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Abstract—Graph-guided learning has well-documented impact
in a gamut of network science applications. A prototypical
graph-guided learning task deals with semi-supervised learning
over graphs, where the goal is to predict the nodal values
or labels of unobserved nodes, by leveraging a few nodal
observations along with the underlying graph structure. This is
particularly challenging under privacy constraints or generally
when acquiring nodal observations incurs high cost. In this
context, the present work puts forth a Bayesian graph-driven self-
supervised learning (Self-SL) approach that: (i) learns powerful
nodal embeddings emanating from easier to solve auxiliary tasks
that map local to global connectivity information; and, (ii)
adopts an ensemble of Gaussian processes (EGPs) with adaptive
weights as nodal embeddings are processed online. Unlike most
existing deterministic approaches, the novel approach offers
accurate estimates of the unobserved nodal values along with
uncertainty quantification that is important especially in safety
critical applications. Numerical tests on synthetic and real graph
datasets showcase merits of the novel EGP-based Self-SL method.

I. INTRODUCTION

Semi-supervised learning (Semi-SL) over graphs has gained
popularity in recent years thanks to its impact in a gamut of
network science applications, including e.g., social, financial
and biological sciences [3]. Given a few nodal observations,
the goal of Semi-SL is to reconstruct the nodal values of
unobserved nodes [27]. Semi-SL approaches over graphs rely
on the premise that neighboring nodes have similar nodal
values. Such similarities manifest nonparametric models using
e.g., graph kernels [8], [24], [21], [11], low-rank parametric
models [23] or Gauss-Markov random fields [27]. Graph
neural network (GNN) models have also been advocated in
several network domains; see e.g [6], [9], [25]. GNN-based
approaches typically operate in a batch form, they have large
storage requirements, and satisfactory performance calls for a
large number of training data. These requirements translate to
high-cost Semi-SL over large-scale graphs [3].

Featuring affordable storage, the online multi-kernel ap-
proach in [22] uses the one-hop connectivity vector of
each node to process per-node information in a stream-
ing fashion. Also accounting for local nodal connectivity, a
Bayesian online Gaussian Process (GP) based method with
quantifiable uncertainty has been developed in [14], [17], and
[15]. However, the local connectivity information leveraged in
these works can have limited representation power for graph-
guided inference, and can require considerably many nodal
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observations for training [3]. In addition, accounting for local
information such as one-hop connectivity, further discourages
application to large-scale graphs because the dimensionality of
input grows linearly with the network size. To cope with the
former, several methods advocate graph-guided active learning
to judiciously select only a few most informative nodes to
label [16], [13]. Nonetheless, active learning still necessitates
extra labeling efforts, which can be challenging in practice.

To alleviate extra labeling in large-scale graphs but also
allow for lower yet sufficient dimensionality of the input
feature vector, one can rely on the paradigm of self-supervised
learning (Self-SL) over graphs. Self-SL leverages unlabeled
data to learn low-dimensional yet informative embedding
representations per node. These embeddings are learned using
‘pseudo-labels’ obtained only from input features themselves;
that is, from the graph structure and possibly nodal features
if available [10], [4].

Self-SL approaches over graphs rely on GNNs to learn per-
node local embeddings using observed local attributes, such as
the per-node degree or local clustering coefficient and masked
edges between nodes [5], or masked nodal features [26].
These approaches however, utilize as inputs only the global
connectivity information captured by the adjacency matrix,
which comes with high storage demands especially for large-
scale graphs. Notwithstanding, they rely on additional nodal
features to yield the embeddings. Learning memory-efficient
node embeddings that capture local and global information
with no need for extra nodal features, is still unexplored.

Contributions. To bypass extra labeling efforts and also allow
for computationally-efficient learning methods due to low-
dimensional yet informative input features, the present work
develops a novel Self-SL approach that relies on both local
and global connectivity features to learn nodal embeddings.
The learned embeddings can be used for a wide range of
Semi-SL over graph problems. In this contribution, they serve
as input for a graph-guided Semi-SL regression task, which
is carried out using a Bayesian online learning scheme that
leverages an ensemble of (E)GPs. The goal is to identify
an unknown function by adaptively learning the GP model
weights on-the-fly as nodes are processed online, thus accom-
modating time-sensitive applications with reduced complexity
and storage demands. Unlike existing approaches, the novel
Bayesian Self-SL offers quantifiable uncertainty, and relies
only on the graph structure without requiring extra nodal
features or annotations. If extra nodal features are available,
they can be leveraged to enrich nodal embeddings.



