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Abstract

This paper presents a comprehensive study on real-time music rhythm analysis, covering joint
beat and downbeat tracking for diverse kinds of music signals. We introduce BeatNet+, a two-
stage approach to real-time rhythm analysis built on a previous state-of-the-art method named
BeatNet. The main innovation of the proposed method is the auxiliary training strategy that helps
the neural network model to learn a representation invariant to the amount of percussive com-
ponents in the music. Together with other architectural improvements, this strategy significantly
improves the model performance for generic music. Another innovation is on the adaptation
strategies that help develop real-time rhythm analysis models for challenging music scenar-
ios including isolated singing voices and non-percussive music. Two adaptation strategies are
proposed and experimented with different neural architectures and training schemes. Com-
prehensive experiments and comparisons with multiple baselines are conducted, and results
show that BeatNet+ achieves superior beat tracking and downbeat tracking F1 scores for generic
music, isolated singing voices and non-percussive audio, with competitive latency and compu-
tational complexity. Finally, we release beat and downbeat annotations for two datasets that
are designed for other tasks, and revised annotations of three existing datasets. We also plan to
release the code repository and pre-trained models on GitHub.

Keywords: Real-time beat tracking, downbeat tracking, rhythm analysis, singing voices, non-
percussive music, BeatNet, BeatNet+

1. Introduction

Music can be regarded as one of the most intricate and
diverse art forms in the world. It is created through
the incorporation of various sounds that are arranged
in a meaningful manner to produce a unique compo-
sition. One of the key elements of music is rhythm,
which refers to the sequential pattern of sounds and si-
lences that occur over time. Rhythm is crucial in music
as it forms the fundamental basis upon which a piece
is constructed. In recent years, there has been an in-
creasing interest in developing real-time music rhythm
analysis systems Heydari and Duan (2021).

Accurate and robust real-time music rhythm anal-
ysis holds the potential to advance the music indus-
try, enabling innovative applications. It can serve as
a fundamental component for a variety of use cases,
including automatic music generation, processing and
analysis. With the recent advancements in virtual
and augmented reality, there is a growing demand
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for real-time music processing and analysis across var-
ious situations. This need has also gained promi-
nence due to its role in empowering the creation of
immersive music-based interactive experiences. These
experiences, include but are not limited to real-time
music visualization (Bain, 2008), dancing robots (Bi
et al., 2018), DJing and live remixing and sampling
performance (Cliff, 2000), live video editing and syn-
chronization (Davis and Agrawala, 2018), dynamic
lighting systems, and music-driven interactive video
games (Bégel et al., 2018), offer users the chance to
engage with music on the fly.

Developing real-time music rhythm analysis sys-
tems involves addressing three key challenges: The
first challenge is on maintaining high accuracy while
not accessing future input data as offline models do.
The second challenge is on achieving low latency, es-
pecially on low-powered devices. While the first two
challenges are easy to understand, we argue that the
third challenge is on the generalization to various kinds
of music audio. While state-of-the-art rhythm analysis
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research has shown promising performance on music
recordings that contain strong percussive components
(e.g., drums, rhythmic guitar, piano) (Heydari et al.,
2021), there are scenarios where the music audio lacks
such components. For example, real-time rhythm anal-
ysis of isolated singing voices plays a crucial role in
understanding and processing vocal performances and
it enables applications such as accompaniment gen-
eration on the fly and live music remixing (Heydari
et al., 2023). As another example, real-time genera-
tion of drum tracks requires rhythm analysis of non-
percussive music tracks and can enable collaborative
music making between human musicians and artificial
intelligence (AI) agents.

In this work, we propose BeatNet+ for real-time
rhythm analysis for diverse kinds of music audio. Simi-
lar to BeatNet (Heydari et al., 2021), BeatNet+ pro-
cesses the music audio magnitude spectrum with a
Convolutional Recurrent Neural Network (CRNN) to
compute beat and downbeat activations in each audio
frame. The activations are then post-processed by a
two-level cascade Monte Carlo particle filter. The key
innovations of BeatNet+ are on an auxiliary training
strategy that improves the system performance over
state-of-the-art rhythm tracking methods on generic
music, as well as adaptation strategies that improve
the generalization ability to less percussive music such
as isolated singing voices and music without drums,
which are novel rhythm analysis settings.

Specifically, the auxiliary training strategy lever-
ages a parallel regularization branch that has an iden-
tical structure without weight sharing with the main
branch (i.e., used for inference) during training. The
main branch is fed with full music mixtures while the
auxiliary branch is fed with the full music less drum
tracks (referred to as non-percussive versions) of the
same pieces. In addition to the Cross Entropy (CE)
losses for each branch, a Mean Squared Error (MSE)
loss is computed between the latent embeddings of the
two branches to regularize the representation learning
of the main branch.

Regarding the adaptation strategies for BeatNet+
to work with less percussive music, we propose two
techniques termed Auxiliary-Freezing (AF) and Guided
Fine-tuning (GF). The AF approach (Figure 2) again
adopts a two-branch auxiliary training strategy simi-
lar to the one mentioned above. Differently, the main
branch (left) is now trained on the target music type
(i.e., less percussive music) while the auxiliary branch
(right) is frozen as the pre-trained main branch of
the BeatNet+ which is trained for full music mixtures.
The GF technique (Figure 3) employs a single-branch
model initialized with the pre-trained main branch of
the BeatNet+ model. Subsequently, this model under-
goes fine-tuning on input music pieces, starting with
full music mixtures (aligned with the original data type
of the pre-trained model), which are gradually adapted

to match the target music type. For instance, if the tar-
get is isolated singing voices, non-singing parts of the
music input are progressively removed during training
iterations. We perform experiments on two types of
less percussive music types to demonstrate the effec-
tiveness of the adaptation strategies: Isolated singing
voices and non-percussive music. Rhythm tracking for
both settings is novel and could enable novel applica-
tions such as real-time drum track generation.

