


(a) Imagess & 2D Wireframes (b) 3D Wireframe from Posed Images

Figure 2. Illustrative Overview of the problem of 3D wireframe

reconstruction. Given a set of posed images and the corresponding

2D wireframe detection results in (a), the proposed NEAT esti-

mates the 3D wireframe representation of the scene in (b).

accuracy of the reconstruction, as the matching process

relies on these endpoints to accurately represent the 3D

geometry. These matching-based methods often result in

incomplete 3D line models or suffer from fragmentation and

noise, depending on the choice of 2D detectors [25, 36, 43–

46] and matchers [23, 24] of line segments, as in Fig. 1.

Dense Fields of Sparse Geometries. We challenge the

explicit matching pipeline of 3D wireframe reconstruction

from the perspective of dense field representation. We draw

inspiration from the “implicit matching” capacity [42] of

the emerging neural implicit fields [2, 22, 49] for 3D dense

representations (e.g., density fields and signed distance

functions), and propose to render 3D line segments from

multi-view 2D observations. Such a basic idea roughly

works by leveraging a coordinate MLP to render 3D line

segments from 2D observations, but remains problematic

due to the entailed view-by-view rendering of 3D line

segments in two-fold: (1) the 2D line segments of a detected

wireframe often undergo localization errors, resulting in

erroneous 3D line segment predictions via view-by-view

rendering, and (2) simply stacking the rendered 3D line

segments from all views leads to a very large amount of 3D

line segments, requiring non-trivial merging/fusion to form

a 3D wireframe representation of the scene.

Line-to-Point Attraction in Neural Fields. We tackle the

above issues by leveraging the line-to-point attraction that

inherently persists in the wireframe representation, in which

every endpoint of a 3D line segment should be in the set

of 3D junctions of the underlying scene. Based on this, we

formulate the two types of entities of 3D wireframes, the 3D

line segments and junctions, in a novel rendering-distilling

formulation, where the sparse set of 3D line segments

are represented in a dense neural field while the junctions

play the role of distilling a sparse wireframe structure

from the fields. Our work is entitled as NEural Attraction

(NEAT) for 3D wireframe reconstruction, mainly because

of the neural design of the 3D line segments and junctions,

and of leveraging the line-to-point attraction to enable

joint optimization of the neural networks from multi-view

images and its 2D wireframe detection results. To the best

of our knowledge, we accomplish the first matching-free

solution of 3D wireframe/line reconstruction by learning

and optimizing from random initializations without any 3D

scene information required.

In experiments, we showcase that our matching-free

NEAT solution significantly outperforms all the matching-

based approaches with accurate yet complete 3D wire-

frame reconstruction results on both the DTU [1] and

BlendedMVS [47] datasets, working well in both straight-

line dominated scenes and curve-based (or polygonal line

segment dominated) scenes that challenges the traditional

matching-based approaches, paving a way towards learning

3D primal sketch in a more general way. Furthermore, we

show that the neurally perceived 3D junctions is applicable

to the recently proposed 3D Gaussian Splatting [13] as

better initialization than the COLMAP [29] with about 20

times fewer points, showing case the potential of structured

and compact 3D reconstruction.

2. Related Work

Structured 3D Reconstruction in Geometric Primitives.

Because of the inherent structural regularities for scene

representation conveyed by line structures [10, 16, 19, 28,

31] and planar structures [33, 34], there has been a vast body

of literature on line-based multiview 3D reconstruction

tasks including single-view 3D reconstruction [18, 33],

line-based SfM [3, 27], SLAM [26, 38], and multi-view

stereo [12, 17, 39] based on the theory of multi-view

geometry [11]. Due to the challenge of line segment

detection and matching in 2D images, most of those studies

expected the 2D line segments detected from input im-

ages to be redundant and small-length to maximize the

possibility of line segment matching. As for the estima-

tion of scene geometry and camera poses, the keypoint

correspondences (even including the 3D point clouds) are

usually required. For example in Line3D++ [12], given the

known camera poses by keypoint-based SfM systems [29,

30, 32, 40], it is still challenging though to establish

reliable correspondences for the pursuit of structural reg-

ularity for 3D line reconstruction. For our goal of 3D

wireframe reconstruction, because 2D wireframe parsers

aim at producing parsimonious representations with a small

number of 2D junctions and long-length line segments,

those correspondence-based solutions pose a challenging

scenario for cross-view wireframe matching, thus leading

to inferior results than the ones using redundant and small-

length 2D line segments detected by the LSD [36]. To this

end, we present a correspondence-free formulation based

on coordinate MLPs, which provides a novel perspective to

accomplish the goal of 3D wireframe reconstruction from

the parsed 2D wireframes.

