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Abstract 
The Framework for K-12 Science Education (the Framework) recognizes modeling as an 
essential practice for building a deep science understanding. Modeling assessments should 
measure the ability to integrate Disciplinary Core Ideas and Crosscutting Concepts, which 
reflects three-dimensional (3D) understanding. The Framework also promotes using learning 
progressions (LPs) as guides for organizing the learning process. Artificial intelligence (AI) such 
as machine learning (ML) holds the potential to streamline the evaluation of student LP-aligned 
models and improve student learning outcomes in this key scientific practice. However, simply 
evaluating presence or absence of certain elements in student models is not sufficiently 
meaningful LP-aligned evaluation. Rather, it is important to ensure that ML algorithms evaluate 
the same model attributes as a trained human scorer would and according to the criteria 
described by the LP. Analytic rubrics have been shown to be easier to evaluate the validity of 
ML-based scores. A possible drawback of using analytic rubrics is the potential for 
oversimplification of integrated ideas. We demonstrate the deconstruction of a 3D holistic rubric 
for modeling assessments aligned to NGSS-based 3D LP for Physical Science. We describe 
deconstructing this rubric into analytic categories for ML training that preserve its 3D nature, the 
necessary attributes of the modeling practice and the alignment to the NGSS 3D LP. In this 
context, the 3D LP is used as a guide to develop the rubrics capable of guiding ML algorithms to 
meaningfully evaluate 3D LP-aligned scientific models. This approach ensures validity of the 
resulting scores with respect to the 3D LP and the practice of modeling. 

Introduction 
The Framework for K-12 Science Education (the Framework, NRC 2012) and the Next 

Generation Science Standards (NGSS, 2013) specify three dimensions of science knowledge 
including Disciplinary Core Ideas (DCIs), Scientific and Engineering Practices (SEPs) and 
Crosscutting Concepts (CCCs). Science education researchers refer to the use of these three 
dimensions as three-dimensional (3D) learning because it reflects in students’ ability to integrate 
these dimensions to make sense of phenomena and solve problems. 3D learning indicates 
deep science understanding because it reflects student ability to apply their knowledge (NRC, 
2012; NGSS, 2013) to solve novel problems and make sense of complex phenomena..  

The SEP of Developing and Using Models is an essential practice to help students build 
deep science understanding. Supporting students in developing modeling skills in the context of 
3D learning poses several challenges. First, such assessments need to measure student ability 
to integrate relevant DCIs and CCCs to develop causal models of phenomena (Krajcik, 2021). 
Models are extremely time-consuming to evaluate and provide feedback for, making supporting 
students in developing modeling skills challenging (Zhai, Yin, Pellegrino, Haudek, Shi, 2020a). 
Second, the Framework emphasizes the developmental nature of student understanding which 
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states that complex science ideas take time, and appropriate scaffolding to develop (NRC, 
2012, Smith et al., 2006). The developmental nature is reflected in the idea of a learning 
progression (LP), which is central to the Framework vision because it represents a roadmap to 
guide educators in helping students attain higher levels of understanding. Supporting students 
in developing modeling skills over time requires a validated LP describing increasingly 
sophisticated ways of integrating the SEP of modeling with relevant DCIs and CCCs. A 
validated LP helps to meaningfully use assessment results by providing guidance on what 
supports students need. Very few validated NGSS-aligned 3D LPs exist, which would facilitate 
the implementation of the NGSS vision. 

The current work reported here builds on a previously validated NGSS-aligned LP for 
electrical interactions (Kaldaras, Akaeze & Krajcik, 2021). This project aims to tackle the above 
challenges to help students build 3D proficiency by developing an automated, supervised 
machine learning (ML)-based system designed for open-ended formative assessments. Building 
this system involves several steps including developing high-quality ML-based scoring models 
and a system to deliver immediate LP-aligned feedback. Here, we report on the design process 
for using 3D LP to guide the development and alignment of rubrics for student models. When 
employed with collected student responses, these rubrics provide a well-annotated training set 
for ML-based models for automatic scoring that measures student ability to model electrostatic 
phenomena. 

