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ABSTRACT

The neural semi-Markov Conditional Random Field (semi-
CRF) framework has demonstrated promise for event-based
piano transcription. In this framework, all events (notes or
pedals) are represented as closed time intervals tied to spe-
cific event types. The neural semi-CRF approach requires
an interval scoring matrix that assigns a score for every
candidate interval. However, designing an efficient and
expressive architecture for scoring intervals is not trivial.
This paper introduces a simple method for scoring inter-
vals using scaled inner product operations that resemble
how attention scoring is done in transformers. We show
theoretically that, due to the special structure from encod-
ing the non-overlapping intervals, under a mild condition,
the inner product operations are expressive enough to rep-
resent an ideal scoring matrix that can yield the correct
transcription result. We then demonstrate that an encoder-
only non-hierarchical transformer backbone, operating only
on a low-time-resolution feature map, is capable of tran-
scribing piano notes and pedals with high accuracy and
time precision. The experiment shows that our approach
achieves the new state-of-the-art performance across all
subtasks in terms of the F1 measure on the Maestro dataset.

1 Introduction

Automatic Music Transcription (AMT) transforms the au-
dio signal of music performances into symbolic represen-
tations [1]. In this work, we focus on transcribing piano
performance audio into its piano roll representation. ! The
piano roll representation, as formulated in [2], can be ab-
stracted as consisting of sets of non-overlapping time inter-
vals of the form [onset, offset], with each set corresponding
to one particular event type, e.g., a specific note or pedal.
Recent strategies to handle the problem of outputting this
structured representation fall into three main categories: 1)
Keypoint detection and assembly: This approach involves
identifying the onsets, offsets, and frame-wise activations
of notes and then assembling these elements together with a
handcrafted post-processing step. Examples include [3-5];
2) Structured prediction with a probabilistic model: Models

I Code: https://github.com/Yujia-Yan/Transkun
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in this category use a probabilistic model to ensure the struc-
ture of the output to be sets of non-overlapping intervals,
e.g., [2,6,7]; 3) Sequence-to-sequence (Seq2Seq) meth-
ods ? : These methods, such as [8], treat music transcription
as a machine translation problem, which translates audio to
tokens that encode the target symbolic representation.

Our study focuses on the neural semi-Markov Condi-
tional Random Field (semi-CRF) framework [2] from the
second category, which directly models each music event
(note or pedal) as a closed time interval associated with a
specific event type. The approach employs a neural network
to score interval candidates and uses dynamic programming
to decode non-overlapping intervals. This framework elimi-
nates the need for separate keypoint detection and assembly
steps in the first category but outputs the events (intervals)
in a single stage. Compared to other methods in the second
category, e.g. [6, 7], it does not need hand-crafted state defi-
nitions and state transitions. Additionally, it benefits from
optimal decoding in a non-autoregressive fashion as op-
posed to the slow autoregressive and suboptimal decoding
in Seq2Seq methods (the third category).

This paper builds upon, simplifies, and improves the neu-
ral semi-CRF framework [2] for piano transcription. Our
major contributions are as follows. First, we replace the
original scoring module that assigns a score for every pos-
sible interval with a simpler and more efficient pairwise
inner product operation. Specifically, we prove that due
to the special structure of encoding non-overlapping inter-
vals, under a mild condition, the inner product operation
is expressive enough to represent an ideal scoring matrix
that can yield the correct transcription decoding. Second,
inspired by the resemblance between the proposed inner
product operation and the attention mechanism in the trans-
former [9], we use the transformer architecture to produce
the interval representation for inner product scoring. We
demonstrate that an encoder-only non-hierarchical trans-
former backbone, operating only on a low-time-resolution
feature map, is capable of transcribing notes with high ac-
curacy and time precision. Third, we compare our method
against state-of-the-art piano transcription systems on the
Maestro v3 dataset, showing that our method establishes
the new state of the art across all subtasks in terms of the
F1 score.

2 Strictly speaking, the Seq2Seq approach can also be categorized as
a probabilistic model for structrued prediction. We isolate it here for
simplifying the discussion.



