

1 **Exploring Nonlinear Distance Metrics for Lipschitz Constant Estimation in**
2 **Lower Bound Construction for Global Optimization**
3

4 MOHAMMADSINA ALMASI, University of Illinois at Chicago, USA
5

6 HADIS ANAHIDEH, University of Illinois at Chicago, USA
7

8 JAY M. ROSENBERGER, University of Texas at Arlington, USA
9

10 Bounds play a crucial role in guiding optimization algorithms, improving their speed and quality, and providing optimality gaps.
11 While Lipschitz constant-based lower bound construction is an effective technique, the quality of the linear bounds depends on the
12 function's topological properties. In this research, we improve upon this by incorporating nonlinear distance metrics and surrogate
13 approximations to generate higher-quality bounds. We emphasize the importance of using a flexible distance metric that can adapt to
14 any function. We examine the characteristics and properties of different incorporated distance metrics. While the linear distance metric
15 is popular in the literature due to its simplicity and intuitive interpretation, we discuss the potential benefits of alternative distance
16 metrics, such as sublinear and superlinear distance metrics, which may be used for Hölder continuous functions. Sublinear distance
17 metrics are advantageous for sparse data settings, while superlinear distance metrics can capture nonlinear relationships between data
18 points. Combining surrogate models and nonlinear distance metrics for Lipschitz constant estimations results in high-quality lower
19 bounds that can contribute to more effective exploration and exploitation and more accurate optimality gap estimation.
20

21 CCS Concepts: • Mathematics of computing → Continuous optimization.
22

23 Additional Key Words and Phrases: Global optimization, Lipschitz constant estimation, Nonlinear distance metric, Lower bounds,
24 Hölder condition
25

26 **ACM Reference Format:**

27 Mohammadsina Almasi, Hadis Anahideh, and Jay M. Rosenberger. 2024. Exploring Nonlinear Distance Metrics for Lipschitz Constant
28 Estimation in Lower Bound Construction for Global Optimization. In . ACM, New York, NY, USA, 28 pages. <https://doi.org/XXXXXXX>.
29 XXXXXXX
30

31 **1 INTRODUCTION**
32

33 Global optimization problems are ubiquitous in various fields of science and engineering, ranging from aerospace and
34 mechanical engineering to finance and logistics [13, 40]. These problems often involve complex objective functions,
35 nonlinear constraints, and high-dimensional search spaces, making them particularly challenging to solve [10, 36].
36 Consequently, developing efficient optimization algorithms that can find a global optimum is crucial for many practical
37 applications.
38

39 One approach to solving global optimization problems is to leverage lower ¹ bounds to guide the optimization process
40 and narrow down the search space. Various techniques have been developed for constructing lower bounds on the
41

42 ¹While the focus of this paper is on minimization problems and the use of lower bounds, the same discussion can be extended to maximization problems
43 and the use of upper bounds.
44

45 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
46 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
47 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
48 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
49

50 © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
51

52 Manuscript submitted to ACM
53

53 optimal objective value, such as convex relaxation [e.g., 50], interval analysis [e.g., 7], statistical inference [e.g., 56], and
 54 Lipschitz continuity [e.g., 33].

55 The research developed here is motivated by surrogate optimization, sometimes referred to as Bayesian optimization.
 56 The premise of surrogate optimization is the cost to evaluate a point \mathbf{x} in the objective function f is expensive [e.g.,
 57 44]. Consequently, surrogate optimization methods usually employ the following general approach. First, a design of
 58 experiments technique determines an initial set of points to evaluate. Costly objective evaluations are performed, and a
 59 surrogate model \hat{f} to predict f at unevaluated points is trained. Then based on the surrogate (exploitation) and the
 60 spatial representation of the evaluated points (exploration), new points to evaluate are determined. Except for the initial
 61 design of experiments, these steps iterate until a stopping criterion is met.
 62

63 An estimated lower bound on f would be valuable within this surrogate optimization framework. It could be used to
 64 estimate an optimality gap, balance exploitation and exploration, and provide a stopping criterion. Moreover, while the
 65 lower bounding approach developed in this research is motivated by surrogate optimization, it could be used within
 66 other black box optimization or simulation optimization methods. The only assumption in this research is that f satisfies
 67 the Hölder condition [e.g., 63].

68 Using the Lipschitz constant for lower-bound construction is a powerful technique for improving the efficiency and
 69 effectiveness in a variety of contexts, such as branch and bound algorithms [24, 66], Lipschitzian optimization [e.g.,
 70 49], and black-box optimization [e.g., 38]. It allows for more informed and focused search strategies that can lead to
 71 faster convergence and better solutions. The Lipschitz constant is a mathematical concept that characterizes the local
 72 smoothness of a function [43, 62]. Specifically, it measures the maximum rate of change of a function over any two
 73 points in its domain.

74 The Lipschitz bound for a function f at a point \mathbf{x}^i is given by:

$$75 \quad f(\mathbf{x}^i) \geq f(\mathbf{x}^j) - L\|\mathbf{x}^i - \mathbf{x}^j\| \quad (1)$$

76 In addition to the constant L , the other two terms are an evaluated point \mathbf{x}^j and a distance metric $\|\mathbf{x}^i - \mathbf{x}^j\|$, which is
 77 an L-2 norm. This bound is well-known for any Lipschitz continuous function [e.g., 51], and is used in data-driven
 78 spatial Branch and Bound [e.g., 42].

79 Adding to this, in statistical terms, particularly in the context of confidence and prediction bounds, a fundamental
 80 aspect is the assessment of how far an estimated function, $\hat{f}(\mathbf{x})$, deviates from the expected true function, $E[f(\mathbf{x})]$.
 81 This can be expressed in the form of a probability statement:

$$82 \quad \Pr \left(\hat{f}(\mathbf{x}) - \varphi(\mathbf{x}) \leq E[f(\mathbf{x})] \right) = 1 - \alpha \quad (2)$$

83 Here, $\varphi(\mathbf{x})$ is an estimation of the prediction error of \hat{f} [9, 16]. Once the significance level α is determined, the structure
 84 of the bound can be established alternatively as follows:

$$85 \quad E[f(\mathbf{x})] \geq \hat{f}(\mathbf{x}) - L\varphi(\mathbf{x}, \bar{\mathbf{x}}) \quad (3)$$

86 In this case, $\bar{\mathbf{x}}$ is usually the center of the data, $\varphi(\mathbf{x}, \bar{\mathbf{x}})$ is a function of the distance between \mathbf{x} and $\bar{\mathbf{x}}$ and the uncertainty
 87 of the surrogate, and the constant L is usually based upon a statistic. For example, in Working-Hotelling [e.g., 64], $\bar{\mathbf{x}}$ is
 88 the mean of the evaluated points instead of the nearest evaluated point, as in the Lipschitz framework. Similar bounds
 89 are used in Probabilistic Branch and Bound [e.g., 24].

105 Estimating the Lipschitz constant can be challenging, particularly when the function is not known explicitly and
 106 can only be accessed through a surrogate model [19, 53]. In recent years, several techniques have been proposed for
 107 estimating the Lipschitz constant using surrogate models and linear distance metric functions [30, 38]. These techniques
 108 aim to improve the accuracy and applicability of Lipschitz estimation in various domains and scenarios.
 109

110 In this research, we investigate methods in which we use the nearest evaluated point, similar to that of the Lipschitz
 111 bound, for the distance term, but we use a surrogate model instead of the value of the nearest evaluated point. In
 112 addition, the mathematical literature considers Hölder bounds as alternative distance metrics within the Lipschitz
 113 framework [e.g., 57]. Specifically, the bounds in this research are generally given by:
 114

$$115 \quad f(\mathbf{x}) \geq \hat{f}(\mathbf{x}^i) - L\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i) \quad (4)$$

117 in which $\bar{\mathbf{x}}^i$ is the nearest evaluated point. The proposed bound is intended to outperform the Lipschitz bound. First,
 118 instead of considering a single evaluated point, we consider a surrogate model \hat{f} that is trained over a set of evaluated
 119 points. Moreover, because surrogates are used in some global optimization procedures, such as surrogate optimization
 120 [e.g., 14], \hat{f} may be determined and available within an optimization algorithm. In addition, the L-2 norm distance metric
 121 may be either too conservative or too aggressive to find a tight bound. Consequently, Hölder-style nonlinear distance
 122 metrics are considered. We explain why such an alternative distance metric may provide tighter bounds depending on
 123 the underlying function f .
 124

126 Moreover, the proposed bound is likely to outperform the statistical bound because the reference concerning the
 127 center of the data may not be appropriate for an optimization framework. Sampled data within an optimization algorithm
 128 often has poorly distributed evaluated points, rendering the center of data an ill-equipped descriptor of the localized
 129 region of \mathbf{x} [39, 67]. For example, for an evaluated point \mathbf{x}^i , the distance to the center of data $\varphi(\mathbf{x}^i, \bar{\mathbf{x}})$ could be quite
 130 large, creating an unnecessarily large difference between $f(\mathbf{x}^i)$ and $\hat{f}(\mathbf{x}^i) - L\varphi(\mathbf{x}^i, \bar{\mathbf{x}})$. By contrast, using the reference
 131 point $\bar{\mathbf{x}}^i$ to be the nearest evaluated point, and if $\hat{f}(\mathbf{x}) = f(\mathbf{x})$ at all evaluated points, as in a non-interpolating \hat{f} model,
 132 then at an evaluated point, the bound in this research becomes the function value itself since $\varphi(\mathbf{x}, \bar{\mathbf{x}}^i) = 0$.
 133

135 In this paper, we conduct a comparative theoretical and empirical analysis of using alternative distance metrics
 136 for Lipschitz constant estimation. Our theoretical analysis focuses on the use of different distance metrics, including
 137 superlinear, linear, and sublinear distance metrics, for estimating Lipschitz constants and computing lower bounds on
 138 the objective function. We prove a key result, which establishes the relationship between the lower bounds obtained by
 139 these distance metrics on a set of unevaluated data points.
 140

141 The remainder of this paper is organized as follows. In Section 2, we conduct a thorough literature review, summarizing
 142 the most recent advancements in the field. Section 2.1 outlines our research contribution and identifies the research
 143 gap it aims to address. The methodology for estimating the Lipschitz constant based on distance metric functions and
 144 theoretical development is presented and discussed in Section 3. Section 4 discusses improving lower bound estimates.
 145 In Section 5, we present comparative results of our method against approaches utilizing a linear distance metric. These
 146 results are obtained through experiments conducted on various benchmark problems. Finally, we conclude the paper by
 147 summarizing our contributions and providing insights into potential avenues for future research.
 148

150 2 LITERATURE REVIEW

152 A significant body of research has been dedicated to addressing global optimization problems and utilizing the Lips-
 153 chitz constant for lower-bound construction. In this section, we review relevant studies that have contributed to the
 154 understanding and application of Lipschitz constant-based techniques in optimization algorithms.
 155

157 In the literature, lower bounds are crucial in optimization algorithms as they guide the search for optimal solutions,
 158 accelerate convergence, and help avoid local optima [12, 23, 29, 42, 65]. Moreover, lower bounds can be used to determine
 159 optimality gaps and serve as stopping criteria to terminate the optimization process when a satisfactory solution is
 160 obtained [4, 34, 41]. Lower bounds also play a crucial role in determining the feasible region of an optimization problem
 161 [8, 17, 66]. For instance, in branch-and-bound algorithms commonly used for combinatorial optimization problems,
 162 lower bounds aid in pruning unpromising branches [5, 46, 60, 61, 66].

163
 164 In the field of global optimization, several methods have been developed to estimate the lower bound on the objective
 165 function within the search space [1, 2]. One popular approach is Convex Relaxation, which involves approximating a
 166 non-convex optimization problem with a convex one. By relaxing the constraints or objective function of the problem to
 167 a convex form, it becomes possible to obtain a lower bound on the global optimum. Convex relaxation techniques, such
 168 as semidefinite programming, linear programming, or convex hull approximation, are commonly employed to construct
 169 convex lower bounds [35, 50]. Interval analysis is another widely used technique, which utilizes interval arithmetic
 170 to compute bounds on functions. By propagating intervals of values for the decision variables through the objective
 171 function and constraints, bounds on the function's values can be obtained. Interval analysis provides guaranteed lower
 172 bounds by considering the range of possible values for each variable within given intervals [7, 21, 37].

173
 174 Statistical methods, such as Working-Hotelling inference, offer an additional approach for estimating lower bounds
 175 based on sampled data. These techniques enable the inference and approximation of the lower bound of the objective
 176 function using available sample data [6, 56]. Furthermore, Lipschitz continuity-based methods establish lower bounds
 177 on the objective function by bounding the rate of change of the function. These methods utilize the Lipschitz constant,
 178 which characterizes the local smoothness of the function and quantifies its maximum rate of change between any two
 179 points in its domain [18, 25, 26].