Finally, we release beat and downbeat annotations
of MUSDB18 (Rafii et al., 2017) and URSing (Li et al.,
2021) datasets, which were originally designed for
other MIR tasks, enabling them to be utilized for music
rhythm analysis applications. Also, we correct mistakes
in the rhythm annotations of three pre-existing mu-
sic rthythm analysis datasets including RWC jazz, RWC
pop, and RWC royalty-free (Goto et al., 2002; Goto,
2004). The source code of the BeatNet+, adaptation
models and rhythmic annotations of MUSDB and URS-
ing will be online?.

2. Related Work

Existing work on rhythm analysis can be reviewed
along different dimensions. In this section, we provide
a review along the dimensions that are related to the
proposed work.

2.1 Two-Stage Approach

The majority of rhythm analysis methods (e.g., beat
tracking, downbeat tracking) adopt a two-stage ap-
proach. In the first stage, a salience function (also
called likelihood function, detection function, or acti-
vation strength) is computed from the input audio sig-
nal to represent the salience of the target event (e.g., a
beat) in different time frames. In the second stage, an
inference process (also called post-processing) is em-
ployed to make binary decisions on the presence of the
target event in each audio frame based on the salience
function. Different techniques have been proposed in
each of these stages, and we will review them in the
following.

2.1.1 Salience Calculation Stage

There are generally two paradigms in computing the
salience function. The first paradigm is rule-based and
uses hand-crafted functions to indicate the presence of
important rhythmic elements in music, such as onsets
and beats (Mottaghi et al., 2017; Chiu et al., 2023).
Such function often describes the “novelty” of the cur-
rent audio frame compared to the previous frame(s)
in terms of energy (Schloss, 1985) and spectral con-
tent (Masri, 1996). These hand-crafted functions are
generally fast to compute and robust to music styles.
However, their detection accuracy is limited compared
to data-driven methods in the next paragraph.

Iwe open-source the following upon the paper acceptance:]
Codes: https://github.com/XXXXX/XXXXXX
Annotations: https://github.com/XXXXX/XXXXXX
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The second paradigm focuses on machine learn-
ing techniques, where models are trained to estab-
lish the relationship between low-level acoustic fea-
tures and annotations of rhythmic elements (Holzapfel
et al., 2012; Gkiokas et al., 2012; Boéck and Schedl,
2011; Bock et al., 2016). Deep learning-based meth-
ods have gained significant attention due to their
exceptional performance in rhythm analysis. These
models typically require supervision and are trained
on large datasets with labeled rhythmic patterns,
making them highly accurate in recognizing com-
plex rhythmic patterns. They leverage neural net-
works to extract “activation strength” for every time
frame. Several neural network structures are uti-
lized for music rhythm analysis tasks such as con-
volutional networks (Gkiokas and Katsouros, 2017),
cepstroid invariant networks (Elowsson, 2016), re-
current networks (Eyben et al., 2013), transform-
ers (Heydari and Duan, 2022), temporal convolu-
tional networks (Davies and Bock, 2019), and autoen-
coders (Greenlees, 2020).

Recently, self-supervised learning (SSL) models
have gained popularity as they can be trained on
massive amounts of unlabeled data.  Desblancs
et al. (2023) proposed ZeroNS that leverages a self-
supervised pre-processing block for their beat track-
ing model. Similar to our proposed BeatNet+ model,
ZeroNS contains two branches and leverages differ-
ent music stems in training. However, there are sev-
eral fundamental differences between the two models.
BeatNet+ is a supervised model with a latent match-
ing loss, whereas ZeroNS is self-supervised and lacks a
loss-matching regularization term. BeatNet+ focuses
on the causal joint beat and downbeat tracking, while
ZeroNS serves as a non-causal model designed only for
beat tracking. In terms of structure, BeatNet+ utilizes
CRNN networks, while ZeroNS only incorporates con-
volutional blocks in its pipeline. SSL representations
have also been used in rhythm analysis of challeng-
ing music inputs such as isolated singing voice (Hey-
dari and Duan, 2022). Such representations, however,
can be difficult to use in real-time applications due to
causal and low latency requirements.

It is worth mentioning that each of the men-
tioned methods can operate in either the time do-
main, e.g., (Steinmetz and Reiss, 2021; Heydari
and Duan, 2022) or frequency domain, e.g., (Meier
et al., 2021; Bock and Davies, 2020; Chiu et al.,
2023), or combined, e.g., (Morais et al., 2023).
Time-domain techniques operate on the audio wave-
form, while frequency-domain techniques operate on a
time-frequency representation computed from Fourier,
constant-Q or other transforms. They provide ex-
plicit information about the signal’s frequency com-
ponents and are known for their robustness to noise
when compared with time-domain techniques (Zheng-
qing and Jian-hua, 2005). Spectral approaches face

a time-frequency resolution trade-off where extending
the time window captures lower frequencies benefi-
cial for rhythm analysis but reduces time resolution,
and vice versa. To tackle the time-frequency reso-
lution tradeoff issue, some works, e.g., (Bock et al.,
2014), employ multi-resolution embeddings, which in-
volve concatenating spectral features calculated based
on different window lengths.

