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Abstract

This paper presents a comprehensive study on real-time music rhythm analysis, covering joint
beat and downbeat tracking for diverse kinds of music signals. We introduce BeatNet+, a two-
stage approach to real-time rhythm analysis built on a previous state-of-the-art method named
BeatNet. The main innovation of the proposed method is the auxiliary training strategy that helps
the neural network model to learn a representation invariant to the amount of percussive com-
ponents in the music. Together with other architectural improvements, this strategy significantly
improves the model performance for generic music. Another innovation is on the adaptation
strategies that help develop real-time rhythm analysis models for challenging music scenar-
ios including isolated singing voices and non-percussive music. Two adaptation strategies are
proposed and experimented with different neural architectures and training schemes. Com-
prehensive experiments and comparisons with multiple baselines are conducted, and results
show that BeatNet+ achieves superior beat tracking and downbeat tracking F1 scores for generic
music, isolated singing voices and non-percussive audio, with competitive latency and compu-
tational complexity. Finally, we release beat and downbeat annotations for two datasets that
are designed for other tasks, and revised annotations of three existing datasets. We also plan to
release the code repository and pre-trained models on GitHub.

Keywords: Real-time beat tracking, downbeat tracking, rhythm analysis, singing voices, non-
percussive music, BeatNet, BeatNet+

1. Introduction1

Music can be regarded as one of the most intricate and2

diverse art forms in the world. It is created through3

the incorporation of various sounds that are arranged4

in a meaningful manner to produce a unique compo-5

sition. One of the key elements of music is rhythm,6

which refers to the sequential pattern of sounds and si-7

lences that occur over time. Rhythm is crucial in music8

as it forms the fundamental basis upon which a piece9

is constructed. In recent years, there has been an in-10

creasing interest in developing real-time music rhythm11

analysis systems Heydari and Duan (2021).12

Accurate and robust real-time music rhythm anal-13

ysis holds the potential to advance the music indus-14

try, enabling innovative applications. It can serve as15

a fundamental component for a variety of use cases,16

including automatic music generation, processing and17

analysis. With the recent advancements in virtual18

and augmented reality, there is a growing demand19

*XXXX, XXXX, XXX,XXX*

for real-time music processing and analysis across var- 20

ious situations. This need has also gained promi- 21

nence due to its role in empowering the creation of 22

immersive music-based interactive experiences. These 23

experiences, include but are not limited to real-time 24

music visualization (Bain, 2008), dancing robots (Bi 25

et al., 2018), DJing and live remixing and sampling 26

performance (Cliff, 2000), live video editing and syn- 27

chronization (Davis and Agrawala, 2018), dynamic 28

lighting systems, and music-driven interactive video 29

games (Bégel et al., 2018), offer users the chance to 30

engage with music on the fly. 31

Developing real-time music rhythm analysis sys- 32

tems involves addressing three key challenges: The 33

first challenge is on maintaining high accuracy while 34

not accessing future input data as offline models do. 35

The second challenge is on achieving low latency, es- 36

pecially on low-powered devices. While the first two 37

challenges are easy to understand, we argue that the 38

third challenge is on the generalization to various kinds 39

of music audio. While state-of-the-art rhythm analysis 40
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research has shown promising performance on music41