II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a graph G comprising N nodes that form the
vertex set V = {1,...,N}, and E edges that connect
pairs of nodes. The connectivity among nodes is captured
by the N x N adjacency matrix A whose (i,j)-th entry
a;; '= A(,j) is nonzero if node 4 is connected to node j.
Let f(-) : V — R be a real-valued function on this graph,
which maps node n € V to its corresponding ground-truth
nodal value f,, € R that is observed in additive noise ¢, as
Yn = fn + €n. For the Semi-SL task over graphs, only a
few nodal observations {y,,n € O} are available, where the
set O collects indices of observed nodes. Given observations
{yn,n € O}, the objective of Semi-SL over a graph is to
estimate function values over a set U of unobserved nodes
{n,n € U}, where set U contains indices of such nodes.

To bypass computational complexity, improve privacy, and
enhance generalization performance of semi-SL algorithms
over graphs, recent contributions have advocated using only
the one-hop connectivity vector a,, := A(:,n) of node n
as input feature vector in order to learn f online, where
fn = f(an) [14], [17], [15], [22], [16].

A. Learning with a single GP

When learning with Gaussian processes (GPs), f is viewed
as random with a prior denoted by f ~ GP(0,k(a,a’)),
where r(a,a’) is the kernel function measuring the pair-
wise similarity between the connectivity vectors a and a’.
This implies that the n x 1 vector of function evaluations
f, = [f(a1),...,f(a,)]" (7 denotes transposition) with
input matrix A, := [aj,...,a,], is multivariate Gaussian
distributed Vn; that is, p(f,;A,) = N(f,;0,,K,), where
K,, is the kernel (covariance) matrix whose (m,m’)-th entry
is [Knlm,m: = cov(f(am), f(am)) := &(am, an/) [20].

Function evaluation vector f,, is related to nodal ob-
servations y, := [y1,...,Yn]  through the batch condi-
tional likelihood that upon assuming conditional indepen-
dence across nodal measurements, it can be factored as
p(yulfa; An) =TT, p(yn| f(an)). In the regression task
with y, = f(an) + &, and &, ~ N(e,,;0,02) uncorrelated
across nodes, the conditional likelihood can be written as
P(yulfn; An) = Ty N(yns; f(an),07). With the prior
p(fn; Ay) and the likelihood p(y,|f,; Ay,) at hand, it can be
shown that the predictive probability density function (pdf) of
the nodal value y,, 1 corresponding to the unobserved node
n + 1 is Gaussian distributed [20], [17]; that is

p(yn+1 ‘Yn; A, an—i—l) = N(yn—i-l; gn-{—l\na O—EL—&-l\n) (1)
with predictive mean and variance given by
Qn+1|n = k7-|;—+1(Kn + UiIn)_l}In (28.)
T iapn =K(@n1,an 1) =Ky (Ko +00 L) " kit (2b)

where k,, .1 == [k(a;,an11),---,k(an,a,41)] . The mean
in (2a) is an estimate for y,;, while the variance in (2b)
quantifies the uncertainty of this estimate.

The single GP-based batch approach in (2) requires storage
O(n?), and complexity O(n?), which can be prohibitive
in large-scale network with large n. In addition, estimator
accuracy depends on the pre-selected kernel x, which thus
regulates expressiveness of the sought function. The ensuing
section shows how to bypass these limitations using the so-
called random spectral features (RFs) based approximation.

B. Approximating a single GP with RFs

RF approximation begins with a shift-invariant standardized
kernel %(a,a’) = k(a—a’) = (1/07)r(a — a’) satisfying

fla—a') = /WR(C)ejCT(a_a/)dC =Er. [ejCT(a_a/)}

with the power spectral density 7z(¢) integrating to 1, and
thus qualifying to be a pdf. For a real-valued &, it holds

that k(a—a’) = E,, [COS(CT(

many i.i.d. deviates {¢;}2, from 7 (¢), k can be approx-

imated as & ~ i(a,a’) == DY cos (Cj(a—a’)).

