


[15, 25, 29, 57] aim to learn a unified 3D space repre-

sentation using 3D anchors that are either sparsely or uni-

formly sampled. These methods generally fall into two

categories subject to the interaction of 3D anchors with

2D features and the feature aggregation strategy. (1) The

Lift-Splat-Shoot (LSS) method [14, 15, 23, 24, 45] first

lifts 2D features into 3D (pseudo-LiDAR) space using the

outer product with the estimated depth, then assigns them

to the nearest 3D anchors. (2) In contrast, the query-based

design [25, 29, 57], pioneered by the DETR method [4]

for end-to-end 2D object detection, adopts 3D anchors as

queries and uses 2D image features as keys and values.

They interact and aggregate via spatial cross-attention in

the expressive Transformer architecture [50]. These two

paradigms have been widely used in downstream tasks

like map segmentation [30] and occupancy prediction [25].

This paper primarily focuses on the query-based detection

paradigm. One reason is that LSS-based methods often

encounter excessive computational complexity and issues

with error propagation and depth estimation magnification

post-lifting, potentially capping their performance. How-

ever, the query-based design also grapples with heavy com-

putation costs or limited 3D information awareness, de-

pending on their Transformer design.

In this paper, we focus on addressing limitations of two

main paradigms of query based MV3D object detectors

in a unified way (elaborated in Sec. 3). In particular,

we introduce multi-view attentive contextualization (MvA-

Con) to address limitations of decoder-only dense attention

methods like PETR [29], which lack high-resolution fea-

tures due to computational constraints, and to simultane-

ously address the issue of sparsely grounded 3D anchors in

encoder-decoder 2D/3D deformable attention methods such

as BEVFormer [25] and DFA3D [19]. Our proposed MvA-

Con aims to be representationally dense while computation-

ally sparse. To achieve this, we expand the conventional

three-component paradigm of MV3D object detection to a

four-component setup (Fig. 2): (1) 2D image representation

learning through a feature backbone shared across views,

(2) MvACon for attentive contextualization of the 2D fea-

tures, (3) 2D-to-3D feature lifting, and (4) a 3D object de-

tection head or decoder that utilizes these lifted features.

This modular design allows our MvACon to remain agnos-

tic to specific 2D-to-3D feature lifting strategies and aligns

with the classic adage in representation learning and com-

puter vision: —‘(contextualized) feature matters’.

More specifically, our approach contextualizes original

feature maps extracted from the backbone network using

a cluster-attention operation. This builds upon the re-

cently proposed patch-to-cluster attention (PaCa) [12]. For

perspective-based decoder-only detectors like PETR, we

apply cluster contextualization before the feature maps are

fed into the decoder. For encoder-decoder based detec-

tors, such as BEVFormer and DFA3D, we incorporate clus-

ter contextualization within the spatial cross-attention op-

eration. Through extensive experiments, we demonstrate

that our proposed MvACon effectively and consistently en-

hances query-based MV3D object detectors by encoding

more useful contexts, thereby facilitating better 2D-to-3D

feature lifting. Rigorously controlled experiments reveal

that, for perspective-based decoder-only detectors, the clus-

ter attention contextualization significantly improves local-

ization and velocity prediction. In the case of encoder-

decoder based detectors, it effectively reduces errors in lo-

cation, orientation, and velocity.

In summary, our main contributions are:

• We analyze and address the limitation of 2D-to-3D fea-

ture lifting in the prior art, that is the lack of sufficient 3D

representational power due to their local 3D awareness.

• We propose MvACon (Multi-view Attentive Contextual-

ization) to induce the global 3D awareness in an easy-

to-integrate way to enhance the 2D-to-3D feature lifting

in both decoder-only based MV3D object detectors and

encoder-decoder based ones.

• We show consistent performance improvement of our

MvACon on the challenging NuScenes [3] dataset us-

ing three baseline query-based MV3D object detectors,

as well as on the Waymo-mini [11] benchmark.