Neural Rendering for Geometric Primitives. In recent

years, the emergence of neural implicit representations [2,





Fig. 3 using a synthetic example, we utilize the attracted

pixels of 2D line segments in each image to define the rays

for 3D rendering. For each segment, its attracted pixels

are projected perpendicularly onto the 2D segment. This

projection is confined within the endpoints of the segment

with respect to a predefined distance threshold, τray. Each

pixel is associated with its nearest line segment, ensuring

a dense coverage of supporting areas for the segments.

This approach facilitates the volume rendering of 3D line

segments by providing a robust underlying structure.

In our approach, we model a 3D line segment at

any point xt along a ray. The endpoint displacements

(∆x1
t ,∆x2

t ) relative to xt are computed as,

(∆x1
t ,∆x2

t ) = L(xt) ∈ R
2×3, (3)

yielding the two endpoints of the segment by (xt +
∆x1

t ,xt +∆x2
t ). The mapping function L(·) is parameter-

ized by a 4-layer coordinate MLP. It incorporates the view

direction v, the surface normal n(·) from the SDF gradient,

and a 128-dimensional feature vector z(xt) from the SDF

network, reflecting the view-dependent nature of 2D line

segments. For rendering a 3D line segment, we apply the

equation,

(xs,xt) =

∫

∞

0

T (t)σ(t) (L(xt) + xt) dt. (4)

Here, xs and xt are the 3D endpoints for the attraction pixel

x of a 2D line segment l̈ = (ȷ1, ȷ2) ∈ Vi × Vi of the i-th

view, calculated along its ray xt.

According to the pixel-to-line relationship defined by

2D attraction field representations, the rendered 3D line

segment (xs,xt) of a ray xt should be consistent with

l̈ = (ȷ1, ȷ2), thus resulting in a loss function between the

projected 2D endpoints by viewpoint projection Π(·) and l̈

in,

Lneat = ∥Π(xs)− ȷ1∥2 +
∥

∥Π(xt)− ȷ2
∥

∥

2
. (5)

The proposed Neural Attraction Fields of 3D line segments

is optimized together with SDF and the radiance field

by minimizing the loss functions stated above, forming a

querable and dense representation of 3D line segments.

Minimizing the loss functions Lneat, Limg, and Leik

allows us to derive a geometrically meaningful but noisy

3D line cloud from multi-view images, as demonstrated

in Fig. 4 using both a synthetic example and a real case

from the DTU-24 scene [1]. The absence of explicit line

matching across multiple views leads to duplication of the

same 3D line segments, each with its own view-dependent

prediction errors. In the following section, we discuss how

this redundancy and noise, while initially seeming detri-

mental, actually provide a strong inductive bias towards

achieving the goal of 3D wireframe reconstruction.

(a) 898 Lines (100 Views) (b) 6731 Lines (49 Views)

Figure 4. Two cases of learned noisy and redundant 3D line

segments by line segment rendering. The case (a) takes the images

and line segments introduced in Fig. 2a, and the case (b) is a real-

world case of DTU-24 scene.

3.2. Neural 3D Junction Perceiver

This section introduces our method to “clean up” the noisy

and redundant 3D line cloud created by Neural Attraction

Fields. Leveraging the relationship between 3D junctions

and line segments in wireframes, we propose a neural and

joint optimization approach, central to our NEAT method.

Using the 3D line cloud, denoted by Lneat, a query-based

learning method is designed for perceiving 3D junctions

(Eq. (6)) via junction-line attraction, which plays the role

of distillation for 3D wireframe reconstruction.

Global 3D Junction Percieving. Our 3D line segment

rendering inherits the dense representation as the density

field and the radiance field. To achieve parsimonious

wireframes, we propose a novel query-based design to

holistically perceive a predefined sparse set of N 3D

junctions by

QN×C
MLP−−→ JN×3, (6)

where QN×C are C-dim latent queries (randomly ini-

tialized in learning). Surprisingly, as we shall show in

experiments, the underlying 3D scene geometry induced

synergies between JN×3 and the above 3D line segment

rendering integral enable us to learn a very meaningful

global 3D junction perceiver.