2.1.2 Decision Stage

Depending on whether future audio frames are con-
sidered in making the prediction at the current frame,
the decision stage can be categorized as offline and
online methods. Offline methods, such as comb fil-
ters (Scheirer, 1998), dynamic programming (Ellis,
2007), and dynamic Bayesian networks (Bock et al.,
2014), improve prediction coherence but are unsuit-
able for real-time use. A sliding window frame-
work allows offline methods to work in online scenar-
ios (Davies et al., 2005), processing only signals within
the window. However, this ignores past signals outside
the window, affecting coherence. Overlapping win-
dows can cause computational overload as well.

In online (especially real-time) scenarios, various
inherently causal inference methods are utilized, in-
cluding the forward algorithm (Federgruen and Tzur,
1991), Kalman filtering (Shiu and Kuo, 2007), par-
ticle filtering (Hainsworth and Macleod, 2004; Hey-
dari and Duan, 2021; Heydari et al., 2023) and jump-
reward inference (Heydari et al., 2022). In particular,
particle filtering uses particles to represent and evolve
the posterior distribution of rhythmic states like beat,
downbeat, and non-beat over time. Hainsworth and
Macleod (2004) applied it to tempo detection and Hey-
dari et al. (2021) applied it to joint beat, downbeat,
and time signature tracking.

Particle filtering faces challenges in capturing ex-
tended temporal dependencies like time signature
tracking due to its Markovian nature, relying only
on current state predictions. Heydari et al. (2023)
proposed dynamic particle filtering, enhancing infer-
ence by incorporating historical and salience informa-
tion, albeit with increased computational cost. Par-
ticle filtering also requires numerous particles for ex-
tensive state spaces, crucial for detailed time granular-
ity and broad tempo ranges in rhythm analysis, lead-
ing to higher computational overhead. Heydari et al.
(2022) introduced “jump-reward inference,” a semi-
Markovian model operating in a 1-dimensional state
space, significantly cutting computation time, albeit
with a performance drop in higher-level music analysis
tasks such as downbeat tracking.

2.2 Real-Time Systems

In this subsection, we briefly review a few real-time
beat and downbeat tracking systems. IBT (Oliveira
et al., 2010) is a signal processing based multi-agent
system for real-time beat tracking. It initializes a set of
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agents with various hypotheses. Each agent carries a
hypothesis concerning the rate and placement of musi-
cal beats and the model dynamically chooses the best
agent based on music onsets.

In the realm of deep learning based methods, Bock
et al. (2014) employed an RNN to compute activa-
tions and apply the forward algorithm (Federgruen and
Tzur, 1991) for inferring beats in a causal setting. Hey-
dari et al. (2021) proposed BeatNet, a real-time sys-
tem for joint beat, downbeat, and meter tracking. It
employs a fully causal CRNN structure with a 1D con-
volutional layer to produce three activations for beat,
downbeat, and non-beat. It uses an efficient two-level
particle filtering for inference. In their follow-up work,
Heydari et al. (2022) utilized BeatNet activations and
presented a so-called “jump-back reward” strategy to
speed up the particle filtering process as reviewed in
the previous subsection.

Chang and Su (2024) proposed an online beat and
downbeat tracking system named BEAST based on the
streaming Transformer Tsunoo et al. (2019). Through
the incorporation of contextual block processing in
the Transformer encoder and relative positional en-
coding in the attention layer, BEAST achieves signifi-
cant improvements over existing state-of-the-art mod-
els. It uses the forward algorithm (Federgruen and
Tzur, 1991) as the inference stage.

2.3 Rhythm Analysis for Isolated Singing Voices

In order to address the isolated singing voice rhythm
analysis task, Heydari and Duan (2022) proposed
a model that leverages pre-trained self-supervised
speech models such as WavLM (Chen et al., 2022) and
Distilhubert (Chang et al., 2022) and built some lin-
ear transformers (Katharopoulos et al., 2020) on top
of them to jointly extract the beats of singing voices in
an offline fashion. This study highlights the substantial
performance improvement achieved by utilizing pre-
trained speech models and transformers. Nonethe-
less, their computational heaviness poses challenges
for real-time and low-resource applications, especially
in scenarios with limited computational power, such
as in-device use cases. SingNet (Heydari et al., 2023)
pioneered real-time singing voice joint beat and down-
beat, and meter tracking. It utilizes a slightly larger
CRNN model compared to BeatNet for calculating ac-
tivation functions. Recognizing the irregular and noisy
activations delivered by singing voices, SingNet in-
troduces dynamic particle filtering, a novel inference
module that incorporates offline estimation and acti-
vation saliences into the online inference process.

2.4 Rhythm Analysis for Non-Percussive Music

In addition to isolated singing voices, there are other
types of music audio that are less percussive, e.g., mu-
sic without drums. Real-time music rhythm analysis
for these kinds of music is also challenging but can be
very useful in many applications such as the automatic

generation of drum tracks. Wu et al. (2022) developed
an offline drum accompaniment system based on an
offline drum-aware beat tracking method (Chiu et al.,
2021). Online rhythm analysis of non-percussive mu-
sic, however, is limited to a few traditional signal pro-
cessing approaches such as (Goto, 2001; Goto and Mu-
raoka, 1999) that only track beats but not downbeats
or meter.

