Infusing Culturally Responsive Instruction with Gamification: Findings from an Engineering Design Activity for High School Migratory Youth

Dina Verdín, PhD & Ulises Trujillo-García; Arizona State University

INTRODUCTION

We created a culturally responsive STEM activity to foster migratory students' interest in engineering, engineering agency beliefs, and highlight the relationship between their culture, home knowledge, and lived experiences. 'Migratory youth' is a legal term referring to a child in the United States whose parent(s) is a migratory agricultural worker and lives a mobile lifestyle [1].

Due to this lifestyle, these students have been ignored from the broadening participation in STEM conversation [2]-[4]. Therefore, to provide opportunities to develop an interest in engineering in a way that meaningfully affirms their unique lived experiences, we leveraged culturally responsive instruction and elements of gamification. Specifically, the findings we present answer the following research question:

RQ1. Were migratory students meaningfully impacted after participating in a culturally responsive gamified engineering design activity?

Culturally Responsive Instruction

by

by

by

Culturally responsive instruction aims to create a learning environment responsive to students' diverse cultural experiences [9]-[10]. It is intended to inform the practice of providing responsive instruction that motivates and develops all students' intellectual capacity [10].

We applied the following **character profiles** to our validating & affirming, activity: empowering, transformative, comprehensive & inclusive, and multidimensional [9].

Validating & Affirming

meaningfully bridging students' home experiences and school lives

Empowered

developing their academic competence, self-efficacy, courage, and agency to take action

Transformative

enabling students to become social critics capable of making thoughtful decisions

Multidimensional

encompassing curricular content, a climate of care, instructional techniques, and performance assessments

Comprehensive & Inclusive

develop the whole child by recognizing, empowering, and validating their cultural identities

Gamification

Gamified activities use game-like aspects to capitalize on people's desire to play comparable to traditional games, although it is not a fully-fledged or animated game [5]-[6]. Examples of gamification elements include an engaging storyline, challenges, point system, feedback, badges, levels/stages, leaderboards. Kapp [7] recommended centering the experience on why students may be interested in 'playing' the activity, such as feeling a sense of accomplishment, overcoming a challenge, and getting immediate feedback. Gamified activities also incorporate a meaningful call to action and empowerment into the storyline to motivate 'play' [8].

METHODS

Data for this study came from pre-and-post responses of high school students who participated in a summer enrichment program in 2023. The total sample size of pre-and-post survey responses was n = 124.

The activity was designed to infuse elements of gamification and culturally responsive character profiles and provide a hands-on Arduino component.

A paired-sample t-test was used to determine if there were significant changes in students' mean scores before and after engaging in the culturally responsive gamified activity.

Survey Measured

- · I know what engineers do
- · I know what engineering is
- · I can describe what engineering is to a friend · I am confident that I can understand
- engineering

Tinkering **Self-Efficacy**

- · I can work with tools and use them to build
- I can manipulate components and devices

Design Self-Efficacy

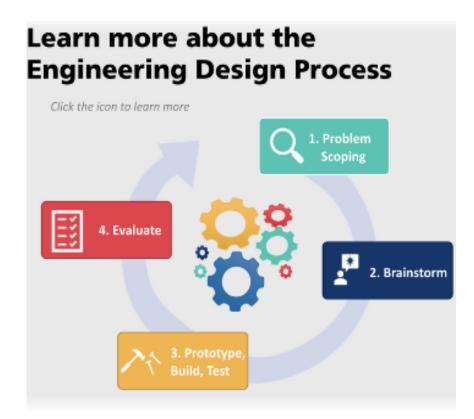
- · I can develop design solutions I can recognize changes needed for a design
- solution to work

Engineering Agency Beliefs

- I can make changes in my community with engineering
- · I can make an impact in people's lives through engineering

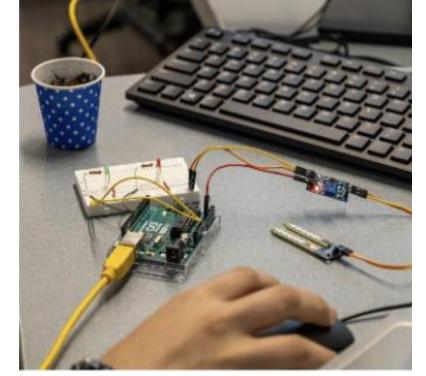
Engineering Recognition

- · I believe my teachers see me as an engineer · I believe my friends see me as an engineer
- · I've had experiences in which I was recognized as an engineer