2 Related Work

2.1 Neural Semi-CRF for Piano Transcription

Previous work of [2] introduced a neural semi-Markov Con-
ditional Random Field (semi-CRF) framework for event-
based piano transcription, where each event (note or pedal)
is represented as a closed interval associated with a spe-
cific event type. The approach employs a neural network to
score interval candidates and uses dynamic programming to
decode non-overlapping intervals. After interval decoding,
interval-based features are used to estimate event attributes,
such as MIDI velocity and refined onset/offset positions> .
The neural semi-CRF can be viewed as a general output
layer, similar to a softmax layer, but tailored for handling
non-overlapping intervals. For a sequence of 7" frames, let
Y denote a set of non-overlapping closed intervals. The
semi-CRF layer for ) takes two inputs for each event type:

1. score(i,j): AT x T triangular matrix that scores
every candidate interval [i, j] for inclusion in ). The
diagonal values score(i,i) represent single-frame
events.

2. score.(i —1,i): A (T — 1)-dimensional vector that
assigns a score to every interval [¢ — 1, 4] not covered
by any interval in )/, serving as an inactivity score.

Both score(i, j) and scorec(i—1, i) are computed using

a neural network from the audio input X. The total score

for Y, given X, is:

d(Y|X) = Z score(i, j) + Z score (i — 1,1).
[i,5l€y [i-1,4

not covered
in)y

(1)
For inference, maximum a posteriori (MAP) is used to infer
the optimal set of non-overlapping intervals }*:

Y* = argmax ®(Y|X). 2)
Y

For training, the maximum likelihood approach is used,
with the conditional log-likelihood defined as:

log p(Y|X) = ®(V|X) —log > exp@(V'|X).  (3)

Here, arg max in Eq. (2), and the summation in the second
term in Eq. (3) are over all possible sets of non-overlapping
intervals. We refer the readers to [2] for algorithmic details.

To make predictions for all event types (88 keys + ped-
als), multiple instances of semi-CRF are used in parallel,
each corresponding to a specific event type.

2.2 Vision Transformer and YOLOS

The Vision Transformer (ViT) [10] introduced a significant
shift in computer vision, offering an alternative to traditional
CNN models. ViT processes images as sequences of fixed-
size patches using transformer layers [9], proving success-
ful across various tasks. For end-to-end object detection,
YOLOS [11] demonstrated a minimal, non-hierarchical
encoder-only design that appends [DET] tokens (represent-
ing object slots) directly to image patch tokens as input to
the transformer encoder. Our architecture adopts a similar
encoder-only design for event-based music transcription.

3 For dequantizing onset/offset positions from quantized positions.

3 Revisiting Interval Scoring for Semi-CRFs

The neural semi-CRF framework crucially relies on model-
ing the interval scoring matrix, score(i, j), which assigns
a score to each candidate interval. The size of the matrix,
which grows quadratically with the sequence length, poses
a challenge to designing an efficient and expressive model
architecture. For this discussion, score. will be excluded
due to its minimal impact on model performance from our
observation and negligible modeling challenges.

3.1 Interval Scoring in [2]

In [2], a backbone model first transforms the input sequence
X = [xo,...,xr_1] into a sequence of feature vectors
[ho, ..., hr_1]. Each interval [¢, j] is scored by applying
an MLP to features computed from the interval, with the
output dimension being the number of event types. For
simplicity, assuming only one event type to predict, the
score is computed as

SCOT@(i, j) = MLP([h“ hj, h7 ® hj, mi,ma, mg]), (4)
where h; and h; are feature vectors corresponding to the
interval’s onset and offset, © denotes element-wise multi-
plication, and m, Mo, mg are the first, second, and third
statistical moments over the interval [z, j].

After producing the interval scoring matrices for all
event types, a shallow CNN is applied, treating the interval
endpoints as spatial coordinates and event types as channels.
This refinement step slightly improves the result.