A central challenge in developing high-quality ML-based automatic scoring approaches 
for evaluating 3D LP-aligned scientific models lies in building the rubrics that accurately capture 
the complex 3D nature of student understanding according to the LP levels and yield high 
agreement between human and machine produced scores (Kaldaras, Yoshida, Haudek, 2022). 
Specifically, it is important to ensure that the machine scores reflect the modeling skills as 
opposed to student ability to develop representations with multiple artistic elements (Leong et 
al., 2018). Moreover, it is important that the machine scores reflect modeling skills integrated 
with disciplinary content and crosscutting concepts according to the levels of sophistication 
described by the LP. These properties will ensure that the scores used to develop supervised 
ML models reflect the integrated nature of 3D understanding according to the cognitive levels 
described in the 3D LP. The validated LP used in this study describes the elements of the 
modeling practice relevant to understanding electrical interactions.  

Holistic rubrics that assess the overall quality of student performance have been used 
for 3D LP validation (Haudek et al., 2012; Kaldaras et al., 2021). In contrast, automatic scoring 
applications rely on analytic rubrics for scoring student responses (Liu et al., 2014). Analytic 
rubrics are a series of binary statements that identify the presence or absence of a construct. 
Scores generated by both holistic and analytic approaches have been used to develop 
functioning, predictive ML models for short, text-based constructed response (CR) items. 
However, analytic scoring provides an easier way for evaluating the validity of ML-based scores 
(Kaldaras & Haudek, 2022). Therefore, an analytic rubric can potentially be more useful in 
designing ML-based models for scoring. We developed a method for deconstruction of LP-
aligned holistic rubric on the SEP of Constructing Explanations shown in Figure 1 (Kaldaras, 
Yoshida & Haudek, 2022). However, no research is available on how to deconstruct an LP-
aligned holistic rubric into an analytic rubric based on the SEP of Developing and Using Models. 
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The LP was validated by developing 3D modeling and explanation assessment tasks 
and aligned holistic rubrics (Kaldaras et al., 2021). The current work begins with a previously 
developed item and holistic rubric aligned to the 3D LP (Table 1). We demonstrate a LP-guided 
process of deconstruction of a holistic rubric into a series of analytic rubric categories.  

A critical step in the LP-guided process of developing an analytic rubric is designing (or 
using existing) evidence centered design (ECD) argument to carefully specify the evidence that 
needs to be present in student responses to meet the requirements of the claim (step 1 in 
Figure 2). The claim in this context describes what students should be able to do in accordance 
to proficiency levels specified by the 3D LP. This evidence is a collection of statements that 
reflect what students should be able to do with respect to integrating the three relevant NGSS 
dimensions (DCIs, SEPs and CCCs) to meet the requirements of the claim (“ECD argument” in 
Figure 2, Evidence component A, B, C etc.). These evidence components then become the 
basis of the analytic rubric categories that will be developed and used to score student models 
(step 2 in Figure 2). The analytic rubric categories are described in a way that reflect presence 
or absence of ideas specified by a given component or components of the evidence statement 
(“Analytic Rubric Categories” in Figure 2). Lastly, analytic rubric categories are combined in 
specific ways guided by the 3D LP to yield specific analytic rubric combinations that reflect 3D 
LP-aligned classifications of student ability to develop scientific models using relevant DCIs and 
CCCs (step 3, “Analytic Rubric Combinations” in Figure 2). Each analytic rubric combination is 
then aligned to specific LP level (step 4 in Figure 2), and LP-based feedback specific feedback 
is designed for each scientific model evaluated using this process. A detailed diagram of this 
process is shown in Figure 2.  

Note that the process rubric development shown in Figure 2 can be used for developing 
an LP-based analytic rubric from scratch without the need for the holistic rubric. However, since 
in the current study we had a holistic rubric available from prior work as well, we used a 
combination of approaches shown in Figures 1 and 2 to design our final analytic rubric. 
Specifically, we ensured that the resulting analytic rubric categories meaningfully align to the 
ECD argument and the previously developed holistic rubric as well. We will further describe this 
process in more detail. 
Figure 2. The process of analytic rubric development and alignment to the 3D LP via ECD 
argument. 
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Background of existing modeling item and holistic rubric 
Table 2 shows the information used in the original assessment development process. 

