
CausalMesh: A Causal Cache for Stateful Serverless Computing
Haoran Zhang

University of Pennsylvania
Philadelphia, PA, USA
haorz@seas.upenn.edu

Shuai Mu
Stony Brook University
Stony Brook, NY, USA

shuai@cs.stonybrook.edu

Sebastian Angel
University of Pennsylvania

Philadelphia, PA, USA
sebastian.angel@cis.upenn.edu

Vincent Liu
University of Pennsylvania

Philadelphia, PA, USA
liuv@seas.upenn.edu

ABSTRACT
Stateful serverless work�ows consist of multiple serverless func-
tions that access state on a remote database. Developers sometimes
add a cache layer between the serverless runtime and the database
to improve I/O latency. However, in a serverless environment, func-
tions in the same work�ow may be scheduled to di�erent nodes
with di�erent caches, which can cause non-intuitive anomalies.
This paper presents CausalMesh, a novel approach to causally con-
sistent caching in serverless computing. CausalMesh is the �rst
cache system that supports coordination-free and abort-free read-
/write operations and read transactions when clients roam among
multiple servers. CausalMesh also supports read-write transactional
causal consistency in the presence of client roaming, but at the cost
of abort-freedom. Our evaluation shows that CausalMesh has lower
latency and higher throughput than existing proposals.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/eniac/causalmesh.

1 INTRODUCTION
Serverless functions allow clients to run their applications on cloud
providers without needing to manage or operate servers, load bal-
ance requests across VMs / containers, scale resources up or down
based on load, or deal with failures. This paradigm has proven to be
popular, with all large cloud providers o�ering a range of options
for serverless execution.

One remaining sticking point is how to deal with stateful func-
tions that need to access shared and often persistent states. Existing
solutions [9, 26, 28, 48, 63] take a straightforward approach: ensure
the serverless functions are stateless (so they can be scheduled
anywhere without constraints) and, instead, store the state in a
set of backend databases. The stateless function can then query
these databases to retrieve the necessary state on every execution,
perform its operations, and update the databases as needed.

Given that accessing remote databases is expensive [23, 45] (e.g.,
10–20ms to read or write to DynamoDB), recent works [34, 49]
ask whether serverless functions can use caches to keep the state
closer to these functions. Proposals here include having (i) a large
cache or multiple caches with a cache coherence protocol, which
provides strong consistency but does not scale, or (ii) a cluster of
caches such as Amazon DynamoDB Accelerator (DAX) that scales
well but provides only weak (eventual) consistency.

Write

DynamoDB DAX

Read

 0
 2
 4
 6
 8

 10
 12
 14

1 2 4 8

An
om

al
ie

s
(%

)

Number of Nodes in DAX Cluster
Figure 1: Anomalies rate of a two-function work�ow, where
the second function reads the data written by the �rst. The
work�ow runs on AWS Lambda and using DynamoDB Ac-
celerator (DAX) as the cache. There are no anomalies when
utilizing a single cache node, but it lacks scalability.

Weak consistency is problematic in the common scenario where
developers use work�ows, which are directed graphs of functions
that collectively implement the application’s logic. To see this issue,
imagine a social media website that uses a serverless work�ow
that contains two serverless functions that run one after the other
and that access the same state: the �rst function marks a user
as ‘not interested’ in a particular video, and the second function
generates recommendations based on users’ likes/dislikes. If these
two functions are scheduled on di�erentmachines (a likely outcome,
given that functions are supposed to be stateless and ought to
be schedulable anywhere), they may end up accessing di�erent
eventually consistent caches. In such a case, the work�ow would
not be able to even read its own writes (i.e., the second function
will not see the e�ect of the �rst). This is a violation of basic session
consistency and just one example of why weakly consistent caches
can make writing work�ows exceedingly di�cult (see Section 2.2
for more details). To better characterize this issue, we implement
a minimal serverless work�ow on AWS Lambda and DynamoDB
DAX. The work�ow consists of two serverless functions that access
the same state, where the �rst function writes to the state and the
second function reads from it. As shown in Figure 1, we observe
that in this simple example, the anomaly probability can be as high
as 14.2% when there are 8 cache nodes in DAX.

Recent works, in particular HydroCache [59] and FaaSTCC [39],
aim to address this issue by introducing a causal cache: a set of
caches that collectively guarantee causal consistency. Both Hydro-
Cache and FaaSTCC provide transactional causal consistency [3, 36]
which they adopt from traditional causal databases. The main tech-
nical challenge present in serverless computing that is addressed
by them and other prior works [41, 62] is dealing with client mobil-
ity: a client, or serverless work�ow in our context, can access one

https://github.com/eniac/causalmesh

cache during one function, and then a completely di�erent cache
in another function within the same work�ow.

All prior works handle client mobility by introducing expensive
coordination and aborts that signi�cantly reduce the bene�ts of
having a cache in the �rst place. In particular, HydroCache requires
cache servers to coordinate with each other before execution to
fetch necessary versions of data items. It also requires aborts and
retries of the entire work�ow when the transactions fail to commit.
Both can introduce signi�cant overheads into the critical path of
applications.

To improve the performance of stateful serverless and ensure
that work�ows work as intended, we present CausalMesh, a novel
cache architecture for stateful serverless functions that supports
client mobility. CausalMesh has several features:
(1) Per-work�ow causal consistency. CausalMesh ensures that any

data accessed by a serverless function observes the e�ects of
prior serverless functions in the same work�ow, even if they
run on di�erent servers and access di�erent caches.

(2) Coordination-free reads and writes. In CausalMesh, a cache
never needs to synchronize with another cache to process an
operation.

(3) No aborts. All functions in a work�ow that use CausalMesh
always read from a causally consistent snapshot, so they never
need to abort due to inconsistencies.

(4) High throughput and low latency. CausalMesh achieves high
throughput and its latency is low and stays nearly constant as
we vary the number of caches.

To simultaneously achieve all of these features, CausalMesh
needs to: (i) ensure that caches can process read and write opera-
tions independently, without aborts or blocking coordination with
other caches; (ii) ensure that read operations return state from a
causally consistent snapshot; and (iii) make newwrites to one cache
visible in other caches in a timely manner. To address (i) and (ii),
CausalMesh introduces a novel data structure—the dual cache (§4)—
and an asynchronous protocol that we call dependency integration
(§4). A dual cache represents two caches, one serving read requests
and the other serving write requests. Dependency integration up-
dates the dual cache from time to time and makes the subcache
serving read requests always contain clients’ dependencies so that
it does not require communication with other servers to fetch the
missing versions of some data items. To address (iii), CausalMesh
connects servers into a series of causally consistent chains (§5.2),
where each server simultaneously serves as the head, intermediate,
and tail node in the chain. Within a chain, writes are stored initially
in the head and are propagated towards the tail; the tail then reveals
it to the client.

To make the bene�ts of CausalMesh broadly applicable, we build
a library that exposes an intuitive interface similar to that of a
traditional key-value store (§6). Developers can use this library to
build their serverless applications. We also describe a variant of
CausalMesh, CausalMesh-TCC (§7), that provides support for arbi-
trary read/write transactions across multiple serverless functions,
although this comes at the cost of losing the abort-free property.

We implement CausalMesh and CausalMesh-TCC on top of
Nightcore [27], a serverless runtime platform. We then use the
key-value store interface provided by CausalMesh’s client library

to write several microbenchmarks (§9.2) and real-world applica-
tions consisting of work�ows with 13 serverless functions (§9.5) to
evaluate the performance.

To put our results in context, we compare CausalMesh and
CausalMesh-TCC with HydroCache [59] and FaaSTCC [39], re-
cent caches for serverless work�ows that aim to play a similar role.
In a nutshell, CausalMesh is signi�cantly faster: we observe an
up to 59% reduction in median latency, up to a 97% reduction in
tail latency and 1.3–2⇥ higher throughput. Furthermore, caches in
CausalMesh do not need to coordinate with other caches or abort
(whereas HydroCache and FaaSTCCmust do one of the two). When
we extend the comparison to the transactional variant of Causal-
Mesh, CausalMesh-TCC, we observe that CausalMesh still achieves
1.35–1.6⇥ higher throughput and comparable latency.

In summary, the contributions of this work are:
(1) CausalMesh, a cache system that provides causal+ consistency.

To our knowledge, CausalMesh is the �rst general causal cache
system that supports coordination-free reads and writes in the
presence of client roaming, which is critical to the performance
of serverless computing.

(2) A lock- and coordination-free read transaction protocol that
allows developers to get a causally consistent view across mul-
tiple keys within a single serverless function.

(3) CausalMesh-TCC, an extension of CausalMesh that supports
transactional causal consisteny across serverless functions.

(4) Demonstrating experimentally that CausalMesh has low la-
tency and high throughput.

(5) A formal speci�cation of CausalMesh in TLA+ and the corre-
sponding model checking e�ort to provide evidence for the
correctness of our algorithms.

2 BACKGROUND AND GOALS
We begin by providing context on serverless execution models as
well as our target consistency levels.

