and j, and not through
the remaining nodes. Deciding whether the (i, j) edge is
present amounts to performing a hypothesis test with %̂ij (or
a function thereof) as the test statistic.

3. PROPOSED APPROACH

The linear nature of fi makes it ill-suited for settings where
nonlinearities are present. In the spirit of [10], that however
does not deal with outlier-robust estimators, a nonlinear fi,
estimated by means of kernel-based regression, will be lever-
aged in order to account for nonlinear mediating interactions.
Moreover, a spectral Fourier feature based approximation for
the kernel will be used here, as this effects graceful scaling
of the complexity with respect to T in the ensuing estimation
tasks [18]. This is important, as it is the norm for robust re-
gression estimators to be obtained via iterative algorithms that
perform multiple passes over the data [9].

In short, consider a ‘stationary’ kernel κ that satisfies
κ(χ,χ′) = κ(χ− χ′), and let κ̄(χ̆) = κ̄(χ− χ′) denote its
normalized version. Drawing i.i.d. random vectors {ωi}mi=1

from the probability density function πκ(ω) = F(κ̄(χ̆)),
where F denotes the Fourier transform, and letting φ(χ) =
1√
m

[cos(ω>1 χ) sin(ω>1 χ) . . . cos(ω>mχ) sin(ω>mχ)]> a
kernel approximant is obtained as ˇ̄κ(χ,χ′) = φ>(χ)φ(χ′),

where φ(χ) is the so-termed spectral feature vector of χ [12];
see also [18] for approximation guarantees.

Vector φ(χ) yields a linear parametric approximant of
fi given by f̌i(χ/ij [t]) = θ>i φ(χ/ij [t]) for the nonlinear
function, where θi ∈ R2m is the vector of regression coeffi-
cients [18]. Estimating f̌i amounts to estimating θi at reduced
complexity O(Tm2) compared to O(T 3) incurred by (exact)
kernel ridge regression, with m chosen such that m� T .

Before introducing our robust spectral feature based esti-
mator for fi, it is important to outline robust (M-)estimators
of scale and the associated (ρ-)functions. The M-estimator
σ̂ρ(r) for the observations r := [r1, . . . , rT ]> is given by the
solution with respect to σ of

1

T

T∑
t=1

ρ
(rt
σ

)
= δ (2)

where ρ(z) is a chosen ρ-function (nondecreasing in |z|, in-
creasing for z > 0 with ρ(z) < ρ(∞) := limz→∞ ρ(z), and
with ρ(0) = 0), and δ is a constant determining the break-
down point (BDP)2 of σ̂ρ(r) [14]. If one were to replace ρ(z)
with z2 and let δ = 1, the solution of (2) will boil down to the
sample root mean square of r, which is not robust.

In general, the choice of ρ(·) determines the effect out-
liers have on σ̂ρ(r). In order to obtain a highly robust esti-
mator, the effect of large outliers should be zero [14]. This
is accomplished by using a bounded ρ-function, such as the
bisquare ρc(z) := 1 − (1 − (z/c)2)3 1{|z| ≤ c}, with c be-
ing a tuning constant. The bisquare is a standard choice in
robust statistics [14, 26], and will be relied upon hereafter. As
BDP(σ̂ρ(r)) = min(δ/ρ(∞), 1−δ/ρ(∞)), it follows that the
bisquare with δ = 0.5 satisfies BDP(σ̂ρc(r)) = 0.5, whereas
for unbounded ρ-functions, such as the Huber or `1 loss, the
BDP reduces to zero [14].