The item focused on probing modeling skills when explaining the interaction between the 
electroscope and the charged rod (Table 2). Table 2 provides information about each step of a 
modified evidence centered design process (mECD, Harris et al., 2019) for item development 
and corresponding holistic rubric for responses. A critical aspect of mECD is developing a claim 
describing what students should be able to do with respect to the three dimensions of NGSS 
targeted by the LP. Each level of the rubric aligns to the level of the LP shown in Table 1 and 
reflects the ideas that should be present in student responses. 

The modeling item has several important features. First, this item is part of a group of 
items with the same storyline. Initially, students watch a video where they observe that when a 
rod is brought close to the electroscope, the foil leaves move apart. They are asked to write an 
explanation for what causes the leaves to move apart. Next, they are asked the modeling tasks 
shown in Table 2. Second, the item provides several important components of the model as a 
scaffold: the electroscope and the rod. 
Table 2. Modified Evidence-Centered Design for the Electroscope item. 

NGSS PE HS-PS2-4. Use mathematical representations of Newton’s Law of Gravitation 
and Coulomb’s Law to describe and predict the gravitational and electrostatic 
forces between objects. 
 
Note: The gray text indicated the parts of the PE not evaluated by the item. Specifically, 
the item focused on evaluating student ability to use only Coulomb’s law to develop 
qualitative models of electrostatic phenomena.  

Claim Students will construct a model to represent what causes neutral objects to 
become charged when put in contact with the charged objects and how the 
magnitude of the charge on the charged object affects the observations. 

Evidence 1. Students show macroscopic causal mechanisms to model how neutral 
objects become charged (they will not use electron transfer). 
a.  Charged objects are modeled as containing either positive or negative 

charges. 
b.  Charge is modeled as point charge (either positive or negative).  
c.  Charge transfers from the charged object to the neutral object when a 

charged object is touching the neutral object, which causes neutral 
objects to become charged.  

d.  If a neutral object A is in contact with a neutral object B that was 
touched by a charged object, the charge will transfer from the charged 
object to the neutral object B and subsequently to neutral object A 
because object A is in contact with the now charged object B. This 
process causes the neutral objects that are not in direct contact with the 
charged objects to become charged. 

e.  Models can show either positive or negative charges being transferred. 
2.  Students' models will show a causal relationship between the type and 

amount of charge and the magnitude and direction of associated electric 
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force. Their models will include these ideas as appropriate: 
a.  Opposite charges attract and like charges repel. 
b.  Electric forces occur between two charged objects. The forces can be 

represented in terms of direction and strength. When two charged 
objects are attracted to each other, the force is directed toward the 
other object; when two objects repel each other, the force is directed 
away from each other.  

c.  The amount of charge that two objects have affects the magnitude of 
interaction between them; the greater the charge, the stronger the 
interaction (Coulomb, amount). 

Item 

 

Holistic 
Rubric 

Level 0: no model/no justification, model/justification is inaccurate, 
model/justification does not use charges and charge transfer, only observable 
components (for example, foil leaves are more open in scenario B). 
Level 1: model/justification only uses ideas related to the amount of charge and 
charge transfer (charge is shown on at least the rod and the leaves).   
Level 2: justification related amount of charge to generated repulsive force and 
shows/discusses charge transfer (charge is shown on at least the rod and the 
leaves). 
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Methods 
Analytic Rubric Development 

The Electroscope modeling item measures student ability to develop macroscopic level 
models of electrostatic phenomena, which is consistent with levels 0-2 of the LP. Students are 
not expected to use electron transfer or show atomic-level components at this point in the 
curriculum, nor was the item designed to do so. Notice the item as no prompts or scaffolds that 
would indicate to the learn to discuss electron transfer or atomic-level components.  Rather, for 
this item it is sufficient to show charge transfer from the charged rod to all the components of 
the electroscope. Additionally, students need to show the magnitude of the repulsive force to be 
larger for scenario B compared to A. 
         Developing an analytic rubric involved specifying the necessary components of the 
model, the relationships between the components and the connection to the phenomenon. A 
detailed description of each component of the model is reflected in categories 1-10 (Table 3). 
Developing analytic rubric categories involves providing a fine-grained and detailed description 
of model components and relationships. The research team spent a significant amount of time 
revising the description of the categories to ensure accuracy and sufficient level of detail. Notice 
that each analytic rubric category is aligned to specific parts of the mECD argument ensuring 
that all the components, relationships and connections to phenomenon are captured in the 
rubric categories. 
Table 3. Alignment between mECD argument and the analytic rubric categories. 