recordings that contain strong percussive components42

(e.g., drums, rhythmic guitar, piano) (Heydari et al.,43

2021), there are scenarios where the music audio lacks44

such components. For example, real-time rhythm anal-45

ysis of isolated singing voices plays a crucial role in46

understanding and processing vocal performances and47

it enables applications such as accompaniment gen-48

eration on the fly and live music remixing (Heydari49

et al., 2023). As another example, real-time genera-50

tion of drum tracks requires rhythm analysis of non-51

percussive music tracks and can enable collaborative52

music making between human musicians and artificial53

intelligence (AI) agents.54

In this work, we propose BeatNet+ for real-time55

rhythm analysis for diverse kinds of music audio. Simi-56

lar to BeatNet (Heydari et al., 2021), BeatNet+ pro-57

cesses the music audio magnitude spectrum with a58

Convolutional Recurrent Neural Network (CRNN) to59

compute beat and downbeat activations in each audio60

frame. The activations are then post-processed by a61

two-level cascade Monte Carlo particle filter. The key62

innovations of BeatNet+ are on an auxiliary training63

strategy that improves the system performance over64

state-of-the-art rhythm tracking methods on generic65

music, as well as adaptation strategies that improve66

the generalization ability to less percussive music such67

as isolated singing voices and music without drums,68

which are novel rhythm analysis settings.69

Specifically, the auxiliary training strategy lever-70

ages a parallel regularization branch that has an iden-71

tical structure without weight sharing with the main72

branch (i.e., used for inference) during training. The73

main branch is fed with full music mixtures while the74

auxiliary branch is fed with the full music less drum75

tracks (referred to as non-percussive versions) of the76

same pieces. In addition to the Cross Entropy (CE)77

losses for each branch, a Mean Squared Error (MSE)78

loss is computed between the latent embeddings of the79

two branches to regularize the representation learning80

of the main branch.81

Regarding the adaptation strategies for BeatNet+82

to work with less percussive music, we propose two83

techniques termed Auxiliary-Freezing (AF) and Guided84

Fine-tuning (GF). The AF approach (Figure 2) again85

adopts a two-branch auxiliary training strategy simi-86

lar to the one mentioned above. Differently, the main87

branch (left) is now trained on the target music type88

(i.e., less percussive music) while the auxiliary branch89

(right) is frozen as the pre-trained main branch of90

the BeatNet+ which is trained for full music mixtures.91

The GF technique (Figure 3) employs a single-branch92

model initialized with the pre-trained main branch of93

the BeatNet+ model. Subsequently, this model under-94

goes fine-tuning on input music pieces, starting with95

full music mixtures (aligned with the original data type96

of the pre-trained model), which are gradually adapted97

to match the target music type. For instance, if the tar- 98

get is isolated singing voices, non-singing parts of the 99

music input are progressively removed during training 100

iterations. We perform experiments on two types of 101

less percussive music types to demonstrate the effec- 102

tiveness of the adaptation strategies: Isolated singing 103

voices and non-percussive music. Rhythm tracking for 104

both settings is novel and could enable novel applica- 105

tions such as real-time drum track generation. 106

Finally, we release beat and downbeat annotations 107

of MUSDB18 (Rafii et al., 2017) and URSing (Li et al., 108

2021) datasets, which were originally designed for 109

other MIR tasks, enabling them to be utilized for music 110

rhythm analysis applications. Also, we correct mistakes 111

in the rhythm annotations of three pre-existing mu- 112

sic rhythm analysis datasets including RWC jazz, RWC 113

pop, and RWC royalty-free (Goto et al., 2002; Goto, 114

2004). The source code of the BeatNet+, adaptation 115

models and rhythmic annotations of MUSDB and URS- 116

ing will be online1. 117

2. Related Work 118

Existing work on rhythm analysis can be reviewed 119

along different dimensions. In this section, we provide 120

a review along the dimensions that are related to the 121

proposed work. 122

2.1 Two-Stage Approach 123

The majority of rhythm analysis methods (e.g., beat 124

tracking, downbeat tracking) adopt a two-stage ap- 125

proach. In the first stage, a salience function (also 126

called likelihood function, detection function, or acti- 127

vation strength) is computed from the input audio sig- 128

nal to represent the salience of the target event (e.g., a 129

beat) in different time frames. In the second stage, an 130

inference process (also called post-processing) is em- 131

ployed to make binary decisions on the presence of the 132

target event in each audio frame based on the salience 133

function. Different techniques have been proposed in 134

each of these stages, and we will review them in the 135

following. 136

2.1.1 Salience Calculation Stage 137

There are generally two paradigms in computing the 138

salience function. The first paradigm is rule-based and 139

uses hand-crafted functions to indicate the presence of 140

important rhythmic elements in music, such as onsets 141

and beats (Mottaghi et al., 2017; Chiu et al., 2023). 142

Such function often describes the “novelty” of the cur- 143

rent audio frame compared to the previous frame(s) 144

in terms of energy (Schloss, 1985) and spectral con- 145

tent (Masri, 1996). These hand-crafted functions are 146

generally fast to compute and robust to music styles. 147

However, their detection accuracy is limited compared 148

to data-driven methods in the next paragraph. 149

1[We open-source the following upon the paper acceptance:]
Codes: https://github.com/XXXXX/XXXXXX
Annotations: https://github.com/XXXXX/XXXXXX
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The second paradigm focuses on machine learn-150