180
 181 Estimating the Lipschitz constant has been the subject of various techniques proposed in the literature. These
 182 techniques can be broadly classified into two main approaches: analytical and data-driven. The analytical approach
 183 derives an upper bound on the Lipschitz constant based on some known properties or assumptions about the function,
 184 such as its derivatives, convexity, or smoothness [22, 31, 32]. For instance, if the function is differentiable, and its
 185 gradient is bounded by a constant M , then the Lipschitz constant is at most M . However, this approach may not be
 186 feasible or accurate when the function is complex, nonlinear, or unknown. The data-driven approach estimates the
 187 Lipschitz constant from data by computing the maximum ratio of the function values and the distances between any
 188 two points in the domain [e.g., 48]. This approach does not require any prior knowledge or assumptions about the
 189 function, but it may face high computational complexity or poor scalability when the dimension or the number of data
 190 points is large.

191
 192 Several techniques have been proposed to improve the efficiency and accuracy of data-driven Lipschitz estimation
 193 methods. One technique is to use sampling strategies to reduce the number of data points or subspaces that need to
 194 be evaluated. For example, Fazlyab et al. [11] proposes a branch and bound algorithm that uses adaptive sampling to
 195 select promising subspaces based on their lower bounds and prune unpromising ones based on their upper bounds.
 196 Another technique is to use convex optimization techniques to formulate and solve the Lipschitz estimation problem as
 197 a semidefinite program (SDP) or a second-order cone program (SOCP). For example, Jin, Khajenejad, and Yong [27]
 198 present a convex optimization framework that interprets activation functions as gradients of convex potential functions
 199 and uses quadratic constraints to describe their properties. This allows them to pose the Lipschitz estimation problem
 200 as an SDP that can be adapted to increase either the estimation accuracy or scalability.

These techniques cannot be applied directly to global optimization problems that involve expensive black-box functions. Recent research has focused on Lipschitz constant estimation in such settings. One way to exploit the Lipschitz constant in the global optimization of black-box functions is to use response surfaces such as the Radial Basis Function [e.g., 20] and Gaussian Processes [e.g., 3], which are approximate functions of the objective function [e.g., 38]. By using response surfaces, researchers can estimate the Lipschitz constant and use it to guide the optimization process more efficiently and accurately. In particular, it can be used to identify promising regions in the problem domain as proposed in the diagonal partitioning method [e.g., 54] or space-filling curves [e.g., 55]. More recently, the Lipschitz constant has been estimated using a linear similarity measurement between sampled points. This approximate function is then employed to establish a lower bound for the objective function, which directs the search towards promising regions of the problem space [3, 38]. This approach combines the advantages of surrogate modeling and Lipschitz constant estimation to enhance the efficiency and effectiveness of global optimization techniques.

2.1 Contribution

While previous studies have dedicated efforts to construct lower bounds based on Lipschitz constant estimations, there is a significant research gap in comprehensively evaluating the effectiveness and accuracy of these lower bounds across different problem domains. This study aims to bridge this gap by conducting a systematic and theoretical analysis of the quality of Lipschitz constant-based lower bounds.

In particular, the existing studies often concentrate on linear or piecewise linear approximations for Lipschitz constant estimations [3, 38], neglecting the potential benefits that nonlinear techniques, such as a nonlinear distance metric, may offer. The investigation of nonlinear distance metrics for estimating the Lipschitz constant and their impact on the quality of lower bounds remains unexplored in the optimization context. Exploring the use of nonlinear distance metrics in Lipschitz constant estimation could provide valuable insights into enhancing the accuracy and efficiency of lower bounds, particularly for functions with nonlinear characteristics or complex problem domains. By incorporating a nonlinear distance metric into Lipschitz constant estimation, we can better capture the nonlinear behavior of the underlying function. Nonlinear distance metrics allow for more flexible and expressive representations of the function, enabling the estimation algorithm to capture intricate relationships and variations in the function's smoothness. This leads to more accurate Lipschitz constant estimates, which in turn yields improvements in the quality of the lower bounds. Consequently, optimization algorithms guided by these nonlinear lower bounds can explore the search space more efficiently, avoiding unnecessary evaluations in unpromising regions and focusing on potentially superior solution subspaces.

Therefore, this study aims to address these gaps by promoting Hölder-style nonlinear distance metrics for Lipschitz constant-based lower bounds, providing theoretical properties of them, and conducting an empirical and theoretical evaluation of them across diverse optimization problems. By investigating the quality of these lower bounds and their performance in guiding optimization algorithms, this research will contribute to a deeper understanding of Lipschitz-based techniques and their practical implications.

In this paper, we present a theoretical analysis, focusing on the use of superlinear, linear, and sublinear distance metrics for estimating Lipschitz constants and computing lower bounds on the objective function. Our key theoretical contribution lies in establishing a fundamental result that reveals the relationship between the lower bounds obtained by these distance metrics on a set of unevaluated data points. We demonstrate, under certain assumptions, that the lower bounds obtained using the superlinear, linear, and sublinear distance metric exhibit a specific order: $\hat{f}_{lb}^{sup}(\mathbf{x}) < \hat{f}_{lb}^{lin}(\mathbf{x}) < \hat{f}_{lb}^{sub}(\mathbf{x})$. This order of lower bounds provides insights into the tightness of the Lipschitz constant estimation. We

propose an evaluation metric to assess the quality of lower bounds generated using Lipschitz estimates. Our evaluation metric considers both point-wise evaluations, comparing the reliability of lower bounds at individual data points, and comparative analysis of lower bounds generated by different estimators. By comparing the lower bounds obtained from various approaches, we can identify the most precise and reliable Lipschitz estimator for a specific application.

3 METHODOLOGY

3.1 Problem Formulation

Let $f(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R}$ represent the objective function to be minimized (or maximized) in an optimization problem, and let $\mathbf{x}^* \in \mathbb{R}^d$ be the global optimizer. The global optimizer \mathbf{x}^* satisfies the property that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all feasible $\mathbf{x} \in \mathcal{X}$, where \mathcal{X} represents the solution space, which is a set of possible values for the decision variables. The feasible region, denoted as $\Omega \subseteq \mathcal{X}$, encompasses the set of all feasible $\mathbf{x} \in \mathcal{X}$ that satisfy the constraints of the optimization problem. A lower bound, denoted as $f_{lb}(\mathbf{x})$, is a value or function that satisfies the following condition for all feasible $\mathbf{x} \in \Omega \subseteq \mathcal{X}$:

$$f_{lb}(\mathbf{x}) \leq f(\mathbf{x}) \quad (5)$$

In this study, we aim to explore the use of Hölder-style nonlinear distance metrics for estimating the Lipschitz constant and subsequently constructing lower bounds for an objective function. Lipschitz continuity refers to a property of functions where there exists a Lipschitz constant that bounds the function rate of change.

Formally, Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a function defined over the d -dimensional Euclidean space. Function f is said to be Lipschitz continuous if there exists a constant $l_f > 0$ such that for any two points \mathbf{x}^i and \mathbf{x}^j in the domain \mathbb{R}^d , the following inequality holds:

$$|f(\mathbf{x}^i) - f(\mathbf{x}^j)| \leq l_f \|\mathbf{x}^i - \mathbf{x}^j\| \quad (6)$$

where $\|\cdot\|$ denotes the Euclidean norm (L^2 -norm). The Lipschitz constant l_f of the function $f(\mathbf{x})$ defined below represents an upper bound on the slope or rate of change of the function:

$$\hat{l}_f = \sup_{\mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}} \frac{|f(\mathbf{x}^i) - f(\mathbf{x}^j)|}{\|\mathbf{x}^i - \mathbf{x}^j\|}, \quad (7)$$

In our approach, we define a lower bound as an approximation of the minimum value of the objective function at a given point. The lower bound at point \mathbf{x}^i is obtained by subtracting the estimated Lipschitz constant \hat{l}_f multiplied by the Euclidean distance between \mathbf{x}^i and a reference point \mathbf{x}^j from the objective function value $f(\mathbf{x}^i)$. Given the unknown nature of the Lipschitz constant, our approach involves the utilization of techniques to estimate its value, \hat{l}_f . In addition, estimating l_f using Equation 7 can be challenging, especially in cases where the function $f(\mathbf{x}^i)$ is unknown or can only be evaluated at specific points.

We extend the standard Lipschitz constant estimation framework by considering a more general form of Equation 7,

$$\hat{l}_f = \sup_{\mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}} \frac{f(\mathbf{x}^i) - f(\mathbf{x}^j)}{\varphi(\mathbf{x}^i, \mathbf{x}^j)} \quad (8)$$

where the numerator of the fraction represents the difference in function values between two points \mathbf{x}^i and \mathbf{x}^j , while the denominator is determined by the non-negative distance metric $\varphi(\cdot)$. For $\varphi(\cdot) = \|\cdot\|^p$ and $p > 0$, \hat{l}_f in Equation 7 is referred to as a Hölder constant [63]. The distance metric can take on a linear or nonlinear form, providing flexibility in capturing the relationship between input points. Further details on the construction and selection of suitable distance metrics will be discussed in section 3.2.

In practical scenarios, the true objective function $f(\mathbf{x}^i)$ may be unavailable or computationally expensive to evaluate for every pair of points in the input space. Hence, we rely on an estimate of the objective function, denoted as $\hat{f}(\mathbf{x}^i)$, to approximate the function. The use of $\hat{f}(\mathbf{x}^i)$ allows us to overcome the limitations of direct access to $f(\mathbf{x}^i)$ and enables the estimation of the Lipschitz constant.

Our approach leverages a surrogate model that is trained on a limited set of evaluated points $\mathcal{D} = \{X\}$, where the true output values are known. By fitting the surrogate model to the evaluated dataset, we can estimate the lower bound of the underlying function for an unevaluated set of observations \mathcal{U} , which is unknown to the trained model.

To estimate the Lipschitz constant, we solve an LP using the set of evaluated points \mathcal{D} . Specifically, let $\{\mathcal{D}_1, \dots, \mathcal{D}_K\}$ be a partition of the set \mathcal{D} . For each $\mathbf{x}^i \in \mathcal{D}$, let \mathcal{D}^i be the subset within the partition that includes the evaluated point \mathbf{x}^i , let $\bar{\mathcal{D}}^i$ be the complementary set of evaluated points such that $\bar{\mathcal{D}}^i = \mathcal{D} \setminus \mathcal{D}^i$, and let $\hat{f}_{\bar{\mathcal{D}}^i}$ be a surrogate model trained similarly to that of \hat{f} but with only the evaluated points in $\bar{\mathcal{D}}^i$. Note that the evaluated point \mathbf{x}^i is not in the data that trains $\hat{f}_{\bar{\mathcal{D}}^i}$. Moreover, let $\bar{\mathbf{x}}^i \in \bar{\mathcal{D}}^i$ be a nearest point to \mathbf{x}^i based upon the distance metric φ ; that is,

$$\bar{\mathbf{x}}^i \in \arg \min_{\mathbf{x} \in \bar{\mathcal{D}}^i} \varphi(\mathbf{x}^i, \mathbf{x}). \quad (9)$$

Let η_i be a nonnegative slack variable representing the difference between the lower bound at \mathbf{x}^i and its true evaluated function $f(\mathbf{x}^i)$. The LP formulation, as given in Equation 10, seeks to find the Lipschitz constant \hat{l}_f that minimizes the maximum η_i for all evaluated points.

$$\min \max_{i=1, \dots, |\mathcal{D}|} \eta_i \quad (10a)$$

s.t.

$$\hat{f}_{\bar{\mathcal{D}}^i}(\mathbf{x}^i) - \hat{l}_f \varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i) + \eta_i = f(\mathbf{x}^i), \quad \forall \mathbf{x}^i \in \mathcal{D}, \quad (10b)$$

$$\eta_i \geq 0, \quad \forall i = 1, \dots, |\mathcal{D}|. \quad (10c)$$

By solving the LP, we obtain estimates of the Lipschitz constant \hat{l}_f , which can approximate the lower bound of the function with Equation 11.

$$\hat{f}_{lb}(\mathbf{x}) = \hat{f}(\mathbf{x}) - \hat{l}_f \varphi(\mathbf{x}, \bar{\mathbf{x}}) \approx f_{lb}(\mathbf{x}), \quad (11)$$

where $\bar{\mathbf{x}}$ is a nearest evaluated point to \mathbf{x} in \mathcal{D} based upon the distance metric φ .

This approach allows us to handle cases where the true function evaluations are limited or unavailable, enabling us to estimate the Lipschitz constant using the available surrogate model and evaluated data. Moreover, Equation 11 provides a conservative estimate of the lower bound, which can guide the optimization algorithm in exploring regions with the potential for improving the objective function value while avoiding local optima. It can also help estimate an optimality gap with Equation 12.

$$GAP = \min_{\mathbf{x}^i \in \mathcal{D}} f(\mathbf{x}^i) - \min_{\mathbf{x} \in \Omega} \hat{f}_{lb}(\mathbf{x}). \quad (12)$$

It is worth noting that the quality of the lower bound approximation depends on the accuracy of \hat{f} in representing the true objective function within a certain region of interest. Therefore, the selection and construction of an appropriate surrogate \hat{f} play a crucial role in obtaining reliable and meaningful lower bounds.

