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Abstract

Automatic speech recognition (ASR) has the
potential to accelerate the documentation of en-
dangered languages, but the dearth of resources
poses a major obstacle. Čakavian, an endan-
gered variety spoken primarily in Croatia, is a
case in point, lacking transcription tools that
could aid documentation efforts. We compare
training a new ASR model on a limited dataset
using the Kaldi-based ASR pipeline Elpis to
using the same dataset to adapt the transformer-
based pretrained multilingual model Whisper,
to determine which is more practical in the doc-
umentation context. Results show that Whisper
outperformed Elpis, achieving the lowest av-
erage Word Error Rate (WER) of 57.3% and
median WER of 35.48%. While Elpis offers
a less computationally expensive model and
friendlier user experience, Whisper appears bet-
ter at adapting to our collected Čakavian data.

1 Introduction

The low-resource nature of language documenta-
tion challenges the capabilities of current ASR
tools due to a lack of pretrained language mod-
els (Johnson et al., 2018). This challenge be-
comes greater when the linguistic context exhibits a
high degree of variation, including code-switching.
Čakavian, an endangered (EGIDS 6b) language
with approximately 50,000 total speakers (Eber-
hard et al., 2024), represents one such situation.
While traditionally considered a dialect of Croat-
ian, it differs substantially from standard Croatian
and colloquial Štokavian varieties spoken by the
majority of the Croatian population.1 In addition to
differences in phonology, morphology, and syntax,
the Čakavian lexicon includes many borrowings
from Romance as well as a number of forms of

*These authors contributed equally to this work and share
first authorship.

1The traditional names for these varieties, Čakavian and
Štokavian, are based on the different words for ’what’, ča and
što.

Slavic origin that are not typical for other Croatian
varieties (Langston, 2020; VukoviÂc and Langston,
2020). See Table 7 and Table 8 for some exam-
ples. Although Čakavian is not severely endan-
gered, individual local varieties in this region may
vary significantly from one another and have few
speakers. Prior research exploring the capabilities
of currently available ASR systems to this context
find that (standard) Croatian transcription models
struggle with the differences present between the
two languages (Zhang et al., 2024). Therefore, fur-
ther experimentation can provide insight into best
practices for documentation efforts. As part of a
larger project (ELIC) to create a spoken corpus doc-
umenting endangered language varieties in Istria-
Kvarner, Croatia (Langston et al., 2023), this study
compares the performance of the Kaldi-based tran-
scription pipeline Elpis (Foley et al., 2018) and the
transformer-based multilingual ASR model Whis-
per (Radford et al., 2023) on the transcription of
Čakavian interview data.

Elpis offers a locally executable pipeline to train
new ASR models using Kaldi (Povey et al., 2011).
GMM-based systems like Elpis are less computa-
tionally demanding and they require relatively less
training data compared to neural networks. This
is crucial for language documentation because pre-
trained tools rarely exist. Given that field linguists
often lack the necessary expertise and access to
high-powered computational resources, complexity
is an important factor. Conversely, the demands of
large multilingual ASR models could prove justifi-
able if they can generalize to new contexts. (Rad-
ford et al., 2023). The transformer-based multi-
lingual ASR model Whisper can be adapted with
user data from any language. The base model in-
cludes at least 91 hours of unspecified Croatian
data, which almost certainly does not include Čaka-
vian speech, due to the lack of available resources.
While we argue that Čakavian is distinct from Croa-
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tian2, the availability of a related model means lin-
guists need not train a neural network from scratch.
We utilize Whisper large-v3. (Radford et al., 2023).
Our results find that the best performing fine-tuned
Whisper model 3 is able to outperform Elpis on a
sample of 3 Čakavian interviews, achieving an av-
erage WER of 57.3% and median WER of 35.48%,
while Elpis achieved an average WER of 130.1%
and median WER of 129%.

2 Data and Methods

To compare model creation using Elpis and model
adaptation using Whisper, 5.7 hours of audio data
were used for training. This included five inter-
views of different native speakers of Čakavian and
one audiobook of a Čakavian translation of The
Little Prince (Saint-Exupéry, 2021; LjubešiÂc et al.,
2024). Table 1 provides a breakdown of the data.
Utterance level transcriptions were made by na-
tive speakers and linguists with expertise in Čaka-
vian. Both models were trained using the same data.
Elpis uses a fixed 90%-10% split for training and
testing. For adapting Whisper, an 80%-20% split
was used. The resulting models were then eval-
uated on three additional interviews. Output was
compared to manual transcriptions to determine the
median WERs discussed in Section 2.3.