In the absence of well-defined ground-truth for learning

3D junctions, we use the endpoints of redundant rendered

3D line segments (Sec. 3.1) as noisy labels. By reshaping

the line cloud Lneat into Jneat ∈ R
2M×3, our process

involves two steps: (1) clustering J2M×3 using DBScan to

yield pseudo 3D junctions Jcls ∈ R
m×3 with m < 2M

clusters; (2) applying bipartite set-to-set matching between

the perceived junctions JN×3 (Eq. (6)) and Jcls using the

Hungarian algorithm. The matching cost is based on the ℓ2
norm between 3D points. We define J = {(Jk,Jcls

ik
)|k =

1, . . . ,K} as the set of matched junctions, where K =
min(N,m), and ik is the index of the k-th matched pseudo

label Jcls
ik

. Then, our goal is to minimize the distance





Figure 6. Visualization of 3D Wireframe Reconstruction on the 12 scenes from the DTU dataset [1] and the 4 scenes from the

BlendedMVS dataset [47]. For each scene, we show its line segment view (by hiding the junctions) in black, and the wireframe view

by coloring the junctions in blue. For the comparison, please see our video.

Table 1. Evaluation Results on the DTU and BlendedMVS datasets for the reconstructed 3D wireframes. ACC-J and ACC-L are the

evaluation for junctions and line segments. For Line3D++@HAWP, LiMAP and ELSR, all the endpoints of line segments are treated as

junctions.

NEAT (Ours) LiMAP [17] Line3D++@HAWP

Scan ACC-J ↓ ACC-L COMP-L ↓ #Lines ↑ #Junctions ACC-J ↓ ACC-L COMP-L ↓ #Lines ↑ ACC-J ↓ ACC-L ↓ COMP-L ↓ #Lines ↑
DTU Dataset [1]

Avg. 0.7718 0.8002 6.1064 624 503 1.0944 0.8547 7.7756 231 0.9019 0.8133 8.5086 249

16 0.8263 0.7879 5.4135 729 554 1.0385 0.7898 6.0420 335 0.7957 0.6992 6.9052 388

17 0.7754 0.6695 5.0498 738 546 1.1015 0.8804 5.8212 388 0.8816 0.7778 7.6257 395

18 0.6429 0.6868 5.3796 701 596 0.9950 0.8253 7.0154 287 0.7894 0.7528 7.7082 305

19 0.6989 0.6923 4.6529 809 510 0.7689 0.7110 7.9461 160 0.6815 0.7953 6.9776 330

21 0.9042 0.6923 4.6529 809 571 1.1011 0.8884 5.9821 319 0.9064 0.7953 6.9776 330

22 0.6343 0.6910 5.0871 758 596 0.8998 0.7353 6.8567 281 0.7494 0.7079 7.8014 328

23 0.5882 0.6193 5.5992 771 597 1.0561 0.8293 6.5078 377 0.8005 0.7356 8.2679 320

24 0.6386 0.5944 5.9104 860 549 1.0314 0.8293 6.5078 377 0.7940 0.6807 7.6886 366

37 1.4815 1.0856 7.5362 420 405 1.2721 1.2352 8.6413 120 1.1796 1.0287 10.2244 60

40 0.6298 1.0354 8.7825 137 469 1.2108 0.8327 9.9988 41 0.8486 0.6877 10.1206 83

65 0.7212 1.0354 8.7825 137 171 1.0469 0.5071 11.1936 7 1.1008 1.0697 11.1519 23

105 0.7204 1.0127 6.4296 621 478 1.6108 1.1929 10.7943 90 1.2957 1.0286 10.6539 61

BlendedMVS Dataset [47]

Avg. 0.1949 0.1802 6.4621 602 514 0.3712 0.3169 6.9415 313 0.3743 0.3545 6.8760 724

1 0.0365 0.0404 3.7253 653 565 0.0488 0.0651 5.0457 226 0.0682 0.0650 5.3625 691

2 0.1715 0.1585 8.2943 328 343 0.3478 0.2817 8.7663 195 0.4327 0.4174 8.8864 396

3 0.2564 0.2165 7.5600 931 664 0.3796 0.3162 7.5366 467 0.3795 0.3582 7.3192 931

4 0.3153 0.3055 6.2686 509 483 0.7086 0.6045 6.4174 365 0.6171 0.5774 5.9359 876

3D wireframe reconstruction instead of 3D line segment

reconstruction, for fair comparisons, we use HAWPv3 [46]

as the alternative for 2D detection in the use of Line3D++

and LiMAP. For those baselines, we use their official

implementation for 3D line segments reconstruction.