With spectral features φ(χ) as regressors, a non-robust
regularized estimate of θi is given by

θ̂i = arg min
θi∈R2m

T∑
t=1

(xi[t]− θ>i φ(χ\ij [t]))
2 + λ‖θi‖22 (3)

with λ controlling the regularization strength. Let rit(θi) :=
xi[t]−θ>i φ(χ\ij [t]) be the residual for observation xi[t] cor-
responding to the (arbitrary) choice of regression coefficients
θi, and define ri(θi) := [ri1(θi), . . . , riT (θi)]

>.
A robust counterpart of (3) can be obtained as

θ̂i ∈ arg min
θi∈R2m

σ̂2
(i)

T∑
t=1

ρc1

(
rit(θi)

σ̂(i)

)
+ λ‖θi‖22 (4)

where σ̂(i) is an initial estimate of scale of the residuals, re-
quired for defining θ̂i [13, 14]. In particular, letting θ̂(0)i be an

2At a high level, the BDP of an estimator is the smallest fraction of obser-
vations that when replaced by outliers can take the estimator outside of any
bounded set; see [14] for formal definitions. Scale estimators are additionally
required to remain bounded away from zero.
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initial estimate of θi, and ri(θ̂
(0)
i ) be the associated residuals,

σ̂(i) is defined as the M-estimator of scale for said residuals,
that is σ̂(i) := σ̂ρc0 (ri(θ̂

(0)
i )) [13]. Notice that upon replac-

ing ρc1(z) with z2 in (4), one recovers (3). Finally, the tuning
constant c1 is chosen so as to achieve an efficiency of 0.85 at
normal data; see [14] for details.

Remark 1. Thanks to its boundedness, it turns out that the
bisquare is highly robust to outliers even as λ → 0 to mini-
mize bias [17]. In contrast, unbounded ρ-functions are highly
sensitive to outlying residuals [14].

Setting the gradient in (4) equal to zero, and letting
wit := 1

2z

dρc1 (z)

dz

∣∣
z=

rit(θi)

σ̂(i)

and [Wi]tt = wit for the corre-

sponding diagonal matrix of weights, one obtains

(Φ>\ijWiΦ\ij + λI)θi = Φ>\ijWixi (5)

where Φ\ij := [φ(χ\ij [1]), . . . , φ(χ\ij [T ])]>. Notice that
observations with larger residuals receive lower weights as
wit is a decreasing function of |rit(θi)|. As the weights are
a function of θi and vice versa, an alternating minimization
scheme for solving (4) naturally arises. In particular, for a
fixed θi, the resulting residuals and thus the corresponding
matrix Wi are computed. With Wi now kept fixed, the esti-
mate of θi is updated as per (5). This alternating scheme can
be shown to descend at each iteration [13].

Even though a bounded ρ-function enables a highly robust
estimator, the price paid is nonconvexity in (4). Fortunately,
it can be shown that with a high BDP and strongly consistent
initialization, every local optimum will correspond to an es-
timator with high BDP and the same efficiency as the global
optimum [25, 23]. To obtain such an initial estimate, the non-
robust sum of squared residuals in (3) is replaced by a squared
robust estimator of scale (cf. (2)) yielding

θ̂
(0)
i ∈ arg min

θi∈R2m

T σ̂2
ρc0

(ri(θi)) + λ‖θi‖22 (6)

where c0 < c1 is selected so as to ensure consistency of
σ̂ρc0 (·) at normal data; see also [13]. Equating the gradient
to zero, it can be seen that the stationary points of (6) sat-
isfy an equation similar to (5), albeit with [Wi]tt = 2wit,
and λ → (λ/T )

∑T
τ=1 2wiτ (riτ (θ)/σ̂ρc0 (ri(θi)))

2. An al-
ternating algorithm similar to that employed for solving (4)
is thus leveraged here as well [13, 23]. It can be shown that
for δ = 0.5[1 − 2m

T ] it holds that BDP(θ̂i) ≥ 0.5[1 − 2m
T ],

even as λ → 0; see e.g., [16, Thm. 5.8]. Moreover, strong
consistency of θ̂i, under relatively mild assumptions, follows
from [23, Thm. 3].