Category Description ECD 
Evidence 

1 Point charge (either + or – ) on the rod in scenario A 1a, b,e 
2 Point charge on the metal ball. The charge must be the same 

type as shown in the rod in scenario A. Alternatively, models 
can show charge transfer from the rod to the ball with arrows, 
and not explicitly show point charges on the ball (there should 
be charges on the rod). 

1c,d,e 

3 Point charge on the hook of the electroscope. The charge 
must be the same type as shown on the rod in scenario A. 
Alternatively, models can show charge transfer from the ball to 
the hook/foil leaves with arrows, and not explicitly show point 
charges on the hook (there should be charges on the ball). 

1c,d,e 

4 Point Charge on the leaves of the electroscope in scenario A. 
The charge must be the same type as shown in the rod in 
scenario A. 

1c,d,e 

5 Clearly indicates repulsive Electric force causes leaves to 
move, by using arrows or force representations and pointing in 
opposite directions between the leaves in scenario A  

2a,b,c 

6 Point charge on the rod in scenario B. The charge must be the 
same type as shown on the rod in scenario A. There must be 
more point charges on the rod in scenario B than in scenario 
A. 

1c,d,e 
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7 Point charge on the sphere of the dome in scenario B. The 
charge must be the same type as shown on the sphere of the 
dome in scenario A. There must be more point charges on the 
sphere in scenario B than in scenario A. Alternatively, models 
can show charge transfer from the rod to the ball with arrows, 
and not explicitly show point charges on the ball. 

1c,d,e 

8 Point charge on the hook of the electroscope in scenario B. 
The charge must be the same type as shown on the hook in 
scenario A. There must be more point charges on the hook in 
scenario B than in scenario A. Alternatively, models can show 
charge transfer from the ball to the hook with arrows, and not 
explicitly show point charges on the hook. 

1c,d,e 

9 Point Charge on the leaves of the electroscope in scenario B. 
The charge must be the same type as shown in the leaves in 
scenario A. A. There must be more point charges on the 
leaves in scenario B than in scenario A. 

1c,d,e 

10 Clearly indicates repulsive Electric force causes leaves to 
move, by using arrows or force representations and pointing in 
opposite directions between the leaves in scenario B.. The 
repulsive arrows should be bigger or bolder (or both) for 
scenario B than for scenario A.  

2a,b,c 

11 Model shows both types of charges on one or more parts of 
the electroscope in one or both scenarios. This can be ignored 
if positive and negative charges are not accumulated in 
specific locations. 

Address 
inaccuracy 

12 Similar amount of charge on one or more parts of the 
electroscope in scenario A and B. This category only applies if 
they show the same type of charge through the entire model. 

Address 
inaccuracy 

13 Either the rod in scenario A is not charged or the whole 
electroscope is not charged in scenario A. 

Address 
inaccuracy 

  
To ensure that the 3D nature of the modeling item is reflected in the final assigned 

model score, the final assigned score should reflect student ability to develop a causal model for 
explaining the difference between scenario A and B by using ideas of Coulomb’s law and 
charge transfer as described by the LP (Table 1). The mECD argument guided this process and 
served as a necessary link between the LP and the final score. Examples of how the resulting 
final score on the analytic rubric category combinations aligned to LP level is shown for level 1 
and level 2 sample models in Figures 2 and 3 respectively. For example, Figure 3 shows a 
model that contains evidence for all necessary categories including charge transfer in both 
scenarios and the difference in the amount of charge and the associated repulsive force for both 
scenarios. A sample combination of “1” for categories 1-10 is indicative of level 2 of the LP. 
Similarly, Figure 4 shows a sample model containing evidence for categories 1, 4, 5, 6, 9, 10. 
This combination of categories is consistent with level 1 because the charge transfer is not fully 
shown. Notice that the LP and the LP-aligned mECD argument helped guide both the 
development of the analytic rubric categories and the alignment between the category 
combinations and the LP levels. 
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Data sources 
The Electroscope item was administered to 9th-grade students participating in the NGSS-
aligned curriculum study. Unit 1 focused on ideas related to Coulomb’s law as related to 
electrical interactions. The Electroscope item was administered as part of the Unit 1 pre and 
post-test and student responses from the posttest were used for the analysis reported here.  
  