Directly computing Eq. (4) and the subsequent refine-
ment step are memory intensive. The official implementa-
tion processes the scoring matrix in segments and applies
gradient checkpointing during training, reducing peak mem-
ory usage at the cost of increased computational time. Con-
sequently, the MLP and CNN layers’ depth and width are
constrained, potentially limiting the model’s capacity and
increasing susceptibility to local pattern overfitting.

3.2 Interval Scoring with Inner Product

We propose to use the following method for interval scoring:
N ] .

score(i, j) = —=(qi, kj) + b;(3,7), &)
(i,4) 5 (@ ki) (i,4)

where §(4, j) is the Kronecker delta, which is 1 if ¢ = j and
0 otherwise. q; € R, k; € RP and b; € R are computed
from the embedding vector h; using a linear layer f:

[qi, ki, bi] = f(h:). (©)
The interval scoring matrix computed from Eq. (5) takes
a low-rank plus diagonal structure. This method, termed
Scaled Inner Product Interval Scoring, computes the
score of an event as the scaled inner product between vec-
tors g; and k; representing the start and the end of the
interval.

Despite its simplicity and resemblance to the attention
mechanism in transformers, one question arises about the
expressiveness of the inner product for capturing the tran-
scription result. We answer this question by constructing a
family of interval scoring matrices that can yield the correct
decoded result, and then show that this family of matrices
can be represented in the form of pairwise inner product
under certain conditions.



Without loss of generality, we ignore the intervals of
form [, ¢], which correspond to the diagonal values in the
interval scoring matrix; they can be added back as diagonals
as in Eq. (5). Additionally, since only the upper triangular
part of the interval scoring matrix is used, we use the nota-
tion for a full matrix to simplify the derivation. We begin
by defining a set of nonoverlapping closed intervals.

Definition 3.1. Let ) be a set of closed intervals defined on
NN[0,T —1],i.e., T steps. It is a set of non-overlapping
intervals if for any two intervals [ig, jo] € Y and [i1, j1] €
Y, i9 > j1 oriy > jo, and, additionally, V[i, j] € Y, < j.

Definition 3.2. An ideal interval scoring matrix for )) over

T steps, i.e., Sy € RT*T is a matrix such that
Sy(i,j) >0, V[i,jl € Y,
Sy(i,j) = —e, otherwise

where ¢ > 0.

With an ideal scoring matrix Sy, it is clear that the MAP
decoding will yield ), since the exclusion of V[z, j] € Y or
the inclusion of V[i, j] ¢ ) will decrease the total score.

Lemma 3.1. The rank of an ideal interval scoring matrix
Sy for a set of non-overlapping intervals, Y, is M + 1,

where M = ||, which is the number of intervals.
Proof. By definition, the first column is —el, that is,
Vi, Sy(i,0) = —e. Subtracting the first column from all
columns gives S7, such that

Sy(i,j) >e, Vi, jl€D,

Sy(i,5) =0, otherwise

Given that no two non-zero entries in SS, share a row or
column (as per the definition of set of non-overlapping
intervals), and there are M non-zero entries, the rank of

) is M. Since there are at most ' — 1 non-overlapping
intervals across 7" frames, we have M < T — 1, and the
number of nonzero entries in S, is smaller than or equal to
T —1. As aresult, —el (T non-zeros) cannot be represented
by a linear combination of other nonzero columns in S4,,
therefore rank(Sy) = rank(Sy) +1= M + 1. O

Theorem 3.2. Let Y be a set of non-overlapping closed
intervals over T' steps, with cardinality M. An ideal in-
terval scoring matrix Sy can be represented as pairwise
inner products between two 1d sequences (k;); and (q;);
of vectors:

Sy(i,j) = <qi’kj>7 @)
provided that rank(Qy) > M and rank(Ky) > M
where Qy = [qo, . . .,qr-1), and Ky, = [k, ..., kr_1].

Proof. By Lemma 3.1, the rank of Sy is M + 1. Then it
directly follows the rank factorization of a matrix. O

Theorem 3.2 establishes a minimum rank requirement
for Qy and Ky to represent an ideal scoring matrix. This
leads to two key observations:

1. The vector dimensions D of k; and q; must exceed

the total number of intervals, |V|.