In general, we want \hat{f} to have a flexible architecture so that it can accurately represent the true function f . However, highly flexible surrogate models can lead to overfitting the evaluated points and consequently be inaccurate in estimating

365 unevaluated points. To mitigate overfitting and estimate the variance of surrogate models, cross-validation (CV) is
 366 commonly employed in statistics and machine learning, especially when the dataset is limited in size, which is common
 367 in surrogate optimization.
 368

369 By incorporating an approach similar to CV into the Lipschitz constant estimation process, we can account for
 370 the uncertainty in the surrogate model's predictions and improve the robustness of the lower bound construction.
 371 Specifically, CV in its traditional machine learning setting trains multiple models on different subsets of the data and
 372 validates them on the complementary datasets. Similarly, in the LP, multiple models are trained, but the Lipschitz
 373 constant is estimated using evaluated points in complementary datasets $\bar{\mathcal{D}}$ as shown in Equation 10b.
 374

375 Algorithm 1 outlines the steps involved in estimating the Lipschitz constant using distance metrics and surrogate
 376 models.
 377

378 **Algorithm 1** Lipschitz Constant Estimation Using Distance Metrics

379 1: Partition \mathcal{D} into $\{\mathcal{D}_1, \dots, \mathcal{D}_K\}$
 380 2: **for** $k = 1, \dots, K$ **do**
 381 3: Train a surrogate model $\hat{f}_{\bar{\mathcal{D}}_k}$ on $\bar{\mathcal{D}}_k$.
 382 4: **for** $\mathbf{x}^i \in \mathcal{D}_k$ **do**
 383 5: Calculate $\hat{f}_{\bar{\mathcal{D}}_k}(\mathbf{x}^i)$.
 384 6: Find $\bar{\mathbf{x}}^i$ from Equation 9.
 385 7: Calculate $\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)$
 386 8: **end for**
 387 9: **end for**
 388 10: Solve the linear program (LP) using Equation 10.
 389 11: Return the estimated Lipschitz constant \hat{l}_f
 390

391
 392 The algorithm iterates over the K subsets within the partition $\mathcal{D}_1, \dots, \mathcal{D}_K$. This partitioning allows us to create a
 393 surrogate model $\hat{f}_{\bar{\mathcal{D}}_k}$ by fitting it on $\bar{\mathcal{D}}_k$; which is the complementary subset of \mathcal{D}_k such that $\bar{\mathcal{D}}_k = \mathcal{D} \setminus \mathcal{D}_k$. Then for
 394 each point $\mathbf{x}^i \in \mathcal{D}_k$, the surrogate model is used to predict the function value at \mathbf{x}^i , resulting in $\hat{f}_{\bar{\mathcal{D}}_k}(\mathbf{x}^i)$. Next, the
 395 algorithm identifies the closest point to \mathbf{x}^i in $\bar{\mathcal{D}}_k$. This step determines the reference point $\bar{\mathbf{x}}^i$ that is used in the distance
 396 metric calculations. The distance metric value $\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)$ is computed, representing the relationship between the current
 397 point \mathbf{x}^i and the reference point $\bar{\mathbf{x}}^i$. The process continues for each point in each subset of the partition, resulting in a
 398 set of distance metric values for each point. Finally, the algorithm solves the linear program (LP) given in Equation 10.
 399 Upon solving the LP, the algorithm returns the estimated Lipschitz constant \hat{l}_f .
 400

401 **3.2 Distance Metrics and Similarity Measurements**

402 The Lipschitz constant is a crucial parameter that characterizes the smoothness and regularity of the objective function
 403 in optimization problems. It represents the maximum rate of change of the function across its entire domain. The
 404 Lipschitz constant, denoted as l , satisfies the Lipschitz condition, which imposes a bound on the difference between the
 405 function values at any two points \mathbf{x}^i and \mathbf{x}^j in the search space. Specifically, the Lipschitz condition is defined as below
 406 [62]:
 407

$$412 \quad 413 \quad |f(\mathbf{x}^i) - f(\mathbf{x}^j)| \leq l \|\mathbf{x}^i - \mathbf{x}^j\|, \quad (13)$$

414 ²Throughout the remainder of the paper, l refers to l_f .
 415

417 where $\|\mathbf{x}^i - \mathbf{x}^j\|$ represents the Euclidean distance between points \mathbf{x}^i and \mathbf{x}^j .

418 Our study encompasses three distinct types of distance metrics exhibiting diverse linearity properties. Nevertheless,
 419 before delving into the definition of each distance metric, it is crucial to examine the concept of linearity properties.
 420

421 **Definition 1.** Let \mathcal{X} be a vector space over the set of real numbers \mathbb{R} or complex numbers \mathbb{C} . A real-valued function
 422 $g : \mathcal{X} \rightarrow \mathbb{R}$ is called *superlinear*, *linear*, or *sublinear* if it is non-negative homogeneous and satisfies the respective
 423 additivity property [47, 52] as defined in Table 1.
 424

425
 426 Table 1. Definitions of Linearity Properties
 427

428 429 Property	430 431 432 433 434 Mathematical Definition
430 431 Non-negative homogeneity	$430 g(\mathbf{u}.\mathbf{x}^i) = \mathbf{u}.g(\mathbf{x}^i) \quad \forall \mathbf{u} \geq 0, \mathbf{u} \in \mathbb{R}, \quad \forall \mathbf{x}^i \in \mathcal{X}$
432 433 Subadditivity	$432 g(\mathbf{x}^i + \mathbf{x}^j) \leq g(\mathbf{x}^i) + g(\mathbf{x}^j) \quad \forall \mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}$
433 Additivity	$433 g(\mathbf{x}^i + \mathbf{x}^j) = g(\mathbf{x}^i) + g(\mathbf{x}^j) \quad \forall \mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}$
434 Superadditivity	$434 g(\mathbf{x}^i + \mathbf{x}^j) \geq g(\mathbf{x}^i) + g(\mathbf{x}^j) \quad \forall \mathbf{x}^i, \mathbf{x}^j \in \mathcal{X}$

435
 436 We can now characterize the general forms of superlinear, linear, and sublinear distance metrics by considering their
 437 specific linearity traits, all while relaxing the traditional requirement of triangle inequality from distance metrics. For a
 438 given point-wise distance-based metric $\varphi(\mathbf{x}^i, \mathbf{x}^j)$ expressed in the following form:
 439

$$440 \quad \varphi(\mathbf{x}^i, \mathbf{x}^j) = \alpha \|\mathbf{x}^i - \mathbf{x}^j\|^p \quad (14)$$

441 **Definition 2.** A *superlinear distance metric* $\varphi(\mathbf{x}^i, \mathbf{x}^j)$ is a type of distance metric that satisfies Equation (14) where \mathbf{x}^i
 442 and \mathbf{x}^j are input vectors, α is a scaling factor, and p is a positive exponent greater than 1. The superlinear distance
 443 metric captures complex relationships between the input vectors, and its growth rate is faster than linear, as $p > 1$.
 444

445 Similarly, we can define *sublinear distance metric* and *linear distance metric* based on the magnitude of the p constant
 446 in the Equation 14, in which $p < 1$ would give us the *sublinear distance metric*, and $p = 1$ gives the *linear distance metric*.
 447

448 By studying these specific distance metrics, we can effectively measure the similarity or distance between input
 449 vectors and use them in the context of estimating the Lipschitz constant. Each distance metric has its own characteristics,
 450 enabling us to approximate the Lipschitz constant efficiently based on the linearity properties captured by the respective
 451 distance metric. The choice of distance metric depends on the specific requirements and properties of the problem at
 452 hand.
 453

454 For instance, the superlinear distance metric captures nonlinear relationships and allows for a faster growth rate
 455 than the linear distance metric. This distance metric is suitable for modeling complex relationships between input
 456 vectors. On the other hand, the sublinear distance metric gives less weight to larger distances, making it appropriate for
 457 sparse and high-dimensional data. The linear distance metric, based on the Euclidean distance, measures similarity by
 458 computing the dot product of feature vectors. It is a simple and computationally efficient distance metric that serves
 459 as a baseline for comparison with more complex distance metrics. However, its linearity limits its ability to capture
 460 non-linearity.
 461

462 Through the application of these distance metrics and their inherent linear properties, we can proficiently approximate
 463 the Lipschitz constant. This constant serves as a key indicator of the smoothness and regularity inherent in the objective
 464

469 function. Its significance lies in optimization problems, where it enables us to restrict the disparity between the values
 470 of the objective function at distinct points within the search space.

471 The parameters of the distance metric definitions play a crucial role and can lead to different outcomes. While the
 472 right-hand side (RHS) of the LP in Equation 10b remains the same for all distance metrics, the left-hand side (LHS)
 473 differs in terms of similarity measurement. The φ values, which are derived by applying the corresponding distance
 474 metric to the distance between each pair of $(\mathbf{x}^i, \bar{\mathbf{x}}^i)$, contribute to this difference. Consequently, we obtain three distinct
 475 Lipschitz constant values, namely l^{sup} , l^{lin} , and l^{sub} . These constants represent the estimated Lipschitz constants
 476 derived from the LP. Theorem 3.1 provides a closed-form solution for the Lipschitz constant l based on Equation 10,
 477 which we will explain in detail below.

478 In this study, we will explore three different distance metrics, each with its own set of parameters and properties. It is
 479 important to note that practitioners may not necessarily use or define all of these distance metrics, but our comparison
 480 aims to provide some guidance for their selection.

481 **Theorem 3.1.** *For a given function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ with a set of evaluated data points \mathcal{D} and a constructed surrogate model
 482 \hat{f} , there exists a data point $\mathbf{x}^i \in \mathcal{D}$, where $\eta_i = 0$, that maximizes the fraction:*

$$483 \hat{l} = \max_{\mathbf{x}^i \in \mathcal{D}} \frac{\hat{f}_{\mathcal{D}^i}(\mathbf{x}^i) - f(\mathbf{x}^i)}{\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)} \quad (15)$$

484 where $\bar{\mathbf{x}}^i$ represents the closest point to \mathbf{x}^i from the data set \mathcal{D} given by Equation 9. This maximization provides an optimal
 485 solution for the Lipschitz constant estimate \hat{l} .

486 PROOF OF THEOREM 3.1. The proof is given in Appendix A. □

487 **Corollary 3.2.** *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a function for which a set of data is given and a surrogate model is constructed. Let
 488 \hat{l}^{sup} , \hat{l}^{lin} , and \hat{l}^{sub} denote the Lipschitz constant approximations obtained using superlinear, linear, and sublinear distance
 489 metrics, respectively. Then, the Lipschitz constant approximations follow the inequality:*

$$490 \hat{l}^{sup} < \hat{l}^{lin} < \hat{l}^{sub}$$

491 PROOF OF COROLLARY 3.2. The proof is given in Appendix A. □

503 3.3 Bound Construction

505 Once the estimated Lipschitz constant \hat{l} has been obtained using the evaluated data set \mathcal{D} , we can use Equation 11
 506 to estimate the lower bound of f for a set of unevaluated data points $\mathcal{U} \subseteq \mathcal{X} \setminus \mathcal{D}$. Observe that from Equation 14,
 507 $\varphi(\mathbf{x}, \bar{\mathbf{x}}) = 0$ when $\bar{\mathbf{x}} \in \mathcal{D}$.

508 Let $\rho(\mathbf{x})$ be defined by Equation 16.

$$511 \rho(\mathbf{x}) = \hat{l}\varphi(\mathbf{x}, \bar{\mathbf{x}}), \forall \mathbf{x} \in \mathcal{X} \quad (16)$$

513 Combining Equations 11 and 16, we have Equation 17.

$$514 \hat{f}_{lb}(\mathbf{x}) = \hat{f}(\mathbf{x}) - \rho(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X} \quad (17)$$

516 We obtain three distinct $\rho(\mathbf{x})$ functions for each of their respective distance metrics: $\rho^{sup}(\mathbf{x})$, $\rho^{lin}(\mathbf{x})$, and $\rho^{sub}(\mathbf{x})$.

517 Based on the ordering of the $\rho(\mathbf{x})$, we can assert the following sequence for the lower bounds produced by the three
 518 distinct distance metrics, using Corollary 3.2:

521 **Theorem 3.3.** Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be the objective function, \mathcal{D} be a given set of evaluated data points, \mathcal{U} be a set of
 522 unevaluated data points, and \hat{f} be a surrogate model trained on \mathcal{D} . Let $\tilde{\mathbf{x}}$ be a unique point where $\tilde{\eta} = 0$ as discussed in
 523 the proof of Theorem 3.1, and let $\bar{\tilde{\mathbf{x}}}$ be given by Equation 9.

