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Abstract

We present Multi-View Attentive Contextualization
(MvACon), a simple yet effective method for improving 2D-
to-3D feature lifting in query-based multi-view 3D (MV3D)
object detection. Despite remarkable progress witnessed
in the field of query-based MV3D object detection, prior
art often suffers from either the lack of exploiting high-
resolution 2D features in dense attention-based lifting, due
to high computational costs, or from insufficiently dense
grounding of 3D queries to multi-scale 2D features in
sparse attention-based lifting. Our proposed MvACon hits
the two birds with one stone using a representationally
dense yet computationally sparse attentive feature contex-
tualization scheme that is agnostic to specific 2D-to-3D fea-
ture lifting approaches. In experiments, the proposed MvA-
Con is thoroughly tested on the nuScenes benchmark, using
both the BEVFormer and its recent 3D deformable attention
(DFA3D) variant, as well as the PETR, showing consistent
detection performance improvement, especially in enhanc-
ing performance in location, orientation, and velocity pre-
diction. It is also tested on the Waymo-mini benchmark us-
ing BEVFormer with similar improvement. We qualitatively
and quantitatively show that global cluster-based contexts
effectively encode dense scene-level contexts for MV3D ob-
ject detection. The promising results of our proposed MvA-
Con reinforces the adage in computer vision — “(contextu-
alized) feature matters”.

1. Introduction

Camera-based 3D object detection is a pivotal area of re-
search in computer vision, particularly owing to its appeal-
ing applications in cost-effective autonomous systems, such
as autonomous driving and robot autonomy. Recently, sig-
nificant progress has been witnessed in the field of multi-
view 3D (MV3D) object detection, especially with the ad-
vent of end-to-end MV3D detection approaches [38]. One
crucial component in the end-to-end MV3D detection sys-
tem is the 2D-to-3D feature lifting module, which converts
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Figure 1. The effects of our proposed MvACon in the 2D-to-3D
feature lifting. Consider a point (red) on the car in (a), which is
projected from a 3D BEV anchor point. In lifting 2D features to
ground the 3D BEV anchor point, vanilla BEVFormer [25] utilizes
a predefined number of deformable points, with offsets learned
through a 6-layer cross-attention module relative to the projec-
tion point. (b) shows the deformed points after the final cross-
attention layer, most of which have low attention weights, indi-
cating the model’s uncertainty or inability to consolidate contri-
butions effectively for good lifting. Our MvACon tackles this is-
sue with clustering-based attention, as visualized in (c). (d) shows
the deformed points, where we observe not only high-confidence
points on the car but also on the building. We further observe
that the points on the building remain stable across encoding lay-
ers (see Fig. 4) and consecutive frames (see suppl.). With those
high-confident deformed points in a spatiotemporally stable con-
figuration, our MvACon may induce a local object-context aware
coordinate system that helps the overall performance, especially
the estimation of velocity and orientation, as we quantitatively ob-
served in experiments. See text for details.

perspective 2D multi-view image feature maps to 3D fea-
ture representation. It aims to counter the complete loss
of depth information in individual 2D images by exploiting
multi-view clues. However, a significant challenge in prac-
tical applications like autonomous driving is the often in-
sufficient field-of-view overlap across views, making it dif-
ficult to effectively address the loss of depth information.
To perform 2D-to-3D feature lifting, recent methods



[15, 25, 29, 57] aim to learn a unified 3D space repre-
sentation using 3D anchors that are either sparsely or uni-
formly sampled. These methods generally fall into two
categories subject to the interaction of 3D anchors with
2D features and the feature aggregation strategy. (1) The
Lift-Splat-Shoot (LSS) method [14, 15, 23, 24, 45] first
lifts 2D features into 3D (pseudo-LiDAR) space using the
outer product with the estimated depth, then assigns them
to the nearest 3D anchors. (2) In contrast, the query-based
design [25, 29, 57], pioneered by the DETR method [4]
for end-to-end 2D object detection, adopts 3D anchors as
queries and uses 2D image features as keys and values.
They interact and aggregate via spatial cross-attention in
the expressive Transformer architecture [50]. These two
paradigms have been widely used in downstream tasks
like map segmentation [30] and occupancy prediction [25].
This paper primarily focuses on the query-based detection
paradigm. One reason is that LSS-based methods often
encounter excessive computational complexity and issues
with error propagation and depth estimation magnification
post-lifting, potentially capping their performance. How-
ever, the query-based design also grapples with heavy com-
putation costs or limited 3D information awareness, de-
pending on their Transformer design.

