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Bounds play a crucial role in guiding optimization algorithms, improving their speed and quality, and providing optimality gaps.

While Lipschitz constant-based lower bound construction is an effective technique, the quality of the linear bounds depends on the

function’s topological properties. In this research, we improve upon this by incorporating nonlinear distance metrics and surrogate

approximations to generate higher-quality bounds. We emphasize the importance of using a flexible distance metric that can adapt to

any function. We examine the characteristics and properties of different incorporated distance metrics. While the linear distance metric

is popular in the literature due to its simplicity and intuitive interpretation, we discuss the potential benefits of alternative distance

metrics, such as sublinear and superlinear distance metrics, which may be used for Hölder continuous functions. Sublinear distance

metrics are advantageous for sparse data settings, while superlinear distance metrics can capture nonlinear relationships between data

points. Combining surrogate models and nonlinear distance metrics for Lipschitz constant estimations results in high-quality lower

bounds that can contribute to more effective exploration and exploitation and more accurate optimality gap estimation.
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1 INTRODUCTION

Global optimization problems are ubiquitous in various fields of science and engineering, ranging from aerospace and

mechanical engineering to finance and logistics [13, 40]. These problems often involve complex objective functions,

nonlinear constraints, and high-dimensional search spaces, making them particularly challenging to solve [10, 36].

Consequently, developing efficient optimization algorithms that can find a global optimum is crucial for many practical

applications.

One approach to solving global optimization problems is to leverage lower
1
bounds to guide the optimization process

and narrow down the search space. Various techniques have been developed for constructing lower bounds on the

1
While the focus of this paper is on minimization problems and the use of lower bounds, the same discussion can be extended to maximization problems

and the use of upper bounds.
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optimal objective value, such as convex relaxation [e.g., 50], interval analysis [e.g., 7], statistical inference [e.g., 56], and

Lipschitz continuity [e.g., 33].

The research developed here is motivated by surrogate optimization, sometimes referred to as Bayesian optimization.

The premise of surrogate optimization is the cost to evaluate a point x in the objective function 𝑓 is expensive [e.g.,

44]. Consequently, surrogate optimization methods usually employ the following general approach. First, a design of

experiments technique determines an initial set of points to evaluate. Costly objective evaluations are performed, and a

surrogate model
ˆ𝑓 to predict 𝑓 at unevaluated points is trained. Then based on the surrogate (exploitation) and the

spatial representation of the evaluated points (exploration), new points to evaluate are determined. Except for the initial

design of experiments, these steps iterate until a stopping criterion is met.

An estimated lower bound on 𝑓 would be valuable within this surrogate optimization framework. It could be used to

estimate an optimality gap, balance exploitation and exploration, and provide a stopping criterion. Moreover, while the

lower bounding approach developed in this research is motivated by surrogate optimization, it could be used within

other black box optimization or simulation optimization methods. The only assumption in this research is that 𝑓 satisfies

the Hölder condition [e.g., 63].

Using the Lipschitz constant for lower-bound construction is a powerful technique for improving the efficiency and

effectiveness in a variety of contexts, such as branch and bound algorithms [24, 66], Lipschitzian optimization [e.g.,

49], and black-box optimization [e.g., 38]. It allows for more informed and focused search strategies that can lead to

faster convergence and better solutions. The Lipschitz constant is a mathematical concept that characterizes the local

smoothness of a function [43, 62]. Specifically, it measures the maximum rate of change of a function over any two

points in its domain.

The Lipschitz bound for a function 𝑓 at a point x𝑖 is given by:

𝑓 (x𝑖 ) ≥ 𝑓 (x𝑗 ) − 𝐿∥x𝑖 − x𝑗 ∥ (1)

In addition to the constant 𝐿, the other two terms are an evaluated point x𝑗 and a distance metric ∥x𝑖 − x𝑗 ∥, which is

an L-2 norm. This bound is well-known for any Lipschitz continuous function [e.g., 51], and is used in data-driven

spatial Branch and Bound [e.g., 42].

Adding to this, in statistical terms, particularly in the context of confidence and prediction bounds, a fundamental

aspect is the assessment of how far an estimated function,
ˆ𝑓 (x), deviates from the expected true function, 𝐸 [𝑓 (x)].

This can be expressed in the form of a probability statement:

Pr

(
ˆ𝑓 (x) − 𝜑 (x) ≤ 𝐸 [𝑓 (x)]

)
= 1 − 𝛼 (2)

Here, 𝜑 (x) is an estimation of the prediction error of
ˆ𝑓 [9, 16]. Once the significance level 𝛼 is determined, the structure

of the bound can be established alternatively as follows:

𝐸 [𝑓 (x)] ≥ ˆ𝑓 (x) − 𝐿𝜑 (x, x̄) (3)

In this case, x̄ is usually the center of the data, 𝜑 (x, x̄) is a function of the distance between x and x̄ and the uncertainty

of the surrogate, and the constant 𝐿 is usually based upon a statistic. For example, in Working-Hotelling [e.g., 64], x̄ is

the mean of the evaluated points instead of the nearest evaluated point, as in the Lipschitz framework. Similar bounds

are used in Probabilistic Branch and Bound [e.g., 24].
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Estimating the Lipschitz constant can be challenging, particularly when the function is not known explicitly and

can only be accessed through a surrogate model [19, 53]. In recent years, several techniques have been proposed for

estimating the Lipschitz constant using surrogate models and linear distance metric functions [30, 38]. These techniques

aim to improve the accuracy and applicability of Lipschitz estimation in various domains and scenarios.

In this research, we investigate methods in which we use the nearest evaluated point, similar to that of the Lipschitz

bound, for the distance term, but we use a surrogate model instead of the value of the nearest evaluated point. In

addition, the mathematical literature considers Hölder bounds as alternative distance metrics within the Lipschitz

framework [e.g., 57]. Specifically, the bounds in this research are generally given by:

𝑓 (x) ≥ ˆ𝑓 (x𝑖 ) − 𝐿𝜑 (x𝑖 , x̄𝑖 ) (4)

in which x̄𝑖 is the nearest evaluated point. The proposed bound is intended to outperform the Lipschitz bound. First,

instead of considering a single evaluated point, we consider a surrogate model
ˆ𝑓 that is trained over a set of evaluated

points. Moreover, because surrogates are used in some global optimization procedures, such as surrogate optimization

[e.g., 14],
ˆ𝑓 may be determined and available within an optimization algorithm. In addition, the L-2 norm distance metric

may be either too conservative or too aggressive to find a tight bound. Consequently, Hölder-style nonlinear distance

metrics are considered. We explain why such an alternative distance metric may provide tighter bounds depending on

the underlying function 𝑓 .

Moreover, the proposed bound is likely to outperform the statistical bound because the reference concerning the

center of the data may not be appropriate for an optimization framework. Sampled data within an optimization algorithm

often has poorly distributed evaluated points, rendering the center of data an ill-equipped descriptor of the localized

region of x [39, 67]. For example, for an evaluated point x𝑖 , the distance to the center of data 𝜑 (x𝑖 , x̄) could be quite
large, creating an unnecessarily large difference between 𝑓 (x𝑖 ) and ˆ𝑓 (x𝑖 ) − 𝐿𝜑 (x𝑖 , x̄). By contrast, using the reference

point x̄𝑖 to be the nearest evaluated point, and if
ˆ𝑓 (x) = 𝑓 (x) at all evaluated points, as in a non-interpolating

ˆ𝑓 model,

then at an evaluated point, the bound in this research becomes the function value itself since 𝜑 (x, x̄𝑖 ) = 0.

In this paper, we conduct a comparative theoretical and empirical analysis of using alternative distance metrics

for Lipschitz constant estimation. Our theoretical analysis focuses on the use of different distance metrics, including

superlinear, linear, and sublinear distance metrics, for estimating Lipschitz constants and computing lower bounds on

the objective function. We prove a key result, which establishes the relationship between the lower bounds obtained by

these distance metrics on a set of unevaluated data points.