ing techniques, where models are trained to estab-151

lish the relationship between low-level acoustic fea-152

tures and annotations of rhythmic elements (Holzapfel153

et al., 2012; Gkiokas et al., 2012; Böck and Schedl,154

2011; Böck et al., 2016). Deep learning-based meth-155

ods have gained significant attention due to their156

exceptional performance in rhythm analysis. These157

models typically require supervision and are trained158

on large datasets with labeled rhythmic patterns,159

making them highly accurate in recognizing com-160

plex rhythmic patterns. They leverage neural net-161

works to extract “activation strength” for every time162

frame. Several neural network structures are uti-163

lized for music rhythm analysis tasks such as con-164

volutional networks (Gkiokas and Katsouros, 2017),165

cepstroid invariant networks (Elowsson, 2016), re-166

current networks (Eyben et al., 2013), transform-167

ers (Heydari and Duan, 2022), temporal convolu-168

tional networks (Davies and Böck, 2019), and autoen-169

coders (Greenlees, 2020).170

Recently, self-supervised learning (SSL) models171

have gained popularity as they can be trained on172

massive amounts of unlabeled data. Desblancs173

et al. (2023) proposed ZeroNS that leverages a self-174

supervised pre-processing block for their beat track-175

ing model. Similar to our proposed BeatNet+ model,176

ZeroNS contains two branches and leverages differ-177

ent music stems in training. However, there are sev-178

eral fundamental differences between the two models.179

BeatNet+ is a supervised model with a latent match-180

ing loss, whereas ZeroNS is self-supervised and lacks a181

loss-matching regularization term. BeatNet+ focuses182

on the causal joint beat and downbeat tracking, while183

ZeroNS serves as a non-causal model designed only for184

beat tracking. In terms of structure, BeatNet+ utilizes185

CRNN networks, while ZeroNS only incorporates con-186

volutional blocks in its pipeline. SSL representations187

have also been used in rhythm analysis of challeng-188

ing music inputs such as isolated singing voice (Hey-189

dari and Duan, 2022). Such representations, however,190

can be difficult to use in real-time applications due to191

causal and low latency requirements.192

It is worth mentioning that each of the men-193

tioned methods can operate in either the time do-194

main, e.g., (Steinmetz and Reiss, 2021; Heydari195

and Duan, 2022) or frequency domain, e.g., (Meier196

et al., 2021; Böck and Davies, 2020; Chiu et al.,197

2023), or combined, e.g., (Morais et al., 2023).198

Time-domain techniques operate on the audio wave-199

form, while frequency-domain techniques operate on a200

time-frequency representation computed from Fourier,201

constant-Q or other transforms. They provide ex-202

plicit information about the signal’s frequency com-203

ponents and are known for their robustness to noise204

when compared with time-domain techniques (Zheng-205

qing and Jian-hua, 2005). Spectral approaches face206

a time-frequency resolution trade-off where extending 207

the time window captures lower frequencies benefi- 208

cial for rhythm analysis but reduces time resolution, 209

and vice versa. To tackle the time-frequency reso- 210

lution tradeoff issue, some works, e.g., (Böck et al., 211

2014), employ multi-resolution embeddings, which in- 212

volve concatenating spectral features calculated based 213

on different window lengths. 214

2.1.2 Decision Stage 215

Depending on whether future audio frames are con- 216

sidered in making the prediction at the current frame, 217

the decision stage can be categorized as offline and 218

online methods. Offline methods, such as comb fil- 219

ters (Scheirer, 1998), dynamic programming (Ellis, 220

2007), and dynamic Bayesian networks (Böck et al., 221

2014), improve prediction coherence but are unsuit- 222

able for real-time use. A sliding window frame- 223

work allows offline methods to work in online scenar- 224

ios (Davies et al., 2005), processing only signals within 225

the window. However, this ignores past signals outside 226

the window, affecting coherence. Overlapping win- 227

dows can cause computational overload as well. 228

In online (especially real-time) scenarios, various 229

inherently causal inference methods are utilized, in- 230

cluding the forward algorithm (Federgruen and Tzur, 231

1991), Kalman filtering (Shiu and Kuo, 2007), par- 232

ticle filtering (Hainsworth and Macleod, 2004; Hey- 233

dari and Duan, 2021; Heydari et al., 2023) and jump- 234

reward inference (Heydari et al., 2022). In particular, 235

particle filtering uses particles to represent and evolve 236

the posterior distribution of rhythmic states like beat, 237

downbeat, and non-beat over time. Hainsworth and 238

Macleod (2004) applied it to tempo detection and Hey- 239

dari et al. (2021) applied it to joint beat, downbeat, 240

and time signature tracking. 241

Particle filtering faces challenges in capturing ex- 242

tended temporal dependencies like time signature 243

tracking due to its Markovian nature, relying only 244

on current state predictions. Heydari et al. (2023) 245

proposed dynamic particle filtering, enhancing infer- 246

ence by incorporating historical and salience informa- 247

tion, albeit with increased computational cost. Par- 248

ticle filtering also requires numerous particles for ex- 249

tensive state spaces, crucial for detailed time granular- 250

ity and broad tempo ranges in rhythm analysis, lead- 251

ing to higher computational overhead. Heydari et al. 252

(2022) introduced “jump-reward inference,” a semi- 253

Markovian model operating in a 1-dimensional state 254

space, significantly cutting computation time, albeit 255

with a performance drop in higher-level music analysis 256

tasks such as downbeat tracking. 257

2.2 Real-Time Systems 258

In this subsection, we briefly review a few real-time 259

beat and downbeat tracking systems. IBT (Oliveira 260

et al., 2010) is a signal processing based multi-agent 261

system for real-time beat tracking. It initializes a set of 262
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agents with various hypotheses. Each agent carries a263