Usage Audio ID Dialect type Length (min) Speaker Interviewer

Training ckm001 Istrian ekavian 25 F M
ckm002 Coastal ekavian 73 F F
ckm004 i/ekavian 30 F F
ckm005 i/ekavian 57 F F
ckm006 Coastal ekavian 67 F F

Audiobook ikavian 90 M & F n/a
Testing ckm009 Istrian ekavian 36 F M

ckm015 ikavian 55 F F
ckm016 ikavian 119 M F

Table 1: Speaker information for the Čakavian datasets.

2.1 Elpis Data Preparation

The data are preprocessed according to the Elpis
documentation (Foley et al., 2022). The input 16-
bit mono WAV files were resampled to 16 kHz.
Each audio file had a corresponding ELAN file,
in which the speech was transcribed in segments
approximately 10 seconds in length. All transcrip-
tions were standardized by removing punctuation,
variable spellings, and any other non-lexical infor-
mation. Further, as advised by the documentation,

2This is indicated by the poor performance of the base
Whisper-v3 model, presumably trained on standard Croatian,
in the transcription of Čakavian as shown in Table 2.

3The nine fine-tuned Whisper models, as described in
Table 2, are available at https://huggingface.co/ninninz as
ªwhisper-ckm-{1-9}º.

sections in the transcriptions in which 10% or more
of the interviewer’s and interviewee’s speech over-
lapped were removed. These sections were not
deleted from the audio files. In addition to the
WAV audio and ELAN transcription files, the in-
put included a text file containing the grapheme to
phoneme rules of Čakavian. Mel Frequency Cep-
stral Coefficient (MFCC) based feature extraction
is performed on the WAV files to derive input se-
quences. MFCCs reduce acoustic data to focus on
frequencies relevant for human perception, captur-
ing relevant information from the input in a com-
pact way. Elpis can perform file conversion, re-
sampling, and transcription standardization during
setup; however, we found doing these steps prior
to training produced the best results. Users are
also able to select the n-gram value (ranging from
unigram to 5-gram) during model creation. For
our data set (total 3693 words), trigrams gave the
best results. The results of models with different
n-gram values are not reported here for concision.
Lastly, due to the explicit guidance for segmenta-
tion length given in the Elpis documentation, we
did not test different segmentation windows, as was
done for Whisper.

2.2 Whisper Data Preparation

Unlike ELPIS, which was trained entirely on our
Čakavian data, Whisper large-v3 (available as
ªopenai/whisper-large-v3º (Radford et al., 2023)),
is a pre-trained model, which was adapted using
our dataset. This pretrained model is an expansion
of Whisper large-v2, which was built on approxi-
mately 1 million hours of weakly labeled multilin-
gual audio including 91 hours of Croatian data. To
create Whisper large-v3, 4 million hours of pseudo-
labeled audio collected using Whisper large-v2 was
added to the original dataset. To perform adap-
tation, the training data was prepared as follows.
16-bit mono WAV files were resampled to 16kHz.
Transcription segmentation was set according to
Whisper documentation to be no longer than 30
seconds. Transcriptions were normalized by stan-
dardizing spelling and stripping punctuation and
non-lexical items. Segmentation windows of 10
seconds and 20 seconds were also tested. Whisper
utilizes log-Mel spectrograms to derive input fea-
ture vectors. While these are not as lightweight as
MFCCs, they are richer by preserving time course
information. This allows them to be more easily
interpretable than MFCCs. Lastly, noise based on
a random Gaussian distribution was added to each
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input file to increase the robustness of the adapted
model. Training was performed on an Nvidia A100
GPU with a learning rate of 1e-5. A warm-up step
value of 500 was used with a max step of 4000.
See Table 2 for details on each model’s training
data. The median WER was used to guide model
selection for evaluation.

2.3 Model Evaluation

During model training, Word Error Rate (WER)
values were provided by each system. However,
to obtain a more detailed analysis of WER and
the types of errors made by each model, a sepa-
rate evaluation using three different test interviews
was performed. The models’ output transcription
and the manual transcriptions were cleaned to re-
move punctuation, and all words were converted
to lowercase. Second, the manual and model text
sequences were force-aligned with the Python mod-
ule Bio.pairwise2 (Cock et al., 2009). It should be
noted that this package made the alignment hap-
pen with perfect string matches. Therefore, to re-
duce the penalty for nearly correct transcriptions,
a ªfuzzyº match was done to allow for the par-
tially correct cases to be considered as Substitution
cases. The fuzzy match was realized by getting the
unmatched sequences between manual and model
transcriptions and then calculating pair-words’ sim-
ilarity ratio based on Levenshtein Distance (Yujian
and Bo, 2007). For example, as shown in Table 3,
the ªManualº column is the original transcription,
the ªModelº column is the model transcription, and
the ªModel fuzzyº column shows the realigned re-
sults that have achieved a minimum score of 60.