The remainder of this paper is organized as follows. In Section 2, we conduct a thorough literature review, summarizing

the most recent advancements in the field. Section 2.1 outlines our research contribution and identifies the research

gap it aims to address. The methodology for estimating the Lipschitz constant based on distance metric functions and

theoretical development is presented and discussed in Section 3. Section 4 discusses improving lower bound estimates.

In Section 5, we present comparative results of our method against approaches utilizing a linear distance metric. These

results are obtained through experiments conducted on various benchmark problems. Finally, we conclude the paper by

summarizing our contributions and providing insights into potential avenues for future research.

2 LITERATURE REVIEW

A significant body of research has been dedicated to addressing global optimization problems and utilizing the Lips-

chitz constant for lower-bound construction. In this section, we review relevant studies that have contributed to the

understanding and application of Lipschitz constant-based techniques in optimization algorithms.

3
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In the literature, lower bounds are crucial in optimization algorithms as they guide the search for optimal solutions,

accelerate convergence, and help avoid local optima [12, 23, 29, 42, 65]. Moreover, lower bounds can be used to determine

optimality gaps and serve as stopping criteria to terminate the optimization process when a satisfactory solution is

obtained [4, 34, 41]. Lower bounds also play a crucial role in determining the feasible region of an optimization problem

[8, 17, 66]. For instance, in branch-and-bound algorithms commonly used for combinatorial optimization problems,

lower bounds aid in pruning unpromising branches [5, 46, 60, 61, 66].

In the field of global optimization, several methods have been developed to estimate the lower bound on the objective

function within the search space [1, 2]. One popular approach is Convex Relaxation, which involves approximating a

non-convex optimization problem with a convex one. By relaxing the constraints or objective function of the problem to

a convex form, it becomes possible to obtain a lower bound on the global optimum. Convex relaxation techniques, such

as semidefinite programming, linear programming, or convex hull approximation, are commonly employed to construct

convex lower bounds [35, 50]. Interval analysis is another widely used technique, which utilizes interval arithmetic

to compute bounds on functions. By propagating intervals of values for the decision variables through the objective

function and constraints, bounds on the function’s values can be obtained. Interval analysis provides guaranteed lower

bounds by considering the range of possible values for each variable within given intervals [7, 21, 37].

Statistical methods, such as Working-Hotelling inference, offer an additional approach for estimating lower bounds

based on sampled data. These techniques enable the inference and approximation of the lower bound of the objective

function using available sample data [6, 56]. Furthermore, Lipschitz continuity-based methods establish lower bounds

on the objective function by bounding the rate of change of the function. These methods utilize the Lipschitz constant,

which characterizes the local smoothness of the function and quantifies its maximum rate of change between any two

points in its domain [18, 25, 26].

Estimating the Lipschitz constant has been the subject of various techniques proposed in the literature. These

techniques can be broadly classified into two main approaches: analytical and data-driven. The analytical approach

derives an upper bound on the Lipschitz constant based on some known properties or assumptions about the function,

such as its derivatives, convexity, or smoothness [22, 31, 32]. For instance, if the function is differentiable, and its

gradient is bounded by a constant 𝑀 , then the Lipschitz constant is at most 𝑀 . However, this approach may not be

feasible or accurate when the function is complex, nonlinear, or unknown. The data-driven approach estimates the

Lipschitz constant from data by computing the maximum ratio of the function values and the distances between any

two points in the domain [e.g., 48]. This approach does not require any prior knowledge or assumptions about the

function, but it may face high computational complexity or poor scalability when the dimension or the number of data

points is large.

Several techniques have been proposed to improve the efficiency and accuracy of data-driven Lipschitz estimation

methods. One technique is to use sampling strategies to reduce the number of data points or subspaces that need to

be evaluated. For example, Fazlyab et al. [11] proposes a branch and bound algorithm that uses adaptive sampling to

select promising subspaces based on their lower bounds and prune unpromising ones based on their upper bounds.

Another technique is to use convex optimization techniques to formulate and solve the Lipschitz estimation problem as

a semidefinite program (SDP) or a second-order cone program (SOCP). For example, Jin, Khajenejad, and Yong [27]

present a convex optimization framework that interprets activation functions as gradients of convex potential functions

and uses quadratic constraints to describe their properties. This allows them to pose the Lipschitz estimation problem

as an SDP that can be adapted to increase either the estimation accuracy or scalability.

4
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These techniques cannot be applied directly to global optimization problems that involve expensive black-box

functions. Recent research has focused on Lipschitz constant estimation in such settings. One way to exploit the

Lipschitz constant in the global optimization of black-box functions is to use response surfaces such as the Radial Basis

Function [e.g., 20] and Gaussian Processes [e.g., 3], which are approximate functions of the objective function [e.g., 38].

By using response surfaces, researchers can estimate the Lipschitz constant and use it to guide the optimization process

more efficiently and accurately. In particular, it can be used to identify promising regions in the problem domain as

proposed in the diagonal partitioning method [e.g., 54] or space-filling curves [e.g., 55]. More recently, the Lipschitz

constant has been estimated using a linear similarity measurement between sampled points. This approximate function

is then employed to establish a lower bound for the objective function, which directs the search towards promising

regions of the problem space [3, 38]. This approach combines the advantages of surrogate modeling and Lipschitz

constant estimation to enhance the efficiency and effectiveness of global optimization techniques.

2.1 Contribution

While previous studies have dedicated efforts to construct lower bounds based on Lipschitz constant estimations, there

is a significant research gap in comprehensively evaluating the effectiveness and accuracy of these lower bounds across

different problem domains. This study aims to bridge this gap by conducting a systematic and theoretical analysis of

the quality of Lipschitz constant-based lower bounds.

In particular, the existing studies often concentrate on linear or piecewise linear approximations for Lipschitz constant

estimations [3, 38], neglecting the potential benefits that nonlinear techniques, such as a nonlinear distance metric,

may offer. The investigation of nonlinear distance metrics for estimating the Lipschitz constant and their impact on

the quality of lower bounds remains unexplored in the optimization context. Exploring the use of nonlinear distance

metrics in Lipschitz constant estimation could provide valuable insights into enhancing the accuracy and efficiency of

lower bounds, particularly for functions with nonlinear characteristics or complex problem domains. By incorporating

a nonlinear distance metric into Lipschitz constant estimation, we can better capture the nonlinear behavior of the

underlying function. Nonlinear distance metrics allow for more flexible and expressive representations of the function,

enabling the estimation algorithm to capture intricate relationships and variations in the function’s smoothness. This

leads to more accurate Lipschitz constant estimates, which in turn yields improvements in the quality of the lower

bounds. Consequently, optimization algorithms guided by these nonlinear lower bounds can explore the search space

more efficiently, avoiding unnecessary evaluations in unpromising regions and focusing on potentially superior solution

subspaces.

Therefore, this study aims to address these gaps by promoting Hölder-style nonlinear distance metrics for Lipschitz

constant-based lower bounds, providing theoretical properties of them, and conducting an empirical and theoretical

evaluation of them across diverse optimization problems. By investigating the quality of these lower bounds and

their performance in guiding optimization algorithms, this research will contribute to a deeper understanding of

Lipschitz-based techniques and their practical implications.