DTU [1] and BlendedMVS [47] Datasets. These two
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Table 3. The influence of wireframe reconstruction results from

different distance thresholds. The larger τd value is, the more line

segments are involved in the optimization/learning.

ACC-J↓ ACC-L↓ COMP-L↓ #Lines #Junctions MR PSNR

τd = 1 0.853 0.764 6.137 785 540 97.49% 17.79

τd = 5 0.639 0.594 5.910 860 528 89.70% 21.55

τd = 20 0.578 0.596 6.158 694 508 66.10% 24.68

the feasibility of optimizing coordinate MLPs using this

sampling technique. As depicted in Fig. 11(a), by masking

over 80% of the pixels (using a distance threshold of 5

pixels), we can still effectively optimize coordinate MLPs,

leading to the reasonable outcomes shown in Fig. 11(b).

In addition to rendering results, we observed that in-

creasing the distance threshold leads to a reduction in the

number of line segments and junctions. As detailed in

Tab. 3, setting the distance threshold to τd = 20 results in

fewer 3D lines and junctions. Although the ACC errors are

marginally reduced, there is an increase in completeness.

Conversely, when the distance threshold τd is set to 1, a

performance degradation is noted across all metrics due to

insufficient supervision signals.

B.2. The Number of Global Junctions

The number of global junctions is determined heuristically

to encompass all potential 3D junctions. Based on ob-

servations from both the DTU and BlendedMVS datasets,

where the detected 2D line segments are in the hundreds,

we set the estimated number of 3D junctions to 1024. In

Tab. 4, we present experiments conducted on the DTU-24

scene with varying numbers of junctions, denoted as N , to

assess performance differences. The results indicate that

increasing the number of possible global 3D junctions to

a larger value (e.g., N = 2048) yields only a marginal

increase in the count of learned 3D line segments and

junctions in the final wireframe models. Conversely, a

smaller N tends to result in incomplete 3D wireframe

models.

N # 2D Juncs. # 3D Junctions # 3D Lines ACC-J ACC-L COMP-L

1024 (default)
212 (min)

297 (max)

258.2 (avg)

549 860 0.639 0.549 5.910

N = 128 99 93 0.422 0.440 8.541

N = 512 397 641 0.526 0.574 6.302

N = 2048 624 983 0.656 0.599 5.849

Table 4. The performance influence of wireframe reconstruction

from different configuration of the number of 3D junctions during

optimization.

B.3. Additional Implementation Details

Network Architecture. The coordinate MLPs used in our

NEAT approach are derived from VolSDF [49], which con-

tains three coordinate MLPs for SDF, the radiance field, and

the NEAT field. For the MLP of SDF, it contains 8 layers

with hidden layers of width 256 and a skip connection

from the input to the 4th layer. The radiance field and the

NEAT field share the same architecture with 4 layers with

hidden layers of width 256 without skip connections. The

proposed global junction perceiving (GJP) module contains

two hidden layers and one decoding layer as described in

the code snippets of Sec. 1 in our main paper.

Hyperparameters. The distance threshold τd about the

foreground pixel (ray) generation is set to 5 by default.For

the number of global junctions (i.e., the size of the latent),

we set it to 1024 on the DTU and BlendedMVS datasets.

When the scene scale is larger (e.g., a scene from ScanNet

mentioned in Fig. 5 of the main paper), the number of

global junctions is set to 2048. For DBScan [7], we use the

implementation from sklearn package, set the epsilon

(for the maximum distance between two samples) to 0.01

and the number of samples (in a neighborhood for a point

to be considered as a core point) to 2.

C. The Final Distillation Step of NEAT

This section elaborates on the final distillation step required

in our NEAT methodology for 3D wireframe reconstruc-

tion, with a particular focus on the extensive use of global

junctions. We aim to provide a detailed insight into this

crucial phase of the NEAT process.