In this paper, we focus on addressing limitations of two
main paradigms of query based MV3D object detectors
in a unified way (elaborated in Sec. 3). In particular,
we introduce multi-view attentive contextualization (MvVA-
Con) to address limitations of decoder-only dense attention
methods like PETR [29], which lack high-resolution fea-
tures due to computational constraints, and to simultane-
ously address the issue of sparsely grounded 3D anchors in
encoder-decoder 2D/3D deformable attention methods such
as BEVFormer [25] and DFA3D [19]. Our proposed MvA-
Con aims to be representationally dense while computation-
ally sparse. To achieve this, we expand the conventional
three-component paradigm of MV3D object detection to a
four-component setup (Fig. 2): (1) 2D image representation
learning through a feature backbone shared across views,
(2) MvACon for attentive contextualization of the 2D fea-
tures, (3) 2D-to-3D feature lifting, and (4) a 3D object de-
tection head or decoder that utilizes these lifted features.
This modular design allows our MvACon to remain agnos-
tic to specific 2D-to-3D feature lifting strategies and aligns
with the classic adage in representation learning and com-
puter vision: —‘(contextualized) feature matters’.

More specifically, our approach contextualizes original
feature maps extracted from the backbone network using
a cluster-attention operation. This builds upon the re-
cently proposed patch-to-cluster attention (PaCa) [12]. For
perspective-based decoder-only detectors like PETR, we
apply cluster contextualization before the feature maps are
fed into the decoder. For encoder-decoder based detec-

tors, such as BEVFormer and DFA3D, we incorporate clus-

ter contextualization within the spatial cross-attention op-

eration. Through extensive experiments, we demonstrate
that our proposed MvACon effectively and consistently en-
hances query-based MV3D object detectors by encoding
more useful contexts, thereby facilitating better 2D-to-3D
feature lifting. Rigorously controlled experiments reveal
that, for perspective-based decoder-only detectors, the clus-
ter attention contextualization significantly improves local-
ization and velocity prediction. In the case of encoder-
decoder based detectors, it effectively reduces errors in lo-
cation, orientation, and velocity.

In summary, our main contributions are:

* We analyze and address the limitation of 2D-to-3D fea-
ture lifting in the prior art, that is the lack of sufficient 3D
representational power due to their local 3D awareness.

* We propose MvACon (Multi-view Attentive Contextual-
ization) to induce the global 3D awareness in an easy-
to-integrate way to enhance the 2D-to-3D feature lifting
in both decoder-only based MV3D object detectors and
encoder-decoder based ones.

* We show consistent performance improvement of our
MvACon on the challenging NuScenes [3] dataset us-
ing three baseline query-based MV3D object detectors,
as well as on the Waymo-mini [1 1] benchmark.

2. Related Work

Camera-based 3D Object Detection. Camera-based 3D
object detection can be primarily categorized into two set-
tings: single-view and multi-view. In the realm of monoc-
ular 3D object detection research, addressing the challenge
of inaccurate object localization [37] is critical. Researchers
have exerted considerable effort to utilize monocular depth
cues. This includes transforming inputs into pseudo-lidar
point clouds [35, 36, 56] and explicitly incorporating depth
into models [8, 9, 16]. Another significant research direc-
tion involves the explicit use of geometric priors, encom-
passing approaches like key-point constraints [6, 20, 33],
shape projection relationships [22, 34, 40, 64], and tempo-
ral depth estimation [54]. Innovations in monocular 3D ob-
ject detection also include novel loss modules [7, 47, 65],
3D-aware backbones [2, 17, 18], and second-stage detec-
tion paradigms [28, 44]. In multi-view settings, the con-
figuration often closely resembles that of monocular se-
tups due to the limited field-of-view overlap between the
different camera views. Therefore, MV3D object detec-
tion focuses on addressing the challenge of learning univer-
sal representation for multi-view sensors. It has benefited
from advancements in various techniques such as view lift-
ing [5, 19, 25, 29, 45, 57], depth encoding [19, 23, 24, 46],
and temporal modeling [14, 25, 26, 30, 43, 52]. In our
multi-view approach, we aim at addressing the challenge
of multi-view representation learning with focus on en-



hancing the view lifting module within query-based detec-
tion methods by empowering original features with cluster-
based contextual features.

Representation Learning in Camera-based 3D Object
Detection. Camera-based 3D object detection is inherently
a data-intensive task due to its ill-posed nature, the expan-
sive search space in 3D, and the scarcity of labeled data
in scenes. Consequently, developing robust representations
for this task is both critical and challenging. Early research
in monocular 3D object detection has demonstrated the util-
ity of depth contexts [41, 42] and projection contexts [27]
in enhancing detection capabilities. Recent advances also
highlight the effectiveness of scene-level representations,
such as density fields [39], in improving 3D representation
learning [59]. In the domain of multi-view research, most
leading methods utilize backbones pre-trained with projec-
tion contexts (e.g., FCOS3D [53] weights) or depth con-
texts (e.g., DD3D [41] weights). However, these pre-trained
weights may not fully leverage the capabilities of newer
backbone network designs. Recent studies have begun to
explore alternatives to this pre-trained paradigm, including
the integration of an auxiliary projection context branch in
end-to-end training [60]. Our work aims to enhance net-
work representation by explicitly incorporating scene-level
cluster context as supplementary information during the
view lifting stage in query-based MV3D object detectors.