Manual Model Model fuzzy Score Type

dobro dobro dobro 100 c
onda onda onda 100 c

moremo moramo 83 s
moramo 0

započet započet započet 100 c
s s s 100 c

obziron obzirom 86 s
obzirom 0

Table 3: Example of text alignment. See the detailed
alignment process in Section 2.3.

After these steps, the text alignment between
the model output and manual transcription wasa
compared to calculate substitution, insertion, or
deletion errors shown in Equation 1. S is a count of
Substitution errors; D refers to Deletion; I refers to
Insertion and C refers to correctly matched cases.

WER =
S +D + I

S +D + C
(1)

The matching type, as shown in the ªtypeº col-
umn in Table 3, was obtained from string compari-
son between the ªmanualº and ªmodel_fuzzyº. A
correctly matched case is indicated by c, while s
corresponds to a Substitution case.

3 Results

As shown in Figure 1, the WER distributions of
Elpis, each fine-tuned Whisper model, and the
base Whisper model are shown. For all models,
ªwhisper-ckm-3º achieved the lowest average WER
of 57.3% and a median WER of 35.48% in the
forced-aligned WER evaluation. The median in
this context refers to the error for each 20-second
transcription segment obtained in the transcription
of the test interviews during evaluation. The aver-
age WER for all test interview data combined was
57.3%.

3.1 Elpis Pipeline Performance

The best performance by Elpis achieved an aver-
age WER of 130.1% on the test data and a median
value of 129%. The WER exceeds 100% because
the model made many insertion errors. Insertion
rates inflated the output transcriptions to include
more words than were present in the manual tran-
scription. This model included both the interview
and audiobook data. Conversely to Whisper, the
audiobook data improved the model’s performance.
We found that while Elpis required less computa-
tional expertise to use, it is more sensitive to the
quality of the input data.4

3.2 Whisper Model performance

The best performing model of Whisper was adapted
using only the interview speech data. The audio-
book data was not included. Additionally, a 20-
second input transcription segmentation was used,
and white noise data augmentation was performed.
Model testing showed that the performance is sen-
sitive to training data window size, and white-noise
data augmentation improved performance. This is
possibly due to the interview data containing noise
from the recording environment. Asymmetries in

4In testing, the lowest WER reported by Elpis itself was
a model trained on the audiobook data alone. We believe
this is due to the studio quality of the recordings and lack
of speaker overlap. While not used in this paper due to lack
of comparability to our Whisper models, it highlights that
GMM-based technologies are very input sensitive.
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Model Data
Transcription Segmentation

(Seconds)
White Noise Median WER (%)

whisper-large-v3 Base model 10 N 56.00
whisper-ckm-1 Interview speech 10 N 50.00
whisper-ckm-2 Interview speech 20 N 50.00
whisper-ckm-3 Interview speech 20 Y 35.48
whisper-ckm-4 Interview speech and audiobook 10 Y 53.13
whisper-ckm-5 Interview speech and audiobook 20 Y 83.33
whisper-ckm-6 Interview speech and audiobook 30 Y 58.82

whisper-ckm-7
Interview speech (Speaker overlap removed)

and audiobook
10 Y 40.74

whisper-ckm-8
Interview speech (Speaker overlap removed)

and audiobook
20 Y 40.91

whisper-ckm-9
Interview speech (Speaker overlap removed)

and audiobook
30 Y 55.17

Table 2: All models based on and including whisper-large-v3. Whisper-ckm-{1/2/3} were adapted on Čakavian
interview speech data. Whisper-ckm-{4/5/6/7/8/9} were adapted on both the interview speech data and Čakavian
audiobook data. "Y" in the white noise column means the input data was augmented with random noise. Median
WER is the median error calculated on the three test interviews. (See Section 2.3 for details).

Figure 1: WER value distribution for each model. Value distributions come from the calculated error for each
transcription segment across each model and the base whisper model. Values in Appendix Table 5.

the reporting of the input data augmentation in Ta-
ble 4 are for the sake of brevity. The omissions
represent models with higher median WERs.

3.3 Error Type Analysis

As shown in Table 4, a comparison of the models’
error type occurrence was carried out. Compared to
the base Whisper model (ªwhisper-large-v3º), the
best adapted model (ªwhisper-ckm-3º) achieved a
7.5% WER reduction. This model showed a higher
Correct rate and lower Substitution and Deletion
rates. Comparatively, Elpis had higher Deletion
and Insertion rates, which led to its high WER.