2.1 Serverless Architecture
When deploying a traditional, serverful application to the cloud,
users allocate VMs and deploy their software to the resulting in-
stances. While the cloud handles the management of the physical
infrastructure, users remain responsible for many tasks before their
applications can execute, e.g., requesting a batch of VMs from the
cloud provider, specifying their resource pro�les, choosing their
base VM images, setting permissions/�rewall rules, deploying de-
pendencies, andmonitoring the application as it runs, among others.

Serverless computing promises to free users from all of the above
concerns. Instead, users supply the cloud provider with a function
that executes their application logic, and the provider handles all
provisioning, scaling, load balancing, and management of the execu-
tion instances. The functions can even be composed into work�ows,
which are graphs of serverless functions that collectively perform
the logic of an application. Two aspects of this architecture are
particularly salient to the design and necessity of CausalMesh:

(1) Provisioning and scheduling. Unlike in traditional execution
environments, one of the core responsibilities of cloud providers in

2

serverless is managing function workers and assigning requests to
those workers, all of which are done out of the view of users.

At a high level, the typical strategy operates as follows. When a
request for a function arrives and �nds that all existing instances of
that function are busy, the provider will deploy a new instance of the
function to handle the request, i.e., a cold start. After handling the
request, the instance will be kept warm (provisioned) for some time
before being reclaimed—up to 1 hr in the case of AWS Lambda [32].
Requests are generally handled in FIFO order and routed to random
instances among the set of unsaturated, pre-warmed instances
when possible.

For a work�ow that has a few functions, each function can be
assigned to a di�erent worker. We say a work�owmigrates to a new
worker when a function in the work�ow is allocated to a di�erent
worker than its predecessor. Note that a work�ow can migrate to
multiple workers concurrently if it has a fan-out structure.

In reality, the workers that execute a work�ow are typically lo-
cated close to each other, e.g., in the same data center or availability
zone, because a cluster often de�nes the management boundary
for workloads. Once a workload is deployed to a cluster, it is typi-
cally not moved to another cluster because each cluster usually has
its own isolated control plane [52]. In AWS Lambda, to improve
cache locality, enable connection re-use, and amortize the costs of
moving and loading customer code, events for a single function are
sticky-routed to as few workers as possible [2].

(2) State management. A side e�ect of the above approach is that
users must carefully manage any state that should persist across
function executions, as the number of underlying instances and
the routing of requests to instances is opaque to users. There is no
guarantee or method to enforce that two requests will be executed
in the same instance, whether the requests are for the same function
or di�erent functions in the same work�ow. For these so-called
Stateful Serverless Functions (SSFs), external storage services, e.g.,
relational databases or key-value stores, are standard solutions
for persisting application state. Of course, access to these remote
services can incur high latency and block critical path execution.

(3) Caching. To reduce the latency of accessing remote storage ser-
vices, a cluster of cache nodes is deployed between the application
and the remote storage. Taking Amazon’s DynamoDB Accelera-
tor (DAX) as an example, using the write-through mode, a write
request is �rst directed to the primary cache and then replicated
to other cache nodes. This replication is eventually consistent and
can take up to 1 second to complete. Consequently, two clients may
obtain di�erent values when accessing the same key from the same
DAX cluster, depending on the node that each client accesses.

2.2 Consistency Goals
One potential solution to the high overhead (particularly high la-
tency) of state management is to cache the remote state at each
provisioned instance, allowing functions to access the state im-
mediately if the data is in the cache. Unfortunately, to maintain
consistency across an entire work�ow, traditional caches generally
either need to block and con�rm that they have the latest state by
synchronizing with other caches, or they must proceed specula-
tively but then abort if an inconsistency is ever detected (as is the
case in systems like HydroCache [59] and classic cache coherency

protocols). This results in higher latency, particularly at the tail. An-
other approach altogether is to ignore strong consistency in favor of
weaker guarantees (as is the case in AWS’s DAX service [14]), but as
we alluded to in the introduction, writing serverless work�ows with
weak consistency is very challenging. To strike a balance between
excellent performance and meaningful consistency semantics, we
settle on causal+ consistency (CC+). Recent work [40] has shown
that no model stronger than causal consistency is achievable with
high availability, making it ideal for our coordination-free goal. CC+
can summarized as:

(1) Client-side dependency. If an operation is issued after an-
other operation is completed by the same client, the latter
operation must observe the e�ects of the former. In the context
of serverless, a client is a work�ow.

(2) Read-write dependency. If a read operation reads the e�ect
of a write operation, then we say there is a read-write depen-
dency between the two operations. This clause itself is not a
guarantee, but together with the following rule, it restricts the
system’s behaviors.

(3) Transitive dependency. The above two dependencies are
transitive. Transitive dependencies must be respected by the
execution. For example, if a read operation transitively depends
on a write operation, the write must be re�ected in the read
results.

(4) State convergence. Di�erent replicas of the same data will
eventually converge to the same state. This is also known as
causal+ in the context of causal consistency.

Providing causal consistency in the cache can greatly simplify
programming in serverless work�ows and make them less error-
prone. A simple example is that it can avoid the anomaly discussed
in Section 1. In a more complex example, consider a serverless
work�ow that implements a Twitter-like social media service. This
example was previously implemented in serverless by Beldi [63]
and was ported from the microservice library DeathStarBench [15].
When Alice replies to Bob’s post, a serverless function will store
the reply in the database’s reply table and noti�cation table; it also
stores the id of the reply in the database’s post table as foreign
keys. When Bob receives the noti�cation and interacts with this
serverless application, a serverless function will fetch the post con-
tent and all its replies to render the page. There is a dependency
between the noti�cation and the post’s replies, and without causal
consistency, when the serverless function returns the page to Bob
with the rendered post, it might not contain the reply that triggers
the noti�cation. Another common example includes applications
whereby a user sets permission (e.g., removes a user from an ac-
cess control list), and then posts a sensitive �le. Without causal
consistency, the removed user may see the sensitive �le [11, 36, 43].

2.3 Challenges
Serverless environments present a unique challenge to maintaining
causal consistency. One key reason is the extremely �ne-grained re-
source provisioning and autoscaling that is central to the serverless
approach—low latency is achieved by routing functions preferen-
tially to instances that are provisioned and available, even if they

3

Physical Server

Cache Server

Client Libarary

Serverless Platform

…

Server

Server

Database

Figure 2: Architecture of CausalMesh in a three-server setup.

access a cold cache. Spinning up a new instance on the local ma-
chine or allowing longer queues for local execution might improve
cache hit rates (e.g., using a technique like [1]), but without ex-
tremely restrictive scheduling policies, there is no guarantee of
correctness. It also potentially comes at the cost of the provider
resources that are not included in current pricing models.

Traditional causal cache systems like Bolt-on [5] cannot be di-
rectly applied in this scenario. Bolt-on uses a background thread
that subscribes to the database and periodically merges new up-
dates into the cache. In a sticky setup like Bolt-on, where the client
always communicates with the same cache server, this approach is
e�cient and correct because the data in the cache are monotonic
and never roll back, ensuring clients never read an older version
than the one they previously read. However, in a serverless environ-
ment, di�erent functions within work�ow could be scheduled to
di�erent instances and interact with di�erent cache servers. Even
though each cache is monotonic, a cache server might provide a
version older than one accessed from another cache server. This
means that clients may fail to �nd a version they previously read if
they migrate to another server.

3 CAUSALMESH OVERVIEW
The goal of CausalMesh is to provide a high-performance, resilient,
and causally consistent cache for serverless platforms that addresses
the challenge of maintaining consistency while supporting the
mobility of serverless work�ows.

3.1 Architecture
Figure 2 illustrates the architecture of CausalMesh. The architecture
consists of four components:

Serverless Platform. The serverless platform acts as the runtime
environment for user applications. It orchestrates the work�ow and
dispatches functions to available workers.

Databases.The database stores user data. CausalMesh supports any
database, as long as the database allows custom con�ict resolution
policies to resolve concurrent updates (e.g., Azure CosmosDB [12],
Couchbase [13], and MongoDB [42]).

CausalMesh. CausalMesh is a middleware that sits between the
serverless platform and the backend databases. It contains two com-
ponents, cache servers and a client library. The user functions in-
teract with the cache servers using the client library. Cache servers
communicate with each other via remote procedure calls (RPCs).
The messages between cache servers follow a FIFO order but can

experience arbitrary delays. CausalMesh plays a similar role to
DynamoDB DAX or HydroCache. In our setup, CausalMesh’s cache
server runs in a 1:1 correspondence with physical machines, each
physical machine runs a serverless worker and a cache server. All
requests are routed to the cache server on the same machine. This
setup provides the best locality. However, other con�gurations are
also possible. For example, machines in the same rack may be as-
signed to the same cache server. Cache servers are managed and
con�gured by a fault-tolerant coordinator (e.g. Zookeeper [24]).

Using the above components, the journey of a stateful serverless
work�ow proceeds as follows:

(1) The work�ow is triggered by an event, e.g., a request from a
browser or some service arriving at a gateway.

(2) The scheduler in the serverless platform dispatches the �rst
function in the work�ow to a worker machine based on re-
source usage, hardware requirements, and other factors.

(3) When the function accesses state, it communicates with the
cache server on the same machine using CausalMesh’s client
library.