3. Methodology

In this section, we present a novel two-stage approach
named BeatNet+ to real-time joint beat, downbeat and
meter tracking for diverse kinds of music inputs. The
first stage estimates beat and downbeat saliences from
audio frames, while the second stage makes decisions
using particle filtering. Additionally, we elaborate on
adapting the BeatNet+ model for rhythm analysis of
more challenging data types.

3.1 Stage 1: Beat and Downbeat Salience Estimation
This section describes the proposed neural network
model and training strategies for robust computation
of beat and downbeat saliences from diverse kinds of
music inputs.

3.1.1 Audio Feature Representation

We utilize Short-Time Fourier Transform (STFT) to
compute a log-magnitude spectrogram as the input fea-
ture representation. The window length is set to 80 ms
with a Hann window. The window hop size, i.e., the
model’s theoretical latency, is set to 20 ms. The fre-
quency range is between 30 Hz and 17,000 Hz with
288 bins.

3.1.2 Neural Architecture and Training Strategy
BeatNet+ (Figure 1) features two branches where both
the main branch (left) and the auxiliary branch (right)
are used in training while for inference, only the main
branch is utilized. Both branches employ a convolu-
tional recurrent neural network (CRNN) structure sim-
ilar to BeatNet (Heydari et al., 2021), where the convo-
lutional block is identical to that of BeatNet but the re-
current block is expanded from two layers to four lay-
ers based on preliminary empirical studies. This deeper
design is reasonable, as BeatNet+ is expected to han-
dle diverse music inputs, including isolated singing
voices and less-percussive music with complex rhyth-
mic structures. Each recurrent layer contains 150 long
short-term memory (LSTM) cells, the same as in Beat-
Net. It is worth mentioning that in our pilot study, we
explored various alterations to the neural architecture,
such as incorporating batch normalization, linear lay-
ers, Rectified Linear Unit (ReLU) activations, and leaky
ReLU activations. However, these modifications did not
yield significant performance improvements.

To increase the robustness to music with various
levels of percussive components, we use an auxiliary
branch (the right branch of Figure 1) to train Beat-
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Figure 1: Neural structure of BeatNet+ for general
music rhythm analysis. Both the main (left) and
auxiliary (right) branches are initialized randomly
and trained jointly, but only the main branch is uti-
lized for inference.
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Net+. The auxiliary branch is identical to the main
branch, except that it takes a different type of input
during training and it does not include the SoftMax
layer, which is only used during inference in the main
branch. Note that since cross-entropy loss with logits
is being used, applying SoftMax is unnecessary during
training.

Training of BeatNet+ takes three losses as in Equa-
tion (1):

Liotal = Lcer + Loz + ALpsE- (1)
The main branch is trained on full music mixtures with
a cross-entropy loss denoted as Lcg;. The auxiliary
branch is trained on the non-percussive parts of the
same music mixtures with another cross-entropy loss
denoted as Lcgz. Additionally, we introduce a Mean
Squared Error (MSE) loss, Lysg, between intermedi-
ate representations of the two branches. This can be
viewed as a training regularization to encourage sim-
ilarity between the latent representations of the two
branches, given that their outputs, i.e., their rhythm in-
formation, are expected to be identical. Based on our
pilot studies, Mean Squared Error (MSE) is found to
be more suitable than other losses like Mean Absolute
Error (MAE) or Huber loss for this regularization. The
constant weight parameter A controls the strength of
the regularization. A similar latent matching strategy
has been used before to enhance a talking face genera-
tion model’s robustness to noise (Eskimez et al., 2019).

3.1.3 Adaptation for More Challenging Music Inputs

To address the real-time rhythm analysis of challenging
inputs such as isolated singing voices and other less-
percussive music, we propose two adaptation strate-
gies named as Auxiliary Freezing (AF) and Guided Fine-
tuning (GF), respectively. Here we take the isolated
singing voice scenario as an example, but the proposed
adaptation strategies can be applied to other scenarios,
e.g., non-percussive music, as well. In the AF approach
(shown in Figure 2), we adopt a similar two-branch
auxiliary training approach to that in Section 3.1.2. In
this case, the auxiliary branch (right) is initialized with
the frozen weights from the pre-trained main branch
of BeatNet+ (i.e., left branch in Figure 1) taking full
music mixtures as inputs, while the main branch (left),
is trained from scratch on isolated singing voices of the
corresponding music mixtures. MSE loss is imposed be-
tween the latent representations of the two branches in
addition to the cross entropy loss of the right branch.
After this adaptation, the main branch (left) is used
for rhythm analysis of isolated singing voices. Note
that this approach bears similarity to teacher-student
model distillation methods e.g., Kim and Rush (2016),
wherein the student model is trained to replicate sim-
ilar latents as the frozen teacher model. However, the
key distinction lies in the fact that commonly used
teacher-student models try to perform model distilla-
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Figure 2: Neural structure of Auxiliary-Freezing (AF)
adaptation approach for singing voice rhythm
analysis. The main branch (left) is initialized ran-
domly and trained for real-time inference, while
the auxiliary branch (right) is initialized with the
pre-trained BeatNet+ main branch weights and re-
mains frozen during training.
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Figure 3: Illustration of the Guided Fine-tuning (GF)
approach for singing voice rhythm analysis. The
model is initialized with the pre-trained BeatNet+
main branch weights and fine-tuned using music
mixtures with backing music gradually removed
over training epochs.

tion, i.e., to attain similar results with smaller networks
on the same data, while our model’s objective is to
achieve similar results with identical networks on dif-
ferent but related data.