To begin with, let us consider the challenge inherent

in the junction-driven finalization of NEAT. As depicted

in Fig. 12, using a toy ABC scene as an example, we

observe that a considerable number of 3D line segments

are rendered and aggregated across different views. Con-

currently, 3D junctions are dynamically distilled from the

NEAT fields. While a simple approach to combine these 3D

junctions with the redundant 3D line segments might seem

viable, it is critical to address the potential misalignments

between the junctions and line segments. To resolve this

issue, we employ a least squares optimization combined

with an SDF-based refinement scheme. This approach is

designed to precisely adjust the position of 3D junctions,

thereby ensuring an accurate and coherent reconstruction of

the 3D wireframe.

C.1. Least Square Optimization

To be convenient for readers, we copy Eq. (9) in our main

paper to Eq. (10),

L(J) =
∑

(u,v)

Tu,v
∑

i=1

dang(l
0
u,v, l

i
u,v)

2 + dperp(l
0
u,v, l

i
u,v)

2,

(10)

which is the main objective function to adjust the junc-

tion positions according to the observation from the op-



Table 5. An Ablation study of the SDF-based 3D Junction Refinement on the DTU dataset for the reconstructed 3D wireframes. ACC-J

and ACC-L are the evaluation for junctions and line segments.

NEAT (Final) NEAT (w/o Non-Linear Optimization) NEAT (w/o SDF-based Refinement)

Scan ACC-J ↓ ACC-L ↓ #Lines #Junctions ACC-J ↓ ACC-L ↓ #Lines #Junctions ACC-J ↓ ACC-L ↓ #Lines #Junctions

Avg. 0.772 0.800 624.2 503.5 1.145 0.872 907.7 589.7 1.275 1.044 729.1 514.3

16 0.826 0.788 729 554 0.834 0.829 852 566 1.190 1.045 751 570

17 0.775 0.670 738 546 0.982 0.765 991 651 1.047 0.836 753 557

18 0.643 0.687 701 596 0.930 0.759 993 689 1.040 0.927 821 609

19 0.699 0.692 809 510 0.956 0.703 994 656 1.051 0.863 714 518

21 0.904 0.692 809 571 0.960 0.725 981 654 1.119 0.848 816 581

22 0.634 0.691 758 596 0.896 0.748 939 684 0.976 0.897 769 603

23 0.588 0.619 771 597 0.840 0.703 933 670 0.926 0.821 774 602

24 0.639 0.594 860 549 0.818 0.620 1008 618 0.872 0.748 866 556

37 1.482 1.086 420 405 1.804 1.477 636 565 2.014 1.860 440 425

40 0.630 1.035 137 469 1.342 0.808 1672 591 1.382 0.983 1241 475

65 0.721 1.035 137 171 1.582 1.178 191 221 1.631 1.340 147 185

105 0.720 1.013 621 478 1.793 1.143 702 511 2.053 1.360 657 490

Figure 12. Two different views of the reconstruction of 3D

wireframe on the toy scene of ABC dataset before the final

distillation step.

timized/learned NEAT field. Here, we mathematically

define the alignment cost between the junction-driven 3D

line segments l0u,v = (Ju, Jv) and its i-th NEAT-field

observation liu,v = (xi
u,x

i
v) by the angular cost and the

perpendicular cost as follow

dang(l
0
u,v, l

i
u,v) = 1− |⟨ Ju − Jv

∥Ju − Jv∥
,

xi
u − xi

v

∥xi
u − xi

v∥
⟩|,

dperp(l
0
u,v, l

i
u,v) =

∥

∥Ju − proj(liu,v; Ju)
∥

∥

+
∥

∥Jv − proj(liu,v; Jv)
∥

∥ ,

(11)

where ⟨·, ·⟩ is the inner product between two 3D vectors,

and the function proj(liu,v; Jv) projects the point Jv onto

the infinite 3D line passing through the line segment liu,v .

In Tab. 5, we report the performance changes by disabling

the non-linear optimization on the DTU dataset, which will

result in inferior 3D wireframes with larger ACC errors for

both junctions and line segments.

C.2. SDF­based 3D Junction Refinement

Following the non-linear optimization, we employ an SDF-

based refinement scheme to further enhance the localization

accuracy of junctions. Specifically, for an initial 3D

Table 6. The performance change w.r.t. the visibility threshold on

the DTU dataset.

Vis Metric 16 17 18 19 21 22 23 24 37 40 65 105 Avg.