Upon defining the 2D x 1 RF vector

6 (2= [sin(¢]a). cos(¢]a) ---sin(¢a). cos(¢ pa)]
VD

the kernel approximant K can be written as k(a,a’) :=
¢E (a)q&c (a’), which yields a linear and parametric approx-
imant of the sought function, namely

fa)=0"d¢(a), 6~N(8;00p,05Lop) (3

leading to a GP prior p(f,; A,,) = N'(£,;0,,02®,®,) with
T

P, = [d)C(al), .. .,qbc(an)} . Note that for n > 2D, the

matrix 03<I>n<1>2 is a low-rank aproximant of K,,, and can
thus afford reduced complexity O(n(2D)?) in (2) [17]. As
in recursive Bayes, the parametric model (3) is amendable to
online updates of the posterior p(8|yn; A,) = N(6;6,,,3,)
per node n, thus alleviating the need for large storage [17].

a — a’))|. Drawing sufficiently

III. LEARNING WITH AN ENSEMBLE OF GPs

Targeting a more expressive function model compared to
that of a single GP with a pre-selected kernel, an ensemble
(E) of M GP learners is advocated to estimate the sought
function, where each learner m € M := {1,...,M}
employs a distinct kernel selected from a set of available
diverse kernels K := {x™}M_,. Considering a unique prior
p(£.lm; Ay) = N(£,;0,,K7) on f per GP learner m, an
ensemble (E) GP learner adopts a weighted combination of
all GP learners corresponding to the Gaussian mixture pdf

M M
fa)~ 3 wrN(£,:0,, KT, S wl=1. @
m=1 m=1

The per-learner weight w,' can be viewed as the prob-
ability of learner m to describe the ground-truth func-
tion. Finally, the predictive pdf of the unobserved node
n + 1, can be written as p(Yni1|An,Yn,ant1) =
M WD (Y1 |ms Api1,yn) 1121, [17]. The latter incurs
O(Mn?) complexity that can be further reduced via the RF-
approximation for each GP model as delineated next.



A. RF-based online EGP learner

Let each GP learner m € M rely on its standardized and
shift-invariant kernel ™ = k™ /o2,. with ™ € K, and draw
i.i.d. vectors {¢["}2 | from the power spectral density 7z (¢)
of K™ to construct the RF vector ¢’ (a). This corresponds to
the parametric generative function model for learner m being

p(f(a)li =m,0™) = 5(f(a) - ¢¢ (a)6™)
P(em) = /\/(0 302D700m12D)

that yields the Gaussian likelihood also parameterized by
0™ as p(ya|0™.a) = N(ya;of (2)8™,07). The lat-
ter along with the prior in (5b) lead to the posterior
p(0™|m,yn; Ay) = N(0™; 0™, £™) that enables prediction
of unobserved nodal values by learner m. Next, we will
show how {6, 2™ ™}, will be updated in a data-adaptive
manner as nodes are processed online.

RF-based EGP prediction. Each GP learner m leverages its
posterior p(0™|m,y,; A,) to predict the pdf of y, 11 as

(52)
(5b)

P(Yns11m, Yn; An,ani1)

z/p(ymllm, 0" a,11)p(0™ |m, yn; An)dO™

= N(Yn+15 Gt s (O 110)7) (0)
with mean and variance given by

@7T+1|n = ¢?T(an+1)é? (7a)

(07411n)? = OF  (2ns1) SO (ans1) + 0 (7b)

The EGP learner combines the predictive pdfs of all M
learners via the Gaussian mixture

M
)= wiN(

m=1

p(yn-«—l‘yn;Amavﬁl yn+1§39;n+1|n7 (U;n+1|n)2)~
Then, the minimum mean-square error (MMSE) estimator of
Yn+1 along with the corresponding variance are given by

@n+1|n = Z w?@:{ll\n (Sa)

Zw

where “n + 1|n” indicates that only the nodal observation of
node n and the model parameters after processing node n are
used to predict y,,11.

RF-based EGP correction. When y,, 11 becomes available,
each learner m leverages Bayes’ rule to update its weight w)*
and propagate its posterior pdf as

U'r27,+1|n n+1\n (y’n+1\n_g:ﬁfl|n)2] : (8b)

wy, p(yn+1|m YnaAnJrl)
p( n+1|Yn7 n-‘rl)

- w?LlN(yn+l; g:ﬁr”na (0n+1|n)2) (9)
- M ’ A ’ )
Zm/:l w:Ln N(yn+1§ yZl+1|n7 (0—7T+1\n)2)

wﬁll =Pr(m|yn+1; Ant1)=
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Fig. 1: Performance visualization across 20 unobserved nodes.