Remark 2. A question that naturally arises is why θ̂(0)i is not
adopted as the final estimate, altogether bypassing (4). It turns
out that the efficiency of θ̂(0)i in (6) at normal data as λ → 0
and for a desired asymptotic BDP of 0.5, cannot exceed 0.33,
which is extremely low [8]. Combining a high BDP estimator

(cf. (6)) with a highly efficient one (cf. (4)) leads to a scheme
that enjoys both properties [25].

As outlying observations may yield outlying residuals,
and the correlation coefficient is known to be highly sensi-
tive to outliers [6, 22], here we will explore robust alterna-
tives. To begin, note that the population correlation coef-
ficient for a pair of random variables (RVs) can be written
solely as a function of the variances of properly chosen sur-
rogate RVs. For the arbitrary pair Xi, Xj with corresponding
means µi, µj and variances v2i , v

2
j , the population correlation

coefficient can be expressed as

%Xi,Xj =
V(Zij)−V(Z′

ij)

V(Zij) +V(Z′
ij)

(7)

where Zij := Xi−µi
vi

+
Xj−µj
vj

, Z ′ij := Xi−µi
vi

− Xj−µj
vj

and V(Zij) denotes the variance of Zij [6]. A robust equiv-
alent of the sample correlation coefficient can be obtained
by replacing the sample variance with a robust counterpart
thereof [22]. A natural choice is the squared Qn estimator
of dispersion, as it does not require centering and it is en-
dowed both with a BDP of 0.5, which is the maximum at-
tainable for scale equivariant estimators, and with very high
efficiency [20]. For an arbitrary vector r ∈ RT , the Qn es-
timator is obtained as v̂Qn(r) = 2.219{|rk − rl|; k < l, k ∈
[T ], l ∈ [T ]}(p), where p =

(bT/2c+1
2

)
and S(p) denotes the

p-th smallest element of the set S . The robust sample PC co-
efficient of xi,xj is finally obtained by replacing V(Zij) in
(7) with v̂2Qn(ẑij), where ẑij = (1/v̂Qn(ri(θ̂i)))[ri(θ̂i) −
med(ri(θ̂i))1] + (1/v̂Qn(rj(θ̂j)))[rj(θ̂j)−med(rj(θ̂j))1],
with med(·) denoting the median, and similarly for V(Z ′ij).

To summarize, for each pair of nodes (i, j) the regression
coefficient vectors {θ̂i, θ̂j} are obtained as per (4), thereby
yielding the corresponding residual vectors {ri(θ̂i), rj(θ̂j)}.
Our robust PC coefficient for the pair (i, j) is then obtained
as the robust correlation coefficient between {ri(θ̂i), rj(θ̂j)}
using the robust sample correlation coefficient of the ensem-
ble in (7).

4. NUMERICAL TESTS

In order to assess performance of the proposed approach, nu-
merical tests were performed on synthetic and real data. As
is customary, Huber’s contamination model was used, where
with probability (w.p.) (1 − ε) observations come from the
nominal model (inliers), and w.p. ε ∈ [0, 0.5] they follow
an outlier distribution [9]. Performance of the proposed ap-
proach was compared to that of linear PC and to that of a
robust variant of graphical lasso (RGL) [24], for various con-
tamination rates ε. Regarding the proposed approach, a radial
basis function kernel with a width parameter of 10 was used,
and 2m= 50 spectral features were utilized. Regularization
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Fig. 1: AUCs for edge detection performance as a function of the contamination rate ε in the (a) linear and (b) nonlinear cases.

parameters for both RGL and the proposed approach were se-
lected using five-fold cross-validation.

In the first two tests, synthetic data were used to allow
for direct evaluation against the readily available ground truth
graph structure. Random graphs comprising |V| = 20 nodes
were generated using the Barabási-Albert model [1]. The area
under the receiver operating characteristics curve (AUC) was
employed as figure of merit for detecting presence of edges.
The presented results reflect the average performance across
20 realizations, each containing T = 200 observations.