Analytic Scoring and Human Inter-Rater Reliability 
The first researcher coded ~200 randomly selected student models to ensure that the rubric 
was easy to use and applied to a range of models. The rubric and the coded models were then 
reviewed by other researchers. Clarifications of rubric criteria and necessary additions were 
made to ensure the usability of the rubric. Three undergraduates were trained to apply the rubric 
to student models. Training was done in subsets of several hundred responses and coded 
independently by coders. Results from independent coding on subsets were checked for IRR 
(Krippendorff, 2004). We used a threshold of Krippendorff’s alpha greater than 0.8 between 
human coders for each analytic category (Krippendorff, 2004). We then checked for human IRR. 
Categories that showed <0.8 Krippendorf’s alpha between coders were discussed by the coders 
until agreed upon and the rubric was updated. A total of 1211 responses from students collected 
in 9th grade Physical Science classroom were scored by trained human scorers. This data set is 
subsequently used to train the ML model. 
  

Results 
Human Coding 
As shown in Table 4, Krippendorff’s Alpha values for most categories are at least 0.8, indicating 
strong human–human agreement (Krippendorff, 2004). We also observed very high accuracy 
(i.e. absolute agreement) measures between coders among nearly all categories. This suggests 
that the rubric is clear and interpretable by new coders and leads to reliable scoring.  
Table 4. Human agreement measures for model scoring. 

Category Agreement Krippendorff’s Alpha 

1 0.966 0.945 

2 1.00 1.00 

3 0.989 0.937 

4 1.00 1.00 

5 0.966 0.934 

6 0.977 0.953 
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7 0.977 0.881 

8 0.977 0.867 

9 0.976 0.909 

10 0.966 0.932 

11 0.989 0.953 

12 0.914 0.871 

13 0.993 0.910 

 
Machine Learning Model Training and Testing 
 We used supervised ML, specifically convolutional neural network analysis approach 
with Res-Net18 architecture as feature extraction network (He et al., 2016). The training data 
set contained 884 responses. Table 5 below shows the final human-machine agreement for 
each scoring category for the training stage. As shown in Table 5, human-machine agreement 
for all categories is above 85% accuracy, reflecting very high agreement (Lu et al., 2023). This 
suggests that the supervised ML approach accurately detected the model components and 
critical relationships within the model that were outlined in the rubric. We note that some of the 
categories with the lowest performance metrics are rubric categories associated with 
inaccuracies. 

During training, we use the pretrained ResNet-18 (Residual Network) architecture, 
modifying its final fully connected layer to deliver binary output for our classification needs. The 
ResNet-18 architecture, noted for its deep residual learning framework, was employed as our 
feature extraction network (He et al., 2016). This network, with its depth of layers and residual 
connections, is particularly adept at learning from small datasets, which often pose challenges 
for deep learning models due to the risk of overfitting (He et al., 2016). To accommodate the 
input dimensionality and maintain consistency with the ResNet architecture, we set d = 512 
(feature dimensionality) and resized all images to W = H = 224 (pixels). 

Our model was implemented in PyTorch, benefitting from its flexible programming 
environment and efficient computational graph dynamics (Paszke et al., 2019). Optimization 
during training was conducted using the Adam optimizer, with a learning rate of 1e - 4, 
balancing the advantages of adaptive gradient methods with the need for precision in the weight 
update process (Kingma & Ba, 2014). An NVIDIA GeForce GTX 1080Ti graphics card expedited 
the training process, enabling the efficient optimization of the model. Throughout the cross-
validation process, we systematically assessed and saved the best-performing models 
according to validation metrics, opting for F1 score or accuracy based on the dataset's balance. 
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Table 5. Human-machine agreement for the ML training stage of model scoring. 
  Validation 

Accuracy (% +-SD) Precision (% 
+-SD) 

Recall (% +-SD) F1 score (% +-
SD) 