Vision Transformers. Since the pioneer work of ViT [10],
extensive research [31] has been dedicated to enhancing the
representational abilities of neural networks for visual tasks.
It has been established that CNNs and Transformers can
mutually augment each other’s capabilities, as evidenced
in designs like Transformer-enhanced CNNs [48, 58] and
CNN-enhanced Transformers [21, 49, 61]. Additionally,
a significant branch of visual Transformer research fo-
cuses on developing new attention mechanisms tailored to
the locality bias in vision tasks. Notable examples in-
clude HaloNet [51], SWin [32], Deformable Attention [67],
and VOLO [62], all introducing innovative local attention
mechanisms to mitigate the quadratic computational cost
associated with visual inputs. Concurrently, models like
TNT [13], ViL [63], PVTv2-linear [55], POTTER [66], and
PaCa [12] explore the integration of local and global con-
texts. Inspired by the progress of Vision Transformers, our
work addresses the limitations of two prevalent paradigms
in query-based MV3D detectors caused by their attention
mechanisms.

3. Approach

Given a set of images I; € R3*H*W from N cameras with
known extrinsics 7; € SE(3) and intrinsics K; € R3*3,
MV3D object detection aims to infer the label (e.g., Car,
Pedestrian, Barrier) and the 3D bounding box for each ob-

ject instance in the scene. In this section, we first delve
into the pipeline of query-based MV3D object detection in
Sec. 3.1. We then analyze the pros and cons of the core
2D-to-3D feature lifting component in two state-of-the-art
MV3D object detection methods in Sec. 3.2. Finally, we
present our proposed MvACon in Sec. 3.3.

3.1. Query-based MV3D Object Detection

For better understanding, we explain the query-based
MV3D object detection pipeline, shown in Fig. 2, in a re-
verse manner. The 3D detection head typically builds upon
DETR3D [57], which is based on the original DETR [4].
Initially, it defines a sufficiently large number, O, of la-
tent C-dimensional 3D object queries, Qo,c. These object
queries update using Keys and Values derived from multi-
view inputs, followed by a classification head predicting ob-
ject labels and a bounding box regression head determining
the 3D bounding boxes. Obviously, the key challenge lies in
how to transform / lift multi-view 2D inputs into 3D-aware
Keys and Values.

To this end, a feature backbone is trained to extract deep
2D features from the multi-view input images. The com-
plexity arises from different design choices for feature lift-
ing. It mainly involves two aspects: representation and
computation. From the representational perspective, multi-
scale feature pyramids, crucial in 2D object detection, be-
come even more essential in 3D object detection. Computa-
tionally, handling multi-view inputs is already demanding.
Adding multi-scale feature pyramids without careful opti-
mization can significantly increase the computational load.
There are two strategies in the state-of-the-art development
of query-based MV3D object detection.

Decoder-Only Architectures: Single-Scale Multi-
View 2D Features with Dense Attention. These designs
are among the most straightforward. They involves using
multi-view 2D feature maps from the last layer of the fea-
ture backbone, which are then concatenated and flattened
along the spatial dimensions to form Keys and Values. The
latent object queries, ()o ¢, are updated using a vanilla
Transformer (i.e., each object query attends to every 2D
location in the multi-view inputs, termed dense attention).
However, this basic approach often fails as it does not en-
code any 3D-aware information. To address this, The PETR
[29] introduces a physically-meaningful 3D position trans-
formation as positional encoding, added to the multi-view
2D feature maps before concatenation and flattening. It has
proven effective for query-based MV3D object detection, as
illustrated in Option 1 in Fig. 2).

Encoder-Decoder Architectures: Multi-Scale Multi-
View 2D Features to Latent BEV Queries with Sparse
Attention. The BEV (Bird’s Eye View) representation acts
as a unified, grid-based and ego-centric scene representa-
tion with predefined grid sizes (e.g., 200 x 200) on the XZ
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Figure 2. Overview of a query-based MV3D object detection pipeline with our proposed MvACon. Our proposed MvACon is a plug-and-
play module for two state-of-the-art query-based MV3D object detection paradigms (e.g., PETR [29] and BEVFormer [25] respectively),
which computes attentively contextualized features to facilitate better 2D-to-3D feature lifting in the two paradigms. See text for details.