In this paper, we present a theoretical analysis, focusing on the use of superlinear, linear, and sublinear distance

metrics for estimating Lipschitz constants and computing lower bounds on the objective function. Our key theoretical

contribution lies in establishing a fundamental result that reveals the relationship between the lower bounds obtained by

these distance metrics on a set of unevaluated data points. We demonstrate, under certain assumptions, that the lower

bounds obtained using the superlinear, linear, and sublinear distance metric exhibit a specific order:
ˆ𝑓
𝑠𝑢𝑝

𝑙𝑏
(x) < ˆ𝑓 𝑙𝑖𝑛

𝑙𝑏
(x) <

ˆ𝑓 𝑠𝑢𝑏
𝑙𝑏

(x). This order of lower bounds provides insights into the tightness of the Lipschitz constant estimation. We

5
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propose an evaluation metric to assess the quality of lower bounds generated using Lipschitz estimates. Our evaluation

metric considers both point-wise evaluations, comparing the reliability of lower bounds at individual data points, and

comparative analysis of lower bounds generated by different estimators. By comparing the lower bounds obtained from

various approaches, we can identify the most precise and reliable Lipschitz estimator for a specific application.

3 METHODOLOGY

3.1 Problem Formulation

Let 𝑓 (x) : R𝑑 → R represent the objective function to be minimized (or maximized) in an optimization problem, and let

x∗ ∈ R𝑑 be the global optimizer. The global optimizer x∗ satisfies the property that 𝑓 (x∗) ≤ 𝑓 (x) for all feasible x ∈ X,

where X represents the solution space, which is a set of possible values for the decision variables. The feasible region,

denoted as Ω ⊆ X, encompasses the set of all feasible x ∈ X that satisfy the constraints of the optimization problem. A

lower bound, denoted as 𝑓𝑙𝑏 (x), is a value or function that satisfies the following condition for all feasible x ∈ Ω ⊆ X:

𝑓lb (x) ≤ 𝑓 (x) (5)

In this study, we aim to explore the use of Hölder-style nonlinear distance metrics for estimating the Lipschitz

constant and subsequently constructing lower bounds for an objective function. Lipschitz continuity refers to a property

of functions where there exists a Lipschitz constant that bounds the function rate of change.

Formally, Let 𝑓 : R𝑑 → R be a function defined over the 𝑑-dimensional Euclidean space. Function 𝑓 is said to be

Lipschitz continuous if there exists a constant 𝑙𝑓 > 0 such that for any two points x𝑖 and x𝑗 in the domain R𝑑 , the

following inequality holds:

|𝑓 (x𝑖 ) − 𝑓 (x𝑗 ) | ≤ 𝑙𝑓 ∥x𝑖 − x𝑗 ∥ (6)

where ∥·∥ denotes the Euclidean norm (𝐿2-norm). The Lipschitz constant 𝑙𝑓 of the function 𝑓 (x) defined below represents

an upper bound on the slope or rate of change of the function:

ˆ𝑙𝑓 = sup

x𝑖 ,x𝑗 ∈X

|𝑓 (x𝑖 ) − 𝑓 (x𝑗 ) |
∥x𝑖 − x𝑗 ∥

, (7)

In our approach, we define a lower bound as an approximation of the minimum value of the objective function at a

given point. The lower bound at point x𝑖 is obtained by subtracting the estimated Lipschitz constant
ˆ𝑙𝑓 multiplied by

the Euclidean distance between x𝑖 and a reference point x𝑗 from the objective function value 𝑓 (x𝑖 ). Given the unknown

nature of the Lipschitz constant, our approach involves the utilization of techniques to estimate its value,
ˆ𝑙𝑓 . In addition,

estimating 𝑙𝑓 using Equation 7 can be challenging, especially in cases where the function 𝑓 (x𝑖 ) is unknown or can only

be evaluated at specific points.

We extend the standard Lipschitz constant estimation framework by considering a more general form of Equation 7,

ˆ𝑙𝑓 = sup

x𝑖 ,x𝑗 ∈X

𝑓 (x𝑖 ) − 𝑓 (x𝑗 )
𝜑 (x𝑖 , x𝑗 )

(8)

where the numerator of the fraction represents the difference in function values between two points x𝑖 and x𝑗 , while
the denominator is determined by the non-negative distance metric 𝜑 (·). For 𝜑 (·) = | | · | |𝑝 and 𝑝 > 0,

ˆ𝑙𝑓 in Equation 7 is

referred to as a Hölder constant [63]. The distance metric can take on a linear or nonlinear form, providing flexibility in

capturing the relationship between input points. Further details on the construction and selection of suitable distance

metrics will be discussed in section 3.2.

6
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In practical scenarios, the true objective function 𝑓 (x𝑖 ) may be unavailable or computationally expensive to evaluate

for every pair of points in the input space. Hence, we rely on an estimate of the objective function, denoted as
ˆ𝑓 (x𝑖 ), to

approximate the function. The use of
ˆ𝑓 (x𝑖 ) allows us to overcome the limitations of direct access to 𝑓 (x𝑖 ) and enables

the estimation of the Lipschitz constant.

Our approach leverages a surrogate model that is trained on a limited set of evaluated points D = {𝑋 }, where the
true output values are known. By fitting the surrogate model to the evaluated dataset, we can estimate the lower bound

of the underlying function for an unevaluated set of observations U, which is unknown to the trained model.

To estimate the Lipschitz constant, we solve an LP using the set of evaluated points D. Specifically, let {D1, . . . ,D𝐾 }
be a partition of the set D. For each x𝑖 ∈ D, let D𝑖

be the subset within the partition that includes the evaluated point

x𝑖 , let ¯D𝑖
be the complementary set of evaluated points such that

¯D𝑖 = D \ D𝑖
, and let

ˆ𝑓 ¯D𝑖 be a surrogate model

trained similarly to that of
ˆ𝑓 but with only the evaluated points in

¯D𝑖
. Note that the evaluated point x𝑖 is not in the

data that trains
ˆ𝑓 ¯D𝑖 . Moreover, let x̄𝑖 ∈ ¯D𝑖

be a nearest point to x𝑖 based upon the distance metric 𝜑 ; that is,

x̄𝑖 ∈ arg min

x∈ ¯D𝑖
𝜑 (x𝑖 , x) . (9)

Let 𝜂𝑖 be a nonnegative slack variable representing the difference between the lower bound at x𝑖 and its true evaluated

function 𝑓 (x𝑖 ). The LP formulation, as given in Equation 10, seeks to find the Lipshitz constant
ˆ𝑙𝑓 that minimizes the

maximum 𝜂𝑖 for all evaluated points.

min max

𝑖=1,..., |D |
𝜂𝑖 (10a)

s.t.

ˆ𝑓 ¯D𝑖 (x𝑖 ) − ˆ𝑙𝑓 𝜑 (x𝑖 , x̄𝑖 ) + 𝜂𝑖 = 𝑓 (x𝑖 ), ∀x𝑖 ∈ D, (10b)

𝜂𝑖 ≥ 0, ∀𝑖 = 1, . . . , |D|. (10c)

By solving the LP, we obtain estimates of the Lipschitz constant
ˆ𝑙𝑓 , which can approximate the lower bound of the

function with Equation 11.

ˆ𝑓lb (x) = ˆ𝑓 (x) − ˆ𝑙𝑓 𝜑 (x, x̄) ≈ 𝑓lb (x), (11)

where x̄ is a nearest evaluated point to x in D based upon the distance metric 𝜑 .

This approach allows us to handle cases where the true function evaluations are limited or unavailable, enabling

us to estimate the Lipschitz constant using the available surrogate model and evaluated data. Moreover, Equation 11

provides a conservative estimate of the lower bound, which can guide the optimization algorithm in exploring regions

with the potential for improving the objective function value while avoiding local optima. It can also help estimate an

optimality gap with Equation 12.

GAP = min

x𝑖 ∈D
𝑓 (x) −min

x∈Ω
ˆ𝑓lb (x) . (12)

It is worth noting that the quality of the lower bound approximation depends on the accuracy of
ˆ𝑓 in representing the

true objective function within a certain region of interest. Therefore, the selection and construction of an appropriate

surrogate
ˆ𝑓 play a crucial role in obtaining reliable and meaningful lower bounds.