2. Related Work

Camera-based 3D Object Detection. Camera-based 3D

object detection can be primarily categorized into two set-

tings: single-view and multi-view. In the realm of monoc-

ular 3D object detection research, addressing the challenge

of inaccurate object localization [37] is critical. Researchers

have exerted considerable effort to utilize monocular depth

cues. This includes transforming inputs into pseudo-lidar

point clouds [35, 36, 56] and explicitly incorporating depth

into models [8, 9, 16]. Another significant research direc-

tion involves the explicit use of geometric priors, encom-

passing approaches like key-point constraints [6, 20, 33],

shape projection relationships [22, 34, 40, 64], and tempo-

ral depth estimation [54]. Innovations in monocular 3D ob-

ject detection also include novel loss modules [7, 47, 65],

3D-aware backbones [2, 17, 18], and second-stage detec-

tion paradigms [28, 44]. In multi-view settings, the con-

figuration often closely resembles that of monocular se-

tups due to the limited field-of-view overlap between the

different camera views. Therefore, MV3D object detec-

tion focuses on addressing the challenge of learning univer-

sal representation for multi-view sensors. It has benefited

from advancements in various techniques such as view lift-

ing [5, 19, 25, 29, 45, 57], depth encoding [19, 23, 24, 46],

and temporal modeling [14, 25, 26, 30, 43, 52]. In our

multi-view approach, we aim at addressing the challenge

of multi-view representation learning with focus on en-



hancing the view lifting module within query-based detec-

tion methods by empowering original features with cluster-

based contextual features.

Representation Learning in Camera-based 3D Object

Detection. Camera-based 3D object detection is inherently

a data-intensive task due to its ill-posed nature, the expan-

sive search space in 3D, and the scarcity of labeled data

in scenes. Consequently, developing robust representations

for this task is both critical and challenging. Early research

in monocular 3D object detection has demonstrated the util-

ity of depth contexts [41, 42] and projection contexts [27]

in enhancing detection capabilities. Recent advances also

highlight the effectiveness of scene-level representations,

such as density fields [39], in improving 3D representation

learning [59]. In the domain of multi-view research, most

leading methods utilize backbones pre-trained with projec-

tion contexts (e.g., FCOS3D [53] weights) or depth con-

texts (e.g., DD3D [41] weights). However, these pre-trained

weights may not fully leverage the capabilities of newer

backbone network designs. Recent studies have begun to

explore alternatives to this pre-trained paradigm, including

the integration of an auxiliary projection context branch in

end-to-end training [60]. Our work aims to enhance net-

work representation by explicitly incorporating scene-level

cluster context as supplementary information during the

view lifting stage in query-based MV3D object detectors.

Vision Transformers. Since the pioneer work of ViT [10],

extensive research [31] has been dedicated to enhancing the

representational abilities of neural networks for visual tasks.

It has been established that CNNs and Transformers can

mutually augment each other’s capabilities, as evidenced

in designs like Transformer-enhanced CNNs [48, 58] and

CNN-enhanced Transformers [21, 49, 61]. Additionally,

a significant branch of visual Transformer research fo-

cuses on developing new attention mechanisms tailored to

the locality bias in vision tasks. Notable examples in-

clude HaloNet [51], SWin [32], Deformable Attention [67],

and VOLO [62], all introducing innovative local attention

mechanisms to mitigate the quadratic computational cost

associated with visual inputs. Concurrently, models like

TNT [13], ViL [63], PVTv2-linear [55], POTTER [66], and

PaCa [12] explore the integration of local and global con-

texts. Inspired by the progress of Vision Transformers, our

work addresses the limitations of two prevalent paradigms

in query-based MV3D detectors caused by their attention

mechanisms.

3. Approach

Given a set of images Ii ∈ R
3×H×W from N cameras with

known extrinsics Ti ∈ SE(3) and intrinsics Ki ∈ R
3×3,

MV3D object detection aims to infer the label (e.g., Car,

Pedestrian, Barrier) and the 3D bounding box for each ob-

ject instance in the scene. In this section, we first delve

into the pipeline of query-based MV3D object detection in

Sec. 3.1. We then analyze the pros and cons of the core

2D-to-3D feature lifting component in two state-of-the-art

MV3D object detection methods in Sec. 3.2. Finally, we

present our proposed MvACon in Sec. 3.3.