plane. Geometrically, the BEV grid can be treated as a
pillar-based point-cloud representation, collapsed along the
Y-axis. A predefined number of points along the pillar (Y-
axis) direction in the BEV grid will be uniformly sampled.
These points form a uniform geometry prior for the under-
lying 3D scene and serve as BEV anchors to elevate 2D
features into the BEV space. With known camera poses,
these sampled points can be projected to each view at mul-
tiple scales. However, due to the uniform geometry prior in
the projection, the projected points require deformability to
better align with data observations. The BEVFormer [25]
addresses this by introducing a sparse deformable attention
mechanism (see Option 2 in Fig. 2). To counter the uniform
geometry prior further, it learns a small predefined num-
ber of offsets, rather than directly deforming the projected
points on each view, to lift 2D features from those deformed
points with attentive weights. Latent BEV queries are intro-
duced in learning these offsets and attentive weights. The
BEV encoder’s role is to refine the BEV queries, enabling
them to provide meaningful offsets and attentive weights
for lifting 2D features to 3D BEV anchors. Finally, embed-
ded BEV queries as Keys/Values in the 3D detection head
(i.e., decoder) update the latent object queries, Qo ¢, €.g.,
through sparse deformable attention as in the BEVFormer,
before predicting the 3D object detection results.

3.2. The Limitation of 2D-to-3D Feature Lifting in
the Prior Art

Although they both have shown remarkable progress for
MV3D object detection, the PETR pipeline and the BEV-
Former pipeline have a common limitation in their 2D-to-
3D feature lifting, that is the local or shallow 3D awareness,
rather than the desirable counterpart, the global and seman-
tic meaningful 3D awareness.

In the PETR pipeline, consider the 2D feature map of
the n-th view, Fy . .., where (h,w) are the spatial sizes,
height and width respectively, and c the feature dimen-

sion of the backbone. The 3D position transform converts
the (shared) camera frustum discretized as a mesh grid of
sizes (h,w, D) to the 3D space based on the known cam-
era poses, where D is the discretized depth levels. After the
conversion, each 3D point is represented by a normalized
3D coordinate in the homogeneous form, i.e., (z,y, z, 1).
So the 3D position transformation results in the positional
encoding P, . 4.p- Both Fy  and P ., p are
projected into the space of the same dimensionality, d us-
ing a linear layer and a Multi-layer Perceptron (MLP) with
the ReLU nonlinearity respectively, we have F}’ ., and
PP .o xq Which are summed in an element-wise way. Con-
sider the latent representation of the 3D position in P, , . 4
with the depth grid fused by the MLP, it is grounded to one
feature pointin F}’, . . ., leading to the local 3D awareness.

In the BEVFormer pipeline, as we show in Fig. 1, the
projected BEV anchor is often grounded to some low-
confidence and scattered deformed points. Although the
grounding may not be spatially local, they are often seman-
tically shallow.

3.3. Our Proposed MvACon Method

Our goal is to address the local or shallow 3D awareness
stated above by introducing an easy-to-integrate (mostly
plug-and-play) module to learn the global and semantically
meaningful 3D-awareness, as illustrated in Fig. 2. The ba-
sic idea of our MvACon is to attentively contextualize the
2D features in the 2D-to-3D lifting.
In the PETR pipeline, our idea is to contextualize the
individual 2D feature map, F}’, , . 4
hxwxd :MVACOH(F}:LXde)’ 1
where after the contextualization every feature point in
F} . . xq can connect to the entire map Fj', , . ;, inducing
the global 3D awareness for grounding the positional en-
coding P} .« 4-
In the BEVFormer pipeline, our idea is to contextualize
the multi-scale feature maps, e.g., the [-th layer of the fea-



ture pyramid of the n-th view, F/'
Fn,l

n,l L
hxwXc :MVACOH({FthXC}l:1>7 (2)
where after the contextualization every feature point in

FZXZ wxe can connect to the entire L-layer feature pyra-

mid {F] [&lwm}f:l, inducing the global 3D awareness for
grounding projected BEV anchors on the n-the view.

To achieve the global contextualization effect, we
adapt the recently proposed Patch-to-Cluster attention
(PaCa) [12] method. The core idea of PaCa is to leverage
a learnable clustering module to cluster a feature map into
a predefined number M of clusters. For notional simplic-
ity, consider a feature map Fjxyx. as N = h X w tokens
Fn ., the clustering assignment is computed by,

Cn,m = Softmax(Clustering(F..)), 3)
where Clustering() can be implemented in different ways
(see our ablation studies in Tab. 6), and the Softmax is along
the token dimension. Then, we compute M clusters by,

Zre = LN(Cx ar - Five)s 4)
where LN() is the layer normalization [1].