525
$$\forall \mathbf{x} \in \mathcal{U} : \varphi(\mathbf{x}, \tilde{\mathbf{x}}) > \varphi(\tilde{\mathbf{x}}, \bar{\tilde{\mathbf{x}}}) \quad (18)$$

528
$$\hat{f}_{lb}^{sup}(\mathbf{x}) < \hat{f}_{lb}^{lin}(\mathbf{x}) < \hat{f}_{lb}^{sub}(\mathbf{x}), \quad (19)$$

530 where \hat{f}_{lb}^{sup} , \hat{f}_{lb}^{lin} , and \hat{f}_{lb}^{sub} are the lower bounds computed using the superlinear, linear, and sublinear distance metrics,
 531 respectively.

533 PROOF OF THEOREM 3.3. The proof is given in Appendix A. □

535 While this proof is based on the definitions and properties of the superlinear, linear, and sublinear distance metrics,
 536 it is important to consider the characteristics and properties of the bounds used for Lipschitz constant estimation. Some
 537 of these properties are:

- 539 • **Conservative vs. Aggressive:** A *conservative bound* is guaranteed to be a valid bound but may not be tight,
 540 while an *aggressive bound* is more likely to be tight but not necessarily guaranteed to be valid. The choice of a
 541 bound should balance between conservatism and aggressiveness.
- 543 • **Tightness:** *Tight bounds* provide more accurate estimates of the Lipschitz constant. In practice, it is desirable to
 544 have bounds that are as tight as possible.
- 545 • **Computational Complexity:** Some bounds may be more computationally expensive to compute than others.
 546 This can be a consideration when working with large datasets or limited computational resources.
- 548 • **Generality:** Some bounds may be more general and applicable to a wider range of functions or data distributions
 549 than others. This can be important when working with diverse datasets or when generalization is a priority.

551 Regarding the characteristics and properties of specific distance metrics used in Lipschitz estimation, it is worth
 552 noting that linear distance metrics are widely used in the literature due to their simplicity and desirable properties.
 553 However, other distance metrics such as sublinear and superlinear distance metrics can also be useful in certain contexts.
 554 For example, the sublinear distance metric can handle sparse data effectively, while the superlinear distance metric can
 555 capture nonlinear relationships between data points. It is important to consider that some distance metrics, such as the
 556 superlinear distance metric, may be computationally expensive, which can be a limitation in certain applications.

559 4 LOWER BOUND QUALITY

560 The quality of the lower bounds constructed using Lipschitz estimates is an essential aspect of assessing their accuracy
 561 and usefulness in practical applications. One way to evaluate the quality of the lower bounds is through *point-wise*
 562 *evaluation*. This approach focuses on assessing the accuracy of the lower bound at individual data points. Given a set of
 563 data points \mathcal{D} , we can compare the true function values $f(\mathbf{x}^i)$ with the corresponding lower bounds $\hat{f}_{lb}(\mathbf{x}^i)$ obtained
 564 using Lipschitz estimates. For each point $\mathbf{x}^i \in \mathcal{D}$, we compute the absolute difference between the true function value
 566 and the lower bound: $|f(\mathbf{x}^i) - \hat{f}_{lb}(\mathbf{x}^i)|$.

568 By comparing the lower bounds generated by different estimators or parameter configurations, we can identify
 569 which approach produces more aggressive and conservative lower bounds. This comparative analysis allows us to
 570

573 select the most suitable Lipschitz estimator or parameter setting for a specific application, optimizing the quality of the
 574 lower bounds.

575 To obtain tighter lower bounds, certain adjustments can be considered. One of the possible improvements is enhancing
 576 the accuracy of the surrogate model. The surrogate model is used to predict the output for a set of unevaluated
 577 observations. Depending on the specific context of the study, various types of surrogate models can be considered.
 578 When evaluating the quality of the lower bounds, the objective is to minimize the deviation from the true function
 579 values. Equation 17 highlights two key aspects to consider to achieve this objective:
 580

- 582 • The accuracy and proximity of the surrogate model predictions to the true function values: The closer the
 583 predictions are to the true function values, the smaller the difference between the prediction and the true
 584 function value will be.
- 585 • The choice of $\rho(\mathbf{x})$ for each data point: Smaller $\rho(\mathbf{x})$ leads to smaller differences between the surrogate model
 586 predictions and the estimated lower bound.

588 It is important to note that improving the accuracy of the surrogate model is a separate discussion. However, based
 589 on how the $\rho(\mathbf{x})$ function is determined, some general guidelines can be considered to influence the $\rho(\mathbf{x})$ function. To
 590 minimize $\rho(\mathbf{x})$, it is necessary to minimize each component of the expression in Equation 16. Therefore, it is crucial to
 591 investigate the behavior of $\rho(\mathbf{x})$ on evaluated and unevaluated points individually.

593 In the following sections, we analyze the influence of different distance metric choices and different data distributions
 594 on the quality of the lower bounds obtained for a given data set. The specific distance metric definitions in Table 2
 595 were chosen for the example to illustrate the necessary linearity characteristics of the distance metric. Although these
 596 definitions do not represent the general form given by Equation 14, they capture the essential behavior of the distance
 597 metric we are considering.

598 The superlinear distance metric accentuates small distances by incorporating an exponential term, allowing it to
 599 emphasize close similarities between data points. The linear distance metric, on the other hand, directly scales the
 600 distance between points. Lastly, the sublinear distance metric applies a logarithmic transformation to the distance,
 601 which effectively downplays larger distances.

602 By using these specific definitions, we can demonstrate the distinctive behaviors of the different distance metric types
 603 and their impact on the evaluation of $\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)$. This facilitates a more intuitive understanding of the characteristics of
 604 each distance metric and its suitability for specific problems.

609 Table 2. Distance Metric Definitions
 610

611	Superlinear distance metric	$\varphi(\mathbf{x}^i, \mathbf{x}^j) = \exp(m\ \mathbf{x}^i - \mathbf{x}^j\) - 1$
612	Linear distance metric	$\varphi(\mathbf{x}^i, \mathbf{x}^j) = m\ \mathbf{x}^i - \mathbf{x}^j\ $
613	Sublinear distance metric	$\varphi(\mathbf{x}^i, \mathbf{x}^j) = \ln(m\ \mathbf{x}^i - \mathbf{x}^j\ + 1)$

617 4.1 Data Distribution

618 The data distribution plays a crucial role in this study, particularly in determining the lower bounds. The distribution
 619 can be divided into two distinct sections: evaluated and unevaluated data points. The distribution characteristics of
 620 these sections directly affect the computation of the Lipschitz constant, as they influence the distance and $\varphi(\mathbf{x}, \bar{\mathbf{x}})$
 621 involved in the process.

625 **Evaluated Data Distribution.**

626 The distribution of the evaluated points \mathcal{D} and their pairwise distances impact the calculation of the Lipschitz
 627 constant using Equation 10, which is a key factor in determining the quality of the lower bounds. The evaluated data
 628 points serve as a reference for determining the Lipschitz constant, which in turn influences the estimation of the lower
 629 bounds for the unevaluated points.
 630

631 Let us consider a set of evaluated points, denoted as \mathcal{D} . Specifically, we focus on a point $\tilde{\mathbf{x}} \in \mathcal{D}$, where $\tilde{\eta} = 0$
 632 as defined in Equation 15. Considering the solution to Equation 15 for estimating the Lipschitz constant (Corollary
 633 3.2), and assuming all other terms in the numerator of this fraction are equal, we observe that the larger the distance
 634 (distance metric values), the smaller the Lipschitz constant becomes. Consequently, data sets with a greater spread and
 635 exploration of points compared to datasets with more concentrated points will result in a smaller Lipschitz constant. In
 636 other words, a well-spread data set, where the evaluated points are distributed across a wider range, leads to a smaller
 637 Lipschitz constant.
 638

640 **Unevaluated Data Distribution.**

641 The distribution of unevaluated data points also plays a significant role in assessing the effectiveness of the distance
 642 metric on unseen observations. The pairwise distances between the unevaluated points \mathcal{U} and their corresponding
 643 closest point in the evaluated set \mathcal{D} are used to calculate $\rho(\mathbf{x})$ as shown in Equation 16.
 644

645 Using the estimated Lipschitz constant \hat{l} obtained from the evaluated dataset \mathcal{D} , a tighter lower bound would be
 646 created by subtracting a smaller $\rho(\mathbf{x})$ in Equation 17. Let us consider two unevaluated points $\mathbf{x}^i, \mathbf{x}^j \in \mathcal{U}$. Referring to
 647 the general definition of a distance metric in Equation 14, we observe that $\varphi(\mathbf{x}, \tilde{\mathbf{x}})$ is monotonically increasing with
 648 respect to the Euclidean distance between the two points. Consequently, we can make the following inference:
 649

$$650 \quad \|\mathbf{x}^i - \tilde{\mathbf{x}}^i\| > \|\mathbf{x}^j - \tilde{\mathbf{x}}^j\| \implies \varphi(\mathbf{x}^i, \tilde{\mathbf{x}}^i) > \varphi(\mathbf{x}^j, \tilde{\mathbf{x}}^j) \implies \rho(\mathbf{x}^i) > \rho(\mathbf{x}^j) \quad (20)$$

651 Consequently, unevaluated data points that have a smaller Euclidean distance from their closest evaluated point will
 652 result in tighter lower bounds.
 653

656 **4.2 Evaluation Metric**

657 In this study, we propose an evaluation metric to select the *winning distance metric* based on the lower bound they
 658 generate. Specifically, let $\mathbf{x} \in \mathcal{X}$ be a sampled point, and consider two estimated lower bounds $\hat{f}_{lb}^{\varphi_1}$ and $\hat{f}_{lb}^{\varphi_2}$ derived
 659 from distance metrics φ_1 and φ_2 . Assuming $\hat{f}_{lb}^{\varphi_1}(\mathbf{x}) \neq \hat{f}_{lb}^{\varphi_2}(\mathbf{x})$, we declare φ_1 the *winning distance metric* at \mathbf{x} if any of
 660 the conditions in Equation 21 are true.
 661

$$662 \quad \hat{f}_{lb}^{\varphi_2}(\mathbf{x}) < \hat{f}_{lb}^{\varphi_1}(\mathbf{x}) \leq f(\mathbf{x}), \quad (21a)$$

$$664 \quad \hat{f}_{lb}^{\varphi_1}(\mathbf{x}) \leq f(\mathbf{x}) < \hat{f}_{lb}^{\varphi_2}(\mathbf{x}), \quad (21b)$$

$$666 \quad f(\mathbf{x}) < \hat{f}_{lb}^{\varphi_1}(\mathbf{x}) < \hat{f}_{lb}^{\varphi_2}(\mathbf{x}). \quad (21c)$$

668 The metric considers three different scenarios. First, it determines whether the distance metric produces *valid lower*
 669 *bounds*. If both distance metrics meet this criterion, it selects the distance metric with the smallest gap as the *winning*
 670 *distance metric* as in Equation 21a. Additionally, in the case where neither distance metric estimates a lower bound, the
 671 metric still determines the distance metric with the smallest gap as in Equation 21c to be the winner.
 672

677 4.3 Distance Metric Effects on Lower Bound Construction

678 In this section, we analyze the influence of different distance metrics on the quality of the lower bounds obtained for
 679 a given data set. Variations in $\varphi(\mathbf{x}, \bar{\mathbf{x}})$ values for a given distribution of data points lead to a tighter or wider lower
 680 bound on the function value. This variation in the magnitude of the obtained $\varphi(\mathbf{x}, \bar{\mathbf{x}})$ value can happen either due to a
 681 different choice of distance metric or a different distribution of data points (As discussed earlier in Section 4.1). The
 682 quality of distance metric lower bounds can be closely related to the characteristics of the underlying true function.
 683 Therefore, the selection of the choice of the distance metric type should be based on a careful analysis of the specific
 684 characteristics of the problem at hand. Mathematical properties such as linearity, superlinearity, or sublinearity of the
 685 function can determine the appropriateness of certain distance metrics as lower bounds.
 686

687 Three different empirical tests and sensitivity analyses have been conducted to assess the performance and generality
 688 of different distance metric types in the context of the optimization problem. In particular, we expect a direct relationship
 689 between the function attributes and the choice of a suitable distance metric. Meaning that the distance metric bound
 690 quality improves as the type of the distance metric and the type of the function match. Moreover, we expect poor
 691 performance of the traditional lower bound construction methods against the distance metric bounds in general.
 692

693 The following are the traditional methodologies that are taken into consideration for this study:

694 **Working-Hotelling (WH) [45]:** This method uses the Working-Hotelling formula to construct simultaneous confidence
 695 intervals for the mean responses at different levels of the independent variable. The formula is given by:
 696

$$697 \hat{f}(\mathbf{x}) \pm W \hat{s}_{\hat{f}(\mathbf{x})} \quad (22)$$

698 where $\hat{f}(\mathbf{x})$ is the estimated mean response at point \mathbf{x} , $\hat{s}_{\hat{f}(\mathbf{x})}$ is the estimated standard error of $\hat{f}(\mathbf{x})$, and W is a constant
 699 that depends on the number of levels and the desired confidence level.
 700