3.1. Query­based MV3D Object Detection

For better understanding, we explain the query-based

MV3D object detection pipeline, shown in Fig. 2, in a re-

verse manner. The 3D detection head typically builds upon

DETR3D [57], which is based on the original DETR [4].

Initially, it defines a sufficiently large number, O, of la-

tent C-dimensional 3D object queries, QO,C . These object

queries update using Keys and Values derived from multi-

view inputs, followed by a classification head predicting ob-

ject labels and a bounding box regression head determining

the 3D bounding boxes. Obviously, the key challenge lies in

how to transform / lift multi-view 2D inputs into 3D-aware

Keys and Values.

To this end, a feature backbone is trained to extract deep

2D features from the multi-view input images. The com-

plexity arises from different design choices for feature lift-

ing. It mainly involves two aspects: representation and

computation. From the representational perspective, multi-

scale feature pyramids, crucial in 2D object detection, be-

come even more essential in 3D object detection. Computa-

tionally, handling multi-view inputs is already demanding.

Adding multi-scale feature pyramids without careful opti-

mization can significantly increase the computational load.

There are two strategies in the state-of-the-art development

of query-based MV3D object detection.

Decoder-Only Architectures: Single-Scale Multi-

View 2D Features with Dense Attention. These designs

are among the most straightforward. They involves using

multi-view 2D feature maps from the last layer of the fea-

ture backbone, which are then concatenated and flattened

along the spatial dimensions to form Keys and Values. The

latent object queries, QO,C , are updated using a vanilla

Transformer (i.e., each object query attends to every 2D

location in the multi-view inputs, termed dense attention).

However, this basic approach often fails as it does not en-

code any 3D-aware information. To address this, The PETR

[29] introduces a physically-meaningful 3D position trans-

formation as positional encoding, added to the multi-view

2D feature maps before concatenation and flattening. It has

proven effective for query-based MV3D object detection, as

illustrated in Option 1 in Fig. 2).

Encoder-Decoder Architectures: Multi-Scale Multi-

View 2D Features to Latent BEV Queries with Sparse

Attention. The BEV (Bird’s Eye View) representation acts

as a unified, grid-based and ego-centric scene representa-

tion with predefined grid sizes (e.g., 200 × 200) on the XZ
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Figure 2. Overview of a query-based MV3D object detection pipeline with our proposed MvACon. Our proposed MvACon is a plug-and-

play module for two state-of-the-art query-based MV3D object detection paradigms (e.g., PETR [29] and BEVFormer [25] respectively),

which computes attentively contextualized features to facilitate better 2D-to-3D feature lifting in the two paradigms. See text for details.

plane. Geometrically, the BEV grid can be treated as a

pillar-based point-cloud representation, collapsed along the

Y-axis. A predefined number of points along the pillar (Y-

axis) direction in the BEV grid will be uniformly sampled.

These points form a uniform geometry prior for the under-

lying 3D scene and serve as BEV anchors to elevate 2D

features into the BEV space. With known camera poses,

these sampled points can be projected to each view at mul-

tiple scales. However, due to the uniform geometry prior in

the projection, the projected points require deformability to

better align with data observations. The BEVFormer [25]

addresses this by introducing a sparse deformable attention

mechanism (see Option 2 in Fig. 2). To counter the uniform

geometry prior further, it learns a small predefined num-

ber of offsets, rather than directly deforming the projected

points on each view, to lift 2D features from those deformed

points with attentive weights. Latent BEV queries are intro-

duced in learning these offsets and attentive weights. The

BEV encoder’s role is to refine the BEV queries, enabling

them to provide meaningful offsets and attentive weights

for lifting 2D features to 3D BEV anchors. Finally, embed-

ded BEV queries as Keys/Values in the 3D detection head

(i.e., decoder) update the latent object queries, QO,C , e.g.,

through sparse deformable attention as in the BEVFormer,

before predicting the 3D object detection results.

3.2. The Limitation of 2D­to­3D Feature Lifting in
the Prior Art

Although they both have shown remarkable progress for

MV3D object detection, the PETR pipeline and the BEV-

Former pipeline have a common limitation in their 2D-to-

3D feature lifting, that is the local or shallow 3D awareness,

rather than the desirable counterpart, the global and seman-

tic meaningful 3D awareness.