Then, the PaCa-based MvAcon is defined by,

QN ¢’ K ]\—5[7c % F 5
T) Ve + Fne, (O)
where (v . is the linear projection of Fiy ¢, K c and Vi ¢
are from the clusters z,s,.. The second term is the shortcut.
The multi-head PaCa can be straightforwardly defined. For
Eqgn. 2, we concatenate the clusters from all the pyramid
layers before computing the Key and the Value. Here, the
PaCa module is of linear complexity.

Fy . = Softmax(

4. Experiments
4.1. Experimental Setup

Dataset and Metrics We evaluate our MvAcon on the
challenging large-scale NuScenes dataset [3] and Waymo
dataset [11]. The NuScenes dataset includes 1,000 scene
sequences, which are divided into training, validation, and
testing subsets in a 700/150/150 split. Each sequence in the
NuScenes dataset is a 20-second video clip, annotated at a
rate of 2 frames per second (FPS). The NuScenes dataset
employs a comprehensive suite of evaluation metrics for
assessing detection performance. These metrics comprise
mean Average Precision (mAP), mean Average Translation
Error (mATE), mean Average Scale Error (mASE), mean
Average Orientation Error (mAOE), mean Average Velocity
Error (mAVE), mean Average Attribution Error (mAAE),
and the NuScenes Detection Score (NDS). The Waymo
dataset contains 798 training sequences and 202 validation
sequences. We use a subset of the training set (Waymo-
mini) by sampling every third frame from the training se-
quences following [25].

Implementation Details We leverage open-source code
bases (PETR [29], BEVFormer [25], and DFA3D [19]) in

our experiments. To ensure a fair and stringent compari-
son, we maintain all original configurations of these meth-
ods, making only one modification: the addition of an atten-
tive contextualization module. We conduct qualitative anal-
ysis and ablation study on the BEVFormer-base model. We
train all models for 24 epochs using 8 NVIDIA Tesla A100
GPUs, following the configurations and settings outlined in
previous works [19, 25, 29].

4.2. The Effectiveness of MvACon across Different
Methods

To demonstrate the effectiveness of our proposed MvA-
Con method, we first apply it to two typical query-based
MV3D object detection paradigms: the perspective-based
decoder-only detector (PETR [29]) and the encoder-decoder
based detector (BEVFormer [25]). We choose these as
our baselines because state-of-the-art (SOTA) query-based
MV3D detectors [19, 30, 52, 60] primarily follow these two
paradigms. We also test our method on DFA3D [19] to
demonstrate its generalizability to SOTA methods.

On the NuScenes dataset, Table 1 shows that our pro-
posed MvACon consistently improves performance across
different detectors. Specifically, for the perspective-based
decoder-only detector PETR, it improves the baseline by
0.8 NDS. For the encoder-decoder based detector BEV-
Former, our method achieves an improvement of 1.3 in NDS
on average. On a more advanced, depth-context enhanced
BEVFormer (DFA3D), our method further improves perfor-
mance by up to 0.5 NDS. Notably, our MvACon achieves
significant improvement in location (mAP, mATE), orienta-
tion (mAOE), and velocity prediction (mAVE) for encoder-
decoder based detectors. It also markedly enhances perfor-
mance in location (mAP, mATE) and velocity (mAVE) pre-
diction for the perspective-based decoder-only detector.

On the Waymo dataset, since there are few released
codes for MV3D detectors on Waymo except for the BEV-
Former, we only test BEVFormer on Waymo-mini follow-
ing its settings with results shown in Table 2. Our MvACon
shows consistent improvement on Waymo metrics.

4.3. How Does Our MvACon Work?

We elaborate on the effects of our MvACon by providing
detailed analyses during the 2D-to-3D feature lifting pro-
cess. We first demonstrate what the learned cluster con-
texts encode, then show how these contexts affect the
behavior of deformable points during feature lifting.
Lastly, we illustrate how our MvACon improves detec-
tion results by presenting a qualitative comparison within
a scene. We select BEVFormer-base as our analysis target
due to its incorporation of six layers of deformable atten-
tion modules in the encoder. More qualitative analysis is
provided in the supplementary materials.