hypothesis concerning the rate and placement of musi-264

cal beats and the model dynamically chooses the best265

agent based on music onsets.266

In the realm of deep learning based methods, Böck267

et al. (2014) employed an RNN to compute activa-268

tions and apply the forward algorithm (Federgruen and269

Tzur, 1991) for inferring beats in a causal setting. Hey-270

dari et al. (2021) proposed BeatNet, a real-time sys-271

tem for joint beat, downbeat, and meter tracking. It272

employs a fully causal CRNN structure with a 1D con-273

volutional layer to produce three activations for beat,274

downbeat, and non-beat. It uses an efficient two-level275

particle filtering for inference. In their follow-up work,276

Heydari et al. (2022) utilized BeatNet activations and277

presented a so-called “jump-back reward” strategy to278

speed up the particle filtering process as reviewed in279

the previous subsection.280

Chang and Su (2024) proposed an online beat and281

downbeat tracking system named BEAST based on the282

streaming Transformer Tsunoo et al. (2019). Through283

the incorporation of contextual block processing in284

the Transformer encoder and relative positional en-285

coding in the attention layer, BEAST achieves signifi-286

cant improvements over existing state-of-the-art mod-287

els. It uses the forward algorithm (Federgruen and288

Tzur, 1991) as the inference stage.289

2.3 Rhythm Analysis for Isolated Singing Voices290

In order to address the isolated singing voice rhythm291

analysis task, Heydari and Duan (2022) proposed292

a model that leverages pre-trained self-supervised293

speech models such as WavLM (Chen et al., 2022) and294

Distilhubert (Chang et al., 2022) and built some lin-295

ear transformers (Katharopoulos et al., 2020) on top296

of them to jointly extract the beats of singing voices in297

an offline fashion. This study highlights the substantial298

performance improvement achieved by utilizing pre-299

trained speech models and transformers. Nonethe-300

less, their computational heaviness poses challenges301

for real-time and low-resource applications, especially302

in scenarios with limited computational power, such303

as in-device use cases. SingNet (Heydari et al., 2023)304

pioneered real-time singing voice joint beat and down-305

beat, and meter tracking. It utilizes a slightly larger306

CRNN model compared to BeatNet for calculating ac-307

tivation functions. Recognizing the irregular and noisy308

activations delivered by singing voices, SingNet in-309

troduces dynamic particle filtering, a novel inference310

module that incorporates offline estimation and acti-311

vation saliences into the online inference process.312

2.4 Rhythm Analysis for Non-Percussive Music313

In addition to isolated singing voices, there are other314

types of music audio that are less percussive, e.g., mu-315

sic without drums. Real-time music rhythm analysis316

for these kinds of music is also challenging but can be317

very useful in many applications such as the automatic318

generation of drum tracks. Wu et al. (2022) developed 319

an offline drum accompaniment system based on an 320

offline drum-aware beat tracking method (Chiu et al., 321

2021). Online rhythm analysis of non-percussive mu- 322

sic, however, is limited to a few traditional signal pro- 323

cessing approaches such as (Goto, 2001; Goto and Mu- 324

raoka, 1999) that only track beats but not downbeats 325

or meter. 326

3. Methodology 327

In this section, we present a novel two-stage approach 328

named BeatNet+ to real-time joint beat, downbeat and 329

meter tracking for diverse kinds of music inputs. The 330

first stage estimates beat and downbeat saliences from 331

audio frames, while the second stage makes decisions 332

using particle filtering. Additionally, we elaborate on 333

adapting the BeatNet+ model for rhythm analysis of 334

more challenging data types. 335

3.1 Stage 1: Beat and Downbeat Salience Estimation 336

This section describes the proposed neural network 337

model and training strategies for robust computation 338

of beat and downbeat saliences from diverse kinds of 339

music inputs. 340

3.1.1 Audio Feature Representation 341

We utilize Short-Time Fourier Transform (STFT) to 342

compute a log-magnitude spectrogram as the input fea- 343

ture representation. The window length is set to 80 ms 344

with a Hann window. The window hop size, i.e., the 345

model’s theoretical latency, is set to 20 ms. The fre- 346

quency range is between 30 Hz and 17,000 Hz with 347

288 bins. 348

3.1.2 Neural Architecture and Training Strategy 349

BeatNet+ (Figure 1) features two branches where both 350

the main branch (left) and the auxiliary branch (right) 351

are used in training while for inference, only the main 352

branch is utilized. Both branches employ a convolu- 353

tional recurrent neural network (CRNN) structure sim- 354

ilar to BeatNet (Heydari et al., 2021), where the convo- 355

lutional block is identical to that of BeatNet but the re- 356

current block is expanded from two layers to four lay- 357

ers based on preliminary empirical studies. This deeper 358

design is reasonable, as BeatNet+ is expected to han- 359

dle diverse music inputs, including isolated singing 360

voices and less-percussive music with complex rhyth- 361

mic structures. Each recurrent layer contains 150 long 362

short-term memory (LSTM) cells, the same as in Beat- 363

Net. It is worth mentioning that in our pilot study, we 364

explored various alterations to the neural architecture, 365

such as incorporating batch normalization, linear lay- 366

ers, Rectified Linear Unit (ReLU) activations, and leaky 367

ReLU activations. However, these modifications did not 368

yield significant performance improvements. 369

To increase the robustness to music with various 370

levels of percussive components, we use an auxiliary 371

branch (the right branch of Figure 1) to train Beat- 372
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Figure 1: Neural structure of BeatNet+ for general
music rhythm analysis. Both the main (left) and
auxiliary (right) branches are initialized randomly
and trained jointly, but only the main branch is uti-
lized for inference.

Net+. The auxiliary branch is identical to the main373

branch, except that it takes a different type of input374

during training and it does not include the SoftMax375

layer, which is only used during inference in the main376

branch. Note that since cross-entropy loss with logits377

is being used, applying SoftMax is unnecessary during378

training.379

Training of BeatNet+ takes three losses as in Equa-
tion (1):

Ltot al = LC E1 +LC E2 +λLMSE . (1)

The main branch is trained on full music mixtures with380

a cross-entropy loss denoted as LC E1. The auxiliary381

branch is trained on the non-percussive parts of the382

same music mixtures with another cross-entropy loss383

denoted as LC E2. Additionally, we introduce a Mean384

Squared Error (MSE) loss, LMSE , between intermedi-385

ate representations of the two branches. This can be386

viewed as a training regularization to encourage sim-387

ilarity between the latent representations of the two388

branches, given that their outputs, i.e., their rhythm in-389

formation, are expected to be identical. Based on our390

pilot studies, Mean Squared Error (MSE) is found to391

be more suitable than other losses like Mean Absolute392

Error (MAE) or Huber loss for this regularization. The393

constant weight parameter λ controls the strength of394

the regularization. A similar latent matching strategy395

has been used before to enhance a talking face genera-396

tion model’s robustness to noise (Eskimez et al., 2019).397

3.1.3 Adaptation for More Challenging Music Inputs 398

To address the real-time rhythm analysis of challenging 399

inputs such as isolated singing voices and other less- 400

percussive music, we propose two adaptation strate- 401

gies named as Auxiliary Freezing (AF) and Guided Fine- 402

tuning (GF), respectively. Here we take the isolated 403

singing voice scenario as an example, but the proposed 404

adaptation strategies can be applied to other scenarios, 405

e.g., non-percussive music, as well. In the AF approach 406

(shown in Figure 2), we adopt a similar two-branch 407

auxiliary training approach to that in Section 3.1.2. In 408

this case, the auxiliary branch (right) is initialized with 409

the frozen weights from the pre-trained main branch 410

of BeatNet+ (i.e., left branch in Figure 1) taking full 411

music mixtures as inputs, while the main branch (left), 412

is trained from scratch on isolated singing voices of the 413

corresponding music mixtures. MSE loss is imposed be- 414

tween the latent representations of the two branches in 415

addition to the cross entropy loss of the right branch. 416

After this adaptation, the main branch (left) is used 417

for rhythm analysis of isolated singing voices. Note 418

that this approach bears similarity to teacher-student 419

model distillation methods e.g., Kim and Rush (2016), 420

wherein the student model is trained to replicate sim- 421

ilar latents as the frozen teacher model. However, the 422

key distinction lies in the fact that commonly used 423

teacher-student models try to perform model distilla- 424
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Figure 2: Neural structure of Auxiliary-Freezing (AF)
adaptation approach for singing voice rhythm
analysis. The main branch (left) is initialized ran-
domly and trained for real-time inference, while
the auxiliary branch (right) is initialized with the
pre-trained BeatNet+ main branch weights and re-
mains frozen during training.
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Figure 3: Illustration of the Guided Fine-tuning (GF)
approach for singing voice rhythm analysis. The
model is initialized with the pre-trained BeatNet+
main branch weights and fine-tuned using music
mixtures with backing music gradually removed
over training epochs.