1

ACC.↓ 0.788 0.670 0.687 0.692 0.692 0.691 0.619 0.594 1.086 1.035 1.035 1.013 0.800

COMP.↓ 5.414 5.050 5.380 4.653 4.653 5.087 5.599 5.910 7.536 8.783 8.783 6.430 6.106

Avg. Len. 22.3 23.6 26.7 27.4 27.4 22.8 26.9 27.0 27.9 23.2 23.2 27.5 25.5

#Lines 729.0 738.0 701.0 809.0 809.0 758.0 771.0 860.0 420.0 137.0 137.0 621.0 624.2

2

ACC.↓ 0.770 0.669 0.650 0.642 0.686 0.678 0.604 0.585 1.251 0.755 1.005 1.011 0.776

COMP.↓ 5.493 5.067 5.043 5.562 4.742 5.208 5.670 6.032 7.517 7.027 9.131 6.643 6.095

Avg. Len. 22.3 23.6 24.4 27.0 27.6 22.8 26.9 27.1 27.4 49.8 22.8 27.0 27.4

#Lines 711.0 729.0 789.0 667.0 784.0 737.0 756.0 840.0 391.0 1140.0 124.0 572.0 686.7

3

ACC.↓ 0.729 0.642 0.640 0.629 0.652 0.639 0.590 0.575 1.188 0.748 0.909 0.981 0.743

COMP.↓ 5.551 5.095 5.117 5.742 4.843 5.357 5.720 6.113 7.473 7.182 9.076 6.785 6.171

Avg. Len. 22.5 23.7 24.5 27.2 27.8 22.7 26.9 27.2 27.7 49.9 22.8 26.9 27.5

#Lines 689.0 708.0 765.0 642.0 751.0 708.0 748.0 826.0 371.0 1091.0 112.0 544.0 662.9

4

ACC.↓ 0.704 0.619 0.623 0.617 0.607 0.632 0.583 0.556 1.118 0.735 0.891 0.945 0.719

COMP.↓ 5.572 5.256 5.222 5.838 5.021 5.458 5.825 6.168 7.612 7.164 9.220 7.004 6.280

Avg. Len. 22.5 23.8 24.8 27.5 28.0 22.9 27.0 27.3 27.7 50.5 22.8 26.3 27.6

#Lines 672.0 679.0 737.0 617.0 723.0 683.0 721.0 806.0 347.0 1052.0 97.0 501.0 636.3

junction Ji ∈ R
3 and an optimized SDF dΩ(·), we refine

the location of Ji using the following equation:

J refined
i = Ji − dΩ(Ji) · ∇dΩ(Ji), (12)

where ∇dΩ represents the normal direction of the surface at

the point Ji.

To assess the impact of this SDF-based refinement on

junctions, we conducted an ablation study comparing 3D

wireframe models with and without the SDF refinement.

The results, presented in Tab. 5, clearly demonstrate the

necessity of this refinement step for achieving significantly

improved results.

C.3. Visibility Checking

As detailed in Sec. 3.3 of the main paper, we evaluate

the reconstructed 3D line segments by projecting them

onto 2D images from each view. This process involves

computing both the angular and perpendicular distances

between the projected 3D line segments and the detected

2D line segments. A 3D line segment is considered to be

supported by a 2D detection if it aligns within an angular

distance of 10 degrees and a perpendicular distance of

5 pixels, with a minimum overlap ratio of 50%. This
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Figure 13. Qualitative Comparisons on ABC objects.

methodology allows us to determine the visibility of each

3D line segment and to filter out those that are invisible as

false alarms.

In our standard approach, the visibility threshold for each

line segment is set to 1, aiming to achieve a more complete

reconstruction. Moreover, we explore the impact of varying

this visibility threshold from 1 to 4 on the DTU dataset. The

findings, as summarized in Tab. 6, indicate that increasing

the visibility threshold results in an improvement in the

ACC metric, while the COMP metric increases.

D. Experiments on the ABC Dataset

Because the 3D wireframe annotations are very difficult to

obtain for real scene images, to better discuss the problem

of 3D wireframe reconstruction and analyze our proposed

NEAT approach, we conduct experiments on objects from

ABC Datasets as it provides 3D wireframe annotations.

Data Preparation. We use Blender [4] to render 4 objects

from the ABC dataset. The object IDs are mentioned in

Tab. 7. For each object, we first resize it into a unit cube

by dividing the size of the longest side and then moving

it to the origin center. Then, we randomly generate 100

camera locations, each of which is distant from the origin by√
1.52 + 1.52 ≈ 2.1213 units. The setting of the distance,√
1.52 + 1.52, is from our early-stage development for the

rendering, in which we set a camera at (0, 1.5, 1.5) location.