In general, we want
ˆ𝑓 to have a flexible architecture so that it can accurately represent the true function 𝑓 . However,

highly flexible surrogate models can lead to overfitting the evaluated points and consequently be inaccurate in estimating

7
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unevaluated points. To mitigate overfitting and estimate the variance of surrogate models, cross-validation (CV) is

commonly employed in statistics and machine learning, especially when the dataset is limited in size, which is common

in surrogate optimization.

By incorporating an approach similar to CV into the Lipschitz constant estimation process, we can account for

the uncertainty in the surrogate model’s predictions and improve the robustness of the lower bound construction.

Specifically, CV in its traditional machine learning setting trains multiple models on different subsets of the data and

validates them on the complementary datasets. Similarly, in the LP, multiple models are trained, but the Lipschitz

constant is estimated using evaluated points in complementary datasets
¯D as shown in Equation 10b.

Algorithm 1 outlines the steps involved in estimating the Lipschitz constant using distance metrics and surrogate

models.

Algorithm 1 Lipschitz Constant Estimation Using Distance Metrics

1: Partition D into {D1, . . . ,D𝐾 }
2: for 𝑘 = 1, . . . , 𝐾 do
3: Train a surrogate model

ˆ𝑓 ¯D𝑘
on

¯D𝑘 .

4: for x𝑖 ∈ D𝑘 do
5: Calculate

ˆ𝑓 ¯D𝑘
(x𝑖 ).

6: Find x̄𝑖 from Equation 9.

7: Calculate 𝜑 (x𝑖 , x̄𝑖 )
8: end for
9: end for
10: Solve the linear program (LP) using Equation 10.

11: Return the estimated Lipschitz constant
ˆ𝑙𝑓

2

The algorithm iterates over the 𝐾 subsets within the partition D1, ...,D𝐾 . This partitioning allows us to create a

surrogate model
ˆ𝑓 ¯D𝑘

by fitting it on
¯D𝑘 ; which is the complementary subset of D𝑘 such that

¯D𝑘 = D \ D𝑘 . Then for

each point x𝑖 ∈ D𝑘 , the surrogate model is used to predict the function value at x𝑖 , resulting in
ˆ𝑓 ¯D𝑘

(x𝑖 ). Next, the
algorithm identifies the closest point to x𝑖 in ¯D𝑘 . This step determines the reference point x̄𝑖 that is used in the distance

metric calculations. The distance metric value 𝜑 (x𝑖 , x̄𝑖 ) is computed, representing the relationship between the current

point x𝑖 and the reference point x̄𝑖 . The process continues for each point in each subset of the partition, resulting in a

set of distance metric values for each point. Finally, the algorithm solves the linear program (LP) given in Equation 10.

Upon solving the LP, the algorithm returns the estimated Lipschitz constant
ˆ𝑙𝑓 .

3.2 Distance Metrics and Similarity Measurements

The Lipschitz constant is a crucial parameter that characterizes the smoothness and regularity of the objective function

in optimization problems. It represents the maximum rate of change of the function across its entire domain. The

Lipschitz constant, denoted as 𝑙 , satisfies the Lipschitz condition, which imposes a bound on the difference between the

function values at any two points x𝑖 and x𝑗 in the search space. Specifically, the Lipschitz condition is defined as below

[62]:

|𝑓 (x𝑖 ) − 𝑓 (x𝑗 ) | ≤ 𝑙 ∥x𝑖 − x𝑗 ∥, (13)

2
Throughout the remainder of the paper, 𝑙 refers to 𝑙𝑓 .
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where ∥x𝑖 − x𝑗 ∥ represents the Euclidean distance between points x𝑖 and x𝑗 .
Our study encompasses three distinct types of distance metrics exhibiting diverse linearity properties. Nevertheless,

before delving into the definition of each distance metric, it is crucial to examine the concept of linearity properties.

Definition 1. Let X be a vector space over the set of real numbers R or complex numbers C. A real-valued function

𝑔 : X → R is called superlinear, linear, or sublinear if it is non-negative homogeneous and satisfies the respective

additivity property [47, 52] as defined in Table 1.

Table 1. Definitions of Linearity Properties

Property Mathematical Definition

Non-negative homogeneity 𝑔(u.x𝑖 ) = u.𝑔(x𝑖 ) ∀u ≥ 0, u ∈ R, ∀x𝑖 ∈ X
Subadditivity 𝑔(x𝑖 + x𝑗 ) ≤ 𝑔(x𝑖 ) + 𝑔(x𝑗 ) ∀x𝑖 , x𝑗 ∈ X
Additivity 𝑔(x𝑖 + x𝑗 ) = 𝑔(x𝑖 ) + 𝑔(x𝑗 ) ∀x𝑖 , x𝑗 ∈ X
Superadditivity 𝑔(x𝑖 + x𝑗 ) ≥ 𝑔(x𝑖 ) + 𝑔(x𝑗 ) ∀x𝑖 , x𝑗 ∈ X

We can now characterize the general forms of superlinear, linear, and sublinear distance metrics by considering their

specific linearity traits, all while relaxing the traditional requirement of triangle inequality from distance metrics. For a

given point-wise distance-based metric 𝜑 (x𝑖 , x𝑗 ) expressed in the following form:

𝜑 (x𝑖 , x𝑗 ) = 𝛼 ∥x𝑖 − x𝑗 ∥𝑝 (14)

Definition 2. A superlinear distance metric 𝜑 (x𝑖 , x𝑗 ) is a type of distance metric that satisfies Equation (14) where x𝑖

and x𝑗 are input vectors, 𝛼 is a scaling factor, and 𝑝 is a positive exponent greater than 1. The superlinear distance

metric captures complex relationships between the input vectors, and its growth rate is faster than linear, as 𝑝 > 1.

Similarly, we can define sublinear distance metric and linear distance metric based on the magnitude of the 𝑝 constant

in the Equation 14, in which 𝑝 < 1 would give us the sublinear distance metric, and 𝑝 = 1 gives the linear distance metric.

By studying these specific distance metrics, we can effectively measure the similarity or distance between input

vectors and use them in the context of estimating the Lipschitz constant. Each distance metric has its own characteristics,

enabling us to approximate the Lipschitz constant efficiently based on the linearity properties captured by the respective

distance metric. The choice of distance metric depends on the specific requirements and properties of the problem at

hand.

For instance, the superlinear distance metric captures nonlinear relationships and allows for a faster growth rate

than the linear distance metric. This distance metric is suitable for modeling complex relationships between input

vectors. On the other hand, the sublinear distance metric gives less weight to larger distances, making it appropriate for

sparse and high-dimensional data. The linear distance metric, based on the Euclidean distance, measures similarity by

computing the dot product of feature vectors. It is a simple and computationally efficient distance metric that serves

as a baseline for comparison with more complex distance metrics. However, its linearity limits its ability to capture

non-linearity.

Through the application of these distancemetrics and their inherent linear properties, we can proficiently approximate

the Lipschitz constant. This constant serves as a key indicator of the smoothness and regularity inherent in the objective

9
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function. Its significance lies in optimization problems, where it enables us to restrict the disparity between the values

of the objective function at distinct points within the search space.

The parameters of the distance metric definitions play a crucial role and can lead to different outcomes. While the

right-hand side (RHS) of the LP in Equation 10b remains the same for all distance metrics, the left-hand side (LHS)

differs in terms of similarity measurement. The 𝜑 values, which are derived by applying the corresponding distance

metric to the distance between each pair of (x𝑖 , x̄𝑖 ), contribute to this difference. Consequently, we obtain three distinct

Lipschitz constant values, namely 𝑙𝑠𝑢𝑝 , 𝑙𝑙𝑖𝑛 , and 𝑙𝑠𝑢𝑏 . These constants represent the estimated Lipschitz constants

derived from the LP. Theorem 3.1 provides a closed-form solution for the Lipschitz constant 𝑙 based on Equation 10,

which we will explain in detail below.