(4) After the function �nishes, the scheduler gathers the result
before dispatching the subsequent function or functions (in the
context of a fan-out work�ow) to potentially di�erent worker
machine(s) than the previous one.

(5) Repeat until the work�ow is complete.

3.2 CC+ in CausalMesh
CausalMesh uses vector clocks and dependencies to enforce CC+.

Vector Clocks (VC). Vector clocks [50] are used to identify dif-
ferent versions of an object and capture the happens-before rela-
tion [33] between them. We use version and vector clock inter-
changeably in the paper. A vector clock VC is a set of hserver id,
timestampi pairs; each server maintains its corresponding time-
stamp and increments it as needed. For simplicity, we assume that
given N servers, each server is assigned an id from 0 to N so that a
VC can be represented using a list of timestamps where VC [i] is
the timestamp of server i.

We de�ne the union of two VCs, VC1 [VC2, as their element-
wise maximum, e.g., [1, 0] [[0, 1] = [1, 1]. By using vector clocks,
we can implement a custom con�ict resolution policy to ensure
state convergence in CC+. Informally, new versions overwrite old
versions; if two versions are concurrent, we merge the vector clocks
and pick one of the values as the new value in a deterministic way.
In the implementation, we break ties by picking the value of the
larger version by lexicographical ordering.

Dependencies (deps). Dependencies are used to track causal re-
lationships across di�erent keys. They are stored as a map from a
key to the vector clocks of the writes that it depends on.

deps := {Key 7! VC}
To reduce the size of metadata, it only contains the nearest depen-
dencies, meaning that if x ! y (x happens before y, y depends
on x) and y ! z, z’s dependency will only contain y but not x.
Dependencies can be merged using the same mechanism as vector
clocks.

4

1 # self is a cache server
2 def integrate(self, deps):
3 all_deps = 8[key, vc] that are transitive

predecessors of deps (inclusive)
4 for k, vcs in all_deps.items():
5 consistent_versions =
6 self.Inconsistent[k].remove(
7 filter(vc 2 vcs)
8)
9 self.vc.merge_all(vcs)

10 self.Consistent[k].merge_all(
11 consistent_versions
12)

Figure 3: Pseudo-code for Dependency integration.

4 THE DUAL CACHE
A core component of CausalMesh is its dual cache. The dual cache
is what makes CausalMesh coordination-free. Each cache server
maintains an instance of this dual cache, which is essentially two
subcaches, a Consistent cache (C-cache), and an Inconsistent cache
(I-cache).

C-cache is a hash map from keys to values and their correspond-
ing versions; it acts like a single-version key-value store. As its name
suggests, all versions in C-cache are guaranteed to be synchronized
on all cache servers and, therefore, visible to clients.

I-cache, on the other hand, is a hash map from keys to a tuple
(Value, VC, Deps). It acts like a multi-version key-value store and
stores versions that the cache server is unsure whether they have
been synchronized to all servers. As a result, I-cache is unsafe to
reveal to clients.

C-cache := { Key 7! (Value,VC) }
I-cache := { Key 7! [(Value,VC, deps)] }

C-cache and I-cache have di�erent functionalities. All read requests
are served by C-cache, and all write requests are served by I-cache,
then moved to C-cache when they are safe to be revealed to clients
through a procedure called dependency integration (or integration).

Dependency Integration. Integration is triggered whenever the
cache server wants to make a version visible, i.e., when it receives
a read from a client (§5.3) or when it determines a write exists on
all servers (§5.2). The pseudo-code for this procedure is shown in
Figure 3 and follows the steps below:

(1) Iterate over the dependencies.
(2) For each key-version pair in the dependencies, check if this

version has already been merged into C-cache.
(3) If not, search I-cache for this version, remove it from I-cache

(Lines 6–8), and merge it into C-cache (Lines 9–11) using the
same procedure of merging two versions. Note that unlike
I-cache, C-cache does not contain dependency metadata; the
dependencies are automatically dropped when merged into
C-cache.

As previously mentioned, a writer’s dependencies only consist
of their nearest dependencies. Therefore, it is necessary to recur-
sively integrate the dependencies of these dependencies as well
(Figure 3 Line 3). It’s worth noting that integration is a purely local
operation on the data structure and does not require blocking on
any communication.

The purpose of integration is to ensure that, when updating
C-cache, it is always a strict causal cut, or simply a cut. Informally,
this means that the dependencies for each write in the cut should
either be in the cut or should happen before a write to the same
key that is already in the cut. The formal de�nition is as follows.
De�nition 1 (Strict Causal Cut). A set of writes S is a strict causal
cut () 8x 2 S,8y 2 x.deps,9y0 2 S | y.key = y0.key ^ (y0 =
y _ y0 ! y)

When evicting a key k, all keys that depend on it are also evicted
so that C-cache remains a cut.

5 CAUSALMESH PROTOCOL
This section describes how CausalMesh works internally. We will
begin by introducing CausalMesh’s APIs and then describe how
read and write requests are processed, followed by how read trans-
actions are implemented, and end with an intuitive explanation on
how CausalMesh achieves CC+.

5.1 CausalMesh APIs
CausalMesh APIs include a client API and a server API. The client
API is used by developers; the server API is used internally and
opaque to developers.

Client API. CausalMesh’s client library o�ers an intuitive interface
for developers similar to a traditional key-value store, with the
added functionality of the ReadTxn operation, which returns a
consistent view of multiple keys. The client API is as follows:

(1) Read(key)! value
(2) Write(key, value)
(3) ReadTxn(keys) ! values

Server API. Server API is used by the client library to communicate
with the cache servers, or by the cache servers to communicate with
each other. Figure 4 lists all server API functions. The �rst three
operations correspond to those in the client library’s API, with
additional metadata including VC, deps and local. local contains
the client’s own writes in a map from keys to their corresponding
value, vector clocks, and dependencies.

5.2 Write Path
Clients’ writes are always �rstly saved in the server’s I-cache be-
cause they only exist in one server. When saving it to the I-cache,
CausalMesh �rst integrates carried writes (described at the end of
this subsection), then assigns a version based on the server’s global
vector clock to the client’s new write.

Global Vector Clock (GVC). Each cache server maintains its own
GVC, which records its view of version clocks on all servers. When
receiving a write, the server increments the corresponding index
in its GVC to create a unique version for the write. For example, in
a three-server setup, the GVC for server S0 is [7, 5, 2], and when it
receives a new write from a client, the assigned vector clock will be
[8, 5, 2]. The value in the corresponding index of the GVC, namely
GVC[0], is used as a unique identi�er for the writes received by
S0. The rest of GVC represent the newest visible versions that S0 is
aware of for other servers. In the previous example, 5 in the GVC
indicates that among all vector clocks in C-cache, the largest value

5

CausalMesh Server API Description

ClientRead(key, deps)! value, vc client’s read request with a key and its dependencies, return the value and version.
ClientWrite(key, value, deps, local)! vc client’s write request with the key, value, dependencies and the client’s own writes, return the version.
ClientReadTxn(keys, deps)! values, vcs client’s read transaction request with keys and their dependencies, return values and their versions.
ServerWrite(key, value, vc, deps) write request from another server with the key, value, version and dependencies.

Figure 4: CausalMesh’s internal Server APIs. The �rst three APIs (Client*) are used in CausalMesh’s client library. Server-
Write is called by other CausalMesh servers via RPC to propagate writes. Note that users do not interact directly with any of
these functions.

Inconsistent Cache

Consistent Cache

S0 S2S1

Figure 5: Propagation chain in a three-server setup. The cache
servers S0, S1, and S2 respectively serve as the head nodes for
the solid, dashed, and dotted chains.

in the second index is 5, even if S0 has some values that are larger
than 5 in the second index in its I-cache, they do not contribute to
the GVC until they are integrated.

After assigning a new version to a write, the cache server adds
the write to the I-cache and �ushes it to the database. The server
can then safely return an acknowledgment to the client. To speed
up write path, the cache server can opt to store the writes to a local
persistent log and �ush them asynchronously; it weakens durability
guarantees but it does not a�ect the casual consistency nor the read
performance. However, at this point, the new value is not yet visible
to other clients. To make the value visible, the server will notify
its peer servers by asynchronously sending the new write to its
successor in the propagation chain.

Propagation Chain. Our data propagation design is inspired by
Chain Replication [54] in distributed systems. In CausalMesh, each
Si ! S(i+1) mod N ! S(i+2) mod N… ! S(i+N�1) mod N forms a
chain. Thus, in a three-server system, there are three chains in total:
S0 ! S1 ! S2, S1 ! S2 ! S0 and S2 ! S0 ! S1. For each chain,
cache servers can take on one of three roles: head, intermediate,
or tail; however, every cache server serves all three roles, just for
di�erent chains.

Writes are forwarded to the head of the chain and propagated
until they reach the tail in a FIFO manner. When an intermediate
cache server receives a write from its predecessor, it adds the write
to its I-cache and forwards it to its successor. When a tail cache
server receives a write, it integrates thewrite (and the dependencies)
to its C-cache. Figure 5 illustrates the propagation chains of a system
with three servers. This propagation takes place asynchronously
after the server responds to the client and is not on the critical path.