In the PETR pipeline, consider the 2D feature map of

the n-th view, Fn
h×w×c, where (h,w) are the spatial sizes,

height and width respectively, and c the feature dimen-

sion of the backbone. The 3D position transform converts

the (shared) camera frustum discretized as a mesh grid of

sizes (h,w,D) to the 3D space based on the known cam-

era poses, where D is the discretized depth levels. After the

conversion, each 3D point is represented by a normalized

3D coordinate in the homogeneous form, i.e., (x, y, z, 1).
So the 3D position transformation results in the positional

encoding Pn
h×w×4·D. Both Fn

h×w×c and Pn
h×w×4·D are

projected into the space of the same dimensionality, d us-

ing a linear layer and a Multi-layer Perceptron (MLP) with

the ReLU nonlinearity respectively, we have Fn
h×w×d and

Pn
h×w×d which are summed in an element-wise way. Con-

sider the latent representation of the 3D position in Pn
h×w×d

with the depth grid fused by the MLP, it is grounded to one

feature point in Fn
h×w×d, leading to the local 3D awareness.

In the BEVFormer pipeline, as we show in Fig. 1, the

projected BEV anchor is often grounded to some low-

confidence and scattered deformed points. Although the

grounding may not be spatially local, they are often seman-

tically shallow.

3.3. Our Proposed MvACon Method

Our goal is to address the local or shallow 3D awareness

stated above by introducing an easy-to-integrate (mostly

plug-and-play) module to learn the global and semantically

meaningful 3D-awareness, as illustrated in Fig. 2. The ba-

sic idea of our MvACon is to attentively contextualize the

2D features in the 2D-to-3D lifting.

In the PETR pipeline, our idea is to contextualize the

individual 2D feature map, Fn
h×w×d,

F
n
h×w×d = MvACon(Fn

h×w×d), (1)

where after the contextualization every feature point in

F
n
h×w×d can connect to the entire map Fn

h×w×d, inducing

the global 3D awareness for grounding the positional en-

coding Pn
h×w×d.

In the BEVFormer pipeline, our idea is to contextualize

the multi-scale feature maps, e.g., the l-th layer of the fea-



ture pyramid of the n-th view, F
n,l
h×w×c,

F
n,l
h×w×c = MvACon({Fn,l

h×w×c}Ll=1
), (2)

where after the contextualization every feature point in

F
n,l
h×w×c can connect to the entire L-layer feature pyra-

mid {Fn,l
h×w×c}Ll=1

, inducing the global 3D awareness for

grounding projected BEV anchors on the n-the view.

To achieve the global contextualization effect, we

adapt the recently proposed Patch-to-Cluster attention

(PaCa) [12] method. The core idea of PaCa is to leverage

a learnable clustering module to cluster a feature map into

a predefined number M of clusters. For notional simplic-

ity, consider a feature map Fh×w×c as N = h × w tokens

FN×c, the clustering assignment is computed by,

CN,M = Softmax(Clustering(FN,c)), (3)

where Clustering() can be implemented in different ways

(see our ablation studies in Tab. 6), and the Softmax is along

the token dimension. Then, we compute M clusters by,

zM,c = LN(C⊤

N,M · FN,c), (4)

where LN() is the layer normalization [1].

Then, the PaCa-based MvAcon is defined by,

F ′

N,c = Softmax(
QN,c ·K⊤

M,c√
c

) · VM,c + FN,c, (5)

where QN,c is the linear projection of FN,c, KM,c and VM,c

are from the clusters zM,c. The second term is the shortcut.

The multi-head PaCa can be straightforwardly defined. For

Eqn. 2, we concatenate the clusters from all the pyramid

layers before computing the Key and the Value. Here, the

PaCa module is of linear complexity.