In the Guided Fine-tuning (GF) approach, we com-
mence by initializing a single-branch model with the
weights and biases of the main branch of BeatNet+
that is pre-trained on full music mixtures, i.e., the left
branch of Figure 1. Subsequently, we fine-tune the
model for isolated singing voices by gradually reducing
the intensity of the accompanying music during train-
ing. In each epoch, a percentage of the accompanying
music is deducted, with a linear decay factor denoted
as y. After a number of epochs, the strength of ac-
companying music in the training data diminishes to
zero. Figure 2 illustrates this adaptation approach for
isolated singing voice music with y =0.01.

As previously mentioned, both adaptation strate-
gies can be applied to address different types of less-
percussive music input. For instance, in Figures 2 and
3, substituting the singing stem with complete musical
mixtures excluding drum stems, enables the models to
be trained specifically for non-percussive music.

3.2 Stage 2: Decision

Since Cascade Monte Carlo particle filtering demon-
strated superior performance for online rhythm analy-
sis tasks among the proposed methods (Heydari et al.,
2021, 2023), we use it as the decision-making block for
all proposed methods and scenarios. In this section, we
provide a brief description of the method we used.

3.2.1 State Space, Transition and Observation Models
The state space, transition, and observation models
mirror those of BeatNet (Heydari et al., 2021). We im-
plement the discrete 2D state space proposed in (Krebs
et al., 2015) and adapt BeatNet’s cascade approach. In
this approach, instead of merging multiple beat state
spaces into a bar state space, two separate state spaces
are employed, one for beat and tempo tracking and the
other for downbeat and meter tracking, organized hi-
erarchically. The first space comprises tempo and beat
phase as the two dimensions; Adjacent states with the
same tempo correspond to adjacent time frames of au-
dio. The second space comprises meter (represented
as the number of beats per bar) and downbeat phase
as the two dimensions; Adjacent states with the same
meter correspond to adjacent beats in time. Transition
models permit tempo and meter changes to update at
beat and downbeat positions, respectively. Observation
models calculate beat and downbeat likelihoods based
on salience estimated by the neural network.

3.2.2 Causal Inference

Monte Carlo particle filtering is a top choice for real-
time inference due to two key advantages. Firstly,
it does not rely on future data, unlike popular maxi-
mum a posteriori (MAP) algorithms such as the Viterbi
algorithm and smoothing algorithms like forward-
backward. Secondly, unlike many inference algorithms
such as Kalman filtering which require strong distri-
bution type assumptions, it is a general and non-
parametric approach, capable of decoding any un-
known distribution among causal filtering methods.
Some previous works (Heydari et al., 2021; Heydari
and Duan, 2021) demonstrated its superiority com-
pared to other inference models.

Particle filtering is a two-step inference process
that encompasses the predict/motion step and the up-
date/correction step. In the motion step, particle po-
sitions are updated based on predicted trajectories,
while the correction step involves adjusting particles
and assigning weights based on observed data compat-
ibility. Given the latent state ¢, and observation yi
at frame k, assuming that the current position poste-
rior p(¢ily1.x) is estimated, the “predict-update” pro-
cedure computes the next frame’s position posterior
p(Pri11y1:6+1). Equation (2) details the motion step for
one-step-ahead prediction by applying the state transi-
tion model p(¢i;1l¢x) into the current frame posterior,

PDisrlyi0) = Y p( @1l PPkl yrp)- (2)
bk

Equation (3) describes the correction step by incor-
porating the observation likelihood p(yii1l¢is1) into
the one-step-ahead prediction to estimate the next step
posterior,

1
Pbr1ly1:k+1) = Z_P(J/kﬂ|Qbk+1)p(¢k+1|y1:k)- 3)
k+1
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By combining these motion and correction steps itera-
tively, particle filtering refines the estimation of the sys-
tem’s state, making it a powerful technique for tracking
and inference in dynamic environments.

4. Experiments

In this section, we discuss the training specifics of the
proposed models. We also describe the details of our
comparison methods, utilized datasets (existing and
annotated), and the evaluation metrics for each task.
Finally, we report the experimental results for all of the
models and compare them with state-of-the-art meth-
ods for each task. Note that all experiments with the
proposed methods employ the same inference method
i.e., the particle filtering approach proposed in Beat-
Net (Heydari et al., 2021).

4.1 Datasets

To increase data diversity, we use multiple music au-
dio datasets with beat and downbeat annotations,
as shown in Table 1. Among these datasets, Ball-
room (Gouyon et al., 2006; Krebs et al.,, 2013),
GTZAN (Marchand and Peeters, 2015; Tzanetakis and
Cook, 2002), Hainsworth (Hainsworth and Macleod,
2004), Rock Corpus (De Clercq and Temperley, 2011),
and RWC Jazz, Pop and Royalty-free datasets (Goto
et al., 2002; Goto, 2004) already come with beat and
downbeat annotations. However, some downbeat an-
notations of RWC Jazz, Pop and Royalty-free datasets
are not accurate, and we revise them manually. In ad-
dition, MUSDB18 (Rafii et al., 2017) and URSing (Li
et al., 2021) are multi-track singing datasets without
beat or downbeat annotations, and we annotate them
using BeatNet (Heydari et al., 2021) followed by man-
ual corrections.

Following the previous works, we employ the whole
GTZAN dataset as the test set, given that it is one of the
largest and most genre-inclusive datasets for our tasks.
Importantly, none of the reported models have been
exposed to this dataset during their training phase, en-
suring a fair and unbiased assessment. The rest of the
datasets outlined in Table 1 are utilized for training
and validation purposes.