(0" yr; An)D(Yn 110" @ 11)
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PO [yni5An41)=
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where

By = B+ (07 11) P E B (@) W — 1 1)
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n+1 n
Albeit offering a rich function space with scalability (the
incurred per-iteration complexity is O(M((2D)?+2DN))),
the developed EGP-based method solely relies on the one-
hop connectivity vector a,, which may provide limited in-
formation about node n. In certain Semi-SL-related settings
dim(a,) = N > |O|, which challenges learning the under-
lying function. To overcome these roadblocks, we develop a
Self-SL method that aims at learning low-dimensional and
informative embeddings per node n, that can be coupled with
the EGP model as outlined next.

IV. SELF-SUPERVISED LEARNING WITH EGPS

In the context of semi-SL over graphs, our novel self-SL
approach aims to learn rich nodal embeddings that capitalize
on local and global connectivity features. Given graph G,
our self-SL algorithm relies on a neural network (NN) to
learn a parametric embedding function rg(a,) : V — R,
where d < N, and 9 collects the NN parameters. Scalability,
memory savings, and computational efficiency considerations,
motivate low-dimensional embedding with d chosen much
smaller than the number of nodes. Capitalizing on 7(-), the
low-dimensional vector embedding per node n is obtained as
pn =To(ay), n €V, with the learned ¥* obtained as

(19*,9*) = argmm Z L (cn, (Tﬁ(fin)))

where L(-,-) :RxR - R is a loss function, ¢, represents
node n’s pseudo-label obtained only by using the graph struc-
ture, and g(-) : R? — R is a (learnable) projection function
that maps each embedding to the pseudo label pertinent to
that node. The representation learning in (12) provides means
to obtain embeddings {p,, }_, that encode local and global

(12)



Table 1 Synthetic SBM Network delays Temperature stations

Method NMSE NPLL NMSE NPLL NMSE NPLL
GradEGP (RBFs) 0.01936 + 0.00025 —12.81 +1.20 0.116 £0.013 96.18 £ 1.70 0.1081 £ 0.0004 176.71 £ 8.00
GradEGP-feat (RBFs) 0.01935 + 0.00045 —12.12+1.39 0.106 £ 0.016 94.89 £ 2.03 0.1080 £ 0.0002 176.96 + 9.20
SelftGradEGP (RBFs) | 0.01875 + 0.00029 —11.73 £ 2.70 0.060 £ 0.005 75.45 £ 1.50 0.1064 £ 0.0006 146.44 + 4.39
GradEGP (mixed) 0.01958 £ 0.00041 —16.55 + 1.50 0.132 £0.014 89.11 £ 2.05 0.0950 + 0.0024 183.75 + 4.35
GradEGP-feat (mixed) 0.01953 =+ 0.00040 —16.94 + 1.82 0.142 £ 0.023 89.76 £ 2.21 0.0939 £ 0.0024 176.06 + 4.03
SelfGradEGP (mixed) 0.01934 + 0.00070 —11.47+1.82 | 0.045+0.003 | 69.72+1.58 | 0.0865 + 0.0033 160.81 £+ 6.79
GP 0.01950 % 0.00061 —9.41 +£2.81 0.114 £ 0.009 89.58 £ 2.34 0.1088 £ 0.0002 361.49 +0.03
GP-feat 0.01963 + 0.00067 —16.77 £ 1.88 0.107 £ 0.021 87.86 £ 3.63 0.1088 £ 0.0003 361.47 £ 0.05
SelfGP 0.01901 + 0.00037 —18.07 £1.48 0.055 £ 0.002 76.00 £ 1.50 0.1088 £ 0.0001 361.53 +0.02

connectivity per node. Input vector a,, captures local connec-
tivity per node, while scalar output c,, denotes measurable
global connectivity information.

Here, we adopt the square loss L(cy, g(r9(an))) == (¢ —
g(rs(ay)))?, and the projection function can be thought to
be an affine transformation; that is, g(p,) := w'p, + b.
The nested parametric function learning in (12) is solved
iteratively using the back-propagation algorithm. To infuse
global connectivity information in the learned embedding p,,,
we leverage the well appreciated eigenvector centrality of
nodes as the pseudo-labels to be predicted, which measures the
‘holistic influence’ of a node in a network [7, pg. 90]. Nodes
with high eigenvector centrality are more influential as they
have many connections with other nodes. Let A, represent
the largest eigenvalue of the adjacency matrix A, with corre-
sponding eigenvector ¢, i.e., Ac = Apaxc. The n-th entry ¢,
of ¢ gives the centrality score of node n. Upon learning 9, we
obtain node embeddings {p,, := 7y~ (a,)})_;, which replace
one-hop adjacency vectors {a,, })"_; as EGP input in III.