By setting the cameras to look at the origin (0, 0, 0), we

obtain 100 camera poses. Considering the fact that the

ABC dataset is relatively simple, we set the focal length

to 60.00mm to ensure the object is slightly occluded for

rendering images. The sensor width and height of the

camera in Blender are all set to 32mm. The ground truth

annotations of the 3D wireframe are from the corresponding

STEP files. For the simplicity of evaluation, we only

keep the straight-line structures and ignore the curvature

structures to obtain the ground truth annotations. The

rendered images are with the size of 512× 512.

Baseline Configuration. Fig. 13 illustrates the rendered

input images for the used four objects. Because the

rendered images are textureless and with planar objects,

the dependency of those baselines on the correspondence-

based sparse reconstruction by SfM systems [29] is hardly

satisfied to produce reliable line segment matches for 3D

line reconstruction. Accordingly, we set up an ideal base-

line instead of using Line3D++ [12] and LiMAP [17] for

comparison. Specifically, we first detect the 2D wireframes

for the rendered input images and then project the junctions

and line segments of the ground-truth 3D wireframe models

onto the 2D image plane. For the 2D junctions, if a

projected ground-truth junction can be supported by a

detected one within 5 pixels in any view, we keep the

ground-truth junction as the reconstructed one in the ideal

case. For the 2D line segments, we compute the minimal

value for the distance of the two endpoints of a detected

line segment to check if it can support a ground-truth 3D

line. The threshold is also set to 5 pixels. Then, we count

the number of reconstructed 3D line segments and junctions

in such an ideal case.

Evaluation Metrics. For our method, we compute the

precision and recall for the reconstructed 3D junctions

and line segments under the given thresholds. Because

the objects (and the ground-truth wireframes) are normal-

ized in a unit cube, we set the matching thresholds to

{0.01, 0.02, 0.05} for evaluation. For the matching distance

of line segments, we use the maximal value of the matching

distance between two endpoints to identify if a line segment

is successfully reconstructed under the specific distance

threshold. For the ideal baseline, we report the number

of ground-truth primitives (junctions or line segments), the

number of reconstructed primitives, and the reconstruction

rate.

Results and Discussion. Tab. 7 quantitatively summa-

rizes the evaluation results and the statistics on the used

scenes. As it is reported, our NEAT approach could

accurately reconstruct the wireframes from posed multiview

images. The main performance bottleneck of our method

comes from the 2D detection results. As shown in the ideal

baseline, by projecting the 3D junctions and line segments

into the image planes to obtain the ideal 2D detection



Evaluation Results Ideal Baseline

ID P0.01 P0.02 P0.05 R0.01 R0.02 R0.05 #GT # Reconstructed Recon. Rate

4981
J 0.706 0.765 0.882 0.750 0.812 0.938 32 28 0.875

L 0.758 0.758 0.758 0.521 0.521 0.521 48 41 0.854

13166
J 0.889 0.889 0.889 1.000 1.000 1.000 16 16 1.000

L 1.000 1.000 1.000 1.000 1.000 1.000 24 24 1.000

17078
J 0.400 0.629 0.686 0.583 0.917 1.000 24 23 0.958

L 0.408 0.653 0.714 0.556 0.889 0.972 36 32 0.889

19674
J 0.969 1.000 1.000 0.969 1.000 1.000 32 32 1.000

L 0.969 1.000 1.000 0.969 1.000 1.000 48 40 0.833

Table 7. Evaluation Results and some Statistics on ABC objects.

In each object, we evaluate the precision and recall rates for

junctions (J) and line segments (L). For the ideal baseline, we

count the number of ground-truth primitives, the number of

reconstructed 3D primitives, and the reconstruction rate in the

ideal baseline.

results, the 2D detection results by HAWPv3 [46] did not

perfectly hit all ground-truth annotations. Furthermore,

suppose we use the hit (localization error is less than 5

pixels) ground truth for 3D wireframe reconstruction, there

is a chance to miss some 3D junctions and more 3D line

segments. In this sense, given a relaxed threshold of the

reconstruction error for precision and recall computation,

our NEAT approach is comparable with the performance of

the ideal solution. For the first object (ID 4981), because

of the severe self-occlusion, some line segments are not

successfully reconstructed for both the ideal baseline and

our approach. For object 17078, our NEAT approach

reconstructed some parts of the two circles that are excluded

from the ground truth, which leads to a relatively low

precision rate. Fig. 13 also supported our results.