4. Experiments

4.1. Experimental Setup

Dataset and Metrics We evaluate our MvAcon on the

challenging large-scale NuScenes dataset [3] and Waymo

dataset [11]. The NuScenes dataset includes 1,000 scene

sequences, which are divided into training, validation, and

testing subsets in a 700/150/150 split. Each sequence in the

NuScenes dataset is a 20-second video clip, annotated at a

rate of 2 frames per second (FPS). The NuScenes dataset

employs a comprehensive suite of evaluation metrics for

assessing detection performance. These metrics comprise

mean Average Precision (mAP), mean Average Translation

Error (mATE), mean Average Scale Error (mASE), mean

Average Orientation Error (mAOE), mean Average Velocity

Error (mAVE), mean Average Attribution Error (mAAE),

and the NuScenes Detection Score (NDS). The Waymo

dataset contains 798 training sequences and 202 validation

sequences. We use a subset of the training set (Waymo-

mini) by sampling every third frame from the training se-

quences following [25].

Implementation Details We leverage open-source code

bases (PETR [29], BEVFormer [25], and DFA3D [19]) in

our experiments. To ensure a fair and stringent compari-

son, we maintain all original configurations of these meth-

ods, making only one modification: the addition of an atten-

tive contextualization module. We conduct qualitative anal-

ysis and ablation study on the BEVFormer-base model. We

train all models for 24 epochs using 8 NVIDIA Tesla A100

GPUs, following the configurations and settings outlined in

previous works [19, 25, 29].

4.2. The Effectiveness of MvACon across Different
Methods

To demonstrate the effectiveness of our proposed MvA-

Con method, we first apply it to two typical query-based

MV3D object detection paradigms: the perspective-based

decoder-only detector (PETR [29]) and the encoder-decoder

based detector (BEVFormer [25]). We choose these as

our baselines because state-of-the-art (SOTA) query-based

MV3D detectors [19, 30, 52, 60] primarily follow these two

paradigms. We also test our method on DFA3D [19] to

demonstrate its generalizability to SOTA methods.

On the NuScenes dataset, Table 1 shows that our pro-

posed MvACon consistently improves performance across

different detectors. Specifically, for the perspective-based

decoder-only detector PETR, it improves the baseline by

0.8 NDS. For the encoder-decoder based detector BEV-

Former, our method achieves an improvement of 1.3 in NDS

on average. On a more advanced, depth-context enhanced

BEVFormer (DFA3D), our method further improves perfor-

mance by up to 0.5 NDS. Notably, our MvACon achieves

significant improvement in location (mAP, mATE), orienta-

tion (mAOE), and velocity prediction (mAVE) for encoder-

decoder based detectors. It also markedly enhances perfor-

mance in location (mAP, mATE) and velocity (mAVE) pre-

diction for the perspective-based decoder-only detector.

On the Waymo dataset, since there are few released

codes for MV3D detectors on Waymo except for the BEV-

Former, we only test BEVFormer on Waymo-mini follow-

ing its settings with results shown in Table 2. Our MvACon

shows consistent improvement on Waymo metrics.

4.3. How Does Our MvACon Work?

We elaborate on the effects of our MvACon by providing

detailed analyses during the 2D-to-3D feature lifting pro-

cess. We first demonstrate what the learned cluster con-

texts encode, then show how these contexts affect the

behavior of deformable points during feature lifting.

Lastly, we illustrate how our MvACon improves detec-

tion results by presenting a qualitative comparison within

a scene. We select BEVFormer-base as our analysis target

due to its incorporation of six layers of deformable atten-

tion modules in the encoder. More qualitative analysis is

provided in the supplementary materials.

What do the Learned Cluster Contexts Encode? We vi-



Method mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
PETR-VovNet-99 [29] 37.8 74.6 27.2 48.8 90.6 21.2 42.6

PETR-VovNet-99-MvACon 38.2 (+0.5) 73.9 27.0 50.5 84.1 21.3 43.4 (+0.8)

BEVFormer-t [25] 25.2 90.0 29.4 65.5 65.7 21.6 35.4

BEVFormer-t-MvACon 25.9 (+0.7) 88.4 28.8 64.6 60.5 22.5 36.5 (+1.1)

BEVFormer-s [25] 37.0 72.1 28.0 40.7 43.6 22.0 47.9

BEVFormer-s-MvACon 39.3 (+2.3) 71.3 27.7 40.1 42.0 19.7 49.6 (+1.7)