4 Discussion

Our results show that the best-performing model
was obtained by adapting Whisper-large-v3 using
transcribed interview data. It achieved an average

WER of 57.3% and a median WER of 35.48%.
Overall, this level of performance is still poor, but
the automated transcriptions contain many seg-
ments that are largely or completely error-free.
We have found in practice that some transcribers
can use them successfully as guides to accelerate
manual transcription. Further, adapted Whisper
models can be shared freely online allowing other
researchers to benefit from these documentation
efforts. The ability to save and reuse a trained
model with Elpis is not transparent and represents
a current drawback for the pipeline. Although the
WER for our Čakavian ASR model created with
Elpis was higher than previously reported WER
on other languages (Foley et al., 2018), the system
has the advantages of not requiring a pre-trained
language model and the underlying technology
demands fewer computational resources for im-

64



Model Correct (C) Deletion (D) Insertion (I) Substitution (S) Mean WER

whisper-ckm-3 58.2% 24.0% 22.9% 17.8% 57.3%
Elpis 24.4% 61.4% 54.4% 14.2% 130.1%

Table 4: Model error showing each error type and the total each contributed to the mean WER. The error type rate
shown here is accumulated across the three test interviews from Table 1 (i.e., ckm009, ckm015, and ckm016 were
transcribed to produce the error rates; see the detailed error type information for each test audio file in Appendix
Table 6). The error rate is calculated as ªError Case Number divided by the total word number (i.e., C + S + D)º.

plementation. Nevertheless, the scale of the pre-
trained base Whisper model and the inclusion of
related language data appear to have allowed the
model to overcome the variation present in our
sample of Čakavian.

Our attempts at fine-tuning the Whisper large-v3
model show the effect of several factors on model
performance, including: (1) audio segmentation
window size, (2) the type and quality of audio data,
and (3) speaker overlaps. Here, the best results
were obtained with a model that was trained exclu-
sively on the same type of data as the test audio
files (sociolinguistic interviews). The addition of
higher quality training data from the audiobook
recording did not improve the model performance
on the specific test data in this study.

5 Limitations and future research

Not only does the language context pose a chal-
lenge itself, but the type of training data used in this
study further tests the performance of both Whis-
per and Elpis. Our data consists of field recordings
of sociolinguistic interviews. This introduces both
environmental noise and speaker overlap into the
data. Other work using Whisper on higher resource
languages has shown better performance (Amorese
et al., 2023; Graham and Roll, 2024). Crucially,
in these studies, the test data was restricted in do-
main to elicited speech or short readings. Concern-
ing Elpis, data sets containing multiple speakers
in one training file are not recommended (Foley
et al., 2022). We were also unable to account for
the effects of code-switching in our data, which
is likely to have impacted performance. Anno-
tating the data to identify specific segments that
include code-switching would be time-consuming,
especially for closely related varieties such as the
ones here. Research into utilizing Whisper on
code-switching between French and Kréyòl Gwad-
loupéyen shows similar results to those reported
in this paper (Le Ferrand and Prud’Hommeaux,
2024). Nevertheless, the realities of language docu-

mentation mean that data collection cannot always
proceed in a way that facilitates ASR model train-
ing. More work is needed to better understand how
different ASR systems such as Whisper and Elpis
respond to less than ideal training data.

Also left for future work is a formal comparison
of the time required for an ASR-aided workflow vs.
manual transcription of our data. Other researchers
have reported similar times for manual transcrip-
tion vs. correcting an ASR transcription (Gorisch
and Schmidt, 2024). Another study concludes that
ASR output can be useful for transcription only if
the WER is less than 30%, which is considerably
lower than the mean WERs reported here (Gaur
et al., 2016).

6 Conclusion

Čakavian represents a low-resource context that
challenges conventional ASR. There exist no pre-
trained models for use, local varieties differ sub-
stantially from one another, and speakers employ
frequent code-switching to standard Croatian. To
lessen transcription time, linguists are faced with
modeling the data from scratch or reaching for a
related language model to adapt. Our results show
that model adaptation is the best practice for the au-
tomatic transcription of Čakavian. The collection
of clean, high quality training data that better con-
forms to the design specifications for a tool such
as Elpis may allow for the creation of models that
provide usable automatic transcriptions, based on a
small manually transcribed dataset. However, with-
out such training data, systems like Whisper offer
better performance.
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tion. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 1098±1104, Torino, Italia. ELRA and ICCL.