tion, i.e., to attain similar results with smaller networks425

on the same data, while our model’s objective is to426

achieve similar results with identical networks on dif-427

ferent but related data.428

In the Guided Fine-tuning (GF) approach, we com-429

mence by initializing a single-branch model with the430

weights and biases of the main branch of BeatNet+431

that is pre-trained on full music mixtures, i.e., the left432

branch of Figure 1. Subsequently, we fine-tune the433

model for isolated singing voices by gradually reducing434

the intensity of the accompanying music during train-435

ing. In each epoch, a percentage of the accompanying436

music is deducted, with a linear decay factor denoted437

as γ. After a number of epochs, the strength of ac-438

companying music in the training data diminishes to439

zero. Figure 2 illustrates this adaptation approach for440

isolated singing voice music with γ= 0.01.441

As previously mentioned, both adaptation strate-442

gies can be applied to address different types of less-443

percussive music input. For instance, in Figures 2 and444

3, substituting the singing stem with complete musical445

mixtures excluding drum stems, enables the models to446

be trained specifically for non-percussive music.447

3.2 Stage 2: Decision448

Since Cascade Monte Carlo particle filtering demon-449

strated superior performance for online rhythm analy-450

sis tasks among the proposed methods (Heydari et al.,451

2021, 2023), we use it as the decision-making block for452

all proposed methods and scenarios. In this section, we453

provide a brief description of the method we used.454

3.2.1 State Space, Transition and Observation Models 455

The state space, transition, and observation models 456

mirror those of BeatNet (Heydari et al., 2021). We im- 457

plement the discrete 2D state space proposed in (Krebs 458

et al., 2015) and adapt BeatNet’s cascade approach. In 459

this approach, instead of merging multiple beat state 460

spaces into a bar state space, two separate state spaces 461

are employed, one for beat and tempo tracking and the 462

other for downbeat and meter tracking, organized hi- 463

erarchically. The first space comprises tempo and beat 464

phase as the two dimensions; Adjacent states with the 465

same tempo correspond to adjacent time frames of au- 466

dio. The second space comprises meter (represented 467

as the number of beats per bar) and downbeat phase 468

as the two dimensions; Adjacent states with the same 469

meter correspond to adjacent beats in time. Transition 470

models permit tempo and meter changes to update at 471

beat and downbeat positions, respectively. Observation 472

models calculate beat and downbeat likelihoods based 473

on salience estimated by the neural network. 474

3.2.2 Causal Inference 475

Monte Carlo particle filtering is a top choice for real- 476

time inference due to two key advantages. Firstly, 477

it does not rely on future data, unlike popular maxi- 478

mum a posteriori (MAP) algorithms such as the Viterbi 479

algorithm and smoothing algorithms like forward- 480

backward. Secondly, unlike many inference algorithms 481

such as Kalman filtering which require strong distri- 482

bution type assumptions, it is a general and non- 483

parametric approach, capable of decoding any un- 484

known distribution among causal filtering methods. 485

Some previous works (Heydari et al., 2021; Heydari 486

and Duan, 2021) demonstrated its superiority com- 487

pared to other inference models. 488

Particle filtering is a two-step inference process
that encompasses the predict/motion step and the up-
date/correction step. In the motion step, particle po-
sitions are updated based on predicted trajectories,
while the correction step involves adjusting particles
and assigning weights based on observed data compat-
ibility. Given the latent state φk and observation yk

at frame k, assuming that the current position poste-
rior p(φk |y1:k ) is estimated, the “predict-update” pro-
cedure computes the next frame’s position posterior
p(φk+1|y1:k+1). Equation (2) details the motion step for
one-step-ahead prediction by applying the state transi-
tion model p(φk+1|φk ) into the current frame posterior,

p(φk+1|y1:k ) =∑
φk

p(φk+1|φk )p(φk |y1:k ). (2)

Equation (3) describes the correction step by incor-
porating the observation likelihood p(yk+1|φk+1) into
the one-step-ahead prediction to estimate the next step
posterior,

p(φk+1|y1:k+1) = 1

Zk+1
p(yk+1|φk+1)p(φk+1|y1:k ). (3)
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By combining these motion and correction steps itera-489