In the first test, the nominal model was a multivariate
Gaussian N (0,Ω−1), where the precision matrix Ω has the
same sparsity pattern as the adjacency matrix of the corre-
sponding graph. The outlier distribution was N (0, 30I).
This is a common choice, as outliers lie away from the cen-
tral tendency, while the dependence structure that describes
inliers is destroyed; see e.g., [7]. As depicted in Fig. 1a, all
methods achieve excellent performance in the absence of out-
liers. This also demonstrates the normal efficiency of the pro-
posed method. As ε increases though, the performance of PC
deteriorates drastically, whereas performance of the proposed
approach and RGL remains almost unaffected.

In the second test, nonlinear dependencies were present.
Specifically, observations amounted to a nonlinear diffusion
process over the graph. First, observations for the highest-
degree node ν1 ∈ V were drawn from the uniform distri-
bution U [0, 2]. Observations at one-hop neighbors of ν1, let
j ∈ N(ν1), were obtained as xj [t] = x2v1 [t] + uj [t], where
uj ∼ U [0, 0.1]. With observations {xj [t]; j ∈ N(ν1)} kept
fixed, the same noisy quadratic model was applied until the
leaf nodes of the graph were reached. The outlier distribution
was xi[t]∼ U [0, 1] ∀i ∈ V . As illustrated in Fig. 1b, even

Table 1: Robustness in the S&P stocks dataset.

ε

0.05 0.1 0.15 0.2

PC 0.729 0.793 0.820 0.844

RGL 0.059 0.097 0.126 0.156

Proposed 0.067 0.095 0.116 0.148

in the absence of outliers, PC and RGL perform poorly, with
their AUCs being close to 0.5. The proposed approach on the
other hand, achieves high estimation accuracy in the absence
of outliers, and it is also robust to outliers, as evidenced by
the small loss in performance as ε increases.

In the third test, real data comprising closing prices of
|V| = 50 stocks from the S&P index on all trading days in the
years 2003-2007 were sourced from “Oxford-Man Institute’s
realized library” [21]. As no ground truth graph connectivity
is available, the robustness of each approach to outliers was

assessed using ‖%̂
(M)

ε − %̂
(M)

0 ‖F /‖%̂
(M)

0 ‖F , where %̂
(M)

ε is
the matrix of PC coefficients estimated by method M at con-

tamination rate ε, and %̂
(M)

0 denotes the corresponding matrix
estimated at uncontaminated data. Outliers were drawn from
N (0, 3I), and replaced actual observations. As evidenced in
Table 1, the plain PC estimate is altered drastically relative
to the uncontaminated case, even at the lowest contamina-
tion level (ε = 0.05), whereas the effect of outliers on the
graph structure estimates obtained by RGL and the proposed
approach remained limited, even at higher values of ε.

5. CONCLUSIONS

The present work introduced a novel approach to identify-
ing graph connectivity using partial correlations. Highly ro-
bust and efficient bisquare M-estimators were utilized to learn
nonlinear functions, scalability was effected through the use
of spectral Fourier features, and a robust association measure
was used to correctly assess correlations between fit residuals.
The result is a robust approach to accurately estimating graph
connectivity even when nonlinear mediation effects and out-
liers are present. Numerical tests demonstrated the benefits of
the novel approach relative to existing alternatives.
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[8] O. Hössjer, “On the optimality of S-estimators,” Statis-
tics & probability letters, vol. 14, no. 5, pp. 413–419,
1992.

[9] P. J. Huber, “Robust Estimation of a Location Param-
eter,” The Annals of Mathematical Statistics, vol. 35,
no. 1, pp. 73 – 101, 1964.

[10] G. Karanikolas, G. B. Giannakis, K. Slavakis, and R. M.
Leahy, “Multi-kernel based nonlinear models for con-
nectivity identification of brain networks,” in 2016 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2016, pp. 6315–6319.

[11] E. D. Kolaczyk, Statistical Analysis of Network Data:
Methods and Models. Springer, 2009.

[12] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Ras-
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