V. NUMERICAL TESTS

This section corroborates the performance of our proposed
approach using both synthetic and real graph datasets.
Synthetic dataset. A synthetic graph consisting of N = 60
nodes is constructed using the stochastic block model compris-
ing 10 communities; see e.g., [19]. The nodal value of node n
is given by the n-th entry of the eigenvector corresponding
to the lowest nonzero eigenvalue of the graph Laplacian
L := diag(Aly) — A with 1y denoting an N x 1 vector
with all ones. The number of observed nodes is |O| = 10 and
the unobserved (test) ones is [U/| = 50.

Network delays dataset. A graph with N = 70 nodes
is constructed, where nodes represent paths connecting two
of 9 end-nodes on the Internet2backbone, and edges the
shared links between any two paths [2]. The {y, ﬁ’:l are
the measured delays on these paths. The number of observed
nodes is |O| = 15, and of unobserved ones is || = 55.
Temperature stations dataset. A graph with N = 109
nodes is constructed with nodes representing weather stations
across the US, and edge weights the geographic distances
between them [1]. Nodal values {y,, }\_, are the temperature
measurements across the stations. Only |O| = 15 measured
temperatures are available and |U/| = 94 are to be predicted.

We compare our novel self-GP (SelfGP) and graph-adaptive
EGP (SelfGradEGP) approaches against several benchmarks.
We adopt the ‘GradEGP’ as one benchmark [17] which uses
only the local features a, as input per node n, while the
‘GradEGP-feat’ [20] uses [ay, ¢y], the single GP benchmark

with input features a,, and the ‘GP-feat” with [a,,, c,,]. For the
EGP-based approaches we adopt two distinct kernel dictionar-
ies. The first one consists of 11 radial basis function (RBF)
kernels with characteristic length scales {10%}__, and the
other comprises 4 kernels with distinct forms, namely RBF
with and without automatic relevance determination [20], and
Matern kernel with smoothness parameter v = 3/2,5/2 [20].
For all RF-based approaches we set D = 50. To obtain the
kernel parameters of GP-based approaches we maximize the
marginal log-likelihood. For the Self-SL based approaches the
embeddings are obtained using a feed-forward NN with only
2 layers. To train the NN parameters, we minimize the MSE
loss using the Adam optimizer with learning rate 0.015 for 100
epochs. The learned embeddings have dimensionality 10, 15,
and 15 for the SBM, Network delay, and Temperature datasets.

The performance of all approaches is evaluated utilizing
the normalized (N) MSE criterion to quantify the accuracy
of predictions across unobserved nodes n € U, and the
negative predictive log-likelihood (NPLL) to account for the
associated uncertainty (cf. [18]). As corroborated by Table
1, the SelfGradEGP and SelfGP approaches outperform the
alternatives in terms of NMSE. In addition, Table 1 illustrates
that the novel approaches exhibit reduced uncertainty in most
learning tasks, as evidenced by the smaller NPLL metric;
see e.g., SelfGradEGP (with RBFs or mixed kernels) on the
Network delay and Temperature datasets. This means besides
accurate predictions, the proposed method quantifies well the
uncertainty of these predictions via the predictive variance.
Figure 1 depicts the predicted values of SelfGradEGP (mixed)
on 20 randomly selected unobserved (test) nodes of the Net-
work delay dataset, and the corresponing standard deviation
o-confidence intervals. It is observed that the ground truth
nodal values fall within the the uncertainty intervals. All these
observations demonstrate the importance of leveraging low-
dimensional informative embeddings using local and global
information obtained from the underlying graph.

VI. CONCLUSIONS

A novel Bayesian and graph-guided self-SL approach was
introduced to solve semi-SL tasks over graphs. The proposed
self-SL algorithm learns rich nodal embeddings leveraging
both local and global connectivity information. The learned
embeddings are then used as input features for the target
graph-driven semi-SL task. The online Bayesian EGP em-
ployed offers accurate predictions of unobserved nodal values
along with quantifiable uncertainty, low storage requirements,
and reduced sample complexity.
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