2. Consider a linear upsampling operator ., which is a
special case of a 1-d transposed convolutional layer.
It works by dividing each step of a vector sequence
into ¢ equal parts when the sequence is upsampled
c times. Suppose we want to represent Qy and Ky
using low-resolution 1-d vector sequences: QY =
@0 - - qr ] and K, = [kg, ..., k7] where
T’ < T, and this representation is achieved by apply-
ing u. to Q) and K, resulting in Qy = u.(QY),
and Ky = u.(K}), where ¢ = T'/T" represents
the upsampling factor. For this representation to be
valid, the vector dimension D’ for the low-resolution
sequence, i.e., q; and k] should exceed c|)|.
These observations highlight that the dimensionality re-
quirement depends solely on the count of intervals in Y
and the downsampling (upsampling) factor ¢ = T'/T” along
the time axis. This analysis reveals sufficient conditions to
guarantee the expressiveness of the inner product interval
scoring method. From Theorem 3.2, by applying a scaling
factor* and reintegrating diagonal terms, we can recover
Eq. (5).

3.3 Comparison with Attention Mechanism

Comparing the neural semi-CRF with the inner product
scoring to the attention mechanism reveals interesting par-
allels. Both of them have quadratic time complexity in the
length of the input. The original score module, as in [2],
resembles an additive attention mechanism, as introduced
by [12]. However, attention mechanisms based on inner
products [13] have become preferred for their simplicity
and computational efficiency. Similarly, the proposed inner
product scoring for neural semi-CRFs efficiently scores in-
tervals. However, in contrast to attention mechanisms that
score sequence positions and normalize posteriors for each
position, neural semi-CRFs score intervals and normalize
posteriors globally over sets of non-overlapping intervals.
The Transformer architecture can be viewed as inher-
ently refining a sequential representation for inner product
scoring. Inspired by these similarities, we utilize the trans-
former architecture to produce the 1-d sequence representa-
tions (h$* ") for each event type, termed event tracks,
which will be used for inner product interval scoring.

4 Proposed System

Figure 1 summarizes the proposed system. The input is
an oversampled log-mel spectrogram, as in [2]. The spec-
trogram is downsampled using 2-d strided convolutional
layers, followed by the addition of spatial position embed-
dings (Section 4.2). Event tracks for all event types (notes
and pedals) are initialized with their own spatial position
embeddings and concatenated with the downsampled spec-
trogram representations. The concatenated features are
processed by a transformer encoder. Subsequently, only the
event track embeddings are upsampled using one 1-d trans-
posed convolutional layer. The upsampled event tracks are
used for inner product interval scoring (Eq. (5)) to generate

4 Note that applying a length-dependent scaling on the ideal scoring
matrix does not change the decoded result.
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Figure 1: Overview of the proposed system. Inner product
scoring follows Eq. (5).

interval scoring matrices, which are then fed to the neural
semi-CRF layer for log-likelihood calculation or inference.

4.1 Rethinking Downsampling

Existing studies on Vision Transformers (ViTs) demon-
strate the effectiveness of a non-hierarchical design that uses
highly downsampled, low-resolution feature maps even for
tasks requiring dense predictions, e.g., [14], challenging the
dominance of hierarchical models like UNET [15]. How-
ever, state-of-the-art (SOTA) piano transcription systems,
including [2,4, 5, 8], retain full resolution along the time
axis. These approaches preserve the temporal detail of the
input frames, but at the cost of increased training time and
reduced model scalability.

This choice might be explained by concerns over losing
temporal precision when locating events. However, we
argue that the high dimensionality of the embeddings makes
the low temporal resolution feature map still capable of
processing with enough information.