What do the Learned Cluster Contexts Encode? We vi-



Method ‘ mAP? ‘ mATE, mASE| mAOE| mAVE| mAAE]| ‘ NDSt
PETR-VovNet-99 [29] 37.8 74.6 27.2 48.8 90.6 21.2 42.6
PETR-VovNet-99-MvACon | 38.2 (+0.5) 73.9 27.0 50.5 84.1 21.3 43.4 (+0.8)
BEVFormer-t [25] 25.2 90.0 29.4 65.5 65.7 21.6 354
BEVFormer-t-MvACon 25.9 (+0.7) 88.4 28.8 64.6 60.5 22.5 36.5 (+1.1)
BEVFormer-s [25] 37.0 72.1 28.0 40.7 43.6 22.0 47.9
BEVFormer-s-MvACon 39.3 (+2.3) 71.3 27.7 40.1 42.0 19.7 49.6 (+1.7)
BEVFormer-b [25] 41.6 67.3 274 37.2 39.4 19.8 51.7
BEVFormer-b-MvACon 42.6 (+1.0) 66.4 27.6 35.0 36.2 20.0 52.8 (+1.1)
DFA3D-s [19] 40.1 72.1 27.9 41.1 39.1 19.6 50.1
DFA3D-s-MvACon 40.1 71.0 274 38.3 37.2 20.8 50.6 (+0.5)
DFA3D-b [19] 43.0 65.4 27.1 374 34.1 20.5 53.1
DFA3D-b-MvACon 43.2 (+0.2) 66.4 27.5 34.4 323 20.7 53.5 (+0.4)

Table 1. Comparisons of our method with baselines on the NuScenes validation set. BEVFormer-t/s/b refers to BEVFormer-tiny/small/base
in the BEVFormer’s open-source codes. 'DFA3D’ refers to the adaptation of 2D deformable attention into a (depth-weighted) 3D de-

formable attention within the BEVFormer model, as adopted in [19].

Figure 3. Visualization results of learned cluster contexts in our MvACon on the NuScenes validation set. We sum all the learned clusters
along the channel and upsample it to the original image resolution through bilinear interpolation. We observed that the learned cluster
context encodes abundant context information in the scene. We provide details with raw images in the supplementary.

Method | LET-mAPL? LET-mAPH{
BEVFormer-ResNet101 [25] | 34.9 46.3
BEVFormer-ResNet101-MvACon | 35.7 (+0.8) 47.5 (+1.2)

Table 2. Comparisons on the Waymo-mini.

sualize the learned cluster context in a heatmap, by sum-
ming all clusters along the channel and then upsampling to
the original image resolution using bilinear interpolation.
The results, shown in Fig. 3, reveal that despite the low
resolution of the original summed heatmap, it can accu-
rately locate foreground objects in the scene after upsam-
pling. This suggests that the cluster contexts encode the
foreground layouts in a scene. Furthermore, we note that
the upsampled heatmap shows a high response to various
foreground objects, even when they are spatially close in
2D. This is attributed to the effectiveness of our MvACon
in dense scenes, as demonstrated and analyzed later in our
experiments.

How do Cluster Contexts Affect the Behavior of De-
formable Points? We demonstrate the dynamics of de-
formable points in Fig. 4. These points originates from one
2D reference point, which is projected from a 3D BEV an-
chor point in the BEVFormer encoder. As the encoding

layers deepen in the vanilla BEVFormer, we observe that
most deformable points have low attention weights, sug-
gesting the model’s uncertainty about the relevance of the
selected context. Consequently, these contexts contribute
minimally during the encoding of BEV query features in
the feature lifting process. In contrast, deformable points
predicted by our method maintain high confidence weights
on foreground objects (e.g., cars), as well as on surrounding
buildings. We also note that points on buildings remain sta-
ble across encoding layers and consecutive frames (see the
supplementary). These high-confidence deformed points in
our MvACon may foster a local object-context aware co-
ordinate system, enhancing overall performance, including
the estimation of velocity and orientation. This observation
aligns with our quantitative findings in Table 1.

Qualitative Comparisons with the Baseline Method. We
provide qualitative comparison with BEVFormer in Fig. 5.
Our method exhibits superior performance in dense scenar-
ios where objects are crowded and challenging to localize.
We attribute this enhanced performance to the rich fore-
ground layout context in the scene, facilitated by our atten-
tive contextualization module. Additional qualitative com-
parisons are available in the supplementary.
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Visualization results of the deformable points originating from a 2D reference point, which is projected from a 3D BEV anchor

point in the BEVFormer encoder, on NuScenes validation set. We utilize the same BEV anchor point as demonstrated in Fig. 1. From left
to right and up to bottom, we display the deformable points output from each layer (#1-#6) in the encoder, respectively.
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Figure 5. Qualitative comparisons between BEVFormer and our MvACon method on NuScenes validation set.



4.4. Ablation Studies

Effectiveness of Different Contextualization Methods.
Table 3 demonstrates the impact of various contextual
methods on detection performance. We selected three
representative contexts: local shift window-based con-
text (SWin [32]), global pooling-based context (PVTV2-
linear [55]), and global cluster-based context (PaCa [12]).
The results show that the local shift window-based con-
text offers minimal improvements in detection performance,
which can be attributed to similar local contexts already
provided by convolutional backbone networks. Conversely,
enhancing the original feature with global contexts, as ob-
served in PVTV2-linear and PaCa experiments, leads to bet-
ter performance. Notably, orientation and velocity show
significant improvements with these global contexts. The
inclusion of cluster contexts further enhances improvements
in location, orientation, and velocity prediction, as evi-
denced in the global cluster experiment.