The tail of the chain has the option to disseminate the write
to other servers, asking them to integrate the write into their C-
caches as well. The decision whether or not to inform others is a
trade-o� between network cost and visibility and does not a�ect
the correctness of the system.

S0 S1

1: x

x

3: y

4: y

2: Migrate
C1 C1

X

Figure 6: Without carrying and sending its own write to the
cache, the client may fail to read causally consistent values.
The text on the arrows contains the step number and the
data being transferred.

1 # self is a cache server
2 def ClientRead(self, key, deps):
3 self.integrate(deps)
4 return self.Consistent[key]
5
6
7 def ClientWrite(self, key, value, deps, local):
8 self.vc[self.id] += 1;
9 for k, (v, vc, k_deps) in local.items():

10 if not self.has_seen(k, vc):
11 self.Inconsistent[k].add((v, vc, k_deps))
12 deps.add(k, vc)
13 self.Inconsistent[key].add((
14 self.vc, value, deps
15))
16 self.successor.ServerWrite(
17 key, self.vc, value, deps
18)
19 return self.vc
20
21 def ServerWrite(self, key, vc, value, deps):
22 if self is tail:
23 self.vc.merge(vc)
24 self.integrate(deps)
25 self.Consistent[key].merge(
26 (vc, value, deps)
27)
28 else:
29 if not self.has_seen(key, vc):
30 self.Inconsistent.merge_all(local)
31 self.successor.ServerWrite(
32 key, vc, value, deps
33)

Figure 7: Pseudo-code for CausalMesh’s Server.

Integrating carried writes.After a client migrates to a new server,
it will piggyback its local on its �rst write request. Unless the
versions in the local have been previously received, the cache server
will append them to I-cache before processing the client’s current
write. To see why this is necessary, consider the scenario shown
in Figure 6. In a two-server setup where the connection S0 to S1 is

6

1 # self is a client
2 def read_txn(self, keys):
3 values, vcs = ClientReadTxn(keys, self.deps)
4 res = []
5 for k, v, vc in zip(keys, values, vcs):
6 if k in self.local \
7 and not (self.local[k] <= vc):
8 return None
9 res.append(v)

10 self.deps[k].merge(vc)
11 return res

Figure 8: Pseudo-code for read transaction in CausalMesh’s
client library. It shows read transaction may fail (Line 8) if
keys in the transaction contains the client’s own writes.

very slow, suppose a client c1 �rst writes x to S0, then migrates to
S1 and writes y that depends on x. As the connection S0 to S1 is
slow, y appears on S1 before x arrives at S1. However, if another
client c2 now reads y followed by x on S1, it can see y but not x,
violating causal consistency. To solve this problem, CausalMesh’s
client library carries its local writes. The carried writes are stored in
the work�ow context, and the scheduler will pass along the context
to the subsequent functions within the same work�ow. This design
decision mirrors other systems that consider client roaming [59, 62].

As a result, when performing a write w, the client attaches both
its deps and local. The cache server will iterate over all writes in
local, and add those it has not seen before into its I-cache (Figure 7
Lines 9–11). In this example, when the client migrates from S0 to
S1, it also carries the previous write x to S1, so that c2 can see both
x and y at S1.

5.3 Read Path
The read request includes its dependencies, and the server will
integrate the dependencies and return the value and its version
from C-cache, shown in Figure 7. The integration ensures that
the client never reads an older version than its dependencies. For
example, a client reads y1 in the past, where x1 ! y1, when it reads
x later, it will get a version at least as new as x1.

If the requested key does not exist in the cache, the client has to
read directly from the underlying storage. The cache server, in the
background, will add the result to I-cache as if it were written by a
client. This value will follow the same propagation chain as a write.

Each cache server serves read requests independently without
consulting other servers or going through the propagation chain,
making reads in CausalMesh coordination-free.

5.4 Read Transactions
CausalMesh o�ers a causally-consistent view through its read-
transaction API. A transactional read request includes a set of keys.
When the cache server receives the request, it integrates the de-
pendencies before reading each key from C-cache. As previously
mentioned, all versions in C-cache naturally form a consistent view
because it is a cut. Furthermore, CausalMesh’s read transactions do
not communicate with other servers or wait for a speci�c version
to arrive.

Figure 8 presents the pseudo-code for the read transaction in
the client library. If the client reads a key that it has written before,

Inconsistent Cache

Consistent Cache

S0 S1 S2

x y

yx

x, y

x, y x, y

x, y

x, y

C1

C2C2
Migrate

x, y

Figure 9: Example of two client c1 and c2 in a three-server
setup. The arrows between servers are data propagation. The
arrows from and to the server are reads and writes, respec-
tively. Figure shows c2 read c1’s y at S2 and integrates both x
and y after migrating to S1.

similar to read operations, the client library merges the result from
the server with its own write. However, the client’s own writes may
not be part of the same causal cut as the other keys in the request.
In this case, the transaction has to abort unless the returned value
is at least as new as the one in local (Figure 8 Lines 5–8). Aborts
are handled by the client library by notifying the scheduler and
are opaque to the users. Aborts can only occur in cases where read
transactions include keys that have been previously written by the
same client, such as when a client writes x and then reads x and y
within a transaction. To prevent aborts, developers can rearrange
the order of operations by placing writes after read transactions if
their keys happen to overlap.

5.5 Achieving Causal+ Consistency
This section provides a rough explanation of how CausalMesh
guarantees CC+. We have a full proof and a TLA+ model which is
publicly available alongside our code.

In a CC+ system, clients read from a monotonic cut, where the
new cut covers the old cut.
De�nition 2 (Cut Coverage).

Sj covers Si , 8k 2 Si , k 2 Sj ^ Si [k].vc  Sj [k].vc
Informally, this means that a key can only change from an old

version to a new version, or from non-existent to existent. Bolt-
on [5] does not explicitly point out this requirement because it is
trivial in their setting of a single cache with no client roaming. In
contrast, we have to deal with the fact that it is di�cult to create
a monotonic cut across multiple machines without coordination
because each server processes write requests from clients indepen-
dently. However, we can still ensure that the client sees a monotonic
cut with respect to all keys it has accessed. This is the essence of
CausalMesh.

CausalMesh integrates dependencies before performing a read,
which ensures that C-cache covers its dependencies. Those depen-
dencies can always be found on the same cache server without
communicating with other servers because the propagation chains
guarantee a write can only be visible to clients other than its writer
once it reaches the tail of the chain, which implies it has been prop-
agated to all servers. On the other hand, its own writer can always
read it, but excludes it from dependencies when sending it to the
server, so that it will not be integrated at the server.

7

1 # self is a client
2 def read(self, key):
3 value, vc = ClientRead(key, self.deps)
4 self.deps.merge(key, vc)
5 if key in self.local:
6 return merge(self.local[key],
7 {value, vc}).value
8 return value
9

10 def write(self, key, value):
11 vc = ClientWrite(key, value,
12 self.deps, self.local)
13 self.local[key].merge(value, vc)

Figure 10: Pseudo-code for CausalMesh’s Client Library.

Figure 9 shows a concrete example. A client c1 writes x ! y to
S0, x and y get propagated from S0 ! S1 ! S2 and become visible
at S2. Another client c2 reads y at S2 and migrates to S1. When c2
tries to read x, the cache server integrates y’s dependencies, namely
x, to S1’s C-cache. On the other hand, when c1 reads x at S0, S0
simply returns an old value without integrating it from I-cache.
Then the client library merges it with its local writes.

6 CLIENT LIBRARY
In serverless computing, a client refers to a work�ow comprising
multiple serverless functions. When a work�ow starts, the client
library creates two maps, local and deps. These two maps are used
to track the client’s own writes and dependencies, respectively, and
are carried along the work�ow during migration. The client library
acts as a proxy upon reads and writes, interacting with the cache
server via RPC and providing the necessary metadata. Figure 10
shows the pseudo-code.

Read. When a client performs a read operation, it sends a Clien-
tRead request to the designated cache server along with the deps
map. The cache server responds with wcached, containing the value
and its corresponding vector clock. Subsequently, the client library
checks its local map to determine if it has previously written to the
same key. If there has been no prior write, the client library returns
the value received from the cache server. However, if there has
been a prior write, the client library returns the value by merging
the value obtained from the cache server and the value stored in
the local map, wcached [wlocal. Finally, the client library adds the
returned version to the deps map.

Write. When a client writes, it attaches both the deps and local
maps to the ClientWrite request that is sent to the cache server.
The cache server then returns a vector clock assigned to the write.
The client library adds this vector clock to its local map.

7 CAUSALMESH-TCC
CausalMesh only supports read transactions within a single server-
less function. However, certain workloads necessitate read-write
transactions, speci�cally when dealing with access-control lists
(ACLs), as well as read transactions across multiple serverless func-
tions. To tackle this limitation, we propose an extension of Causal-
Mesh called CausalMesh-TCC, which provides Transactional Causal
Consistency (TCC) [3, 36] as a stronger consistency level. In Causal-
Mesh-TCC, each work�ow is treated as a transaction.