Participant Demographics

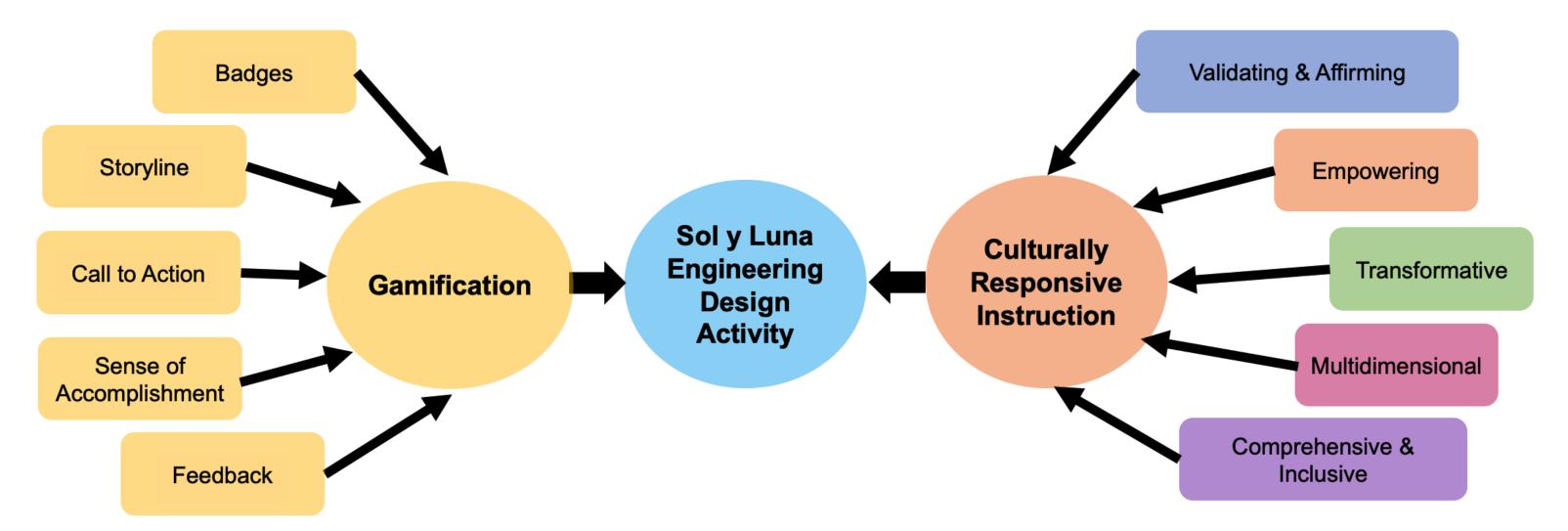
44%

56%


Summary of After-School Participation		
	Have Not Participated	
Robotics Competition	83%	
Science Fair	64%	
Engineering Competition	88%	
Engineering club/ camp	76%	
After School STEM program/club	71%	
After School Non-STEM program/club	58%	

• Sol y Luna Activity

RESULTS OF PAIRWISE T-TEST


Pre-and-Post Survey Responses			
	Mean (Std. Dev.)	Mean Change	Effect Size
Understanding of Engineering	Before: Mean = 1.88, (1.03) After: Mean = 2.80, (0.76)	+ 0.92	0.92
Tinkering Self-Efficacy	Before: Mean = 1.97, (0.84) After: Mean = 2.55, (0.84)	+ 0.58	0.74
Design Self-Efficacy	Before: Mean = 1.90, (0.99) After: Mean = 2.39, (0.85)	+ 0.48	0.54
Engineering Agency Beliefs	Before: Mean = 2.22, (1.01) After: Mean = 2.79, (0.87)	+ 0.57	0.65
Engineering Recognition	Before: M = 1.05, (1.14) After: M = 1.58, (1.15)	+ 0.54	0.58
Engineering Interest	Before: M = 1.88, (1.22) After: M = 2.53, (1.05)	+ 0.65	0.67

IMPLICATIONS OF FINDINGS

This study helps us understand how a virtual culturally responsive activity for migratory students can have empirically significant effects on their learning dispositions and perceptions of themselves as agents of change. After having experienced how engineering could be used to solve a design problem closely aligned to their community, migratory students' perceptions of engineering as a tool to create change in their community positively increased. As well, migratory students' confidence in their abilities to tinker (i.e., applying technical concepts in engineering, assembling, and disassembling things) significantly increased. Interestingly students' perceptions of being recognized as an engineer by peers, teachers, and through a hands-on experience (i.e., engineering recognition) increased after participating in the intervention.

These findings fill a gap in the literature on how to better support the migratory adolescent population by understanding the effect culturally responsive activities have on their STEM identity development, career aspirations, and disposition to use engineering as a tool for social change. These results provide much-needed insight into migratory adolescents' STEM trajectories and will expand our knowledge of how to incorporate gamification elements and culturally responsive instruction that resonate with youth.

Infusing Gamification and Culturally Responsive Instruction

Example of the Activity

REFERENCES

[1] L. M. Anderson et al., U.S. Department of Education, rep., Aug. 2019 [2] A. M. Branz-Spall, R. Rosenthal, and A. Wright, "Children of the road: Migrant students, our nation's most mobile population," Journal of Negro Education, vol. 72, no. 1, pp. 55–62, 2003. [3] J. L. Free, K. Križ, J. Konecnik, "Harvesting hardships: Educators' views on the challenges of

47, pp. 187-197, 2014. [4] G. Lundy-Ponce, "Migrant students: What we need to know to help them succeed," Colorín

Colorado Series, 2010. [5] C. Dichev, D. Dicheva, "Gamifying education: what is known, what is believed and what remains uncertain: a critical review," International journal of educational technology in higher education, vol.

migrant students and their consequences on education," Children and Youth Services Review, vol.

14, no. 1, pp. 1-36, 2017. [6] K. Seaborn, D. I. Fels, "Gamification in theory and action: A survey," International Journal of human-computer studies, vol. 74, pp. 14-31, 2015.

[7] K. M. Kapp, "The gamification of learning and instruction: game-based methods and strategies

for training and education," John Wiley & Sons, 2012. [8] Y. K. Chou, "Actionable gamification: Beyond points, badges, and leaderboards," Packt

Publishing Ltd., 2019. [9] G. Gay, "Culturally responsive teaching: Theory, research, and practice," Teachers College Press,

[10] Z. Hammond, "Culturally responsive teaching and the brain: Promoting authentic engagement and rigor among culturally and linguistically diverse students," Corwin Press, 2014