It is noted that to obtain the audio stems of the
datasets for different tasks except the ones that include
separate stems i.e., MUSDB18 and URSing, we uti-
lize Demucs (Défossez, 2021), a top-performing open-
source music source separation model. It separates
each piece of music into four tracks: bass, drums, vo-
cals and others.

For the isolated singing rhythm analysis task, the
availability of singing stems is essential. Yet, in the
datasets we use, many pieces do not have singing, and
some have extended segments with only instrumen-
tal music and no vocals. To address this challenge,
we introduce a preprocessing stage designed to elim-
inate vocal-less pieces and extended segments with-
out singing. This is achieved by implementing energy-

based vocal Root Mean Square (RMS) thresholding on
separated singing tracks. As a consequence, datasets
such as RWC-Jazz (Goto et al., 2002; Goto, 2004) were
entirely excluded from the data pool for the singing
voice rhythm analysis task. Furthermore, some vocal
tracks containing extended silent intervals are split into
shorter vocal segments.

4.2 Evaluation Metrics

The reported metrics comprise beat and downbeat F1
scores, system latency, and real-time Factor (RTF). Fol-
lowing the literature, F1 scores are reported with a tol-
erance window of 70 ms. Latency is defined as the hop
size of the Short-Time Fourier Transform (STFT) for
processed data. RTF is another important metric for
real-time models and refers to the speed or responsive-
ness with which a model can process and generate out-
puts in real-time. It is the averaged ratio between the
total processing time and the total audio length across
the whole test set. Note that the reported RTFs are
measured on a Windows machine with an AMD Ryzen
9 3900X CPU and 3.80 GHz clock frequency.

Previous work (Heydari et al., 2023) used 200 ms
as the tolerance for singing voice beat and downbeat
tracking. This was based on their observation that hu-
man tolerance to beat and downbeat timing deviations
tends to be more lenient for less percussive music com-
pared to music with strong percussions. Therefore, we
also report F1 scores with a tolerance of 200 ms for
singing voice and non-percussive music datasets in ad-
dition to the standard 70 ms tolerance.

4.3 Comparison Methods
To assess the effectiveness of the auxiliary training
strategy in Section 3.1.2, we trained two models: Beat-
Net+ is the proposed model with auxiliary training
using two branches, and BeatNet+ (Solo) trains the
main branch without the auxiliary branch, i.e., only
Lcg is used in Equation (1).

To evaluate BeatNet+ model on real-time rhythm
analysis for generic music, we compare it with five
baseline models. 1) BeatNet (Heydari et al., 2021)

Dataset #Pieces #Vocals Labels
Ballroom 699 452 Original
GTZAN 999 741 Original
Hainsworth 220 154 Original
Rock Corpus 200 315 Original
MUSDB18 150 263 Added

URSing 65 106 Added

RWC jazz 50 0 Revised
RWC pop 100 188 Revised
RWC Royalty-free 15 29 Revised

Table 1: Datasets used in our experiments. GTZAN

is used for evaluation and the others are used for
training and validation.
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employs a CRNN structure and proposes efficient par-
ticle filtering for joint beat, downbeat, and meter track-
ing. 2) Novel 1D (Heydari et al., 2022) utilizes Beat-
Net activations and proposes the jump-back reward
strategy, a semi-Markov inference method, to reduce
computation. 3) IBT (Oliveira et al., 2010) is a sig-
nal processing based method that uses onset strength
to select an agent with the most correct beat position
hypothesis out of multiple agents. 4) Béck FF Bock
et al. (2014) utilizes an RNN and a forward algorithm
for beat tracking. 5) BEAST (Chang and Su, 2024)
employs a streaming Transformer and a forward al-
gorithm for joint beat and downbeat tracking, achiev-
ing the best performance over existing state-of-the-art
models on the GTZAN benchmark. Among the re-
ported methods, IBT and Bock FF only perform beat
tracking and do not provide downbeat results.

It is also important to mention that certain prior
studies, such as Beast (Chang and Su, 2024), present
their results by incorporating multiple hop-size look-
ahead steps in addition to their real-time online perfor-
mance. While these look-ahead steps enhance the per-
formance of rhythm analysis systems, they introduce
significant delays and make the models non-causal. To
ensure a fair and consistent comparison among online
models, we only compare the fully online performance
of all models.

To better put online music rhythm analysis meth-
ods in context, we also compare with two state-of-the-
art offline rhythm analysis models. They include 1)
Transformers (Zhao et al., 2022) model that uses a
transformer encoder for estimating the activations and
dynamic Bayesian Networks (DBN) for decisions, and
2) SpecTNT-TCN (Hung et al., 2022) that leverages
a combination of Temporal Convolutional Networks
(TCN) and SpecTNT (Lu et al., 2021), which integrates
spectral and temporal information, to calculate activa-
tions and a DBN block for decisions.

For the two challenging scenarios, isolated singing
voices and non-percussive music, we evaluate the two
proposed adaptation methods. AF represents the first
adaptation approach illustrated in Figure 2, where the
auxiliary branch (right) is initialized with the frozen
weights of the BeatNet+ generic model, and the main
branch (left) undergoes training on the particular mu-
sic arrangement and is used for inference. GF rep-
resents the second adaptation approach illustrated in
Figure 3, involving fine-tuning a pre-trained model for
specific tasks by adaptation of the input data over time.