701 **Standard Lipschitz Estimator [28] (Lipschitz):** Consider the problem of finding the global minimum of a function
 702 $f(\mathbf{x})$ defined on \mathcal{X} . Standard Lipschitzian algorithms assume that there exists a finite bound on the rate of change of
 703 the function; that is, for any $\mathbf{x} \in \mathcal{U}$ and its closest point $\bar{\mathbf{x}} \in \mathcal{D}$ there exists a positive constant L , called the Lipschitz
 704 constant, such that:
 705

$$706 |f(\mathbf{x}) - f(\bar{\mathbf{x}})| \leq L \|\mathbf{x} - \bar{\mathbf{x}}\|, \quad (23)$$

707 where $f(\mathbf{x})$ and $f(\bar{\mathbf{x}})$ are the objective function values for $\mathbf{x} \in \mathcal{U}$ and $\bar{\mathbf{x}} \in \mathcal{D}$ respectively. In this research, we estimate
 708 L using Equation 10 but with $\hat{f}_{\mathcal{D}^i}(\mathbf{x}^i) = f(\bar{\mathbf{x}}^i)$.
 709

710 To approximate the response surface (as in Equation 10) of the objective function, we employ a Radial Basis Function
 711 (RBF) surrogate model, as commonly used in the literature [e.g., 15, 58]. By examining these three examples, we can
 712 assess the performance of different distance metrics in terms of their ability to capture the linearity traits of the
 713 underlying functions and provide suitable lower bounds. The empirical results will be presented and discussed in the
 714 subsequent sections.
 715

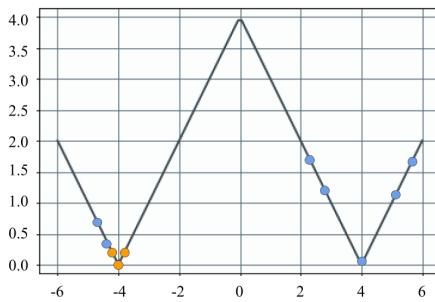
Linear Function.

Consider the function $f(x)$ as a piecewise linear function given by Equation 24.

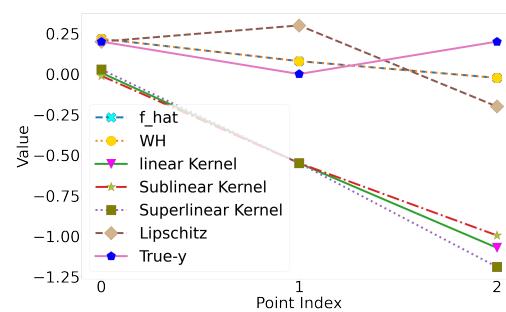
$$f(x) = \min\{|x - 4|, |x + 4|\} \quad (24)$$

Figure 1a represents the graph of the piecewise test function as defined in Equation 24 over the domain interval $[-6, 6]$. In this example, three unevaluated data points around -4 are marked in orange, while seven evaluated data points are marked in blue. Figure 1b demonstrates the lower bounds constructed on the three unevaluated points.

The “True-y” label indicates the true values of the test function at the unevaluated data points. Additionally, the “ $f_{\hat{h}}$ ” labels indicate the predictions made by the RBF surrogate model for the unevaluated data points. As shown in Figure 1b, the surrogate model accurately predicts the function values of unevaluated data points that are close to the true function values, resulting in overlapping “True-y” and “ $f_{\hat{h}}$ ” values. The same labeling and presentation approach has been followed for the sublinear and superlinear test functions.



(a) Defined piecewise Linear function



(b) Comparison of all distance metric lower bound for the piecewise Linear function.

Fig. 1. Empirical test case for a Linear function.

Table 3. Distance metric lower bound comparison for Linear test function

	Linear	Sublinear	Superlinear	WH	Lipschitz	Total
Linear	*	2	2	2	2	8
Sublinear	1	*	2	2	2	7
Superlinear	1	1	*	2	2	6
Working - Hotelling	1	1	1	*	2	5
Lipschitz	1	1	1	1	*	4
Total	4	5	6	7	8	*

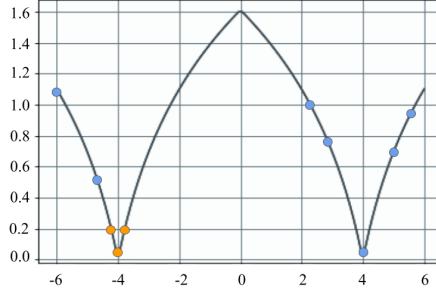
As depicted in Figure 1b, we can observe that the linear distance metric yields the closest lower bound for the piecewise linear function, while the standard Lipschitz method fails to determine a true lower bound in two of the three unevaluated points. In addition, Table 3 indicates the cumulative number of times each distance metric outperforms the other distance metrics based upon the metric described in section 4.2. Table 3 also indicates that the linear distance

metric produces a better estimated lower bound in eight out of twelve instances compared to the other distance metrics for the unevaluated points in the domain.

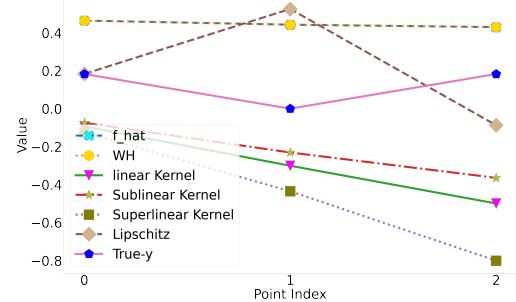
Sublinear Function. Consider the piecewise sublinear function defined as $f(\mathbf{x})$ in Equation 25.

$$f(\mathbf{x}) = \min\{\ln(|\mathbf{x} - 4| + 1), \ln(|\mathbf{x} + 4| + 1)\} \quad (25)$$

In Figure 2b and Table 4, we observe that the sublinear distance metric produces the most accurate lower bound for the sublinear function as it is designed to capture sublinear behavior.



(a) Defined Sublinear function



(b) Comparison of all distance metric lower bound for the Sublinear function.

Fig. 2. Empirical test case for a Sublinear function.

Table 4. Distance metric lower bound comparison for Sublinear test function

	Linear	Sublinear	Superlinear	WH	Lipschitz	Total
Linear	*	0	3	3	2	8
Sublinear	3	*	3	3	2	11
Superlinear	0	0	*	3	2	5
Working - Hotelling	0	0	0	*	1	1
Lipschitz	1	1	1	2	*	5
Total	4	1	7	11	7	*

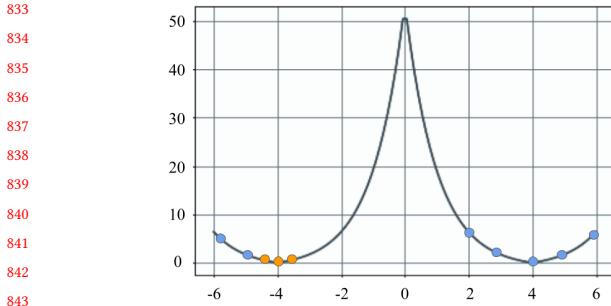
Superlinear Function.

Let us consider a piecewise-defined superlinear function given by Equation 26.

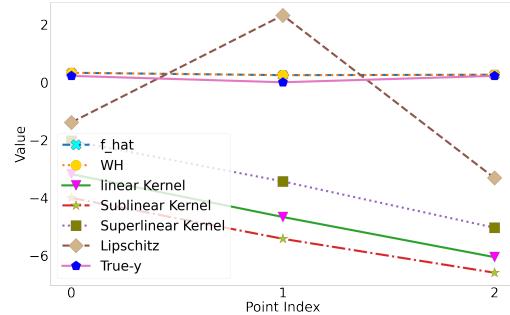
$$f(\mathbf{x}) = \min\{\exp(|\mathbf{x} - 4|) - 1, \exp(|\mathbf{x} + 4|) - 1\} \quad (26)$$

As anticipated, the superlinear distance metric is expected to yield a superior lower bound compared to other distance metrics due to its ability to capture superlinear relationships between data points. Superlinear distance metrics, such as the one defined here, are known for their capability to capture complex nonlinear patterns more effectively than linear and sublinear distance metrics. This is particularly evident when examining specific points, as illustrated in Figure 3.

In conclusion, Table 5 demonstrates the significant advantage of the superlinear distance metric over other distance metrics and approaches in generating high-quality lower bounds. The results are based on a dataset comprising



(a) Defined Superlinear function



(b) Comparison of all distance metrics lower bound for the Superlinear function.

Fig. 3. Empirical test case for a Superlinear function.

Table 5. Distance metric lower bound comparison for Superlinear test function

	Linear	Sublinear	Superlinear	WH	Lipschitz	Total
Linear	*	3	0	3	1	7
Sublinear	0	*	0	3	1	4
Superlinear	3	3	*	3	1	10
Working - Hotelling	0	0	0	*	1	1
Lipschitz	2	2	2	2	*	8
Total	5	8	2	11	4	*

ten points, with three of them selected as unevaluated points. It is noteworthy that the superlinear distance metric consistently produces lower bounds with a narrower disparity in ten out of twelve instances compared to the other distance metrics, indicating its superior performance in capturing the characteristics of the underlying function.

Ultimately, we can assert that these observations validate our assumption that there is a direct relationship between the characteristics of the underlying function, such as linearity, and the suitability of a certain distance metric for producing accurate lower bounds. The linear distance metric is well-suited for approximating the linear behavior of the function, as it provides a more accurate estimation of the lower bound compared to other distance metrics that may not effectively capture the linearity of the function.

While the sublinear distance metric may generally perform well in capturing sublinear behavior, there can still be cases where it fails to accurately estimate the lower bound for certain instances of a sublinear function. This can be the result of certain traits of the function or distance metric restrictions. For instance, a function may exhibit irregularities, such as sharp jumps or spikes, or it may have local maxima or minima in certain locations, making it difficult for a sublinear distance metric to calculate the lower bound with reliability, resulting in invalid estimates.

As discussed in Section 4.3, it can be observed that the $\varphi(\mathbf{x}, \bar{\mathbf{x}})$ values generated by the superlinear distance metric exhibit greater consistency within their range. Consequently, the superlinear distance metric demonstrates the ability to generate a tighter lower bound for superlinear functions compared to other distance metrics and methods. It is

885 important to note that the standard Lipschitz method and the Working-Hotelling method fail to find high-quality lower
 886 bounds due to their limited flexibility in capturing the nonlinearity aspects of the underlying functions.
 887

888 5 EXPERIMENTAL ANALYSIS

890 5.1 Experiment Setup

891 In this section, we present the experimental analysis of our proposed method for estimating the Lipschitz constant and
 892 constructing lower bounds using different distance metrics. Similar to Section 4.3 to approximate the response surface
 893 of the objective function, we employ an RBF surrogate model.
 894

895 To evaluate the performance of our method for estimating the Lipschitz constant and constructing lower bounds
 896 using different distance metrics, we use ten benchmark functions from the SFU optimization test problems library [59].
 897 Table 6 provides the details of each test function, including the dimensionality indicated under the “Dimension” column
 898 along with their defined domain under the “Domain” column. The known global minimum of each test function is
 899 presented under the “Global Minimum” column.
 900

902 Table 6. Test Functions Definition

904 Test Function	905 Dimension	906 Domain	907 Global Minimum
906 Branin	907 2	908 $[-5, 10]^2$	909 0.397887
907 Six Hump Camel	908 2	909 $[-3, 3]^2$	910 -1.0316
908 Goldstein-Price	909 2	910 $[-2, 2]^2$	911 3
909 Shubert	910 2	911 $[-5.12, 5.12]^2$	912 -186.7309
910 Cross-in-Tray	911 2	912 $[-10, 10]^2$	913 -2.06261
911 Holder Table	912 2	913 $[-10, 10]^2$	914 -19.2085
912 Rosenbrock	913 4	914 $[-5, 10]^4$	915 0
913 Rastrigin	914 4	915 $[-5.12, 5.12]^4$	916 0
914 Sphere	915 4	916 $[-5.12, 5.12]^4$	917 0
915 Ackley	916 4	917 $[-32.768, 32.678]^4$	918 0

919
 920 We conduct 30 random seeded runs for each test function in Table 6, and we determine the best distance metric for
 921 each run based on the metric defined by Equation 21. We also report the mean and standard deviation (STD) of the total
 922 number of times the winning distance metric has won over 30 different runs at each test problem. In each of the 30
 923 runs, we generate 150 points uniformly in the corresponding domain, as shown in Table 6. We use 100 points for the
 924 evaluated set \mathcal{D} to estimate the Lipschitz constant \hat{l}_f . The partition of \mathcal{D} is just the set of 100 individual points; that is,
 925 $\mathcal{D}^i = \{\mathbf{x}^i\}, \forall i = 1, \dots, |\mathcal{D}|$. We use the remaining 50 points, to evaluate the winning distance metric and the gaps.
 926