1 # self is a cache server
2 def integrate_tcc(self, deps):
3 all_deps = 8[key, vc] that are transitive

predecessors of deps (inclusive)
4 for k, vcs in all_deps.items():
5 consistent_versions =
6 self.Inconsistent[k].remove(
7 filter(vc 2 vcs)
8)
9 self.vc.merge_all(vcs)
10 new_version = self.Consistent[k].merge_all(
11 consistent_versions
12)
13 self.Consistent[k].append(new_version)
14
15 def ClientReadTCC(self, key, deps):
16 self.integrate_tcc(deps)
17 for v in self.Consistent[key]:
18 if deps \/ v \/ v.deps is Cut:
19 return (v.value, v.vc)
20 return None

Figure 11: Pseudo-code for CausalMesh-TCC’s Server.

TCC and CC+ di�er in two key aspects. First, TCC ensures atom-
icity of writes, meaning that all writes from a transaction are either
fully visible or not visible at all. In contrast, CC+ does not o�er
such atomicity guarantees. Second, TCC enforces that all reads
within a transaction must originate from the same causal cut. For
example, if a client reads x = 0, all subsequent reads of x within
the same transaction will also return 0. On the other hand, CC+
allows for the possibility of reading newer values in subsequent
read operations by reading from a monotonic cut.

To enforce atomic writes, CausalMesh-TCC’s client library saves
writes in a bu�er and returns to the client immediately. The writes
are then sent to the server in a batch at the end of the work�ow. If
the work�ow has multiple leaves, it will add a dummy sink function
that joins all leaves. During dependency integration, the cache
server will integrate all writes in the same batch atomically.

To make all reads come from the same cut, CausalMesh-TCC
extends C-cache to be a map from a key to a list of tuples that
includes the value, VC, and deps.

C-cache := {Key 7! [(Value,VC,Deps)])}
Figure 11 shows CausalMesh-TCC’s pseudo-code on the server side.
During dependency integration, rather than updating the value in
C-cache in place as CausalMesh does, the cache server in Causal-
Mesh-TCC creates a new version and appends it to the list so that
the list contains multiple versions for each key (Figure 11 Lines
10–12). Upon receiving a read request, the cache server returns
the oldest version from this list that, when combined with the
previous read set, forms a cut—thus adhering to TCC (Figure 11
Line 18). If no such version is found, the work�ow has to be aborted
and retried. In the case of multiple parallel functions within the
work�ow, CausalMesh-TCC runs a validation phase that checks
if the union of the read sets from these functions forms a cut. If
it does not, the work�ow is aborted and retried, which, similar to
read transactions in CausalMesh, is opaque to developers.

8

We utilize a ring bu�er to implement the version list, where
the size of the bu�er is a tunable parameter which determines the
trade-o� between the abort rate and memory usage.

8 IMPLEMENTATION
We implemented CausalMesh, CausalMesh-TCC, and two baselines.

Baselines: HydroCache and FaaSTCC. HydroCache [59] is cur-
rently the state-of-the-art serverless caching system. It guarantees
Transactional Causal Consistency (TCC). It has two versions: a
conservative version (HydroCache-Con) and an optimistic version
(HydroCache-Opt). In HydroCache-Con, prior to execution, a cen-
tralized scheduler distributes the read set to all candidate cache
servers and blocks until it has received their responses with their
respective snapshots of the read set. The scheduler then uses these
responses to construct a consistent causal cut and send it back to
all cache servers. In HydroCache-Opt, the scheduler checks for
causal violations between two serverless functions during execu-
tion. If a violation is detected, the entire work�ow is aborted and
retried. FaaSTCC improves HydroCache-Opt by replacing depen-
dency metadata with a snapshot interval which is a time frame
where reads are valid, however, it requires the underlying storage
system to provide a global timestamp. Figure 12 shows the full
comparison between them.

Prototype. We have an implementation of CausalMesh for server-
less applications that are written in Go. The cache server for Causal-
Mesh is written in Rust. As HydroCache is not open-source, we also
implement it in Rust and ensure that it achieves the same or better
performance as the results given in the HydroCache paper [59]. The
cache system in total consists of roughly 5K lines of Rust. The client
library for CausalMesh, written in Go, consists of approximately
400 lines. All systems use grpc [21] for communication.

HydroCache and FaaSTCC have a background thread that uses
double-bu�ered hash tables [19] to refresh the cache: the back-
ground thread updates one table while read handlers in the main
thread read the other, and an atomic pointer swap exposes new
writes. This ensures that the refreshing does not a�ect the readers
in the critical path.

9 EVALUATION
CausalMesh helps serverless developers rely on caches without
the complexity of weak consistency semantics. To see how well
CausalMesh works, we answer the following questions:
• What is CausalMesh’s performance on micro-benchmarks and

how does it compare to prior serverless cache systems? (§9.2)
• What overhead does CausalMesh introduce? (§9.3)
• How does CausalMesh scale with server count? (§9.4)
• What are the latency and throughput of representative applica-

tions running on CausalMesh? (§9.5)
• How long does it take for a write in CausalMesh to become

visible on other servers? (§9.6)

9.1 Experimental Setup
In our evaluation, we used CloudLab [10] m510 machines with
8-core 2.0 GHz CPUs, 64GB of RAM, 256GB NVMe SSDs, and 10GB
NICs. The typical round-trip time (RTT) between servers is 0.15ms.

We use Nightcore [27] as the serverless runtime. It uses two cores
and 8 workers per machine for all experiments except for the exper-
iments that evaluate the real-world applications (§9.5) which use
�ve cores and 16 workers. We run a Redis [46] server in append-only
mode as our underlying storage, with a custom con�ict resolution
layer on top of it. We add an arti�cial latency of 5ms to the Redis
server using netem to emulate remote storage so that it has simi-
lar latency to those found in public clouds (e.g. AWS Lambda with
DynamoDB). For all evaluations except the scalability evaluation,
we used a setup with three workers, consisting of �ve machines:
one machine running Redis as the database, one machine running a
client and a scheduler, and threemachines each running a Nightcore
instance and a cache (either CausalMesh or HydroCache).

CausalMesh uses a single thread. The ring bu�er size in Causal-
Mesh-TCC is set to one to have a comparable memory footprint.
Both versions of HydroCache and FaaSTCC use an additional thread
to run a background task that refreshes the cache by merging new
updates from the database. The refresh period was set to 100ms
and 50ms, respectively, as in the original papers. Unless otherwise
speci�ed, the caches were pre-warmed to remove the overhead of
data retrieval from the persistent database.

We use wrk2 [56], which is a constant-load HTTP workload gen-
erator and measurement tool to obtain the latency and throughput
numbers. Each workload runs for a total of 90 seconds, with the
�rst 30 seconds serving as a warm-up period. The results of the
subsequent 60 seconds are reported.

9.2 Micro-Benchmark
In our micro-benchmark, we evaluate a three-function serverless
work�ow that aligns with the one described in the HydroCache
paper [59]. The �rst two functions in the work�ow read three keys,
while the last function writes to a single key. The keys are sampled
from a pool of 1,000,000 keys, following a Zip�an distribution with
a coe�cient of 1.0. The value is an 8-byte string.

Results. Figure 13 shows the results of our micro-benchmark. Com-
pared to HydroCache and FaaSTCC, CausalMesh’s throughput is
1.57⇥–2.2⇥ higher. In terms of median latency, CausalMesh’s is 7%–
59% lower thanHydroCache-Con, 15%–44% lower thanHydroCache-
Opt and 5%–38% lower than FaaSTCC. Regarding tail latency, Causal-
Mesh achieves up to 85%, 97% and 54% lower latency than HydroCa-
che-Con, HydroCache-Opt and FaaSTCC, respectively. CausalMesh-
TCC achieves comparable latency to HydroCache and FaaSTCC but
much better throughput: up to 1.35⇥ and 1.6⇥ higher compared to
HydroCache and FaaSTCC. For comparison, Figure 13 also shows a
lower bound on the latency of the work�ow when accessing the
database directly without caches (horizontal dotted line).

Takeaway. Caches are critical in keeping the latency of stateful
serverless functions low (up to 4⇥ lower than the baseline without
caches shown as a dotted horizontal bar). CausalMesh-TCC provides
the same consistency guarantees and supports the same applica-
tions as state-of-the-art serverless caches but achieves considerably
higher throughput. CausalMesh further achieves lower latency at
the tail if the work�ow does not require read/write transactions
within a function or cross-function transactions.

9

Consistency Unk. ReadSet Coordination Cost Read / Write Abort Free Visibility

CausalMesh CC+ Yes 0 RTT 0 RTT / 1 RTT to DB Yes N ⇥ RTT
CausalMesh-TCC TCC Yes 0 RTT 0 RTT / 1 RTT to DB No N ⇥ RTT
HydroCache-Con TCC No 2 RTTs 0 RTT / 1 RTT to DB Yes refresh period
HydroCache-Opt TCC No⇤ 0 RTT ⇠ 2N RTT 0 RTT / 1 RTT to DB No refresh period

FaaSTCC TCC Yes 0 RTT ⇠ 2N RTT 0 RTT / 1 RTT to DB No refresh period

Figure 12: Comparison between CausalMesh, CausalMesh-TCC, HydroCache-Con, and HydroCache-Opt. N is the number of
servers. Unknown ReadSet means that the read set does not need to be known ahead of time, which is needed for supporting
dynamic work�ows. HydroCache-Opt’s Unknown ReadSet �eld is No⇤ because it supports partially dynamic work�ows (§11).
In HydroCache and FaaSTCC, writes become visible after a refresh period, set to 100ms and 50ms in the original papers.