In this study, we will explore three different distance metrics, each with its own set of parameters and properties. It is

important to note that practitioners may not necessarily use or define all of these distance metrics, but our comparison

aims to provide some guidance for their selection.

Theorem 3.1. For a given function 𝑓 : R𝑑 → R with a set of evaluated data points D and a constructed surrogate model
ˆ𝑓 , there exists a data point x𝑖 ∈ D, where 𝜂𝑖 = 0, that maximizes the fraction:

ˆ𝑙 = max

x𝑖 ∈D

ˆ𝑓 ¯D𝑖 (x𝑖 ) − 𝑓 (x𝑖 )
𝜑 (x𝑖 , x̄𝑖 )

(15)

where x̄𝑖 represents the closest point to x𝑖 from the data set D given by Equation 9. This maximization provides an optimal

solution for the Lipschitz constant estimate ˆ𝑙 .

Proof of Theorem 3.1. The proof is given in Appendix A. □

Corollary 3.2. Let 𝑓 : R𝑑 → R be a function for which a set of data is given and a surrogate model is constructed. Let
ˆ𝑙𝑠𝑢𝑝 , ˆ𝑙𝑙𝑖𝑛 , and ˆ𝑙𝑠𝑢𝑏 denote the Lipschitz constant approximations obtained using superlinear, linear, and sublinear distance

metrics, respectively. Then, the Lipschitz constant approximations follow the inequality:

ˆ𝑙 sup < ˆ𝑙 lin < ˆ𝑙 sub

Proof of Corollary 3.2. The proof is given in Appendix A. □

3.3 Bound Construction

Once the estimated Lipschitz constant
ˆ𝑙 has been obtained using the evaluated data set D, we can use Equation 11

to estimate the lower bound of 𝑓 for a set of unevaluated data points U ⊆ X \ D. Observe that from Equation 14,

𝜑 (x, x̄) = 0 when x̄ ∈ D.

Let 𝜌 (x) be defined by Equation 16.

𝜌 (x) = ˆ𝑙𝜑 (x, x̄),∀x ∈ X (16)

Combining Equations 11 and 16, we have Equation 17.

ˆ𝑓𝑙𝑏 (x) = ˆ𝑓 (x) − 𝜌 (x),∀x ∈ X (17)

We obtain three distinct 𝜌 (x) functions for each of their respective distance metrics: 𝜌𝑠𝑢𝑝 (x), 𝜌𝑙𝑖𝑛 (x), and 𝜌𝑠𝑢𝑏 (x).
Based on the ordering of the 𝜌 (x), we can assert the following sequence for the lower bounds produced by the three

distinct distance metrics, using Corollary 3.2:

10
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Theorem 3.3. Let 𝑓 : R𝑑 → R be the objective function, D be a given set of evaluated data points, U be a set of

unevaluated data points, and ˆ𝑓 be a surrogate model trained on D. Let x̃ be a unique point where 𝜂 = 0 as discussed in

proof of Theorem 3.1, and let ¯x̃ be given by Equation 9.

∀x ∈ U : 𝜑 (x, x̄) > 𝜑 (x̃, ¯x̃) (18)

ˆ𝑓
𝑠𝑢𝑝

𝑙𝑏
(x) < ˆ𝑓 𝑙𝑖𝑛

𝑙𝑏
(x) < ˆ𝑓 𝑠𝑢𝑏

𝑙𝑏
(x), (19)

where 𝑓 𝑠𝑢𝑝
𝑙𝑏

, 𝑓 𝑙𝑖𝑛
𝑙𝑏

, and 𝑓 𝑠𝑢𝑏
𝑙𝑏

are the lower bounds computed using the superlinear, linear, and sublinear distance metrics,

respectively.

Proof of Theorem 3.3. The proof is given in Appendix A. □

While this proof is based on the definitions and properties of the superlinear, linear, and sublinear distance metrics,

it is important to consider the characteristics and properties of the bounds used for Lipschitz constant estimation. Some

of these properties are:

• Conservative vs. Aggressive: A conservative bound is guaranteed to be a valid bound but may not be tight,

while an aggressive bound is more likely to be tight but not necessarily guaranteed to be valid. The choice of a

bound should balance between conservatism and aggressiveness.

• Tightness: Tight bounds provide more accurate estimates of the Lipschitz constant. In practice, it is desirable to

have bounds that are as tight as possible.

• Computational Complexity: Some bounds may be more computationally expensive to compute than others.

This can be a consideration when working with large datasets or limited computational resources.

• Generality: Some bounds may be more general and applicable to a wider range of functions or data distributions

than others. This can be important when working with diverse datasets or when generalization is a priority.

Regarding the characteristics and properties of specific distance metrics used in Lipschitz estimation, it is worth

noting that linear distance metrics are widely used in the literature due to their simplicity and desirable properties.

However, other distance metrics such as sublinear and superlinear distance metrics can also be useful in certain contexts.

For example, the sublinear distance metric can handle sparse data effectively, while the superlinear distance metric can

capture nonlinear relationships between data points. It is important to consider that some distance metrics, such as the

superlinear distance metric, may be computationally expensive, which can be a limitation in certain applications.

4 LOWER BOUND QUALITY

The quality of the lower bounds constructed using Lipschitz estimates is an essential aspect of assessing their accuracy

and usefulness in practical applications. One way to evaluate the quality of the lower bounds is through point-wise

evaluation. This approach focuses on assessing the accuracy of the lower bound at individual data points. Given a set of

data points D, we can compare the true function values 𝑓 (x𝑖 ) with the corresponding lower bounds
ˆ𝑓𝑙𝑏 (x𝑖 ) obtained

using Lipschitz estimates. For each point x𝑖 ∈ D, we compute the absolute difference between the true function value

and the lower bound: |𝑓 (x𝑖 ) − ˆ𝑓𝑙𝑏 (x𝑖 ) |.
By comparing the lower bounds generated by different estimators or parameter configurations, we can identify

which approach produces more aggressive and conservative lower bounds. This comparative analysis allows us to
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select the most suitable Lipschitz estimator or parameter setting for a specific application, optimizing the quality of the

lower bounds.

To obtain tighter lower bounds, certain adjustments can be considered. One of the possible improvements is enhancing

the accuracy of the surrogate model. The surrogate model is used to predict the output for a set of unevaluated

observations. Depending on the specific context of the study, various types of surrogate models can be considered.

When evaluating the quality of the lower bounds, the objective is to minimize the deviation from the true function

values. Equation 17 highlights two key aspects to consider to achieve this objective:

• The accuracy and proximity of the surrogate model predictions to the true function values: The closer the

predictions are to the true function values, the smaller the difference between the prediction and the true

function value will be.

• The choice of 𝜌 (x) for each data point: Smaller 𝜌 (x) leads to smaller differences between the surrogate model

predictions and the estimated lower bound.

It is important to note that improving the accuracy of the surrogate model is a separate discussion. However, based

on how the 𝜌 (x) function is determined, some general guidelines can be considered to influence the 𝜌 (x) function. To
minimize 𝜌 (x), it is necessary to minimize each component of the expression in Equation 16. Therefore, it is crucial to

investigate the behavior of 𝜌 (x) on evaluated and unevaluated points individually.

In the following sections, we analyze the influence of different distance metric choices and different data distributions

on the quality of the lower bounds obtained for a given data set. The specific distance metric definitions in Table 2

were chosen for the example to illustrate the necessary linearity characteristics of the distance metric. Although these

definitions do not represent the general form given by Equation 14, they capture the essential behavior of the distance

metric we are considering.