tively, particle filtering refines the estimation of the sys-490

tem’s state, making it a powerful technique for tracking491

and inference in dynamic environments.492

4. Experiments493

In this section, we discuss the training specifics of the494

proposed models. We also describe the details of our495

comparison methods, utilized datasets (existing and496

annotated), and the evaluation metrics for each task.497

Finally, we report the experimental results for all of the498

models and compare them with state-of-the-art meth-499

ods for each task. Note that all experiments with the500

proposed methods employ the same inference method501

i.e., the particle filtering approach proposed in Beat-502

Net (Heydari et al., 2021).503

4.1 Datasets504

To increase data diversity, we use multiple music au-505

dio datasets with beat and downbeat annotations,506

as shown in Table 1. Among these datasets, Ball-507

room (Gouyon et al., 2006; Krebs et al., 2013),508

GTZAN (Marchand and Peeters, 2015; Tzanetakis and509

Cook, 2002), Hainsworth (Hainsworth and Macleod,510

2004), Rock Corpus (De Clercq and Temperley, 2011),511

and RWC Jazz, Pop and Royalty-free datasets (Goto512

et al., 2002; Goto, 2004) already come with beat and513

downbeat annotations. However, some downbeat an-514

notations of RWC Jazz, Pop and Royalty-free datasets515

are not accurate, and we revise them manually. In ad-516

dition, MUSDB18 (Rafii et al., 2017) and URSing (Li517

et al., 2021) are multi-track singing datasets without518

beat or downbeat annotations, and we annotate them519

using BeatNet (Heydari et al., 2021) followed by man-520

ual corrections.521

Following the previous works, we employ the whole522

GTZAN dataset as the test set, given that it is one of the523

largest and most genre-inclusive datasets for our tasks.524

Importantly, none of the reported models have been525

exposed to this dataset during their training phase, en-526

suring a fair and unbiased assessment. The rest of the527

datasets outlined in Table 1 are utilized for training528

and validation purposes.529

It is noted that to obtain the audio stems of the530

datasets for different tasks except the ones that include531

separate stems i.e., MUSDB18 and URSing, we uti-532

lize Demucs (Défossez, 2021), a top-performing open-533

source music source separation model. It separates534

each piece of music into four tracks: bass, drums, vo-535

cals and others.536

For the isolated singing rhythm analysis task, the537

availability of singing stems is essential. Yet, in the538

datasets we use, many pieces do not have singing, and539

some have extended segments with only instrumen-540

tal music and no vocals. To address this challenge,541

we introduce a preprocessing stage designed to elim-542

inate vocal-less pieces and extended segments with-543

out singing. This is achieved by implementing energy-544

based vocal Root Mean Square (RMS) thresholding on 545

separated singing tracks. As a consequence, datasets 546

such as RWC-Jazz (Goto et al., 2002; Goto, 2004) were 547

entirely excluded from the data pool for the singing 548

voice rhythm analysis task. Furthermore, some vocal 549

tracks containing extended silent intervals are split into 550

shorter vocal segments. 551

4.2 Evaluation Metrics 552

The reported metrics comprise beat and downbeat F1 553

scores, system latency, and real-time Factor (RTF). Fol- 554

lowing the literature, F1 scores are reported with a tol- 555

erance window of 70 ms. Latency is defined as the hop 556

size of the Short-Time Fourier Transform (STFT) for 557

processed data. RTF is another important metric for 558

real-time models and refers to the speed or responsive- 559

ness with which a model can process and generate out- 560

puts in real-time. It is the averaged ratio between the 561

total processing time and the total audio length across 562

the whole test set. Note that the reported RTFs are 563

measured on a Windows machine with an AMD Ryzen 564

9 3900X CPU and 3.80 GHz clock frequency. 565

Previous work (Heydari et al., 2023) used 200 ms 566

as the tolerance for singing voice beat and downbeat 567

tracking. This was based on their observation that hu- 568

man tolerance to beat and downbeat timing deviations 569

tends to be more lenient for less percussive music com- 570

pared to music with strong percussions. Therefore, we 571

also report F1 scores with a tolerance of 200 ms for 572

singing voice and non-percussive music datasets in ad- 573

dition to the standard 70 ms tolerance. 574

4.3 Comparison Methods 575

To assess the effectiveness of the auxiliary training 576

strategy in Section 3.1.2, we trained two models: Beat- 577

Net+ is the proposed model with auxiliary training 578

using two branches, and BeatNet+ (Solo) trains the 579

main branch without the auxiliary branch, i.e., only 580

LC E1 is used in Equation (1). 581

To evaluate BeatNet+ model on real-time rhythm 582

analysis for generic music, we compare it with five 583

baseline models. 1) BeatNet (Heydari et al., 2021) 584

Dataset #Pieces #Vocals Labels
Ballroom 699 452 Original
GTZAN 999 741 Original
Hainsworth 220 154 Original
Rock Corpus 200 315 Original
MUSDB18 150 263 Added
URSing 65 106 Added
RWC jazz 50 0 Revised
RWC pop 100 188 Revised
RWC Royalty-free 15 29 Revised

Table 1: Datasets used in our experiments. GTZAN
is used for evaluation and the others are used for
training and validation.