1 req/s without caches�

1 req/s without caches�

Figure 13: Median and tail response time and throughput
of CausalMesh, CausalMesh-TCC, HydroCache-Con, and
HydroCache-Opt in the micro-benchmark.

CausalMesh / -TCC HydroCache-Con/Opt FaaSTCC

CPU (%) 42.0 / 53.3 98.3 / 54.4 52.9
Memory (MB) 54.4 / 57.4 69.3 / 69.6 61.0
Metadata (KB) 35.1 / 69.9 45.3 / 99.8 28.8

Figure 14: CPU and memory usage of cache servers in the
micro-benchmark. The request rate is 1000 requests per sec-
ond. Our system uses a single thread, while HydroCache and
FaaSTCC use two threads. Metadata is the additional data
required by each protocol to ensure correctness.

9.3 Resource Overhead
To quantify the cost of running CausalMesh, we send requests to
the serverless work�ow at a constant rate of 1000 requests/second,
using the same workload as that in the micro-benchmark, and we
analyze the overhead from two sources: CPU and memory usage.
For memory, we di�erentiate between the total usage of the cache
server and the size of internal metadata (i.e., how much additional
data is required to ensure correctness). In CausalMesh, metadata
includes the contents of the I-cache, while in CausalMesh-TCC,
it includes the I-cache and any dependencies in the C-cache. In
FaaSTCC, it includes the interval timestamps. In HydroCache, it
includes all dependencies of any element in the cache. Note that, ab-
sent a separate garbage collection protocol, HydroCache’s metadata
will grow in�nitely (§11); we measure the size of HydroCache’s
metadata after 1 minute.

Result. Figure 14 shows that CausalMesh has 57% lower CPU con-
sumption compared to HydroCache-Con, 23% lower compared to

0
2000
4000
6000
8000
10000
12000
14000
16000

2 4 8 16

CausalMesh
CausalMesh-TCC

FaaSTCC
HydroCache-Con

Th
ro
ug
hp
ut
(re
q/
s)

Number of Cache Servers

0
250
500
750
1000
1250
1500
1750
2000
2250

N
or
m
al
iz
ed

Th
ro
ug
hp
ut
(re
q/
s)

Figure 15: The histogram with y-axis on the left depicts the
throughput as we vary the number of servers. The line plot
with y-axis on the right shows the normalized throughput
by dividing the throughput by the number of servers.

HydroCache-Opt and 26% lower compared to FaaSTCC. For Causal-
Mesh-TCC, the CPU consumption is 46% lower than HydroCache-
Con; it is similar to HydroCache-Opt and FaaSTCC. In terms of
memory, CausalMesh consumes up to 20% less memory than Hy-
droCache and FaaSTCC, while CausalMesh-TCC uses up to 17% less
memory. The size of metadata in CausalMesh and CausalMesh-TCC
are 2.2% and 4.5% of the total data set, respectively.

Takeaway. CausalMesh(-TCC) incurs less CPU and memory over-
head compared to HydroCache and FaaSTCC. The metadata of
CausalMesh and FaaSTCC stays low and stable while HydroCache’s
metadata grows over time. FaaSTCC reduces a great amount of
metadata by delegating the job of assigning versions to the under-
lying storage system.

9.4 E�ect of the Number of Caches
To evaluate how CausalMesh scales with the the number of servers,
we conduct experiments with 2–16 servers (the same order of mag-
nitude as AWS DAX’s maximum of 11 cache nodes). More servers
result in more concurrent clients. We issue requests in increments
of 50 req/s until the system is nearly saturated, which we deter-
mine by observing a tail latency longer than 10ms. Each function
randomly reads two keys and writes one key.

Results. We normalize the results by dividing the raw throughput
by the number of servers. Figure 15 includes a histogram illustrat-
ing the raw throughput and a line plot depicting the normalized
throughput. It shows that CausalMesh’s normalized throughput is
nearly constant, which means CausalMesh scales almost linearly
with respect to the number of servers. On the other hand, Causal-
Mesh-TCC reaches saturation at around 2800 request/second due

10

to increased contention. FaaSTCC experiences throughput degrada-
tion as the number of servers increases. CausalMesh-TCC achieves
1.3⇥–1.8⇥ higher throughput than FaaSTCC. Both HydroCache-
Opt and HydroCache-Con perform worse than both FaaSTCC and
CausalMesh-TCC; HydroCache does not scale to 8 servers or be-
yond because the cost of coordinating between those servers and
pulling dependencies is far too high. HydroCache-Opt performs
even worse, which is why we do not include it in the �gure.

Takeaway. Developers should use CausalMesh whenever allowed,
as it has better performance when there’s more cache servers; de-
velopers should only use CausalMesh-TCC when read transactions
across multiple serverless functions or read-write transactions are
necessary. We discuss scalability further in Section 11.

9.5 Movie Review Service
We evaluate CausalMesh’s performance on themovie review service
described in DeathStarBench [15, 20]. In this service, users create
accounts, read reviews, view the plot and cast of movies, and write
movie reviews. We use Beldi’s implementation of this app [63]
which is a V-shape work�ow of 13 serverless functions.

We evaluate a mixed workload, consisting of 50% ComposeRe-
view and 50% ReadReview. ComposeReview generates a review
for a random user and movie, and then saves the review ID to the
pro�les of both the movie and the user. ReadReview involves two
functions. First, it reads the pro�le of a movie to retrieve all associ-
ated review IDs. Then, it reads the contents of the reviews using
those IDs. It is worth noting that HydroCache-Con cannot support
this type of workload as it requires prior knowledge of the keys.

Results. Figure 16 shows that both HydroCache-Opt and FaaSTCC
start experiencing high tail latency at around 1,500 req/s. In con-
trast, CausalMesh achieves 2⇥ higher throughput while reducing
median latency by up to 10% and tail latency by up to 64% before
HydroCache-Opt and FaaSTCC become saturated. CausalMesh-
TCC achieves up to 1.35⇥ higher throughput and similar latency.

Takeaway. Both CausalMesh and CausalMesh-TCC outperform
HydroCache and FaaSTCC in throughput for real-world applica-
tions. As Causal+ consistency is su�cient for many applications,
including the movie review service above, CausalMesh signi�cantly
reduces the latency when compared to the others.

9.6 Visibility
To evaluate the visibility of CausalMesh, we use the concept of
observed inconsistency window [7]. We compute the inconsistency
window using the following steps:
(1) Create a timestamp, t1.
(2) Write to a server and save the version received from it.
(3) Create another timestamp, t2.
(4) Poll the result from the tail server until it sees the saved version.
(5) Log the elapsed time from the mean of t1 and t2.
To analyze the e�ect of the number of servers on visibility, we
vary the number of servers and record the inconsistency window.
Additionally, we calculate the marginal inconsistency window by
subtracting the inconsistency window of N servers from that of
N � 1 servers.

0
10
20
30
40
50

500 1000 1500 2000 2500 3000

CausalMesh
CausalMesh-TCC

HydroCache-Opt
FaaSTCC

P5
0
La
te
nc
y
(m
s)

0
20
40
60
80
100

500 1000 1500 2000 2500 3000P9
9
La
te
nc
y
(m
s)

Request Rate (req/s)

Figure 16: Comparison of CausalMesh, HydroCache, and
FaaSTCC in terms of median and tail response time and
throughput in a mixed workload that has contention be-
tween reads and writes.

Num Servers 3 4 5 6 7 8

Inconsistency 1259 1586 2030 2360 2799 3138Window (`s)

Marginal (`s) - 327 444 330 439 339

Figure 17: Relationship between the number of servers and
visibility, as measured by the inconsistency window [7]. Mar-
ginal inconsistencies indicate the increase in delay that the
system experiences when an additional server is added.

Results. Figure 17 shows that the marginal inconsistency window
remains stable between 300 and 450 `s, indicating that the visibility
is nearly proportional to the number of servers in the system.

Takeaway. In CausalMesh and CausalMesh-TCC, the inconsistent
window grows as the number of servers increases. CausalMesh
exhibits a signi�cantly lower inconsistency window (e.g., 3ms in
an eight-server con�guration). In contrast, HydroCache, FaaSTCC,
and other systems with background refreshing can have an in-
consistency window up to the refresh period, which is 100ms in
HydroCache and 50ms in FaaSTCC.