927 We use a computer with a 2 GHz quad-core Intel Core i5 CPU, Python 3.9.7, and Gurobi Optimizer version 9.5.2 to
 928 solve the LP in Equation 10 to run the experiments.
 929

937 5.2 Results

938 Tables 7 and 8 show the final results for each of the 10 test functions after 30 runs. Some distance metrics tie for the
 939 highest score after 30 runs, reflecting the same gap tightness. We assign a win to each of these distance metrics, which
 940 may result in more than 30 wins across methods. We indicate the scores of the tied distance metric with an asterisk (★).
 941

942 Table 7. Test functions with the Linear and Sublinear distance metrics as the winning distance metric
 943

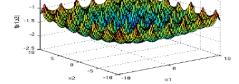
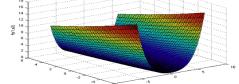
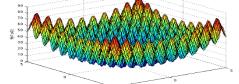
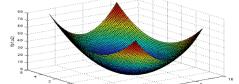
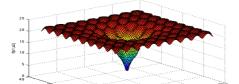
945	946	947	Test Function	Distance Metric	Wins	STD	Mean	Illustration
948	Cross in Tray		Linear	8	22.80	116.30		
949			Sublinear	12	27.99	121.83		
950			Superlinear	4	29.07	84.900		
951			WH	2	15.79	99.770		
952			Lipschitz	4	38.84	77.200		
953	Rosenbrock		Linear	23★	12.99	144.07		
954			Sublinear	6	20.21	124.00		
955			Superlinear	1★	22.12	93.670		
956			WH	1	19.25	102.50		
957			Lipschitz	0	8.860	35.770		
958	Rastrigin		Linear	15	14.47	134.47		
959			Sublinear	7★	22.55	113.30		
960			Superlinear	6	23.50	119.13		
961			WH	3★	16.94	105.37		
962			Lipschitz	0	6.220	27.730		
963	Sphere		Linear	15	14.79	135.43		
964			Sublinear	6	22.39	109.53		
965			Superlinear	6	22.74	119.70		
966			WH	3	15.84	108.63		
967			Lipschitz	0	5.360	26.700		
968	Ackley		Linear	16	16.82	140.37		
969			Sublinear	13	21.28	141.33		
970			Superlinear	0	12.83	39.570		
971			WH	0	14.39	93.900		
972			Lipschitz	1	16.02	84.830		

Table 8. Test functions with the Superlinear distance metric as the winning distance metric

Test Function	Distance Metric	Wins	STD	Mean	Illustration
Holder Table	Linear	7*	8.540	126.47	
	Sublinear	10*	26.96	105.40	
	Superlinear	17*	25.01	134.27	
	WH	1	12.79	108.40	
	Lipschitz	0	3.740	25.467	
Shubert	Linear	5*	7.930	126.93	
	Sublinear	11*	26.16	109.63	
	Superlinear	16*	28.25	134.50	
	WH	0	14.08	102.43	
	Lipschitz	0	4.210	26.500	
Branin	Linear	6	13.06	126.47	
	Sublinear	9	29.71	105.40	
	Superlinear	15	29.18	134.27	
	WH	0	19.17	108.40	
	Lipschitz	0	5.710	25.467	
Camel	Linear	4	8.050	128.70	
	Sublinear	11	32.42	115.63	
	Superlinear	15	30.39	130.53	
	WH	0	14.33	97.530	
	Lipschitz	0	4.850	27.600	
Goldstein	Linear	1	6.970	124.73	
	Sublinear	11	34.31	107.87	
	Superlinear	18	31.22	139.17	
	WH	0	12.96	95.300	
	Lipschitz	0	9.900	32.930	

Based on the results, the superlinear distance metric outperforms the linear and sublinear distance metrics individually in generating lower bounds for half of the benchmark functions as presented in Table 8. This matches the number of times where the linear and sublinear distance metrics together won as shown in Table 7.

The comparative results consistently demonstrate that distance metricized Lipschitz constant estimation outperforms other methods for estimating the Lipschitz constant and constructing lower bounds, including WH and the standard Lipschitz technique. The utilization of the distance metricized Lipschitz constant estimator leads to the construction of tighter and more accurate lower bounds.

In test functions where the global optima are located in flat regions such as Shubert, Branin, Six-Hump Camel, and Goldstein-Price, the superlinear distance metric tends to generate more conservative lower bounds. Consequently, the lower bound produced by the superlinear distance metric for such functions is more general compared to the lower bounds generated by other distance metrics.

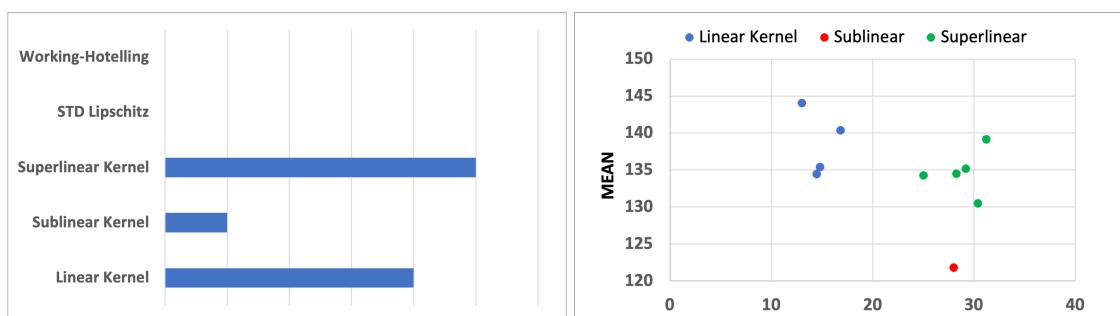
For test functions where the global optima occurs on the boundaries of the function, such as the Holder Table, the superlinear distance metric demonstrates greater flexibility in capturing those minimum values.

Table 9. Benchmark test function results (STD and Mean of the number of times the winning distance metric has won)

Test Function	Best Lower Bound	Score out of 30	STD	Mean
ROSEN BROCK	Linear	23*	12.99	144.07
RASTRIGIN	Linear	15	14.47	134.47
SPHERE	Linear	15	14.79	135.43
ACKLEY	Linear	16	16.82	140.37
C.T.F.	Sublinear	12	27.99	121.83
HOLDER TABLE	Superlinear	17*	25.01	134.27
SHUBERT	Superlinear	16*	28.25	134.50
BRANIN	Superlinear	15	29.18	135.20
CAMEL	Superlinear	15	30.39	130.53
GOLDSTEIN-PRICE	Superlinear	18	31.22	139.17

In functions that exhibit a consistent pattern of change in the function value (either increasing or decreasing), the lower bounds obtained by the linear and sublinear distance metrics are more general. However, when it comes to establishing a lower bound, the sublinear distance metric is more aggressive than the linear distance metric. This means that for functions with characteristics similar to sublinear functions, like the Rosenbrock function, the linear distance metric outperforms the sublinear distance metric in terms of the number of valid lower bounds produced (satisfying Equation 21a). Although the sublinear distance metric generates lower bounds for fewer points, those lower bounds are tighter compared to the linear distance metric's lower bounds for the same points. Consequently, the linear distance metric's lower bound can be considered more general and conservative, while the sublinear distance metric is more aggressive and provides tighter lower bounds.

Furthermore, analyzing Table 9 and observing the standard deviation (STD) of the total number of times the winning distance metric has won for each test function reveals that the linear distance metric exhibits less volatility in generating lower bounds across the 30 executions with different random data distributions. This characteristic can be attributed to the complexity associated with the properties of the test functions and their sensitivity to variations in data distribution.



(a) Fraction of problems each distance metric won

(b) STD and Mean of the number of times the winning distance metric has won

Fig. 4. Comparison of STD, Mean, and Score of Winning Distance Metric

1093 Figure 4b illustrates the relationship between the standard deviation and mean of the total number of times the
 1094 winning distance metric has won over 30 different runs at each test problem. It can be observed that the lower bound
 1095 generated by the superlinear distance metric exhibits a higher standard deviation. This increased volatility causes the
 1096 distance metric to occasionally fail to produce a lower bound in cases where other more aggressive distance metrics,
 1097 like the linear distance metric, can create a tighter gap between their lower bound and the true function value. This
 1098 behavior can be interpreted as the superlinear distance metric being conservative, as it allows for more fluctuation
 1099 around the true function value and provides room for correction.
 1100

1101 Conversely, the linear distance metric tends to be more aggressive, generating lower bounds with higher means and
 1102 lower standard deviations. By staying closer to the true function value, the linear distance metric leaves little room for
 1103 the lower bound to adjust across the entire domain. Consequently, we can conclude that the linear distance metric is
 1104 more aggressive compared to other distance metrics, such as the superlinear distance metric, which exhibits a more
 1105 conservative and general behavior across a wider range of functions.
 1106

1107 Figure 4a illustrates the fraction of problems in which each distance metric-derived lower bound outperformed the
 1108 others across all test functions. The results indicate the superiority of our utilized distance metric. Specifically, the
 1109 Superlinear distance metric achieved a winning fraction of 50%, followed by the Linear distance metric with 40%, and
 1110 the Sublinear distance metric with 10%. These values significantly outperformed both the standard Lipschitz algorithm
 1111 and the lower bounds generated by the Working-Hotelling method, highlighting the effectiveness of our approach.
 1112

1113 6 CONCLUSION AND FUTURE DIRECTION

1114 In this paper, we have presented a novel approach for estimating the Lipschitz constant and constructing lower bounds
 1115 using various Hölder-style distance metrics. Our method utilizes a surrogate model to approximate the response surface
 1116 of the objective function and compares the performance of three types of distance metrics: superlinear, sublinear, and
 1117 linear to estimate the Lipschitz constant. Through experiments on various benchmark test functions, we have evaluated
 1118 the effectiveness of each method by measuring the gap between the lower bound and the true function value for a set
 1119 of unevaluated observations. Additionally, we have identified the best distance metric for each run based on this metric.
 1120

1121 Our findings demonstrate the superiority of our proposed method in estimating the Lipschitz constant and con-
 1122 structing lower bounds when compared to alternative approaches such as the Working-Hotelling statistical method
 1123 and the standard Lipschitz method. We have observed that the superlinear distance metric generally provides more
 1124 conservative and versatile results across a broader range of functions, while the linear distance metric tends to be
 1125 more aggressive, yielding tighter lower bounds for certain functions. Consequently, we have concluded that the choice
 1126 of distance metric should depend on the characteristics of the objective function and the desired trade-off between
 1127 tightness and generality.
 1128

1129 Looking ahead, there are two key directions for future research. Firstly, we intend to explore the application of
 1130 alternative distance metrics, such as polynomial and Gaussian distance metrics, to further investigate their impact on
 1131 Lipschitz estimation and lower bound construction. This exploration will provide a more comprehensive understanding
 1132 of the relationship between distance metrics and their performance in our approach. Additionally, we plan to apply
 1133 our method to real-world optimization problems, specifically focusing on black-box optimization, in various domains
 1134 including engineering, machine learning, and other relevant fields. By applying our method to these practical scenarios,
 1135 we will assess its utility and effectiveness in solving complex optimization challenges.
 1136

1137 In conclusion, our proposed method offers a novel and effective approach for estimating the Lipschitz constant and
 1138 constructing lower bounds. By leveraging surrogate models and comparing different Hölder-style distance metrics,
 1139

1145 we have demonstrated superior performance over existing methods. With future enhancements and applications, we
1146 anticipate that our method will contribute to advancements in optimization techniques and find practical utility in a
1147 wide range of domains.
1148

1149 7 ACKNOWLEDGEMENTS

1151 This research is partially funded by National Science Foundation Awards CHE-2108767 and CMMI-1926792.
1152

1153 8 STATEMENTS AND DECLARATIONS

1155 The authors have no relevant financial or non-financial interests to disclose.
1156

1157 The authors have no competing interests to declare that are relevant to the content of this article.
1158

1159 All authors certify that they have no affiliations with or involvement in any organization or entity with any financial
1160 interest or non-financial interest in the subject matter or materials discussed in this manuscript.
1161