8 XXXX XXXXX, and XXXXX XXXXX: BeatNet+: Real-Time Rhythm Analysis for Diverse Music Audio

employs a CRNN structure and proposes efficient par-585

ticle filtering for joint beat, downbeat, and meter track-586

ing. 2) Novel 1D (Heydari et al., 2022) utilizes Beat-587

Net activations and proposes the jump-back reward588

strategy, a semi-Markov inference method, to reduce589

computation. 3) IBT (Oliveira et al., 2010) is a sig-590

nal processing based method that uses onset strength591

to select an agent with the most correct beat position592

hypothesis out of multiple agents. 4) Böck FF Böck593

et al. (2014) utilizes an RNN and a forward algorithm594

for beat tracking. 5) BEAST (Chang and Su, 2024)595

employs a streaming Transformer and a forward al-596

gorithm for joint beat and downbeat tracking, achiev-597

ing the best performance over existing state-of-the-art598

models on the GTZAN benchmark. Among the re-599

ported methods, IBT and Böck FF only perform beat600

tracking and do not provide downbeat results.601

It is also important to mention that certain prior602

studies, such as Beast (Chang and Su, 2024), present603

their results by incorporating multiple hop-size look-604

ahead steps in addition to their real-time online perfor-605

mance. While these look-ahead steps enhance the per-606

formance of rhythm analysis systems, they introduce607

significant delays and make the models non-causal. To608

ensure a fair and consistent comparison among online609

models, we only compare the fully online performance610

of all models.611

To better put online music rhythm analysis meth-612

ods in context, we also compare with two state-of-the-613

art offline rhythm analysis models. They include 1)614

Transformers (Zhao et al., 2022) model that uses a615

transformer encoder for estimating the activations and616

dynamic Bayesian Networks (DBN) for decisions, and617

2) SpecTNT-TCN (Hung et al., 2022) that leverages618

a combination of Temporal Convolutional Networks619

(TCN) and SpecTNT (Lu et al., 2021), which integrates620

spectral and temporal information, to calculate activa-621

tions and a DBN block for decisions.622

For the two challenging scenarios, isolated singing623

voices and non-percussive music, we evaluate the two624

proposed adaptation methods. AF represents the first625

adaptation approach illustrated in Figure 2, where the626

auxiliary branch (right) is initialized with the frozen627

weights of the BeatNet+ generic model, and the main628

branch (left) undergoes training on the particular mu-629

sic arrangement and is used for inference. GF rep-630

resents the second adaptation approach illustrated in631

Figure 3, involving fine-tuning a pre-trained model for632

specific tasks by adaptation of the input data over time.633

To assess the effectiveness of the adaptation ap-634

proaches, we also present results for the same mod-635

els trained from scratch for the specific tasks, with-636

out leveraging the adaptation techniques. These mod-637

els are referred to as AF-scratch and GF-scratch, re-638

spectively. In particular, AF-scratch uses the auxil-639

iary branch structure and training data, but trained640

from scratch without initializing the auxiliary branch641

weights with the frozen weights of the pre-trained 642

BeatNet+ main branch. GF-scratch utilizes GF single 643

branch structure, trained from the scratch and without 644

guided fine-tuning. 645

For singing voice rhythm analysis, we compare with 646

SingNet (Heydari et al., 2023), the current state of 647

the art for this task. For non-percussive music rhythm 648

analysis, no prior models are available. Thus, we com- 649

pare with the state-of-the-art real-time rhythm analy- 650

sis method, BeatNet (Heydari et al., 2021), when is 651

trained exclusively on non-percussive music pieces. 652

4.4 Training Details 653

This section covers the training details of the BeatNet+ 654

models for generic music rhythm analysis as well as 655

the “auxiliary-freezing” and “guided fine-tuning” adap- 656

tation techniques for challenging scenarios. 657

All proposed models are trained using the Adam op- 658

timizer with a constant learning rate of 5×10−4 and a 659

batch size of 40. All models employ a cross-entropy 660

loss with logits, whose weights are set to 200 for down- 661

beats, 60 for beats, and 1 for non-beats, accounting for 662

their average occurrence rates across total training au- 663

dio frames. The feature matching MSE loss weight for 664

models with auxiliary training is set to λ = 200. Train- 665

ing batches comprise randomly selected 15-second ex- 666

cerpts from the training audio files. 667

For the BeatNet+ and BeatNet+ (Solo), AF-scratch 668

and GF-scratch, all weights and biases are randomly 669

initialized. In contrast, the AF model only initializes 670

its main branch randomly, while its auxiliary branch is 671

initialized as the pre-trained main branch of BeatNet+. 672

Similarly, the GF model is also initialized as the pre- 673

trained main branch of BeatNet+. 674

Note that for all external comparison methods, 675

their pre-trained models are utilized. However, for 676

non-percussive music rhythm analysis, the benchmark 677

BeatNet model is trained on non-percussive audio with 678

the training specifics of the original BeatNet model. 679

4.5 Results and Discussions 680

In this section, we present our evaluation results for 681

various scenarios on the GTZAN dataset. We report 682

the performance of the proposed model and adaptation 683

techniques for generic music, isolated singing voices, 684

and non-percussive music rhythm analysis. 685

4.5.1 Results on Generic Music 686

Table 2 compares the performance of online rhythm 687

analysis methods as well as two offline methods for 688

generic music. We can see that the proposed BeatNet+ 689

outperforms all the other online methods on both beat 690

tracking and downbeat tracking F1 scores, while main- 691

taining competitive latency and RTF. Regarding com- 692

putational complexity, the Novel 1D model achieves 693

the lowest RTF, thanks to its utilization of an excep- 694

tionally lightweight inference approach. The F1 score 695

improvement from BeatNet+ (Solo) to BeatNet+, es- 696
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Metrics (Performance on Full Mixtures)

Method Beat F1
(70ms)

Downbeat F1
(70ms)

Latency
(ms) RTF

Online Models

BeatNet+ 80.62 56.51 20 0.08

BeatNet+ (Solo) 78.43 49.74 20 0.08

BeatNet (Heydari et al., 2021) 75.44 46.69 20 0.06

Novel 1D (Heydari et al., 2022) 76.47 42.57 20 0.02

IBT (Oliveira et al., 2010) 68.99 —- 23 0.16

Böck FF (Böck et al., 2014) 74.18 —- 46 0.05

Beast (Chang and Su, 2024) 80.04 52.23 46 0.40

Offline Models

Transformers(Zhao et al., 2022) 88.5 71.4 —- —-

SpecTNT-TCN (Hung et al., 2022) 88.7 75.6 —- —-

Table 2: Results of online rhythm analysis evaluation for generic music and offline state-of-the-art references,
showcasing F1 scores in % with a tolerance window of 70 ms, latency, and RTF for the GTZAN dataset.