9.7 How CausalMesh-TCC Outperforms Others
CausalMesh-TCC’s performance advantages stem from several key
factors. Figure 12 lists the characteristics of CausalMesh, Hydro-
Cache, and FaaSTCC. One visible advantage of CausalMesh-TCC
is the absence of coordination costs, along with better data fresh-
ness. This is a crucial aspect, as delays in data visibility increase
the likelihood of missing versions when a client migrates to a new
server. Another signi�cant factor is that CausalMesh eliminates
the need for a background thread that periodically updates data, a
feature present in both HydroCache and FaaSTCC. The background
thread is used to subscribe to the underlying database and apply
new writes to the cache data structure. The new writes must be
applied atomically or in a causal order to maintain correctness, thus
creating contention with the request-serving threads of a cache
server. We managed to considerably reduce this contention by im-
plementing a double-bu�ered hash table (§8) that improved upon

11

the published designs. However, despite our e�orts, when the re-
quest rate is high, our optimized versions of prior work are still
hamstrung by signi�cant overheads.

10 RELATEDWORK
Causal consistency. There is a large body of work on causally
consistent systems [3–6, 17, 18, 36, 37, 41, 44, 53, 60, 62]. Several
systems (such as Bolt-on [5], SwiftCloud [62], and Occult [41]) have
explored the idea of reading safe but stale data to achieve causally
consistent plus (CC+) guarantees. However, these systems are not
designed to guarantee CC+ across multiple caches. They either
do not support client roaming or if one deploys them in a setting
with client roaming they must block when dependencies are not
satis�ed. As a result, they are not suitable for serverless computing
where mobility is a common case. CausalMesh, on the other hand,
is speci�cally designed to support client roaming and guarantee
CC+ across multiple caches.

Chain Reaction [4] introduces the idea of using chain replication
for causal consistency, but we have applied this concept in a di�er-
ent manner. In their single-datacenter setting, keys are sharded to
di�erent chains using consistent hashing, and reads are forwarded
to the server that holds the key. In their multi-datacenter setting,
the heads of the chains in di�erent datacenters are connected. If
the required version is missing, the request will be forwarded to
other datacenters or blocked until the version becomes available.
In contrast, CausalMesh allows a server to serve requests without
coordinating with other servers, and the chains are interleaved
(one’s head to another’s tail) rather than parallel (one’s head to
another’s head), which enables coordination-free reads.

Serverless caching.Other systems have also noted the high cost of
remote data access in serverless computing. HydroCache [59] and
FaasTCC [39] are the most closely related works. One di�erence
between CausalMesh and these works is that CausalMesh is non-
blocking and has advantages such as supporting fully dynamic
work�ows (§11), while these works must block when a speci�c
version is missing, which nulli�es many of the bene�ts of caching.
In terms of requirements, CausalMesh and HydroCache can run on
top of existing databases, whereas FaaSTCC needs the underlying
storage to assign a causal timestamp for each write, which is not
supported by most production databases.

Also related is Faa$T [47], which o�ers strong consistency but
requires validating the version at the remote storage to ensure
that the cached data is up to date, introducing high latency. Cloud-
burst [51] is a serverless platform that supports a causal cache by
using lattice data types provided by Anna KVS [57, 58] with its
custom API. Other ephemeral storage and caches, like Pocket [31],
In�niCache [55], and Locus [45] are designed for data-intensive
serverless applications like big data analytics and have no consis-
tency guarantees.

Serverless scheduling and orchestration. Finally, we note that
CausalMesh is complementary to recent work on more e�cient
scheduling for serverless computing (e.g., Ka�es [29], Fifer [22],
Pheromone [61], Unum [35], Cypress [8], Hermod [30], Palette [1],
and Caerus [64]). In particular, CausalMesh adds an extra layer to
the e�ciency of function placement that scheduling algorithms can
leverage to improve the performance of work�ow execution while

ensuring causal consistency. Integration may di�er slightly for
di�erent schedulers, but we leave a full exploration of the optimal
co-design of the end-to-end caching, instance provisioning, and
request scheduling infrastructure to future work.

11 DISCUSSION
Dynamic work�ows. Recent analyses [25, 38] show that work-
�ows and operation sets tend to be highly dynamic. For example,
consider a function that reads the value of key k1 and then uses the
value of k1 as the key for a subsequent read operation. HydroCache
cannot support this type of function. HydroCache-Con only sup-
ports static work�ows because it requires knowledge of the read set
before execution. HydroCache-Opt can support partially dynamic
work�ows, but it still requires knowledge of the read set of each
function before execution and then performs a validation phase
to check for causal violations. In contrast, both CausalMesh and
CausalMesh-TCC support arbitrary dynamic work�ows.

Metadata and garbage collection. In dependency-tracking sys-
tems, the accumulation of dependency metadata can cause system
slowdown over time. To mitigate this issue, HydroCache imple-
ments periodic garbage collection (GC) using a background consen-
sus protocol to clear the dependency metadata. In contrast, Causal-
Mesh and CausalMesh-TCC clear unnecessary metadata seamlessly
while processing requests, without the need for dedicated GC pro-
cesses. Speci�cally, In CausalMesh, dependencies are discarded
during dependency integration. In CausalMesh-TCC, C-cache is a
ring bu�er that automatically removes both old values along with
their associated dependencies when it is full.

Scale to more cache nodes. The usage of vector clocks can poten-
tially lead to performance issues if the vector clock becomes huge,
e.g., supporting over 1000 cache nodes. However, it is generally not
encountered in serverless setups where multiple workers can be
routed to the same cache server. For example, DynamoDB DAX is
designed to allow up to 11 cache nodes; CosmosDB’s Integrated
Cache allows a maximum of 5 cache nodes. Should the system go
to an extreme scale in the future and the vector clock becomes
a bottleneck, we expect to utilize a garbage collection scheme to
practically trim the vector clock, such as Dynamo did [16].

Cache eviction strategies. Cache eviction is an orthogonal prob-
lem and thus is not the focus of our work. The design of dual cache
allows it to bene�t from any eviction policies. The only additional
requirement is upon the eviction of a key, all keys that depend on
it are also evicted so that C-cache remains a cut.

12 CONCLUSION
This paper presents CausalMesh, the �rst cache system to support
coordination-free and abort-free causal read/write operations when
clients (work�ows) move from server to server. It also presents
CausalMesh-TCC that supports transactional causal consistency
within awork�ow. They enable developers to build applications that
take advantage of both the scalability of serverless computing and
the low latency of a local cache. Our evaluation shows that Causal-
Mesh(-TCC) achieves signi�cantly better performance than the
current state-of-the-art of consistent caches and is a great addition
to this ecosystem.

12

REFERENCES
[1] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose

Faleiro, Gohar Irfan Chaudhry, Inigo Goiri, Ricardo Bianchini,
Daniel S Berger, and Rodrigo Fonseca. Palette load balanc-
ing: Locality hints for serverless functions. In Proceedings of
the ACM European Conference on Computer Systems (EuroSys),
2023.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, An-
thony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-
Maria Popa. Firecracker: Lightweight virtualization for server-
less applications. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2020.

[3] Deepthi Devaki Akkoorath, Alejandro Z Tomsic, Manuel
Bravo, Zhongmiao Li, Tyler Crain, Annette Bieniusa, Nuno
Preguiça, and Marc Shapiro. Cure: Strong semantics meets
high availability and low latency. In International Conference
on Distributed Computing Systems (ICDCS), 2016.

[4] Sérgio Almeida, João Leitão, and Luís Rodrigues. Chainreac-
tion: a causal+ consistent datastore based on chain replication.
In Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2013.

[5] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica.
Bolt-on causal consistency. In Proceedings of the ACM SIGMOD
Conference (SIGMOD), 2013.

[6] Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nay-
ate, Arun Venkataramani, Praveen Yalagandula, and Jiandan
Zheng. Practi replication. In Proceedings of the USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI),
2006.

[7] David Bermbach and Stefan Tai. Eventual consistency: How
soon is eventual? an evaluation of amazon s3’s consistency
behavior. In Workshop on Middleware for Service Oriented
Computing (MW4SOC), 2011.

[8] Vivek M Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma,
Mahmut Taylan Kandemir, and Chita Das. Cypress: input
size-sensitive container provisioning and request scheduling
for serverless platforms. In Proceedings of the ACM Symposium
on Cloud Computing (SOCC), 2022.

[9] Sebastian Burckhardt, Chris Gillum, David Justo, Konstanti-
nos Kallas, Connor McMahon, and Christopher S Meiklejohn.
Durable functions: semantics for stateful serverless. Proceed-
ings of the ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA),
2021.

[10] Cloudlab. https://cloudlab.us.
[11] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,

Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick
Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s
hosted data serving platform. Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2008.

[12] cosmosdb. https://azure.microsoft.com/en-us/products/
cosmos-db/.

[13] couchbase. https://www.couchbase.com/.
[14] Dax and dynamodb consistency models. https:

//docs.aws.amazon.com/amazondynamodb/latest/
developerguide/DAX.consistency.html.

[15] DeathStarBench. https://github.com/delimitrou/
DeathStarBench/.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value store.
Proceedings of the ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2007.

[17] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy
Zwaenepoel. Orbe: Scalable causal consistency using depen-
dency matrices and physical clocks. In Proceedings of the ACM
Symposium on Cloud Computing (SOCC), 2013.

[18] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy
Zwaenepoel. Gentlerain: Cheap and scalable causal consis-
tency with physical clocks. In Proceedings of the ACM Sympo-
sium on Cloud Computing (SOCC), 2014.