1163 The authors have no financial or proprietary interests in any material discussed in this article.
1164

1166 Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
1167

1169 REFERENCES

- 1171 [1] Claire S Adjiman, Ioannis P Androulakis, Costas D Maranas, and Christodoulos A Floudas. 1996. A global optimization method, α BB, for process
1172 design. *Computers & Chemical Engineering* 20 (1996), S419–S424.
- 1173 [2] Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. 2009. Information-theoretic lower bounds on the oracle complexity of
1174 convex optimization. *Advances in Neural Information Processing Systems* 22 (2009).
- 1175 [3] Mohamed Osama Ahmed, Sharan Vaswani, and Mark Schmidt. 2020. Combining Bayesian optimization and Lipschitz optimization. *Machine
1176 Learning* 109 (2020), 79–102.
- 1177 [4] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. 2023. Lower bounds for non-convex stochastic
1178 optimization. *Mathematical Programming* 199, 1-2 (2023), 165–214.
- 1179 [5] Fani Boukouvala, Ruth Misener, and Christodoulos A Floudas. 2016. Global optimization advances in mixed-integer nonlinear programming, MINLP,
1180 and constrained derivative-free optimization, CDFO. *European Journal of Operational Research* 252, 3 (2016), 701–727.
- 1181 [6] Peter Bubenik et al. 2015. Statistical topological data analysis using persistence landscapes. *J. Mach. Learn. Res.* 16, 1 (2015), 77–102.
- 1182 [7] Leocadio G Casado, José A Martínez, Inmaculada García, and Ya D Sergeyev. 2003. New interval analysis support functions using gradient
1183 information in a global minimization algorithm. *Journal of Global Optimization* 25 (2003), 345–362.
- 1184 [8] Hoon Sung Chwa and Jinkyu Lee. 2023. Tight necessary feasibility analysis for recurring real-time tasks on a multiprocessor. *Journal of Systems
1185 Architecture* 135 (2023), 102808.
- 1186 [9] Aurore Delaigle, Peter Hall, and Farshid Jamshidi. 2015. Confidence bands in non-parametric errors-in-variables regression. *Journal of the Royal
1187 Statistical Society Series B: Statistical Methodology* 77, 1 (2015), 149–169.
- 1188 [10] William R Esposito and Christodoulos A Floudas. 2000. Deterministic global optimization in nonlinear optimal control problems. *Journal of global
1189 optimization* 17 (2000), 97–126.
- 1190 [11] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. 2019. Efficient and accurate estimation of lipschitz
1191 constants for deep neural networks. *Advances in Neural Information Processing Systems* 32 (2019).
- 1192 [12] Christodoulos A Floudas. 2013. Deterministic global optimization: theory, methods and applications.
- 1193 [13] Christodoulos A Floudas and Panos M Pardalos. 2013. State of the art in global optimization: computational methods and applications.
- 1194 [14] Alexander IJ Forrester and Andy J Keane. 2009. Recent advances in surrogate-based optimization. *Progress in Aerospace Sciences* 45, 1-3 (2009),
1195 50–79.
- 1196 [15] Alexander IJ Forrester, András Sobester, and Andy J Keane. 2007. Multi-fidelity optimization via surrogate modelling. *Proceedings of the Royal
Society Mathematical, Physical and Engineering Sciences* 463, 2088 (2007), 3251–3269.

1197 [16] Mario Francisco-Fernandez and Alejandro Quintela-del Rio. 2016. Comparing simultaneous and pointwise confidence intervals for hydrological
1198 processes. *PLoS One* 11, 2 (2016), e0147505.

1199 [17] Hormozd Gahvari and William Gropp. 2010. An introductory exascale feasibility study for FFTs and multigrid. In *2010 IEEE International Symposium
1200 on Parallel & Distributed Processing (IPDPS)*. IEEE, <https://doi.org/10.1109/IPDPS.2010.5470417>, 1–9.

1201 [18] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. 2021. Regularisation of neural networks by enforcing lipschitz continuity.
1202 *Machine Learning* 110 (2021), 393–416.

1203 [19] Jean-Bastien Grill, Michal Valko, and Rémi Munos. 2015. Black-box optimization of noisy functions with unknown smoothness. *Advances in Neural
1204 Information Processing Systems* 28 (2015), 1–9.

1205 [20] H-M Gutmann. 2001. A radial basis function method for global optimization. *Journal of Global Optimization* 19, 3 (2001), 201–227.

1206 [21] Eldon Hansen and G William Walster. 2003. *Global optimization using interval analysis: revised and expanded*. CRC Press, <https://doi.org/10.1201/9780203026922>. 285–418 pages.

1207 [22] Pierre Hansen and Brigitte Jaumard. 1995. *Lipschitz optimization*. Springer, https://doi.org/10.1007/978-1-4615-2025-2_9.

1208 [23] Reiner Horst and Panos M Pardalos. 2013. *Handbook of global optimization*. Springer Science & Business Media, <https://doi.org/10.1007/978-1-4615-2025-2>.

1209 [24] Hao Huang, Pariyakorn Maneekul, Danielle F Morey, Zelda B Zabinsky, and Giulia Pedrielli. 2022. A Computational Study of Probabilistic Branch and
1210 Bound with Multilevel Importance Sampling. In *2022 Winter Simulation Conference (WSC)*. IEEE, <https://doi.org/10.1109/WSC57314.2022.10015267>,
1211 3251–3262.

1212 [25] Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. 2012. Strong convergence of an explicit numerical method for SDEs with nonglobally
1213 Lipschitz continuous coefficients. *The Annals of Applied Probability* 22, 4 (2012), 1611 – 1641. <https://doi.org/10.1214/11-AAP803>

1214 [26] Jin-ichi Itoh and Minoru Tanaka. 2001. The Lipschitz continuity of the distance function to the cut locus. *Trans. Amer. Math. Soc.* 353, 1 (2001),
1215 21–40.

1216 [27] Zeyuan Jin, Mohammad Khajenejad, and Sze Zheng Yong. 2020. Data-driven model validation for unknown Lipschitz continuous systems via
1217 abstraction. In *2020 American Control Conference (ACC)*. IEEE, <https://doi.org/10.23919/acc45564.2020.9147725>, 2975–2980.

1218 [28] Donald R Jones, Cary D Pertunen, and Bruce E Stuckman. 1993. Lipschitz optimization without the Lipschitz constant. *Journal of Optimization
1219 Theory and Applications* 79 (1993), 157–181.

1220 [29] Ramkumar Karupiah and Ignacio E Grossmann. 2006. Global optimization for the synthesis of integrated water systems in chemical processes.
1221 *Computers & Chemical Engineering* 30, 4 (2006), 650–673.

1222 [30] Jakub Kudela and Radomil Matoušek. 2023. Combining Lipschitz and RBF surrogate models for high-dimensional computationally expensive
1223 problems. *Information Sciences* 619 (2023), 457–477.

1224 [31] Dmitri Evgenevich Kvasov and Yaroslav Dmitrievich Sergeyev. 2003. A multidimensional global optimization algorithm based on adaptive diagonal
1225 curves. *Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki* 43, 1 (2003), 42–59.

1226 [32] Dmitri E Kvasov and Yaroslav D Sergeyev. 2009. A univariate global search working with a set of Lipschitz constants for the first derivative.
1227 *Optimization Letters* 3, 2 (2009), 303–318.

1228 [33] Dmitri E Kvasov and Ya D Sergeyev. 2013. Lipschitz global optimization methods in control problems. *Automation and Remote Control* 74 (2013),
1229 1435–1448.

1230 [34] Guanghui Lan. 2012. An optimal method for stochastic composite optimization. *Mathematical Programming* 133, 1-2 (2012), 365–397.

1231 [35] Leo Liberti. 2004. Reformulation and convex relaxation techniques for global optimization. *Quarterly Journal of the Belgian, French and Italian
1232 Operations Research Societies* 2, 3 (2004), 255–258.

1233 [36] Leo Liberti. 2008. Introduction to global optimization. *Ecole Polytechnique* 1 (2008), 1–43.

1234 [37] Youdong Lin and Mark A Stadtherr. 2007. Deterministic global optimization of nonlinear dynamic systems. *AIChE Journal* 53, 4 (2007), 866–875.

1235 [38] Haitao Liu, Shengli Xu, Ying Ma, and Xiaofang Wang. 2015. Global optimization of expensive black box functions using potential Lipschitz constants
1236 and response surfaces. *Journal of Global Optimization* 63, 2 (2015), 229–251.

1237 [39] Yiping Liu, Dunwei Gong, Xiaoyan Sun, and Yong Zhang. 2017. Many-objective evolutionary optimization based on reference points. *Applied Soft
1238 Computing* 50 (2017), 344–355.

1239 [40] Marco Locatelli and Fabio Schoen. 2013. *Global optimization: theory, algorithms, and applications*. SIAM, <https://doi.org/10.1137/1.9781611972672>.

1240 [41] AV Lyamin and SW Sloan. 2002. Lower bound limit analysis using non-linear programming. *Internat. J. Numer. Methods Engrg.* 55, 5 (2002), 573–611.

1241 [42] Kaiwen Ma, Luis Miguel Rios, Atharv Bhosekar, Nikolaos V Sahinidis, and Sreekanth Rajagopalan. 2023. Branch-and-Model: a derivative-free global
1242 optimization algorithm. *Computational Optimization and Applications* 85, 2 (2023), 337–367.

1243 [43] Cédric Malherbe and Nicolas Vayatis. 2017. Global optimization of Lipschitz functions. In *International Conference on Machine Learning*. PMLR,
1244 <https://proceedings.mlr.press/v70/malherbe17a.html>, 2314–2323.

1245 [44] Nadia Martinez, Hadis Anahideh, Jay M Rosenberger, Diana Martinez, Victoria CP Chen, and Bo Ping Wang. 2017. Global optimization of non-convex
1246 piecewise linear regression splines. *Journal of Global Optimization* 68 (2017), 563–586.

1247 [45] Rupert G. Miller. 2012. *Simultaneous statistical inference*. Springer Science & Business Media, <https://doi.org/10.1007/978-1-4613-8122-8>.

1248 [46] Ruth Misener and Christodoulos A Floudas. 2014. ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations.
1249 *Journal of Global Optimization* 59, 2-3 (2014), 503–526.

1250 [47] Lawrence Narici and Edward Beckenstein. 2010. *Topological vector space*. CRC Press, <https://doi.org/10.1201/9781584888673>.

1249 [48] Sebastian A Nugroho, Ahmad F Taha, and Vu Hoang. 2021. Nonlinear dynamic systems parameterization using interval-based global optimization:
 1250 Computing lipschitz constants and beyond. *IEEE Trans. Automat. Control* 67, 8 (2021), 3836–3850.

1251 [49] János D Pintér. 2002. Global optimization: software, test problems, and applications. *Handbook of Global Optimization* 2, 2 (2002), 515–569.

1252 [50] David M Rosen, Charles DuHadway, and John J Leonard. 2015. A convex relaxation for approximate global optimization in simultaneous localization
 1253 and mapping. In *2015 IEEE International Conference on Robotics and Automation (ICRA)*. IEEE, <https://doi.org/10.1109/icra.2015.7140014>, 5822–5829.

1254 [51] Todd Rowland and Eric W Weisstein. 2016. Lipschitz Function. <https://mathworld.wolfram.com/LipschitzFunction.html>.

1255 [52] Eric Schechter. 1996. *Handbook of Analysis and its Foundations*. Academic Press, <https://doi.org/10.1016/b978-012622760-4/50011-x>.

1256 [53] Yaroslav D Sergeyev, Antonio Candelieri, Dmitri E Kvasov, and Riccardo Pergo. 2020. Safe global optimization of expensive noisy black-box
 1257 functions in the δ -Lipschitz framework. *Soft Computing* 24, 23 (2020), 17715–17735.

1258 [54] Yaroslav D Sergeyev and Dmitri E Kvasov. 2006. Global search based on efficient diagonal partitions and a set of Lipschitz constants. *SIAM Journal
 1259 on Optimization* 16, 3 (2006), 910–937.

1260 [55] Yaroslav D Sergeyev, Paolo Pugliese, and Domenico Famularo. 2003. Index information algorithm with local tuning for solving multidimensional
 1261 global optimization problems with multiextremal constraints. *Mathematical Programming* 96, 3 (2003), 489–512.

1262 [56] Alexander Shapiro. 2003. Statistical inference of multistage stochastic programming problems. *Math. Methods of Oper. Res* 58 (2003), 57–68.

1263 [57] Nicola Soave, Hugo Tavares, Susanna Terracini, and Alessandro Zilio. 2016. Hölder bounds and regularity of emerging free boundaries for strongly
 1264 competing Schrödinger equations with nontrivial grouping. *Nonlinear Analysis* 138 (2016), 388–427.

1265 [58] Xueguan Song, Liye Lv, Wei Sun, and Jie Zhang. 2019. A radial basis function-based multi-fidelity surrogate model: exploring correlation between
 1266 high-fidelity and low-fidelity models. *Structural and Multidisciplinary Optimization* 60 (2019), 965–981.

1267 [59] Sonja Surjanovic and Derek Bingham. 2013. Virtual Library of Simulation Experiments, Test Functions and Datasets. <https://www.sfu.ca/~ssurjano/optimization.html>. [Last accessed on 18-April-2023].

1268 [60] Mohit Tawarmalani and Nikolaos V Sahinidis. 2004. Global optimization of mixed-integer nonlinear programs: A theoretical and computational
 1269 study. *Mathematical Programming* 99, 3 (2004), 563–591.

1270 [61] Mohit Tawarmalani and Nikolaos V Sahinidis. 2005. A polyhedral branch-and-cut approach to global optimization. *Mathematical Programming* 103, 2 (2005), 225–249.