Method | mAPt | mATE| mASE| mAOE| mAVE, mAAE|| NDSt
BEVFormer-b [25] 41.6 67.3 274 37.2 39.4 19.8 517
Shift Window (SWin [32]) 41501 | 671 27.8 37.8 39.6 201 | 515(0.2)
Global Pooling (PVTV2-linear [55]) | 41.6 (+0.0) | 66.5 275 36.8 37.6 19.6 | 52.0(+03)
Global Cluster (PaCa [12]) 426 (+1.0) | 66.4 27.6 350 36.2 200 | 52.8 (+1.1)

Table 3. Ablation study on different contextualization methods.

Context | mAPT | mATE, mASE, mAOE, mAVE, mAAE|| NDS?
Local (BEVFormer-b [25]) | 416 | 673 274 372 394 198 | 517

Global Cluster 41.6 66.4 27.4 38.3 35.1 19.5 52.1
Local + Global Cluster 42.6 (+1.0) 66.4 27.6 35.0 36.2 20.0 52.8 (+1.1)

Table 4. Ablation study on the relationship between local contexts
and global cluster-based contexts.

Method #layers #clusters  Cross-level | mAP | mATE, mASE, mAOE, mAVE, mAAE| | NDS{
BEVFormer-b [25] - - - 41.6 673 274 372 394 19.8 51.7
Baseline | 3 100 v 411 | 656 27.1 377 364 189 | 520
Baseline 2 6 50 v 413 | 663 273 36.1 341 188 | 524
Bascline 3 6 100 - 424 | 668 276 371 363 19.0 | 525
MvACon 6 100 v 426 | 664 27.6 350 362 200 | 528

Table 5. Ablation study on the structure of our attentive contextu-
alization module.

Clustering Method | mAP | mATE| mASE| mAOE| mAVE| mAAE| | NDSt

BEVFormer-b [25] | 41.6 | 673 274 372 39.4 198 | 517
Linear 419 | 656 27.2 38.2 348 193 | 524
MLP 424 | 664 27.3 382 35.0 192 | 526
Cony 426 | 664 27.6 35.0 36.2 200 | 528

Table 6. Ablation study on clustering operations in the attentive
contextualization module.

Relationship between Local Contexts and Global Clus-
ter Contexts. Table 4 reveals the relationship between local
and global cluster contexts in enhancing feature learning for
view lifting. The exclusive use of global cluster context re-
sults in improved velocity prediction, while local attention
contributes to better orientation prediction results. Combin-
ing these two contexts enhances predictions in location, ori-
entation, and velocity. This highlights the complementary
role that global cluster contexts play in feature encoding for
view lifting.

Structure of the Attentive Contextualization Module.
Table 5 shows the impact of the structure of our attentive
contextualization method. Baseline 1 demonstrates that at-
tentive contextualization can efficiently encode feature in-
formation. With only three layers, MvACon achieves an im-
provement of 0.3 NDS compared to the vanilla BEVFormer.
Baseline 2 indicates that attentive contextualization requires
a sufficient number of clusters to extract abundant cluster
contexts in the scene. Baseline 3 suggests that attending to
clusters across the feature map aids in improving orienta-
tion, velocity, and mAP prediction. Table 6 illustrates that
the convolution operation for clustering yields better results
in terms of orientation, mAP, and NDS prediction. Con-
versely, point-based operations (such as a linear layer or
multi-layer perceptron) demonstrate superior performance
in location and velocity prediction.

5. Conclusion

This paper presents Multi-View Attentive Contextualiza-
tion (MvACon) for improving query-based multi-view 3D
(MV3D) object detection. It addresses the limitations of
two main paradigms of query based MV3D object detec-
tor in a unified way: decoder-only dense attention meth-
ods like PETR, which lack high-resolution features due
to computational constraints, and encoder-decoder sparse
2D/3D deformable attention methods such as BEVFormer
and DFA3D. Our MvACon contextualizes the original fea-
ture maps extracted from the backbone network using a
cluster-attention operation built on the recently proposed
patch-to-cluster attention (PaCa). In experiments, we show
that our MvACon effectively and consistently enhances
query-based MV3D object detectors by encoding more use-
ful contexts, thereby facilitating better 2D-to-3D feature
lifting. Rigorously controlled experiments reveal that, for
decoder-only detectors, the cluster attention contextualiza-
tion significantly improves localization and velocity predic-
tion. For encoder-decoder based detectors, it effectively re-
duces errors in location, orientation, and velocity.
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Multi-View Attentive Contextualization for Multi-View 3D Object Detection

Supplementary Material

Overview

In this supplementary material, we provide more details on

the following aspects that are not presented in the main pa-

per due to space limit:

* Computation and memory cost are provided in Sec. 1.