↑ ↑ ↓ ↓

pecially on downbeat tracking, highlights the benefit697

of using the auxiliary branch during the training pro-698

cess and leveraging the latent-matching technique be-699

tween the two branches; The latency and RTF do not700

change as BeatNet+ utilizes only one branch during in-701

ference. Finally, BeatNet+ (Solo) improves over Beat-702

Net on both beat and downbeat F1 scores.703

In the comparative analysis between BeatNet+ and704

Beast, BeatNet+ demonstrates a marginal advantage705

in beat tracking and a significant superiority in down-706

beat tracking. Noteworthy is the fact that the latency707

and RTF of BeatNet+ models are more than two times708

and nearly seven times shorter than those of the Beast709

model, making them more convenient for real-time710

and low-resource applications. The main reason for711

its substantially reduced computational cost lies in its712

utilization of a source-efficient light 1D CRNN model,713

in contrast to the inclusion of streaming transformers714

used in Beast.715

To assess system performance across various gen-716

res, we present the beat and downbeat F1 scores717

achieved by the top-performing method, BeatNet+,718

across all GTZAN genres in Figure 4. A compara-719

tive analysis of the reported box plots reveals notable720

variations in model performance for different genres.721

Specifically, the model’s best overall performance is ob-722

served for Disco and Hip-hop; This is potentially at-723

tributed to the presence of strong percussive and har-724

monic cues and their more straightforward rhythmic725

patterns. Conversely, genres like Classical and Jazz726

demonstrate below-average model performance, po-727

tentially due to the diverse musical characteristics and728

intricate rhythmic patterns inherent to these genres.729

Interestingly, some genres show contrasting perfor-730

mance between beat tracking and downbeat tracking.731

Specifically, Reggae receives one of the best beat track- 732

ing performance but the second-worst downbeat track- 733

ing performance with the widest range across differ- 734

ent pieces. This suggests that, while the percussive 735

and harmonic elements of Reggae are ample for beat 736

tracking, they are not sufficient for distinguishing be- 737

tween beats and downbeats. This phenomenon is at- 738

tributed to the presence of a substantial amount of 739

syncopation and frequently used off-beat rhythmic pat- 740

terns such as “One-drop”, “Steppers” and “Rockers” in 741

Reggae. Similarly, Jazz and Blues also show large per- 742

formance disparity between beat and downbeat track- 743

ing, attributable to the prevalent use of styles such as 744

the “Swing feel” within these genres2. 745

4.5.2 Results on Singing Voices 746

Rhythm analysis of isolated singing voices is the most 747

challenging task among all discussed in this work. The 748

first row of Figure 5 compares the F1 scores of the 749

proposed model with different adaptation strategies 750

against SingNet Heydari et al. (2023), the state-of-the- 751

art singing voice rhythm analysis model, on singing 752

stems of the GTZAN dataset. According to the figure, 753

GF delivers the best performance for beat tracking by 754

a significant improvement of 14.58% and 13.27% over 755

the SingNet model for T = 70ms and T = 200ms toler- 756

ances, respectively. For downbeat tracking, AF outper- 757

2Syncopation: Irregular drum patterns by accenting weak beats
commonly not emphasized, and by omitting or displacing notes, such
as downbeats and upbeats, in a 4/4 meter. One drop: is a prominent
drum set rhythm in reggae, differing from the typical backbeat by em-
phasizing the kick on beats 2 and 4 instead of 1 and 3. Steppers: fol-
lows the “four on the floor” pattern, featuring the kick drum hitting on
all four downbeats in each measure. Rockers: a reggae beat in which
the kick drum is on 1 and 3, while the snare is on beats 2 and 4 in a 4/4
meter. Swing feel: a specific type of syncopation that emphasizes the
off-beat, giving the music a bouncy, lively feel (Morena, 2021).
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Figure 4: F1 scores for beat tracking and downbeat tracking of the BeatNet+ model across diverse genres within
the GTZAN dataset.

forms SingNet by 2.43% and 0.51% for T = 70ms ms and758

T = 200ms, tolerances. A more significant improve-759

ment in beat tracking accuracy compared to down-760

beat tracking suggests that the proposed models en-761

hance acoustic modeling more effectively than captur-762

ing higher-level semantic modeling.763

Comparing the adaptation models with the same764

BeatNet+ structures trained from scratch, GF outper-765

forms GF-scratch significantly for beat tracking across766

both tolerances. However, it marginally underper-767

forms GF-scratch for downbeat tracking. On the other768

hand, AF outperforms AF-scratch, for downbeat track-769

ing while underperforming AF-scratch for beat detec-770

tion. The aforementioned records indicate that for771

singing voice rhythm analysis, guided fine-tuning and772

auxiliary freezing techniques are effective for beat and773

downbeat tracking, respectively. However, there is no774

optimal joint model for both tasks.775

4.5.3 Results on Non-Percussive Music776

Rhythm analysis of non-percussive music is another777

challenging task. The plots on the second row of778

Figure 5 compare the performance of the proposed779

BeatNet+ model with different adaptation strategies780

against the BeatNet model on GTZAN pieces after re-781

moving the drums. As mentioned earlier, for this com-782

parison, the BeatNet model is trained on the same data783

as the proposed models, i.e., non-percussive parts of784

the training set from scratch. According to the re-785

sults, AF delivers the best performance for both beat786

and downbeat tracking among all models with a sig-787

nificant improvement of 8.88% and 8,19% for T = 70788

and 10.55% and 12.85% for T = 200 over the baseline789

BeatNet model.790

Comparing AF with AF-scratch underscores the791

impact of the auxiliary freezing technique on non-792

percussive music rhythm analysis. Disabling auxiliary793

freezing results in a notable downgrade in model per-794

formance, shifting it from being the best across all 795

models to the overall worst. However, comparing GF 796

with GF-scratch reveals that guided fine-tuning offers 797

similar performance for non-percussive rhythm analy- 798

sis. 799

Also, We acknowledge that the rhythm analysis 800

performance for non-percussive and isolated singing 801

voices may be impacted by residual signals and data 802

leakage, resulting from utilizing source separation 803

techniques to extract music stems for training and eval- 804

uation. However, prior studies such as Heydari et al. 805

(2021) have shown that this effect is negligible, as ev- 806

idenced by comparing their model performances on 807

music pieces with pure stems versus separated ones. 808

Importantly, a fair comparison is ensured by using the 809

same datasets for all reported models. 810

5. Conclusion 811

This paper presents BeatNet+, a cutting-edge online 812

rhythm analysis model that significantly advances the 813

state of the art in real-time music rhythm analysis. By 814

incorporating an auxiliary branch regularization mech- 815

anism and employing innovative adaptation strate- 816

gies, BeatNet+ demonstrates outstanding performance 817

across various music scenarios, including generic music 818

pieces, isolated singing voices, and non-percussive au- 819

dio tracks. Additionally, we release the rhythmic anno- 820

tations of MUSDB and URSing datasets, enabling them 821

to be utilized for music rhythm analysis as well as re- 822

vised annotations of RWC Jazz, Pop and Royalty-free 823

along with this work. 824
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Figure 5: F1 scores of online rhythm analysis models on singing voices (top row) and non-percussion music
(bottom row) with two tolerance windows, 70 ms and 200 ms.
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