The superlinear distance metric accentuates small distances by incorporating an exponential term, allowing it to

emphasize close similarities between data points. The linear distance metric, on the other hand, directly scales the

distance between points. Lastly, the sublinear distance metric applies a logarithmic transformation to the distance,

which effectively downplays larger distances.

By using these specific definitions, we can demonstrate the distinctive behaviors of the different distance metric types

and their impact on the evaluation of 𝜑 (x𝑖 , x̄𝑖 ). This facilitates a more intuitive understanding of the characteristics of

each distance metric and its suitability for specific problems.

Table 2. Distance Metric Definitions

Superlinear distance metric 𝜑 (x𝑖 , x𝑗 ) = exp(𝑚∥x𝑖 − x𝑗 ∥) − 1

Linear distance metric 𝜑 (x𝑖 , x𝑗 ) =𝑚∥x𝑖 − x𝑗 ∥
Sublinear distance metric 𝜑 (x𝑖 , x𝑗 ) = ln(𝑚∥x𝑖 − x𝑗 ∥ + 1)

4.1 Data Distribution

The data distribution plays a crucial role in this study, particularly in determining the lower bounds. The distribution

can be divided into two distinct sections: evaluated and unevaluated data points. The distribution characteristics of

these sections directly affect the computation of the Lipschitz constant, as they influence the distance and 𝜑 (x, x̄)
involved in the process.
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Evaluated Data Distribution.
The distribution of the evaluated points D and their pairwise distances impact the calculation of the Lipschitz

constant using Equation 10, which is a key factor in determining the quality of the lower bounds. The evaluated data

points serve as a reference for determining the Lipschitz constant, which in turn influences the estimation of the lower

bounds for the unevaluated points.

Let us consider a set of evaluated points, denoted as D. Specifically, we focus on a point x̃ ∈ D, where 𝜂 = 0

as defined in Equation 15. Considering the solution to Equation 15 for estimating the Lipschitz constant (Corollary

3.2), and assuming all other terms in the numerator of this fraction are equal, we observe that the larger the distance

(distance metric values), the smaller the Lipschitz constant becomes. Consequently, data sets with a greater spread and

exploration of points compared to datasets with more concentrated points will result in a smaller Lipschitz constant. In

other words, a well-spread data set, where the evaluated points are distributed across a wider range, leads to a smaller

Lipschitz constant.

Unevaluated Data Distribution.
The distribution of unevaluated data points also plays a significant role in assessing the effectiveness of the distance

metric on unseen observations. The pairwise distances between the unevaluated points U and their corresponding

closest point in the evaluated set D are used to calculate 𝜌 (x) as shown in Equation 16.

Using the estimated Lipschitz constant
ˆ𝑙 obtained from the evaluated dataset D, a tighter lower bound would be

created by subtracting a smaller 𝜌 (x) in Equation 17. Let us consider two unevaluated points x𝑖 , x𝑗 ∈ U. Referring to

the general definition of a distance metric in Equation 14, we observe that 𝜑 (x, x̄) is monotonically increasing with

respect to the Euclidean distance between the two points. Consequently, we can make the following inference:

∥x𝑖 − x̄𝑖 ∥ > ∥x𝑗 − x̄𝑗 ∥ =⇒ 𝜑 (x𝑖 , x̄𝑖 ) > 𝜑 (x𝑗 , x̄𝑗 ) =⇒ 𝜌 (x𝑖 ) > 𝜌 (x𝑗 ) (20)

Consequently, unevaluated data points that have a smaller Euclidean distance from their closest evaluated point will

result in tighter lower bounds.

4.2 Evaluation Metric

In this study, we propose an evaluation metric to select the winning distance metric based on the lower bound they

generate. Specifically, let x ∈ X be a sampled point, and consider two estimated lower bounds
ˆ𝑓
𝜑1

lb and
ˆ𝑓
𝜑2

lb derived

from distance metrics 𝜑1 and 𝜑2. Assuming
ˆ𝑓
𝜑1

lb (x) ≠ ˆ𝑓
𝜑2

lb (x), we declare 𝜑1 the winning distance metric at x if any of

the conditions in Equation 21 are true.

ˆ𝑓
𝜑2

lb (x) < ˆ𝑓
𝜑1

lb (x) ≤ 𝑓 (x), (21a)

ˆ𝑓
𝜑1

lb (x) ≤ 𝑓 (x) < ˆ𝑓
𝜑2

lb (x), (21b)

𝑓 (x) < ˆ𝑓
𝜑1

lb (x) < ˆ𝑓
𝜑2

lb (x) . (21c)

The metric considers three different scenarios. First, it determines whether the distance metric produces valid lower

bounds. If both distance metrics meet this criterion, it selects the distance metric with the smallest gap as the winning

distance metric as in Equation 21a. Additionally, in the case where neither distance metric estimates a lower bound, the

metric still determines the distance metric with the smallest gap as in Equation 21c to be the winner.
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4.3 Distance Metric Effects on Lower Bound Construction

In this section, we analyze the influence of different distance metrics on the quality of the lower bounds obtained for

a given data set. Variations in 𝜑 (x, x̄) values for a given distribution of data points lead to a tighter or wider lower

bound on the function value. This variation in the magnitude of the obtained 𝜑 (x, x̄) value can happen either due to a

different choice of distance metric or a different distribution of data points (As discussed earlier in Section 4.1). The

quality of distance metric lower bounds can be closely related to the characteristics of the underlying true function.

Therefore, the selection of the choice of the distance metric type should be based on a careful analysis of the specific

characteristics of the problem at hand. Mathematical properties such as linearity, superlinearity, or sublinearity of the

function can determine the appropriateness of certain distance metrics as lower bounds.

Three different empirical tests and sensitivity analyses have been conducted to assess the performance and generality

of different distance metric types in the context of the optimization problem. In particular, we expect a direct relationship

between the function attributes and the choice of a suitable distance metric. Meaning that the distance metric bound

quality improves as the type of the distance metric and the type of the function match. Moreover, we expect poor

performance of the traditional lower bound construction methods against the distance metric bounds in general.

The following are the traditional methodologies that are taken into consideration for this study:

Working-Hotelling (WH) [45]: This method uses theWorking-Hotelling formula to construct simultaneous confidence

intervals for the mean responses at different levels of the independent variable. The formula is given by:

ˆ𝑓 (x) ±𝑊𝑠
ˆ𝑓 (x) (22)

where
ˆ𝑓 (x) is the estimated mean response at point x, 𝑠

ˆ𝑓 (x) is the estimated standard error of
ˆ𝑓 (x), and𝑊 is a constant

that depends on the number of levels and the desired confidence level.

Standard Lipschitz Estimator [28] (Lipschitz): Consider the problem of finding the global minimum of a function

𝑓 (x) defined on X. Standard Lipschitzian algorithms assume that there exists a finite bound on the rate of change of

the function; that is, for any x ∈ U and its closest point x̄ ∈ D there exists a positive constant 𝐿, called the Lipschitz

constant, such that:

|𝑓 (x) − 𝑓 (x̄) | ≤ 𝐿∥x − x̄∥, (23)

where 𝑓 (x) and 𝑓 (x̄) are the objective function values for x ∈ U and x̄ ∈ D respectively. In this research, we estimate

𝐿 using Equation 10 but with
ˆ𝑓 ¯D𝑖 (x𝑖 ) = 𝑓 (x̄𝑖 ).

To approximate the response surface (as in Equation 10) of the objective function, we employ a Radial Basis Function

(RBF) surrogate model, as commonly used in the literature [e.g., 15, 58]. By examining these three examples, we can

assess the performance of different distance metrics in terms of their ability to capture the linearity traits of the

underlying functions and provide suitable lower bounds. The empirical results will be presented and discussed in the

subsequent sections.
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Linear Function.
Consider the function 𝑓 (x) as a piecewise linear function given by Equation 24.