In our approach, we use strided convolutional layers to
downsample the input spectrogram, along both the time
and frequency axes, transforming it from its original spatial
dimensions (7, F') to a low-resolution feature map with
dimensions (7", F’) = (%, g) In line with the ViT
literature, we refer to this reduced feature map as patch
embeddings for ct X cp patches. The choice of patch size
(er, crp) may present a trade-off between computational
efficiency and the model’s capacity to capture dense events
in the input spectrogram. As an initial exploration, we use
a patch size of 8 x 4 to keep the training time within our
expected range.

To upsample event tracks to the original temporal res-

olution of frames, we utilize a single transposed 1-d con-
volutional layer. We found that this simple upsampling
layer efficiently prepares representations for inner product
scoring at the desired resolution.

4.2 Transformer Encoder Architecture

hl

I

TransformerBlock
On Time axis

T xL

TransformerBlock
On Freg/Event
axis

Self-Attn
RMSNorm

)
h h
(a) Transformer Block. (b) Encoder Layers

Figure 2: Building Blocks for the Transformer Encoder

Spatial Position Embedding. We use learnable
Fourier features for spatial position embeddings [16]
for both time-frequency representations with coordinates
(frameldx, freqldx), and event tracks with coordinates
(frameldx, eventTypeldx). This position embedding is cho-
sen for its simplicity and broad compatibility with trans-
former architectures. Our formula differs slightly from [16]
as we follow the formula in the original random Fourier
features paper [17]. We compute the position embedding
y € RF from a multidimensional coordinate € R as:

Y= g(\/gcos(Wrm +b)), ®)

where W,. is a learnable matrix RP*C | initialized from
N(0,v72); B is the dimension for the Fourier features; y
is a hyperparameter; b € RPZ is the learnable bias term,
initialized from U (—n, +7); g : R® — R¥ is a two-layer
perceptron. This position embedding functions like an MLP
that takes coordinates as input, with the first nonlinearity
being a scaled cosine function.

The Transformer Encoder Layer. Figure 2a illustrates
the basic transformer block. This block first applies RM-
SNorm [18] before the self-attention and feed-forward lay-
ers. To enhance training stability, we use ReZero [19]
which applies a learnable scaling factor ), initially set to
0.01, before adding to the skip connection. As in Fig-
ure 2b, for reducing computational cost, we alternate at-
tention within each transformer block along the time and
frequency/eventType axes; similar ideas are often used for
efficient transformer architectures [20-22].

4.3 Segment-Wise Processing

Longer audio is transcribed using segments with 50% over-
lap. Unlike [2], which discards events that exceed the seg-
ment boundary during training, we truncate such events to
fit within the segment. We introduce two binary attributes,
hasOnset and hasOffset, to indicate whether an event’s on-
set or offset has been truncated.

For each event type within a segment, decoding starts
from either: (1) the current segment’s boundary, or (2) the
offset of the last event in the result set with hasOffset =
true, whichever is later. Events decoded in the current



segment are then processed as follows: (1) non-overlapping
events with hasOnset = true are directly added to the result
set; (2) for events overlapping with the last event of the same
type in the result set: if the current event has hasOnset =
true, it replaces the last event > ; otherwise, the two events
are merged.

4.4 Attribute Prediction

Attributes associated with each event include velocity, re-
fined onset/offset positions (for dequantizing frame posi-
tions), and the binary flags hasOnset and hasOffset. To
predict these attributes for an event extracted from the event
track (A5 T e.g., [, b], we use a two-layer MLP
that takes hS"™P and hi"emType as input. The MLP out-
puts the parameters of the probability distributions for each
attribute. Specifically, velocity € {0...,127} is modeled
as a categorical distribution, refined onset/offset positions
€ (—0.5,0.5) are modeled as continuous Bernoulli distri-
butions [23] shifted by —0.5, and hasOnset/hasOffset €
{0, 1} are modeled as Bernoulli distributions.