[19] evmap: A lock-free, eventually consistent, concurrent multi-
value map. https://github.com/jonhoo/evmap.

[20] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal
Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken,
Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He,
Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin,
Zhongling Liu, Jake Padilla, and Christina Delimitrou. An
open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems.
In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), April 2019.

[21] grpc. https://grpc.io/.
[22] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiap-

pan C Nachiappan, Mahmut Taylan Kandemir, and Chita R
Das. Fifer: Tackling resource underutilization in the server-
less era. In Proceedings of the ACM/IFIP/USENIX International
Middleware Conference (Middleware), 2020.

[23] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Jo-
hann Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and
ChenggangWu. Serverless computing: One step forward, two
steps back. In Conference on Innovative Data Systems Research
(CIDR), 2019.

[24] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Ben-
jamin Reed. Zookeeper: Wait-free coordination for internet-
scale systems. In Proceedings of the USENIX Annual Technical
Conference (ATC), 2010.

[25] Darby Huye, Yuri Shkuro, and Raja R Sambasivan. Lifting the
veil on meta’s microservice architecture: Analyses of topology
and request work�ows. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2023.

[26] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless
computing with shared logs. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), 2021.

[27] Zhipeng Jia and Emmett Witchel. Nightcore: e�cient and scal-
able serverless computing for latency-sensitive, interactive
microservices. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2021.

13

https://cloudlab.us
https://azure.microsoft.com/en-us/products/cosmos-db/
https://azure.microsoft.com/en-us/products/cosmos-db/
https://www.couchbase.com/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.consistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.consistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.consistency.html
https://github.com/delimitrou/DeathStarBench/
https://github.com/delimitrou/DeathStarBench/
https://github.com/jonhoo/evmap
https://grpc.io/

[28] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and
Benjamin Recht. Occupy the cloud: Distributed computing
for the 99%. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC), 2017.

[29] Kostis Ka�es, Neeraja J Yadwadkar, and Christos Kozyrakis.
Centralized core-granular scheduling for serverless functions.
In Proceedings of the ACM Symposium on Cloud Computing
(SOCC), 2019.

[30] Kostis Ka�es, Neeraja J Yadwadkar, and Christos Kozyrakis.
Hermod: principled and practical scheduling for serverless
functions. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC), 2022.

[31] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi,
Jonas Pfe�erle, and Christos Kozyrakis. Pocket: Elastic
ephemeral storage for serverless analytics. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

[32] How long does AWS Lambda keep your idle functions
around before a cold start? https://acloudguru.com/blog/
engineering/how-long-does-aws-lambda-keep-your-idle-
functions-around-before-a-cold-start.

[33] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. In Communications of the ACM, 2019.

[34] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, BingSheng
He, and Minyi Guo. The serverless computing survey: A
technical primer for design architecture. ACM Computing
Surveys, 2022.

[35] David H. Liu, Shadi Noghabi, Sebastian Burckhardt, and Amit
Levy. Doing more with less: Orchestrating serverless applica-
tions without an orchestrator. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2023.

[36] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and
David G Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with cops. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP),
2011.

[37] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and
David G Andersen. Stronger semantics for low-latency geo-
replicated storage. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013.

[38] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao
Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu.
Characterizing microservice dependency and performance:
Alibaba trace analysis. In Proceedings of the ACM Symposium
on Cloud Computing (SOCC), 2021.

[39] Taras Lykhenko, Rafael Soares, and Luis Rodrigues. Faastcc:
e�cient transactional causal consistency for serverless com-
puting. In Proceedings of the ACM/IFIP/USENIX International
Middleware Conference (Middleware), 2021.

[40] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consis-
tency, availability. Technical report, and convergence. Tech-
nical Report TR-11-22, Univ. Texas at Austin, 2011.

[41] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo
Alvisi, Nathan Bronson, and Wyatt Lloyd. I can’t believe it’s
not causal! scalable causal consistency with no slowdown cas-
cades. In Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2017.
[42] mongodb. https://www.mongodb.com/.
[43] Ruoming Pang, Ramon Caceres, Mike Burrows, Zhifeng Chen,

Pratik Dave, Nathan Germer, Alexander Golynski, Kevin
Graney, Nina Kang, Lea Kissner, et al. Zanzibar: Google’s
consistent, global authorization system. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2019.

[44] Karin Petersen, Mike J Spreitzer, Douglas B Terry, Marvin M
Theimer, and Alan J Demers. Flexible update propagation
for weakly consistent replication. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 1997.

[45] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shu�ing,
fast and slow: Scalable analytics on serverless infrastructure.
In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2019.

[46] redis. https://redis.io/.
[47] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna

Gopa, Paul Batum, Neeraja J Yadwadkar, Rodrigo Fonseca,
Christos Kozyrakis, and Ricardo Bianchini. Faa$t: A trans-
parent auto-scaling cache for serverless applications. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SOCC),
2021.

[48] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandel-
wal, Joao Carreira, Neeraja J Yadwadkar, Raluca Ada Popa,
Joseph E Gonzalez, Ion Stoica, and David A Patterson. What
serverless computing is and should become: The next phase
of cloud computing. Communications of the ACM, 2021.

[49] Hossein Sha�ei, Ahmad Khonsari, and Payam Mousavi.
Serverless computing: a survey of opportunities, challenges,
and applications. ACM Computing Surveys, 2022.

[50] Mukesh Singhal and Ajay Kshemkalyani. An e�cient imple-
mentation of vector clocks. Information Processing Letters,
1992.

[51] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Jo-
hann Schleier-Smith, Joseph E Gonzalez, Joseph MHellerstein,
and Alexey Tumanov. Cloudburst: stateful functions-as-a-
service. Proceedings of the International Conference on Very
Large Data Bases (VLDB), 2020.

[52] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat, Aravind
Anbudurai, Matthew Clark, Kabir Gogia, Long Cheng, et al.
Twine: A uni�ed cluster management system for shared in-
frastructure. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2020.

[53] Misha Tyulenev, Andy Schwerin, Asya Kamsky, Randolph Tan,
Alyson Cabral, and Jack Mulrow. Implementation of cluster-
wide logical clock and causal consistency in mongodb. In
Proceedings of the ACM SIGMOD Conference (SIGMOD), 2019.

[54] Robbert Van Renesse and Fred B Schneider. Chain replication
for supporting high throughput and availability. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[55] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas
Rupprecht, Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and
Yue Cheng. In�nicache: Exploiting ephemeral serverless func-
tions to build a cost-e�ective memory cache. In Proceedings of
the USENIX Conference on File and Storage Technologies (FAST),

14

https://acloudguru.com/blog/engineering/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start
https://acloudguru.com/blog/engineering/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start
https://acloudguru.com/blog/engineering/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start
https://www.mongodb.com/
https://redis.io/

2020.
[56] wrk2: A constant throughput, correct latency recording vari-

ant of wrk. https://github.com/giltene/wrk2.
[57] Chenggang Wu, Jose M Faleiro, Yihan Lin, and Joseph M

Hellerstein. Anna: A kvs for any scale. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2019.

[58] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein.
Autoscaling tiered cloud storage in anna. Proceedings of the
International Conference on Very Large Data Bases (VLDB),
2019.

[59] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein.
Transactional causal consistency for serverless computing. In
Proceedings of the ACM SIGMOD Conference (SIGMOD), 2020.

[60] Haifeng Yu. Design and evaluation of a continuous consis-
tency model for replicated services. In Proceedings of the
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2000.

[61] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen.
Restructuring serverless computingwith data-centric function
orchestration. arXiv:2109.13492, 2021. https://arxiv.org/abs/
2109.13492.

[62] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bie-
niusa, Valter Balegas, and Marc Shapiro. Write fast, read in
the past: Causal consistency for client-side applications. In
Proceedings of the ACM/IFIP/USENIX International Middleware
Conference (Middleware), 2015.

[63] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian
Angel, and Vincent Liu. Fault-tolerant and transactional state-
ful serverless work�ows. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI),
2020.

[64] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong
Chen, and Ion Stoica. Caerus: Nimble task scheduling for
serverless analytics. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2021.

15

https://github.com/giltene/wrk2
https://arxiv.org/abs/2109.13492
https://arxiv.org/abs/2109.13492

	Abstract
	1 Introduction
	2 Background and Goals
	2.1 Serverless Architecture
	2.2 Consistency Goals
	2.3 Challenges

	3 CausalMesh Overview
	3.1 Architecture
	3.2 CC+ in CausalMesh

	4 The Dual Cache
	5 CausalMesh Protocol
	5.1 CausalMesh APIs
	5.2 Write Path
	5.3 Read Path
	5.4 Read Transactions
	5.5 Achieving Causal+ Consistency

	6 Client Library
	7 CausalMesh-TCC
	8 Implementation
	9 Evaluation
	9.1 Experimental Setup
	9.2 Micro-Benchmark
	9.3 Resource Overhead
	9.4 Effect of the Number of Caches
	9.5 Movie Review Service
	9.6 Visibility
	9.7 How CausalMesh-TCC Outperforms Others

	10 Related Work
	11 Discussion
	12 Conclusion