𝑓 (x) = min{|x − 4|, |x + 4|} (24)

Figure 1a represents the graph of the piecewise test function as defined in Equation 24 over the domain interval

[−6, 6]. In this example, three unevaluated data points around -4 are marked in orange, while seven evaluated data

points are marked in blue. Figure 1b demonstrates the lower bounds constructed on the three unevaluated points.

The “True-y” label indicates the true values of the test function at the unevaluated data points. Additionally, the

“f_hat” labels indicate the predictions made by the RBF surrogate model for the unevaluated data points. As shown

in Figure 1b, the surrogate model accurately predicts the function values of unevaluated data points that are close to

the true function values, resulting in overlapping “True-y” and “f_hat” values. The same labeling and presentation

approach has been followed for the sublinear and superlinear test functions.

(a) Defined piecewise Linear function (b) Comparison of all distance metric lower bound for the
piecewise Linear function.

Fig. 1. Empirical test case for a Linear function.

Table 3. Distance metric lower bound comparison for Linear test function

Linear Sublinear Superlinear WH Lipschitz Total

Linear ∗ 2 2 2 2 8

Sublinear 1 ∗ 2 2 2 7

Superlinear 1 1 ∗ 2 2 6

Working - Hotelling 1 1 1 ∗ 2 5

Lipschitz 1 1 1 1 ∗ 4

Total 4 5 6 7 8 ∗

As depicted in Figure 1b, we can observe that the linear distance metric yields the closest lower bound for the

piecewise linear function, while the standard Lipschitz method fails to determine a true lower bound in two of the three

unevaluated points. In addition, Table 3 indicates the cumulative number of times each distance metric outperforms the

other distance metrics based upon the metric described in section 4.2. Table 3 also indicates that the linear distance
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metric produces a better estimated lower bound in eight out of twelve instances compared to the other distance metrics

for the unevaluated points in the domain.

Sublinear Function. Consider the piecewise sublinear function defined as 𝑓 (x) in Equation 25.

𝑓 (x) = min{ln ( |x − 4| + 1), ln ( |x + 4| + 1)} (25)

In Figure 2b and Table 4, we observe that the sublinear distance metric produces the most accurate lower bound for

the sublinear function as it is designed to capture sublinear behavior.

(a) Defined Sublinear function (b) Comparison of all distance metric lower bound for the
Sublinear function.

Fig. 2. Empirical test case for a Sublinear function.

Table 4. Distance metric lower bound comparison for Sublinear test function

Linear Sublinear Superlinear WH Lipschitz Total

Linear ∗ 0 3 3 2 8

Sublinear 3 ∗ 3 3 2 11

Superlinear 0 0 ∗ 3 2 5

Working - Hotelling 0 0 0 ∗ 1 1

Lipschitz 1 1 1 2 ∗ 5

Total 4 1 7 11 7 ∗

Superlinear Function.
Let us consider a piecewise-defined superlinear function given by Equation 26.

𝑓 (x) = min{exp ( |x − 4|) − 1, exp ( |x + 4|) − 1} (26)

As anticipated, the superlinear distance metric is expected to yield a superior lower bound compared to other distance

metrics due to its ability to capture superlinear relationships between data points. Superlinear distance metrics, such as

the one defined here, are known for their capability to capture complex nonlinear patterns more effectively than linear

and sublinear distance metrics. This is particularly evident when examining specific points, as illustrated in Figure 3.

In conclusion, Table 5 demonstrates the significant advantage of the superlinear distance metric over other distance

metrics and approaches in generating high-quality lower bounds. The results are based on a dataset comprising
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(a) Defined Superlinear function (b) Comparison of all distance metrics lower bound for the
Superlinear function.

Fig. 3. Empirical test case for a Superlinear function.

Table 5. Distance metric lower bound comparison for Superlinear test function

Linear Sublinear Superlinear WH Lipschitz Total

Linear ∗ 3 0 3 1 7

Sublinear 0 ∗ 0 3 1 4

Superlinear 3 3 ∗ 3 1 10

Working - Hotelling 0 0 0 ∗ 1 1

Lipschitz 2 2 2 2 ∗ 8

Total 5 8 2 11 4 ∗

ten points, with three of them selected as unevaluated points. It is noteworthy that the superlinear distance metric

consistently produces lower bounds with a narrower disparity in ten out of twelve instances compared to the other

distance metrics, indicating its superior performance in capturing the characteristics of the underlying function.

Ultimately, we can assert that these observations validate our assumption that there is a direct relationship between

the characteristics of the underlying function, such as linearity, and the suitability of a certain distance metric for

producing accurate lower bounds. The linear distance metric is well-suited for approximating the linear behavior of the

function, as it provides a more accurate estimation of the lower bound compared to other distance metrics that may not

effectively capture the linearity of the function.

While the sublinear distance metric may generally perform well in capturing sublinear behavior, there can still be

cases where it fails to accurately estimate the lower bound for certain instances of a sublinear function. This can be the

result of certain traits of the function or distance metric restrictions. For instance, a function may exhibit irregularities,

such as sharp jumps or spikes, or it may have local maxima or minima in certain locations, making it difficult for a

sublinear distance metric to calculate the lower bound with reliability, resulting in invalid estimates.

As discussed in Section 4.3, it can be observed that the 𝜑 (x, x̄) values generated by the superlinear distance metric

exhibit greater consistency within their range. Consequently, the superlinear distance metric demonstrates the ability

to generate a tighter lower bound for superlinear functions compared to other distance metrics and methods. It is
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important to note that the standard Lipschitz method and the Working-Hotelling method fail to find high-quality lower

bounds due to their limited flexibility in capturing the nonlinearity aspects of the underlying functions.

5 EXPERIMENTAL ANALYSIS

5.1 Experiment Setup

In this section, we present the experimental analysis of our proposed method for estimating the Lipschitz constant and

constructing lower bounds using different distance metrics. Similar to Section 4.3 to approximate the response surface

of the objective function, we employ an RBF surrogate model.

To evaluate the performance of our method for estimating the Lipschitz constant and constructing lower bounds

using different distance metrics, we use ten benchmark functions from the SFU optimization test problems library [59].

Table 6 provides the details of each test function, including the dimensionality indicated under the “Dimension” column

along with their defined domain under the “Domain” column. The known global minimum of each test function is

presented under the “Global Minimum” column.

Table 6. Test Functions Definition

Test Function Dimension Domain Global Minimum

Branin 2 [−5, 10]2 0.397887

Six Hump Camel 2 [−3, 3]2 -1.0316

Goldstein-Price 2 [−2, 2]2 3

Shubert 2 [−5.12, 5.12]2 -186.7309

Cross-in-Tray 2 [−10, 10]2 -2.06261

Holder Table 2 [−10, 10]2 -19.2085

Rosenbrock 4 [−5, 10]4 0

Rastrigin 4 [−5.12, 5.12]4 0

Sphere 4 [−5.12, 5.12]4 0

Ackley 4 [−32.768, 32.678]4 0

We conduct 30 random seeded runs for each test function in Table 6, and we determine the best distance metric for

each run based on the metric defined by Equation 21. We also report the mean and standard deviation (STD) of the total

number of times the winning distance metric has won over 30 different runs at each test problem. In each of the 30

runs, we generate 150 points uniformly in the corresponding domain, as shown in Table 6. We use 100 points for the

evaluated set D to estimate the Lipschitz constant
ˆ𝑙𝑓 . The partition of D is just the set of 100 individual points; that is,

D𝑖 = {x𝑖 }, ∀𝑖 = 1, . . . , |D|. We use the remaining 50 points, to evaluate the winning distance metric and the gaps.