BEVFormer-b [25] 41.6 67.3 27.4 37.2 39.4 19.8 51.7

BEVFormer-b-MvACon 42.6 (+1.0) 66.4 27.6 35.0 36.2 20.0 52.8 (+1.1)

DFA3D-s [19] 40.1 72.1 27.9 41.1 39.1 19.6 50.1

DFA3D-s-MvACon 40.1 71.0 27.4 38.3 37.2 20.8 50.6 (+0.5)

DFA3D-b [19] 43.0 65.4 27.1 37.4 34.1 20.5 53.1

DFA3D-b-MvACon 43.2 (+0.2) 66.4 27.5 34.4 32.3 20.7 53.5 (+0.4)

Table 1. Comparisons of our method with baselines on the NuScenes validation set. BEVFormer-t/s/b refers to BEVFormer-tiny/small/base

in the BEVFormer’s open-source codes. ’DFA3D’ refers to the adaptation of 2D deformable attention into a (depth-weighted) 3D de-

formable attention within the BEVFormer model, as adopted in [19].

Figure 3. Visualization results of learned cluster contexts in our MvACon on the NuScenes validation set. We sum all the learned clusters

along the channel and upsample it to the original image resolution through bilinear interpolation. We observed that the learned cluster

context encodes abundant context information in the scene. We provide details with raw images in the supplementary.

Method LET-mAPL↑ LET-mAPH↑
BEVFormer-ResNet101 [25] 34.9 46.3

BEVFormer-ResNet101-MvACon 35.7 (+0.8) 47.5 (+1.2)

Table 2. Comparisons on the Waymo-mini.

sualize the learned cluster context in a heatmap, by sum-

ming all clusters along the channel and then upsampling to

the original image resolution using bilinear interpolation.

The results, shown in Fig. 3, reveal that despite the low

resolution of the original summed heatmap, it can accu-

rately locate foreground objects in the scene after upsam-

pling. This suggests that the cluster contexts encode the

foreground layouts in a scene. Furthermore, we note that

the upsampled heatmap shows a high response to various

foreground objects, even when they are spatially close in

2D. This is attributed to the effectiveness of our MvACon

in dense scenes, as demonstrated and analyzed later in our

experiments.

How do Cluster Contexts Affect the Behavior of De-

formable Points? We demonstrate the dynamics of de-

formable points in Fig. 4. These points originates from one

2D reference point, which is projected from a 3D BEV an-

chor point in the BEVFormer encoder. As the encoding

layers deepen in the vanilla BEVFormer, we observe that

most deformable points have low attention weights, sug-

gesting the model’s uncertainty about the relevance of the

selected context. Consequently, these contexts contribute

minimally during the encoding of BEV query features in

the feature lifting process. In contrast, deformable points

predicted by our method maintain high confidence weights

on foreground objects (e.g., cars), as well as on surrounding

buildings. We also note that points on buildings remain sta-

ble across encoding layers and consecutive frames (see the

supplementary). These high-confidence deformed points in

our MvACon may foster a local object-context aware co-

ordinate system, enhancing overall performance, including

the estimation of velocity and orientation. This observation

aligns with our quantitative findings in Table 1.

Qualitative Comparisons with the Baseline Method. We

provide qualitative comparison with BEVFormer in Fig. 5.

Our method exhibits superior performance in dense scenar-

ios where objects are crowded and challenging to localize.

We attribute this enhanced performance to the rich fore-

ground layout context in the scene, facilitated by our atten-

tive contextualization module. Additional qualitative com-

parisons are available in the supplementary.





4.4. Ablation Studies

Effectiveness of Different Contextualization Methods.

Table 3 demonstrates the impact of various contextual

methods on detection performance. We selected three

representative contexts: local shift window-based con-

text (SWin [32]), global pooling-based context (PVTV2-

linear [55]), and global cluster-based context (PaCa [12]).

The results show that the local shift window-based con-

text offers minimal improvements in detection performance,

which can be attributed to similar local contexts already

provided by convolutional backbone networks. Conversely,

enhancing the original feature with global contexts, as ob-

served in PVTV2-linear and PaCa experiments, leads to bet-

ter performance. Notably, orientation and velocity show

significant improvements with these global contexts. The

inclusion of cluster contexts further enhances improvements

in location, orientation, and velocity prediction, as evi-

denced in the global cluster experiment.