66



Appendices

A Values of boxplots shown in Figure 1

whisper-

ckm-1

whisper-

ckm-2

whisper-

ckm-3

whisper-

ckm-4

whisper-

ckm-5

whisper-

ckm-6

whisper-

ckm-7

whisper-

ckm-8

whisper-

ckm-9

whisper-

large-v3
Elpis

count 1157 1157 1157 1157 1157 1157 1157 1157 1157 1157 1053
std 201 480 444 270 219 226 150 169 240 234 201
min 0 0 0 0 0 0 0 0 0 0 43
25% 26 26 20 26 33 26 21 21 25 39 111
50% 50 50 35 53 83 59 41 41 55 56 129
75% 107 103 80 118 118 115 95 96 105 85 152
max 3700 10900 8600 7000 6600 4700 3000 3100 3300 3000 2500

Table 5: Descriptive statistics of Models’ WER(%) distribution shown in Figure 1

B Detailed error rate for the test audio files

Model Test Audio
Error Type Case Number

WER
Correct (C) Deletion (D) Insertion (I) Substitution (S)

whisper-large-v3 ckm009 3076 838 1125 926 59.7%
ckm015 4283 2854 2246 1046 75.1%
ckm016 8001 2645 2687 2728 60.3%

Total 15360 6337 6058 4700 64.8%

whisper-ckm-3

ckm009 3639 660 1383 588 53.8%
ckm015 4754 2855 1999 670 66.7%
ckm016 9945 1690 3603 1802 52.8%

Total 18338 5205 6985 3060 57.3%

ELPIS

ckm009 1668 2389 2595 838 118.9%
ckm015 2260 4921 4460 1120 126.5%
ckm016 1998 7624 6180 1493 137.6%

Total 5926 14934 13235 3451 130.1%

Table 6: Detailed error rates for the test audio files. The detailed error case numbers for each error type are shown in
this table, and the total value is shown in Table 4.
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C Examples of characteristic differences between standard Croatian and Čakavian

varieties

Standard Croatian OrbaniÂci Kastav Grobnik Gloss

št‚o č‚a č‚a č‚a ‘what’

tk‚o k“ı k“ı k“ı ‘who’

kòjÅı k“ı k“ı k“ı ‘which’

gdj‚e kad‚e kad‚e kad‚ı, k“aj ‘where’

mlijéko mliek‚o mlÅek‚o mlÅık‚o ‘milk’

mj‚esÅec m‚esec m‚esÅec m‚ısÅec ‘month, moon’

pòsao d‚elo, p‚osal d‚elo, posãl d‚elo, pos“al ‘work, job’

r‚eÂci [rétCì], PRS.1SG r‚ečÅem r‚eÂc [retj], PRS.1SG reč‚en r‚eÂc [retj], PRS.1SG rečẽn r‚eÂc [retj], PRS.1SG reč“en ‘say, tell’

r‚o Åden r‚ojen r‚ojen r‚ojÅen, r‚od’Åen ‘born’

p‚as, GEN.SG ps‚a br‚ek, GEN.SG brek‚a p‚as, GEN.SG pas‚a p‚as, GEN.SG pas‚a ‘dog’

u v, va v, va v, va ‘in’

Table 7: Differences of phonological/morphological origin (incl. some additional lexical differences)(Kalsbeek,
1998; MiletiÂc, 2019; LukežiÂc and ZubčiÂc, 2007)

Standard Croatian OrbaniÂci Kastav Grobnik Gloss

dijéte otr‚ok (or dÅıt‚e) otr‚ok otr‚ok (or dÅıt‚e) ‘child’

gládan l‚ačan l‚ačÅan l‚ačÅan ‘hungry’

PRS.1SG ‚ıdÅem griẽn grẽn gr“en, r“en ‘I go’

m“alÅı, màlen m“ıÂci, m‚ınji mı̃ÂcÅı m“ıÂcÅı ‘small’

odijélo vešt“ıt vešt“ıd vešt“ıd, vest“ıd ‘suit’

p‚oslije p‚okle, p‚otle p‚okle, p‚otle p‚okli, p‚okla, p‚otla ‘after’

‚ugao kantu“on kÅantũn kÅant“un ‘corner’

ùhvatiti Âcap‚at Âcap‚at Âcap‚at ‘catch, snatch’

zaùstaviti (se), prèstati frm‚at (se), ferm‚at (se) fÅerm‚at (se) fÅerm‚at (se) ‘stop’

Table 8: Lexical differences (incl. some phonological differences within Čakavian)(Kalsbeek, 1998; MiletiÂc, 2019;
LukežiÂc and ZubčiÂc, 2007)
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