To assess the effectiveness of the adaptation ap-
proaches, we also present results for the same mod-
els trained from scratch for the specific tasks, with-
out leveraging the adaptation techniques. These mod-
els are referred to as AF-scratch and GF-scratch, re-
spectively. In particular, AF-scratch uses the auxil-
iary branch structure and training data, but trained
from scratch without initializing the auxiliary branch

weights with the frozen weights of the pre-trained
BeatNet+ main branch. GF-scratch utilizes GF single
branch structure, trained from the scratch and without
guided fine-tuning.

For singing voice rhythm analysis, we compare with
SingNet (Heydari et al., 2023), the current state of
the art for this task. For non-percussive music rhythm
analysis, no prior models are available. Thus, we com-
pare with the state-of-the-art real-time rhythm analy-
sis method, BeatNet (Heydari et al., 2021), when is
trained exclusively on non-percussive music pieces.

4.4 Training Details

This section covers the training details of the BeatNet+
models for generic music rhythm analysis as well as
the “auxiliary-freezing” and “guided fine-tuning” adap-
tation techniques for challenging scenarios.

All proposed models are trained using the Adam op-
timizer with a constant learning rate of 5x 10™* and a
batch size of 40. All models employ a cross-entropy
loss with logits, whose weights are set to 200 for down-
beats, 60 for beats, and 1 for non-beats, accounting for
their average occurrence rates across total training au-
dio frames. The feature matching MSE loss weight for
models with auxiliary training is set to A = 200. Train-
ing batches comprise randomly selected 15-second ex-
cerpts from the training audio files.

For the BeatNet+ and BeatNet+ (Solo), AF-scratch
and GF-scratch, all weights and biases are randomly
initialized. In contrast, the AF model only initializes
its main branch randomly, while its auxiliary branch is
initialized as the pre-trained main branch of BeatNet+.
Similarly, the GF model is also initialized as the pre-
trained main branch of BeatNet+.

Note that for all external comparison methods,
their pre-trained models are utilized. However, for
non-percussive music rhythm analysis, the benchmark
BeatNet model is trained on non-percussive audio with
the training specifics of the original BeatNet model.

4.5 Results and Discussions

In this section, we present our evaluation results for
various scenarios on the GTZAN dataset. We report
the performance of the proposed model and adaptation
techniques for generic music, isolated singing voices,
and non-percussive music rhythm analysis.

4.5.1 Results on Generic Music

Table 2 compares the performance of online rhythm
analysis methods as well as two offline methods for
generic music. We can see that the proposed BeatNet+
outperforms all the other online methods on both beat
tracking and downbeat tracking F1 scores, while main-
taining competitive latency and RTF. Regarding com-
putational complexity, the Novel 1D model achieves
the lowest RTF, thanks to its utilization of an excep-
tionally lightweight inference approach. The F1 score
improvement from BeatNet+ (Solo) to BeatNet+, es-
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Metrics (Performance on Full Mixtures)
Method ?%ﬁg D°‘€’7’},brf12§ F11 L?ﬁﬁ‘s‘)cyl RTF |
Online Models
BeatNet+ 80.62 56.51 20 0.08
BeatNet+ (Solo) 78.43 49.74 20 0.08
BeatNet (Heydari et al., 2021) 75.44 46.69 20 0.06
Novel 1D (Heydari et al., 2022) 76.47 42.57 20 0.02
IBT (Oliveira et al., 2010) 68.99 — 23 0.16
Bock FF (Bock et al., 2014) 74.18 e 46 0.05
Beast (Chang and Su, 2024) 80.04 52.23 46 0.40
Offline Models
Transformers(Zhao et al., 2022) 88.5 71.4 —_ —
SpecTNT-TCN (Hung et al., 2022) 88.7 75.6 —_ —_

Table 2: Results of online rhythm analysis evaluation for generic music and offline state-of-the-art references,
showcasing F1 scores in % with a tolerance window of 70 ms, latency, and RTF for the GTZAN dataset.

pecially on downbeat tracking, highlights the benefit
of using the auxiliary branch during the training pro-
cess and leveraging the latent-matching technique be-
tween the two branches; The latency and RTF do not
change as BeatNet+ utilizes only one branch during in-
ference. Finally, BeatNet+ (Solo) improves over Beat-
Net on both beat and downbeat F1 scores.

In the comparative analysis between BeatNet+ and
Beast, BeatNet+ demonstrates a marginal advantage
in beat tracking and a significant superiority in down-
beat tracking. Noteworthy is the fact that the latency
and RTF of BeatNet+ models are more than two times
and nearly seven times shorter than those of the Beast
model, making them more convenient for real-time
and low-resource applications. The main reason for
its substantially reduced computational cost lies in its
utilization of a source-efficient light 1D CRNN model,
in contrast to the inclusion of streaming transformers
used in Beast.

To assess system performance across various gen-
res, we present the beat and downbeat F1 scores
achieved by the top-performing method, BeatNet+,
across all GTZAN genres in Figure 4. A compara-
tive analysis of the reported box plots reveals notable
variations in model performance for different genres.
Specifically, the model’s best overall performance is ob-
served for Disco and Hip-hop; This is potentially at-
tributed to the presence of strong percussive and har-
monic cues and their more straightforward rhythmic
patterns. Conversely, genres like Classical and Jazz
demonstrate below-average model performance, po-
tentially due to the diverse musical characteristics and
intricate rhythmic patterns inherent to these genres.

Interestingly, some genres show contrasting perfor-
mance between beat tracking and downbeat tracking.