Method mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
BEVFormer-b [25] 41.6 67.3 27.4 37.2 39.4 19.8 51.7

Shift Window (SWin [32]) 41.5 (-0.1) 67.1 27.8 37.8 39.6 20.1 51.5 (-0.2)

Global Pooling (PVTV2-linear [55]) 41.6 (+0.0) 66.5 27.5 36.8 37.6 19.6 52.0 (+0.3)

Global Cluster (PaCa [12]) 42.6 (+1.0) 66.4 27.6 35.0 36.2 20.0 52.8 (+1.1)

Table 3. Ablation study on different contextualization methods.

Context mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
Local (BEVFormer-b [25]) 41.6 67.3 27.4 37.2 39.4 19.8 51.7

Global Cluster 41.6 66.4 27.4 38.3 35.1 19.5 52.1

Local + Global Cluster 42.6 (+1.0) 66.4 27.6 35.0 36.2 20.0 52.8 (+1.1)

Table 4. Ablation study on the relationship between local contexts

and global cluster-based contexts.

Method #layers #clusters Cross-level mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
BEVFormer-b [25] - - - 41.6 67.3 27.4 37.2 39.4 19.8 51.7

Baseline 1 3 100 ✓ 41.1 65.6 27.1 37.7 36.4 18.9 52.0

Baseline 2 6 50 ✓ 41.3 66.3 27.3 36.1 34.1 18.8 52.4

Baseline 3 6 100 - 42.4 66.8 27.6 37.1 36.3 19.1 52.5

MvACon 6 100 ✓ 42.6 66.4 27.6 35.0 36.2 20.0 52.8

Table 5. Ablation study on the structure of our attentive contextu-

alization module.

Clustering Method mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
BEVFormer-b [25] 41.6 67.3 27.4 37.2 39.4 19.8 51.7

Linear 41.9 65.6 27.2 38.2 34.8 19.3 52.4

MLP 42.4 66.4 27.3 38.2 35.0 19.2 52.6

Conv 42.6 66.4 27.6 35.0 36.2 20.0 52.8

Table 6. Ablation study on clustering operations in the attentive

contextualization module.

Relationship between Local Contexts and Global Clus-

ter Contexts. Table 4 reveals the relationship between local

and global cluster contexts in enhancing feature learning for

view lifting. The exclusive use of global cluster context re-

sults in improved velocity prediction, while local attention

contributes to better orientation prediction results. Combin-

ing these two contexts enhances predictions in location, ori-

entation, and velocity. This highlights the complementary

role that global cluster contexts play in feature encoding for

view lifting.

Structure of the Attentive Contextualization Module.

Table 5 shows the impact of the structure of our attentive

contextualization method. Baseline 1 demonstrates that at-

tentive contextualization can efficiently encode feature in-

formation. With only three layers, MvACon achieves an im-

provement of 0.3 NDS compared to the vanilla BEVFormer.

Baseline 2 indicates that attentive contextualization requires

a sufficient number of clusters to extract abundant cluster

contexts in the scene. Baseline 3 suggests that attending to

clusters across the feature map aids in improving orienta-

tion, velocity, and mAP prediction. Table 6 illustrates that

the convolution operation for clustering yields better results

in terms of orientation, mAP, and NDS prediction. Con-

versely, point-based operations (such as a linear layer or

multi-layer perceptron) demonstrate superior performance

in location and velocity prediction.

5. Conclusion

This paper presents Multi-View Attentive Contextualiza-

tion (MvACon) for improving query-based multi-view 3D

(MV3D) object detection. It addresses the limitations of

two main paradigms of query based MV3D object detec-

tor in a unified way: decoder-only dense attention meth-

ods like PETR, which lack high-resolution features due

to computational constraints, and encoder-decoder sparse

2D/3D deformable attention methods such as BEVFormer

and DFA3D. Our MvACon contextualizes the original fea-

ture maps extracted from the backbone network using a

cluster-attention operation built on the recently proposed

patch-to-cluster attention (PaCa). In experiments, we show

that our MvACon effectively and consistently enhances

query-based MV3D object detectors by encoding more use-

ful contexts, thereby facilitating better 2D-to-3D feature

lifting. Rigorously controlled experiments reveal that, for

decoder-only detectors, the cluster attention contextualiza-

tion significantly improves localization and velocity predic-

tion. For encoder-decoder based detectors, it effectively re-

duces errors in location, orientation, and velocity.
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Multi-View Attentive Contextualization for Multi-View 3D Object Detection

Supplementary Material

Overview

In this supplementary material, we provide more details on

the following aspects that are not presented in the main pa-

per due to space limit:

• Computation and memory cost are provided in Sec. 1.