* Supplementary qualitative results on NuScenes validation
split are provided in Sec. 2.

1. Computation and Memory Cost

Method | Speed (FPS) GPU Mem (MB) #Param (M) | NDS
PETR-VovNet-99 [29] 9.8 3638 83.07 426
PETR-VovNet-99-MvACon 9.6 3638 8475 | 434(+0.8)
BEVFormer-b [25] 39 6928 69.14 517
BEVFormer-b-MvACon-lite 32 6936 7075 | 525(+0.8)
BEVFormer-b-MvACon 3.0 11452 7075 | 528 (+L1)

Table 7. Efficiency and resource consumption of MvACon on
PETR and BEVFormer. MvACon-lite refers to the model without
using the concatenation of cluster contexts from all feature pyra-
mids. This will greatly reduce extra GPU memory consumption,
with only 0.3 NDS droppped compared with our full model.

Computation and memory cost of our MvACon is pro-
vided in Tab. 7. We use the parameter calculation script pro-
vided by BEVFormer’s open source codebase: https://
github.com/fundamentalvision/BEVFormer.

Our MvACon is able to improve PETR with negligible
computation cost. We tested two versions of BEVFormer-
b-MvACon: a lite version and a full model. In the lite ver-
sion, we enforce cluster attention within each feature pyra-
mid level instead of using clusters from all levels. This will
largely reduce the computation cost. It shows that our lite
version is able to improve the baseline with only 8 MB ex-
tra GPU memory cost with 0.8 NDS improvement. Using
our full model, we are able to improve the baseline with 1.1
NDS improvement. These results clearly demonstrates the
effectiveness and necessity of incorporating useful contexts
before feature lifting.

2. More Qualitative Results on NuScenes

Qualitative results for deformable points across consec-
utive frames. We visualize the deformable points across 3
consecutive frames in Fig. 6. We observe that our MvA-
Con is able to learn stable and meaningful high-response
deformable points on both cars and surrounding buildings.

Supplementary qualitative results for deformable points
in different scenes. We visualize the deformable points
in different scenes in Fig. 7 and Fig. 8. We observe that
our MvACon is able to learn meaningful high-response de-
formable points on cars and surrounding references, which

could be helpful in improving the prediction of object loca-
tion, orientation and velocity.

Supplementary qualitative comparison for detection re-
sults on NuScenes validation set. We visualize predic-
tion results on NuScenes validation set and compare it with
BEVFormer in Fig. 9, Fig. 10 and Fig. 11. We observe that
our MvACon performs better in dense scenes.
Supplementary visualization for learned cluster
heatmap We provide the detailed visualization results
of learned cluster contexts with raw images in Fig. 12.
This uses the same scene shown in Fig. 3 of our main
paper. The only difference is that we include raw images
in supplementary materials. We observe that the learned
cluster heatmap has high response on foreground contexts.
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Figure 6. Visualization results of the deformable points originating from a 2D reference point across 3 consecutive frames on NuScenes
validation set. This 2D reference point is projected from a 3D BEV (Bird’s Eye View) anchor point in the BEVFormer encoder. We use
the same BEV anchor point as the one presented in our main paper. From left to right, we exhibit the deformable points outputted from the
encoder’s final layer, arranged in chronological order (¢-1, ¢, t+1).

BEVFormer
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Figure 7. Visualization results of the deformable points originating from a 2D reference point, which is projected from a 3D BEV anchor
point in the BEVFormer encoder, on NuScenes validation set. We utilize the a BEV anchor point one the right car. From left to right and
up to bottom, we display the deformable points output from each layer (#1-#6) in the encoder, respectively.
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Figure 8. Visualization results of the deformable points originating from a 2D reference point, which is projected from a 3D BEV anchor
point in the BEVFormer encoder, on NuScenes validation set. We utilize the a BEV anchor point one the yellow car. From left to right and
up to bottom, we display the deformable points output from each layer (#1-#6) in the encoder, respectively.
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Figure 9. Qualitative compan'soné between BEVFormer and our MvACon method on NuScenes validation set.
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Figure 10. Qualitative comparisons between BEVFormer and our MvACon method on NuScenes validation set.
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Figure 11. Qualitative comparisons between BEVFormer and our MvACon method on NuScenes validation set.




Figure 12. Visualization results of learned cluster contexts with raw images in our proposed attentive contextualization module on NuScenes
validation set. We sum all the learned clusters along the channel and upsample it to the original image resolution through bilinear interpo-
lation. We observed that the learned cluster context encodes abundant context information in the scene.
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