Specifically, Reggae receives one of the best beat track-
ing performance but the second-worst downbeat track-
ing performance with the widest range across differ-
ent pieces. This suggests that, while the percussive
and harmonic elements of Reggae are ample for beat
tracking, they are not sufficient for distinguishing be-
tween beats and downbeats. This phenomenon is at-
tributed to the presence of a substantial amount of
syncopation and frequently used off-beat rhythmic pat-
terns such as “One-drop”, “Steppers” and “Rockers” in
Reggae. Similarly, Jazz and Blues also show large per-
formance disparity between beat and downbeat track-
ing, attributable to the prevalent use of styles such as

the “Swing feel” within these genres?.

4.5.2 Results on Singing Voices

Rhythm analysis of isolated singing voices is the most
challenging task among all discussed in this work. The
first row of Figure 5 compares the F1 scores of the
proposed model with different adaptation strategies
against SingNet Heydari et al. (2023), the state-of-the-
art singing voice rhythm analysis model, on singing
stems of the GTZAN dataset. According to the figure,
GF delivers the best performance for beat tracking by
a significant improvement of 14.58% and 13.27% over
the SingNet model for T = 70ms and T = 200ms toler-
ances, respectively. For downbeat tracking, AF outper-

2Syncopation: Irregular drum patterns by accenting weak beats
commonly not emphasized, and by omitting or displacing notes, such
as downbeats and upbeats, in a 4/4 meter. One drop: is a prominent
drum set rhythm in reggae, differing from the typical backbeat by em-
phasizing the kick on beats 2 and 4 instead of 1 and 3. Steppers: fol-
lows the “four on the floor” pattern, featuring the kick drum hitting on
all four downbeats in each measure. Rockers: a reggae beat in which
the kick drum is on 1and 3, while the snare is on beats 2 and 4 in a 4/4
meter. Swing feel: a specific type of syncopation that emphasizes the
off-beat, giving the music a bouncy, lively feel (Morena, 2021).
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Figure 4: F1 scores for beat tracking and downbeat tracking of the BeatNet+ model across diverse genres within

the GTZAN dataset.

forms SingNet by 2.43% and 0.51% for T = 70ms ms and
T = 200ms, tolerances. A more significant improve-
ment in beat tracking accuracy compared to down-
beat tracking suggests that the proposed models en-
hance acoustic modeling more effectively than captur-
ing higher-level semantic modeling.

Comparing the adaptation models with the same
BeatNet+ structures trained from scratch, GF outper-
forms GF-scratch significantly for beat tracking across
both tolerances. However, it marginally underper-
forms GF-scratch for downbeat tracking. On the other
hand, AF outperforms AF-scratch, for downbeat track-
ing while underperforming AF-scratch for beat detec-
tion. The aforementioned records indicate that for
singing voice rhythm analysis, guided fine-tuning and
auxiliary freezing techniques are effective for beat and
downbeat tracking, respectively. However, there is no
optimal joint model for both tasks.

4.5.3 Results on Non-Percussive Music

Rhythm analysis of non-percussive music is another
challenging task. The plots on the second row of
Figure 5 compare the performance of the proposed
BeatNet+ model with different adaptation strategies
against the BeatNet model on GTZAN pieces after re-
moving the drums. As mentioned earlier, for this com-
parison, the BeatNet model is trained on the same data
as the proposed models, i.e., non-percussive parts of
the training set from scratch. According to the re-
sults, AF delivers the best performance for both beat
and downbeat tracking among all models with a sig-
nificant improvement of 8.88% and 8,19% for T = 70
and 10.55% and 12.85% for T =200 over the baseline
BeatNet model.

Comparing AF with AF-scratch underscores the
impact of the auxiliary freezing technique on non-
percussive music rhythm analysis. Disabling auxiliary
freezing results in a notable downgrade in model per-

formance, shifting it from being the best across all
models to the overall worst. However, comparing GF
with GF-scratch reveals that guided fine-tuning offers
similar performance for non-percussive rhythm analy-
sis.

Also, We acknowledge that the rhythm analysis
performance for non-percussive and isolated singing
voices may be impacted by residual signals and data
leakage, resulting from utilizing source separation
techniques to extract music stems for training and eval-
uation. However, prior studies such as Heydari et al.
(2021) have shown that this effect is negligible, as ev-
idenced by comparing their model performances on
music pieces with pure stems versus separated ones.
Importantly, a fair comparison is ensured by using the
same datasets for all reported models.

5. Conclusion

This paper presents BeatNet+, a cutting-edge online
rhythm analysis model that significantly advances the
state of the art in real-time music rhythm analysis. By
incorporating an auxiliary branch regularization mech-
anism and employing innovative adaptation strate-
gies, BeatNet+ demonstrates outstanding performance
across various music scenarios, including generic music
pieces, isolated singing voices, and non-percussive au-
dio tracks. Additionally, we release the rhythmic anno-
tations of MUSDB and URSing datasets, enabling them
to be utilized for music rhythm analysis as well as re-
vised annotations of RWC Jazz, Pop and Royalty-free
along with this work.
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Beat F1(%) Downbeat F1(%)
(T =70mys) (T =200ms) (T =70ms) (T =200ms)
| 64.66
41.17 66.51
49.01 69.08
64.09
|
49.16]
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Figure 5: F1 scores of online rhythm analysis models on singing voices (top row) and non-percussion music
(bottom row) with two tolerance windows, 70 ms and 200 ms.
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