E. 3D Gaussians with NEAT Junctions

In this section, we extend the application of our NEAT

framework to 3D Gaussian Splatting, as proposed by Kerbl

et al. [13], by substituting the initial point cloud derived

from Structure-from-Motion (SfM) with the junctions iden-

tified by NEAT. This experiment is designed to showcase

the efficacy of NEAT junctions as a compact initialization

method for 3D Gaussian Splatting. Using only a few hun-

dred points, our NEAT junctions demonstrate an enhanced

fitting ability on the DTU dataset, as evidenced by improved

metrics in both Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM).

The experimental results on 12 scenes from the DTU

dataset are detailed in Tab. 8. It is observed that by

initializing the 3D Gaussians with NEAT junctions, there

is a notable improvement in performance: PSNR increases

by 0.38 dB and SSIM improves by 0.0003 points. This

finding underscores the effectiveness of NEAT junctions in

providing a more precise and compact starting point for 3D

Gaussian Splatting.

Table 8. Quantitative comparison between the NEAT junctions

and SfM points for the initialization of 3D Gaussian Splatting on

the DTU dataset.

Scene ID

NEAT Junctions SfM Points (by COLMAP [29])

PSNR ↑ SSIM ↑ #Points

(init)

#Points

(7k)

#Points

(30k)
PSNR ↑ SSIM ↑ #Points

(init)

#Points

(7k)

#Points

(30k)

DTU-16 28.7 (+0.7) 0.889 (+0.006) 554 603k 1,496k 28.0 0.883 22k 558k 1,048k

DTU-17 29.2 (+0.5) 0.898 (+0.005) 546 903k 2,279k 28.7 0.893 24k 893k 1,305k

DTU-18 29.3 (+0.4) 0.901 (+0.004) 596 629k 1,234k 28.9 0.897 18k 581k 1,078k

DTU-19 29.6 (+0.4) 0.893 (-0.001) 510 475k 1,140k 29.2 0.894 19k 561k 756k

DTU-21 28.7 (+0.2) 0.898 (+0.004) 571 725k 1,657k 28.5 0.894 19k 698k 1,528k

DTU-22 29.1 (+0.2) 0.892 (+0.005) 596 641k 1,455k 28.9 0.887 21k 615k 1,113k

DTU-23 28.4 (+0.4) 0.886 (+0.006) 597 974k 2,243k 28.0 0.880 25k 850k 1,667k

DTU-24 31.1 (+0.9) 0.909 (+0.008) 549 587k 1,181k 30.2 0.901 13k 528k 852k

DTU-37 28.2 (+0.5) 0.875 (+0.000) 405 420k 1,180k 27.7 0.875 27k 409k 713k

DTU-40 30.6 (+0.2) 0.862 (+0.002) 422 520k 1,403k 30.4 0.860 32k 515k 1,070k

DTU-65 32.4 (+0.2) 0.855 (-0.001) 171 139k 294k 32.2 0.856 11k 150k 208k

DTU-105 30.8 (-0.1) 0.852 (-0.001) 478 165k 238k 30.9 0.853 23k 169k 216k

Avg. 29.68 (+0.38) 0.884 (+0.003) 499.58 565k 1,317k 29.30 0.881 21k 544k 963k

F. Miscellaneous

F.1. Evaluation Metrics

The Definition of ACC and COMP Metrics. We follow

the official evaluation protocol of the DTU dataset [1] to

compute the reconstruction accuracy (ACC) and complete-

ness (COMP), which is defined to

ACC = mean
p∈P

(

min
p∗∈P∗

∥p− p∗∥
)

, (13)

and

COMP = mean
p

∗

∈P∗

(

min
p∈P

∥p− p∗∥
)

, (14)

where P and P ∗ are the point clouds sampled from the

predictions and the ground truth mesh.

F.2. Information of Used BlendedMVS Scenes

The scene IDs and their MD5 code of the BlendedMVS

scenes are:

• Scene-01: 5c34300a73a8df509add216d

• Scene-02: 5b6e716d67b396324c2d77cb

• Scene-03: 5b6eff8b67b396324c5b2672

• Scene-04: 5af28cea59bc705737003253
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