5 Experiment

5.1 Dataset

Maestro v3.0.0 [24]. This dataset contains about 200 hours
of piano performances, including audio recordings and cor-
responding MIDI files captured using Yamaha Disklavier
pianos. We use the standard train/validation/test splits.
MAPS [25]. The MAPS dataset includes both synthesized
and real piano recordings, with the real recordings captured
by MIDI playback on Yamaha Disklavier. We evaluate our
model on the Disklavier subset (ENSTDkAm/MUS and
ENSTDkCI/MUS) of the MAPS dataset, which consists
of 60 recordings and is commonly used for cross-dataset
evaluation. However, we discovered systematic alignment
issues in the ground-truth annotations for both notes and
pedals, affecting both onset and offset locations. Onset
alignment issues have been previously reported in [26] but
are not widely known in the community 6 .

SMD [27]. Similar to Maestro dataset, the SMD dataset
was created by recording human performance on a Yamaha
Disklavier. The dataset contains 50 recordings. We found
that the onset annotations in SMD are better aligned com-
pared to MAPS, but the offset annotations suffer from simi-
lar biases.

5.2 Model Specification

The key model specifications are summarized in Table 1.
Training takes about 6 days on 2 NVIDIA RTX 4090.

5 For overlapping events between segments: (1) The first event must
have hasOffset = false. (2) A continuing second event must have
hasOnset = false. (3) If the second event’s hasOnset = true, the first
event is replaced by the second event as it’s not supported by the second.

6 A piece-dependent onset latency around 15 ms has been previously
discussed in [26]. Due to the electro-mechanical playback mechanism,
this latency could also be note/pedal dependent. Offset deviation (up to
approximately 70 ms) appears more complex and may be influenced by
pedal-/note-dependent mechanical latency or undocumented specific piano
model’s response to non-binary pedal values.

Input Mel Spectrogram  sr: 44100 Hz, hop: 1024, window size: 4096, subwin-
dows:5, mels: 229, freq: 30-8000 Hz, segment: 16s,

Patch shape: 8 X 4, embeding size: 256

Strided Conv. Layers initial proj. size: 64, added with freq. embeddings

for Downsampling out: [128, 256, 256, 256], kernel size: 3, stride: [(2,1),
(2,2), (2,2), (1,1)], Each followed by GroupNorm,
groups = 4, and GELU (except for the last conv.)

Position Embedding ~ = 1, |B| = 256, MLP hidden size 1024

Transformer Encoder 8 heads, 6 layers (=12 blocks), FNN size: 1024
Upsampling 1d. transposed conv, out: 128, kernel size:8, stride:8
Attribute Prediction two layer MLP, hidden size: 512, dropout 0.1

-
Batch Size 12
Optimizer Adabelief [28], maximum learning rate: 4e—4

Weight Decay le—2, excluding bias, norm., and pos. embedding

Learning Rate Schedule 500k iterations, 5% warm-up phase, cosine anneal.

Gradient Clipping Clipping norms at 80% quantile of past 10,000 itera-
tions

Table 1: Model Specification.

5.3 Evaluation Metrics

We compute precision, recall, and fl score averaged over
recordings for both activation level (from [2], equivalent
to frame level with infinitesimal hop size), and note level
metrics (Note Onset, Note w/Offset, and Note w/Offset &
Vel., using mir_eval [29], default settings). All metrics
are directly computed from transcribed MIDIs. For details
on these metrics, readers can refer to the supplementary
material of [2], and the documentation of mir_eval [30].
For MAPS and SMD, we only report activation-level
and onset-only note-level metrics due to the ground-truth
alignment issues discussed in Section 5.1. These issues
make offset-related metrics unreliable for these datasets.

5.4 Results

Our results on the Maestro v3 test set are presented in
Table 2. The proposed model achieves state-of-the-art per-
formance across all metrics in terms of f1 score, surpassing
previous methods by a significant margin. We also report
results for soft pedal transcription which has not been pre-
viously explored. The low event-level metrics suggest that
accurately determining soft pedal onset and offset times is
more challenging than for notes and sustain pedals. We
conjecture this is because soft pedals are typically engaged
for longer durations and appear significantly less frequently
in the dataset than sustain pedals.
Scoring Methods Comparison. We conducted an ablation
study to compare our proposed inner product scoring with
the more complex scoring method from [2]. We trained
a model with an identical architecture but replaced the in-
ner product scoring with the scoring module from [2]. To
ensure a fair comparison, we adjusted the hidden sizes of
the scoring module to keep the training time for a single
iteration within a factor of two of our proposed system.
Specifically, all event tracks were projected to a single se-
quence with a dimension of 512, and the hidden size of the
scoring module was set to 512. As shown in Table 2, our in-
ner product scoring outperforms the more complex scoring
method, demonstrating its effectiveness and efficiency.
Furthermore, we compared two variants of the inner
product scoring: a linear layer and an MLP for computing
the k/q/b vectors (f in Eq. (6)). The results demonstrate
that the linear layer yields better performance than the MLP.