C1 92.14+-9.66 92.44+-7.49 91.98+-7.99 87.27+-10.49 
C2 94.90+-5.15 91.95+-6.89 90.76+-8.39 90.45+-8.30 
C3 94.37+-6.31 90.40+-9.10 86.30+-9.18 86.56+-9.61 
C4 91.25+-3.52 87.39+-5.17 86.00+-8.43 72.39+-6.92 
C5 91.15+-4.98 89.49+-7.40 85.19+-8.14 85.96+-8.35 
C6 87.19+-7.97 84.17+-7.52 82.56+-8.86 81.82+-9.90 
C7 90.20+-10.65 83.54+-12.65 79.61+-11.42 78.75+-13.29 
C8 93.24+-4.82 83.52+-12.04 81.78+-12.05 79.97+-11.01 
C9 91.58+-5.84 87.91+-6.71 87.10+-8.02 86.28+-8.07 
C10 91.43+-5.42 89.96+-7.11 84.91+-9.88 85.55+-9.80 
C11 87.15+-9.40 87.15+-9.40 61.51+-15.13 57.34+-10.21 
C12 87.05+-12.93 61.51+-15.57 58.64+-9.76 56.37+-10.67 
C13 90.71+-5.32 78.02+-13.79 75.90+-14.09 74.92+-13.17 

 
Discussion 

 It is challenging to train AI algorithms to recognize complex reasoning such as that 
reflected in students’ scientific models. This is because machine learning algorithms should be 
trained to go beyond simple features of a given image to recognize specific aspects that are 
important for the practice of modeling focusing on evaluating causal aspects of scientific models 
explaining phenomena. The task of training AI to recognize such aspects related to scientific 
reasoning and skills becomes even more challenging when we are dealing with LP-aligned 
scientific models as called for by the NGSS and the Framework. The reason is that often 
scientific models at various LP levels might look very similar (compare level 2 and level 1 
models in figures 3 and 4 respectively), but in reality, represent qualitatively different levels of 
understanding. If machine learning algorithms are not able to accurately compare these 
important differences, then we will not be able to design accurate and targeted LP-aligned 
feedback, which in turn defies the purpose of using ML techniques  to solve one of the central 
current problems in education. It is therefore important to design approaches that leverage 
everything we know about how proficiency in a given construct develops, which is reflected in 
the LP-based vision, when designing AI-based methods for evaluating student learning in the 
context of NGSS aligned tasks that require the use of scientific reasoning. In this context, 
rubrics represent a crucial link between broad proficiency levels outlined in the LP and item-
specific descriptions of how these proficiencies are reflected in student performance on a given 
assessment item. In this work we present a method for designing LP-aligned rubrics that serve 
as a roadmap for the ML algorithm guiding it as to what features are important to consider when 
scoring a scientific model. The proposed rubric development process yields a rubric that can be 
reliably used by coders and effectively guide ML algorithms to accurately evaluate scientific 
models at different LP levels.  Final scores from application of the rubric exhibited high interrater 
reliability (Table 4) and human-machine agreement (Table 5). Moreover, final scores on the 
model reflect student 3D understanding with respect to modeling electrostatic phenomena, 
making this approach highly effective for scoring NGSS LP-aligned scientific models. 
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Study’s Significance 

This process of rubric development described here (Figure 2) represents a transparent 
and principle-based approach for designing LP-aligned analytic rubrics for AI scoring of any 
constructed response assessments (including scientific models, text-based explanations etc.). 
Defining analytic categories in this manner allows for easy identification of human-machine 
misscores by providing a straightforward way to pinpoint specific analytic rubric categories that 
were misscored. This property has the potential to improve overall validity of the associated AI-
based scoring system. The process demonstrated here can serve as a guide for helping 
develop ML-based scoring approaches aimed at supporting students in developing scientific 
modeling skills using a curriculum that aligns with a validated LP and the associated 
assessment items. Using such an approach allows the possibility of implementing individualized 
and meaningful LP-aligned feedback statements as part of an automated assessment system. 
The mECD argument is an essential link between the LP and the final score. Finally, we 
extended an approach to analytic rubric development originally designed for Constructing 
Explanations to the SEP of Developing Models, while preserving the 3D nature of the item, 
rubric and resulting scores. 
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