1271 [62] GR Wood and BP Zhang. 1996. Estimation of the Lipschitz constant of a function. *Journal of Global Optimization* 8 (1996), 91–103.

1272 [63] Junru Wu. 2020. On a linearity between fractal dimension and order of fractional calculus in Hölder space. *Appl. Math. Comput.* 385 (2020), 125433.

1273 [64] Henry P Wynn and P Bloomfield. 1971. Simultaneous confidence bands in regression analysis. *Journal of the Royal Statistical Society: Series B (Methodological)* 33, 2 (1971), 202–217.

1274 [65] Zelda B Zabinsky, Robert L Smith, and Birna P Kristinsdottir. 2003. Optimal estimation of univariate black-box Lipschitz functions with upper and
 1275 lower error bounds. *Computers & Operations Research* 30, 10 (2003), 1539–1553.

1276 [66] Jianyuan Zhai and Fani Boukouvala. 2022. Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization.
 1277 *Journal of Global Optimization* 82, 2 (2022), 21–50.

1278 [67] Jialing Zhou, Yuezu Lv, Changyun Wen, and Guanghui Wen. 2022. Solving specified-time distributed optimization problem via sampled-data-based
 1279 algorithm. *IEEE Transactions on Network Science and Engineering* 9, 4 (2022), 2747–2758.

1280

A PROOFS OF THEOREMS AND COROLLARIES

1283 PROOF OF THEOREM 3.1. We aim to prove that there exists a data point $\mathbf{x}^i \in \mathcal{D}$ such that $\eta_i = 0$ in the LP formula,
 1284 and it maximizes the fraction in Equation 15.

1285 Let $\tilde{\eta}$ be the maximum of all η_i in Equation 10. We then rewrite the LP formula as follows:

$$1288 \min \tilde{\eta} : \quad (27a)$$

1289 s.t.

$$1290 \quad -\hat{f}_f \varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i) + \eta_i = f(\mathbf{x}^i) - \hat{f}_{\bar{\mathcal{D}}^i}(\mathbf{x}^i) \quad \forall i = 1, \dots, |\mathcal{D}| \quad (27b)$$

$$1291 \quad \tilde{\eta} \geq \eta_i \quad \forall i = 1, \dots, |\mathcal{D}| \quad (27c)$$

$$1292 \quad \eta_i \geq 0 \quad \forall i = 1, \dots, |\mathcal{D}| \quad (27d)$$

1293 Let y_i be the dual of Equation 27b, and let π_i be the dual of the slack between $\tilde{\eta}$ and all η_i in Equation 27c. To establish
 1294 the existence of a data point \mathbf{x}^i such that $\eta_i = 0$, we introduce the complementary slackness as follows:

$$(y_i - \pi_i)\eta_i = 0 \quad \forall i = 1, \dots, |\mathcal{D}| \quad (28a)$$

$$(\tilde{\eta} - \eta_i)\pi_i = 0 \quad \forall i = 1, \dots, |\mathcal{D}| \quad (28b)$$

We now write the dual problem:

$$\max \quad \sum_{i=1}^{|\mathcal{D}|} (f(\mathbf{x}^i) - \hat{f}_{\bar{\mathcal{D}}^i}(\mathbf{x}^i))y_i \quad (29a)$$

s.t.

$$y_i - \pi_i \leq 0 \quad \forall i = 1, \dots, |\mathcal{D}| \quad (\text{constraint for } \eta_i) \quad (29b)$$

$$\sum_{i=1}^{|\mathcal{D}|} -\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)y_i = 0 \quad (\text{constraint for } \hat{f}_f) \quad (29c)$$

$$\sum_{i=1}^{|\mathcal{D}|} \pi_i = 1 \quad \forall i = 1, \dots, |\mathcal{D}| \quad (\text{constraint for } \tilde{\eta}) \quad (29d)$$

$$\pi_i \geq 0 \quad \forall i = 1, \dots, |\mathcal{D}|. \quad (29e)$$

Now, assume to the contrary that $\eta_i > 0$ for all $i = 1, \dots, |\mathcal{D}|$. According to Equation 28a, we have $y_i = \pi_i$ for all $i = 1, \dots, |\mathcal{D}|$.

Therefore, by constraints 29d and 29e,

$$y_i \geq 0 \quad \text{and} \quad \sum_i y_i = 1 \quad \forall i = 1, \dots, |\mathcal{D}|. \quad (30a)$$

Considering the values of $\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)$ and the fact that $\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)$ is always nonnegative, we have:

$$\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i) > 0 \rightarrow -\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i) < 0 \quad \forall i = 1, \dots, |\mathcal{D}| \quad (31a)$$

$$\xrightarrow{\exists y_i > 0} -\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)y_i < 0 \Rightarrow \sum_i -\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)y_i < 0 \quad (31b)$$

However, this contradicts Equation 29c.

Now that we have established the existence of a data point $\mathbf{x}^i \in \mathcal{D}$ where $\eta_i = 0$ in the LP formula, our goal is to demonstrate that the fraction in Equation 15 achieves its maximum value at \mathbf{x}^i . Assume $\tilde{\mathbf{x}}$ represents the point where $\tilde{\eta} = 0$, and $\mathbf{x}^i \in \mathcal{D}$ represents another point within the set of evaluated data points.

Recalling Equation 10b we have:

$$\hat{f}_f = \frac{\hat{f}_{\bar{\mathcal{D}}^i}(\mathbf{x}^i) - f(\mathbf{x}^i) - \eta_i}{\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)} \rightarrow \frac{\hat{f}_{\bar{\mathcal{D}}^i}(\mathbf{x}^i) - f(\mathbf{x}^i)}{\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)} - \frac{\eta_i}{\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i)}, \forall i = 1, \dots, |\mathcal{D}| \quad (32)$$

Since we know that $\eta_i \geq 0$ and $\varphi(\mathbf{x}^i, \bar{\mathbf{x}}^i) > 0$, it follows that:

$$\frac{\eta_i}{\varphi(\mathbf{x}^i, \tilde{\mathbf{x}}^i)} \geq 0 \implies \frac{\hat{f}_{\mathcal{D}^i}(\tilde{\mathbf{x}}) - f(\tilde{\mathbf{x}})}{\varphi(\tilde{\mathbf{x}}, \tilde{\tilde{\mathbf{x}}})} \geq \frac{\hat{f}_{\mathcal{D}^i}(\mathbf{x}^i) - f(\mathbf{x}^i)}{\varphi(\mathbf{x}^i, \tilde{\mathbf{x}}^i)} - \frac{\eta_i}{\varphi(\mathbf{x}^i, \tilde{\mathbf{x}}^i)} \quad (33)$$

We can observe that for $\tilde{\mathbf{x}} \in \mathcal{D}$ where $\tilde{\eta} = 0$, Equation 15 is always greater than the right-hand side (RHS) for other points such as \mathbf{x}^i where $\eta_i > 0$, as depicted in Equation 33. Thus, the claim holds true. \square

PROOF OF COROLLARY 3.2. We assume that the surrogate model is trained on the given data \mathcal{D} and has an accuracy sufficient to provide reasonable Lipschitz constant approximations. Using Theorem 3.1, we know that the Lipschitz constant \hat{l} for each distance metric is given by:

$$\hat{l} = \max_{\mathbf{x}^i \in \mathcal{D}} \frac{\hat{f}_{\mathcal{D}^i}(\mathbf{x}^i) - f(\mathbf{x}^i)}{\varphi(\mathbf{x}^i, \tilde{\mathbf{x}}^i)} \quad (34)$$

Without loss of generality, we can consider the numerator $(\hat{f}_{\mathcal{D}^i}(\mathbf{x}^i) - f(\mathbf{x}^i))$ to be the same for all the distance metrics. Moreover, since each distance metric is increasing by Equation 14, the maximum points are the same for all the distance metrics; that is,

$$\tilde{\mathbf{x}} \in \arg \max_{\mathbf{x}^i \in \mathcal{D}} \varphi^{\text{sup}}(\mathbf{x}^i, \tilde{\mathbf{x}}^i) = \arg \max_{\mathbf{x}^i \in \mathcal{D}} \varphi^{\text{lin}}(\mathbf{x}^i, \tilde{\mathbf{x}}^i) = \arg \max_{\mathbf{x}^i \in \mathcal{D}} \varphi^{\text{sub}}(\mathbf{x}^i, \tilde{\mathbf{x}}^i) \quad (35)$$

Because the numerator of Equation 34 is independent of the distance metric, we have the following equality.

$$\hat{l}^{\text{sup}} \varphi^{\text{sup}}(\tilde{\mathbf{x}}, \tilde{\tilde{\mathbf{x}}}) = \hat{l}^{\text{lin}} \varphi^{\text{lin}}(\tilde{\mathbf{x}}, \tilde{\tilde{\mathbf{x}}}) = \hat{l}^{\text{sub}} \varphi^{\text{sub}}(\tilde{\mathbf{x}}, \tilde{\tilde{\mathbf{x}}}) \quad (36)$$

Thus, the ordering of the \hat{l} values will be determined by the denominator $\varphi(\mathbf{x}^i, \tilde{\mathbf{x}}^i)$.

Based on the definition of the distance metric, we have:

$$\varphi^{\text{sup}}(\mathbf{x}^i, \tilde{\mathbf{x}}^i) > \varphi^{\text{lin}}(\mathbf{x}^i, \tilde{\mathbf{x}}^i) > \varphi^{\text{sub}}(\mathbf{x}^i, \tilde{\mathbf{x}}^i) \quad (37)$$

Therefore, the ordering of the Lipschitz constant approximations \hat{l}^{sup} , \hat{l}^{lin} , and \hat{l}^{sub} will be opposite to the ordering of the φ values:

$$\hat{l}^{\text{sup}} < \hat{l}^{\text{lin}} < \hat{l}^{\text{sub}} \quad (38)$$

\square

PROOF OF THEOREM 3.3. Recalling from Equations 16 and 17 we construct lower bounds as follows:

$$\begin{aligned} \rho^{\text{sup}}(\mathbf{x}) &= \hat{l}^{\text{sup}} \cdot \varphi^{\text{sup}}(\mathbf{x}, \tilde{\mathbf{x}}) \longrightarrow \hat{f}_{lb}^{\text{sup}}(\mathbf{x}) = \hat{f}(\mathbf{x}) - \rho^{\text{sup}}(\mathbf{x}) \\ \rho^{\text{lin}}(\mathbf{x}) &= \hat{l}^{\text{lin}} \cdot \varphi^{\text{lin}}(\mathbf{x}, \tilde{\mathbf{x}}) \longrightarrow \hat{f}_{lb}^{\text{lin}}(\mathbf{x}) = \hat{f}(\mathbf{x}) - \rho^{\text{lin}}(\mathbf{x}) \\ \rho^{\text{sub}}(\mathbf{x}) &= \hat{l}^{\text{sub}} \cdot \varphi^{\text{sub}}(\mathbf{x}, \tilde{\mathbf{x}}) \longrightarrow \hat{f}_{lb}^{\text{sub}}(\mathbf{x}) = \hat{f}(\mathbf{x}) - \rho^{\text{sub}}(\mathbf{x}) \end{aligned}$$

Based upon Equation 36 from Corollary 3.2, we the following equality.

$$\rho^{\text{sup}}(\tilde{\mathbf{x}}) = \rho^{\text{lin}}(\tilde{\mathbf{x}}) = \rho^{\text{sub}}(\tilde{\mathbf{x}}) \quad (39)$$

Now, for any point $\mathbf{x} \in \mathcal{U}$ that satisfies the assumption in Equation 18, we can conclude:

$$\rho^{\text{sup}}(\mathbf{x}) > \rho^{\text{lin}}(\mathbf{x}) > \rho^{\text{sub}}(\mathbf{x}) \quad (40)$$

1405 Finally, subtracting the $\rho(\mathbf{x})$ from the surrogate model predictions, we obtain the lower bounds for all \mathbf{x} . Since
 1406 $\rho^{\text{sup}}(\mathbf{x}) > \rho^{\text{lin}}(\mathbf{x}) > \rho^{\text{sub}}(\mathbf{x})$ holds for all $\mathbf{x} \in \mathcal{U}$ based on the order of Lipschitz constant approximations and the
 1407 properties of the distance metrics, we can conclude that:
 1408

$$1409 \quad \hat{f}_{lb}^{\text{sup}}(\mathbf{x}) < \hat{f}_{lb}^{\text{lin}}(\mathbf{x}) < \hat{f}_{lb}^{\text{sub}}(\mathbf{x}). \quad (41)$$

□

1410 Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
 1411
 1412
 1413

1414 Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
 1415
 1416
 1417

1418
 1419
 1420

1421
 1422
 1423

1424
 1425
 1426

1427
 1428
 1429

1430
 1431
 1432

1433
 1434
 1435

1436
 1437
 1438

1439
 1440
 1441

1442
 1443
 1444

1445
 1446
 1447

1448
 1449
 1450

1451
 1452
 1453

1454
 1455
 1456