• Supplementary qualitative results on NuScenes validation

split are provided in Sec. 2.

1. Computation and Memory Cost

Method Speed (FPS) GPU Mem (MB) #Param (M) NDS↑
PETR-VovNet-99 [29] 9.8 3638 83.07 42.6

PETR-VovNet-99-MvACon 9.6 3638 84.75 43.4 (+0.8)

BEVFormer-b [25] 3.9 6928 69.14 51.7

BEVFormer-b-MvACon-lite 3.2 6936 70.75 52.5 (+0.8)

BEVFormer-b-MvACon 3.0 11452 70.75 52.8 (+1.1)

Table 7. Efficiency and resource consumption of MvACon on

PETR and BEVFormer. MvACon-lite refers to the model without

using the concatenation of cluster contexts from all feature pyra-

mids. This will greatly reduce extra GPU memory consumption,

with only 0.3 NDS droppped compared with our full model.

Computation and memory cost of our MvACon is pro-

vided in Tab. 7. We use the parameter calculation script pro-

vided by BEVFormer’s open source codebase: https://

github.com/fundamentalvision/BEVFormer.

Our MvACon is able to improve PETR with negligible

computation cost. We tested two versions of BEVFormer-

b-MvACon: a lite version and a full model. In the lite ver-

sion, we enforce cluster attention within each feature pyra-

mid level instead of using clusters from all levels. This will

largely reduce the computation cost. It shows that our lite

version is able to improve the baseline with only 8 MB ex-

tra GPU memory cost with 0.8 NDS improvement. Using

our full model, we are able to improve the baseline with 1.1

NDS improvement. These results clearly demonstrates the

effectiveness and necessity of incorporating useful contexts

before feature lifting.

2. More Qualitative Results on NuScenes

Qualitative results for deformable points across consec-

utive frames. We visualize the deformable points across 3

consecutive frames in Fig. 6. We observe that our MvA-

Con is able to learn stable and meaningful high-response

deformable points on both cars and surrounding buildings.

Supplementary qualitative results for deformable points

in different scenes. We visualize the deformable points

in different scenes in Fig. 7 and Fig. 8. We observe that

our MvACon is able to learn meaningful high-response de-

formable points on cars and surrounding references, which

could be helpful in improving the prediction of object loca-

tion, orientation and velocity.

Supplementary qualitative comparison for detection re-

sults on NuScenes validation set. We visualize predic-

tion results on NuScenes validation set and compare it with

BEVFormer in Fig. 9, Fig. 10 and Fig. 11. We observe that

our MvACon performs better in dense scenes.

Supplementary visualization for learned cluster

heatmap We provide the detailed visualization results

of learned cluster contexts with raw images in Fig. 12.

This uses the same scene shown in Fig. 3 of our main

paper. The only difference is that we include raw images

in supplementary materials. We observe that the learned

cluster heatmap has high response on foreground contexts.
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Figure 10. Qualitative comparisons between BEVFormer and our MvACon method on NuScenes validation set.
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Figure 11. Qualitative comparisons between BEVFormer and our MvACon method on NuScenes validation set.




	. Introduction
	. Related Work
	. Approach
	. Query-based MV3D Object Detection
	. The Limitation of 2D-to-3D Feature Lifting in the Prior Art
	. Our Proposed MvACon Method

	. Experiments
	. Experimental Setup
	. The Effectiveness of MvACon across Different Methods
	. How Does Our MvACon Work?
	. Ablation Studies

	. Conclusion
	. Computation and Memory Cost
	. More Qualitative Results on NuScenes