Method # Param Activation

P(%) R(%) Fi(%)

P(%) R(%)

Note Onset Note w/ Offset Note w/ Offset & Vel.

Fi(%) P(%) R(%) Fi(%) P(%) R(%) Fi(%)

Notes

SemiCRF [2] 9.8M 93.79 8836 90.75
hFT, reported in [5] 5.5M 92.82 93.66 93.24
hFT[5] & . 5.5M 9537 90.82 9293

98.69 9396 96.11 90.79 86.46 88.42 89.78 8551 87.44
99.64 9544 97.44 9252 88.69 90.53 9143 87.67 89.48
99.62 9541 9743 9222 8840 9023 91.21 8744 89.24

Ours with scoring method in [2] 11.0M 93.79 9240 93.06
Ours with MLP kgb mapping  13.0M  95.66 9479  95.20
Ours w/o incomplete events 129M 9376 94.46 95.07
Ours 129M 9575 95.01 95.35

98.61 9592 9723 91.69 89.23 9043 91.08 88.64 89.83
99.54 9691 98.19 9439 9192 93.12 93.84 9140 92.59
99.56 97.10 9830 94.66 9236 9348 94.12 91.83 9295
99.53 9716 98.32 94.61 9239 9348 9407 91.87 9294

Sustain Pedals

Kong et al., reported in [4] 20.2M 9430 9442 94.25
Kongetal. [4]® °  202M  94.14 9429 94.11
SemiCRF[2] 9.8M 9517 88.33 90.98

91.59 9241 91.86 86.36 87.02 86.58 - - -
7743 7819 7171 7356 7421 73.81 - - -
82.18 75.81 7852 7875 7274

Ours w/o incomplete events ~ 12.9M  96.69 9292 9447
Ours 129M  96.67 94.46 95.40

89.10 83.96 86.28 86.33 8140 83.63 - - -
88.96 84.22 86.37 86.19 81.66 83.71 - - -

Soft Pedals

Ours w/o incomplete events 129M 7441 2877 36.54
Ours 129M  86.42 83.12 84.09

20.24  9.08 11.69 17.19 751 9.76 - - -
2432 1739 1946 1851 1340 15.06 - - -

Table 2: Transcription Result on Maestro v3.0.0 Dataset Test Split.

Interestingly, this aligns with how k and g are computed in
transformers.

Effect of omitting incomplete events. We found that
omitting steps of handling incomplete events at segment
boundaries (Section 4.3) only cause noticeable performance
impact for pedals, particularly the soft pedal (Table 2). This
can be explained by the fact that pedal events, especially soft
pedals, can often exceed the segment length, while notes
are normally shorter than the segment length we choose.
Results on MAPS/SMD. We evaluated our model on the
MAPS dataset using three different ground-truth annota-
tions: (1) Original, (2) Ad hoc Align, where the median
deviation from the initial evaluation is subtracted from all
notes for each piece and then re-evaluated, and (3) Cogliati,
which subtracted a latency value per recording for ENST-
DKCL as provided by [26]. For the SMD dataset, only the
original annotation is used. Table 3 presents the results.

All methods exhibit low activation-level F1 scores on
both MAPS and SMD. Using the onset-corrected annotation
(Cogliati) on MAPS increases the onset F1 score but de-
grades the activation-level F1 score due to the uncorrected
offset biases. In fact, the Cogliati annotation achieves simi-
lar or lower activation-level F1 scores compared to all listed
methods when evaluated against the original annotation.

For note onset, all methods on SMD achieve F1 scores
close to those evaluated on Maestro. However, performance
decreases significantly on MAPS, even with corrected an-
notations, suggesting that the alignment issue may be more
complex than a simple global offset.

Notably, the corrected annotations can lead to different
conclusions compared to the original annotation. For ex-
ample, while the data-augmented Onsets&Frames model
achieves a higher note onset F1 score than hFT using the
original annotation, it scores lower than hFT when evalu-
ated using the ad hoc correction and the Cogliati annotation.

These observations highlight the need for caution when
evaluating models on datasets created using mechanisms
that may involve systematic biases, e.g., electromechani-
cal playback. Despite these complications, our proposed
system, with or without data augmentation ’ , achieves the
highest note onset F1 score among the compared methods
on both SMD and MAPS with Ad hoc/Cogliati correction.

7 Data augmentation: pitch shifting 20 cents, adding noise from [31],

Activation Note Onset

Method Dataset Groudtruth P(%) R(%) F1(%) P(%) R(%) F1(%)

Onsets MAPS Original ~ 90.27 80.33 84.87 87.40 85.56 86.41
&Frames [24] MAPS Ad hoc Align 90.50 80.53 85.08 88.79 86.93 87.78
w. Data Aug.® MAPS Cogliati ~ 64.75 82.83 71.60 87.57 84.97 86.19

hFT [5].° MAPS Original ~ 91.53 71.03 79.81 84.63 85.75 85.13
MAPS Adhoc Align 91.77 71.25 80.04 87.32 88.48 87.84

MAPS Cogliati ~ 68.83 74.07 70.24 89.94 90.10 89.97

SMD Original ~ 54.01 93.35 66.23 98.71 95.58 97.09

Ours MAPS Original ~ 88.41 82.29 85.08 84.31 88.10 86.10
MAPS Adhoc Align 88.69 82.57 85.36 86.63 90.53 88.47

MAPS Cogliati ~ 65.74 84.69 72.78 89.60 91.39 90.44

SMD Original ~ 52.54 96.23 65.39 98.10 97.67 97.88

Ours MAPS Original ~ 94.11 84.63 89.00 92.11 88.78 90.38

w. Data Aug. MAPS Ad hoc Align 94.35 84.84 89.22 94.21 90.76 92.41
MAPS Cogliati ~ 67.77 87.39 75.03 94.66 91.43 92.98
SMD Original ~ 52.83 96.72 65.86 99.75 97.71 98.71

Between Ground Truths

Cogliati [26] MAPS Original ~ 98.86 69.22 80.17 100 100 100

Table 3: Transcription Result on MAPS and SMD. See
Text for discussion of dataset issues.

6 Conclusion

This paper introduces a simple and efficient method for
scoring time intervals using scaled inner product operations
for the neural semi-CRF framework for piano transcription.
We demonstrate that the proposed scoring method is not
only simple and efficient but also theoretically expressive
for yielding the correct transcription result. Inspired by
the similarity between the proposed scoring method and
the attention mechanism, we employ a non-hierarchical,
encoder-only transformer backbone to produce event track
representations. Our method achieves state-of-the-art per-
formance on the Maestro dataset across all subtasks. Due
to resource constraints, we have not evaluated the effect of
patch and embedding sizes, which is left for future work.
Additionally, future research could explore more advanced
transformer architectures, investigate the interaction be-
tween transformer architecture and the neural semi-CRF
layer, and extend the approach to other instruments and
multi-instrument music transcription tasks.

applying randomized 8 band EQ and impulse response from [32].

8 Use their provided code and pretrained weights. Recomputed from
transcribed MIDIs.

9 Previous SOTA for sustain pedals. Their released code indicates a
200 ms onset tolerance for pedal evaluation, contrary to the reported 50
ms in their paper. Here, we use a 50 ms onset tolerance, which explains
the large discrepancy between the numbers here and their reported results.
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