We use a computer with a 2 GHz quad-core Intel Core i5 CPU, Python 3.9.7, and Gurobi Optimizer version 9.5.2 to

solve the LP in Equation 10 to run the experiments.
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5.2 Results

Tables 7 and 8 show the final results for each of the 10 test functions after 30 runs. Some distance metrics may tie for the

highest score after 30 runs, reflecting the same gap tightness. We assign a win to each of these distance metrics, which

may result in more than 30 wins across methods. We indicate the scores of the tied distance metric with an asterisk (★).

Table 7. Test functions with the Linear and Sublinear distance metrics as the winning distance metric

Test Function Distance
Metric Wins STD Mean Illustration

Linear 8 22.80 116.30

Sublinear 12 27.99 121.83

Superlinear 4 29.07 84.900

Cross in Tray

WH 2 15.79 99.770

Lipschitz 4 38.84 77.200

Linear 23
★

12.99 144.07

Sublinear 6 20.21 124.00

Superlinear 1
★

22.12 93.670

Rosenbrock

WH 1 19.25 102.50

Lipschitz 0 8.860 35.770

Linear 15 14.47 134.47

Sublinear 7
★

22.55 113.30

Superlinear 6 23.50 119.13

Rastrigin

WH 3
★

16.94 105.37

Lipschitz 0 6.220 27.730

Linear 15 14.79 135.43

Sublinear 6 22.39 109.53

Superlinear 6 22.74 119.70

Sphere

WH 3 15.84 108.63

Lipschitz 0 5.360 26.700

Linear 16 16.82 140.37

Sublinear 13 21.28 141.33

Superlinear 0 12.83 39.570

Ackley

WH 0 14.39 93.900

Lipschitz 1 16.02 84.830
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Table 8. Test functions with the Superlinear distance metric as the winning distance metric

Test Function Distance
Metric Wins STD Mean Illustration

Holder Table

Linear 7
★

8.540 126.47

Sublinear 10
★

26.96 105.40

Superlinear 17
★

25.01 134.27

WH 1 12.79 108.40

Lipschitz 0 3.740 25.467

Shubert

Linear 5
★

7.930 126.93

Sublinear 11
★

26.16 109.63

Superlinear 16
★

28.25 134.50

WH 0 14.08 102.43

Lipschitz 0 4.210 26.500

Branin

Linear 6 13.06 126.47

Sublinear 9 29.71 105.40

Superlinear 15 29.18 134.27

WH 0 19.17 108.40

Lipschitz 0 5.710 25.467

Camel

Linear 4 8.050 128.70

Sublinear 11 32.42 115.63

Superlinear 15 30.39 130.53

WH 0 14.33 97.530

Lipschitz 0 4.850 27.600

Goldstein

Linear 1 6.970 124.73

Sublinear 11 34.31 107.87

Superlinear 18 31.22 139.17

WH 0 12.96 95.300

Lipschitz 0 9.900 32.930

Based on the results, the superlinear distance metric outperforms the linear and sublinear distance metrics individually

in generating lower bounds for half of the benchmark functions as presented in Table 8. This matches the number of

times where the linear and sublinear distance metrics together won as shown in Table 7.

The comparative results consistently demonstrate that distance metricized Lipschitz constant estimation outperforms

other methods for estimating the Lipschitz constant and constructing lower bounds, including WH and the standard

Lipschitz technique. The utilization of the distance metricized Lipschitz constant estimator leads to the construction of

tighter and more accurate lower bounds.

In test functions where the global optima are located in flat regions such as Shubert, Branin, Six-Hump Camel, and

Goldstein-Price, the superlinear distance metric tends to generate more conservative lower bounds. Consequently, the

lower bound produced by the superlinear distance metric for such functions is more general compared to the lower

bounds generated by other distance metrics.

For test functions where the global optima occurs on the boundaries of the function, such as the Holder Table, the

superlinear distance metric demonstrates greater flexibility in capturing those minimum values.
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Table 9. Benchmark test function results (STD and Mean of the number of times the winning distance metric has won)

Test Function Best Lower Bound Score out of 30 STD Mean

ROSENBROCK Linear 23
★

12.99 144.07

RASTRIGIN Linear 15 14.47 134.47

SPHERE Linear 15 14.79 135.43

ACKLEY Linear 16 16.82 140.37

C.T.F. Sublinear 12 27.99 121.83

HOLDER TABLE Superlinear 17
★

25.01 134.27

SHUBERT Superlinear 16
★

28.25 134.50

BRANIN Superlinear 15 29.18 135.20

CAMEL Superlinear 15 30.39 130.53

GOLDSTEIN-PRICE Superlinear 18 31.22 139.17

In functions that exhibit a consistent pattern of change in the function value (either increasing or decreasing), the

lower bounds obtained by the linear and sublinear distance metrics are more general. However, when it comes to

establishing a lower bound, the sublinear distance metric is more aggressive than the linear distance metric. This means

that for functions with characteristics similar to sublinear functions, like the Rosenbrock function, the linear distance

metric outperforms the sublinear distance metric in terms of the number of valid lower bounds produced (satisfying

Equation 21a). Although the sublinear distance metric generates lower bounds for fewer points, those lower bounds are

tighter compared to the linear distance metric’s lower bounds for the same points. Consequently, the linear distance

metric’s lower bound can be considered more general and conservative, while the sublinear distance metric is more

aggressive and provides tighter lower bounds.

Furthermore, analyzing Table 9 and observing the standard deviation (STD) of the total number of times the winning

distance metric has won for each test function reveals that the linear distance metric exhibits less volatility in generating

lower bounds across the 30 executions with different random data distributions. This characteristic can be attributed to

the complexity associated with the properties of the test functions and their sensitivity to variations in data distribution.

(a) Fraction of problems each distance metric won (b) STD and Mean of the number of times the winning distance
metric has won

Fig. 4. Comparison of STD, Mean, and Score of Winning Distance Metric
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Figure 4b illustrates the relationship between the standard deviation and mean of the total number of times the

winning distance metric has won over 30 different runs at each test problem. It can be observed that the lower bound

generated by the superlinear distance metric exhibits a higher standard deviation. This increased volatility causes the

distance metric to occasionally fail to produce a lower bound in cases where other more aggressive distance metrics,

like the linear distance metric, can create a tighter gap between their lower bound and the true function value. This

behavior can be interpreted as the superlinear distance metric being conservative, as it allows for more fluctuation

around the true function value and provides room for correction.

Conversely, the linear distance metric tends to be more aggressive, generating lower bounds with higher means and

lower standard deviations. By staying closer to the true function value, the linear distance metric leaves little room for

the lower bound to adjust across the entire domain. Consequently, we can conclude that the linear distance metric is

more aggressive compared to other distance metrics, such as the superlinear distance metric, which exhibits a more

conservative and general behavior across a wider range of functions.

Figure 4a illustrates the fraction of problems in which each distance metric-derived lower bound outperformed the

others across all test functions. The results indicate the superiority of our utilized distance metric. Specifically, the

Superlinear distance metric achieved a winning fraction of 50%, followed by the Linear distance metric with 40%, and

the Sublinear distance metric with 10%. These values significantly outperformed both the standard Lipschitz algorithm

and the lower bounds generated by the Working-Hotelling method, highlighting the effectiveness of our approach.

6 CONCLUSION AND FUTURE DIRECTION

In this paper, we have presented a novel approach for estimating the Lipschitz constant and constructing lower bounds

using various Hölder-style distance metrics. Our method utilizes a surrogate model to approximate the response surface

of the objective function and compares the performance of three types of distance metrics: superlinear, sublinear, and

linear to estimate the Lipschitz constant. Through experiments on various benchmark test functions, we have evaluated

the effectiveness of each method by measuring the gap between the lower bound and the true function value for a set

of unevaluated observations. Additionally, we have identified the best distance metric for each run based on this metric.

Our findings demonstrate the superiority of our proposed method in estimating the Lipschitz constant and con-

structing lower bounds when compared to alternative approaches such as the Working-Hotelling statistical method

and the standard Lipschitz method. We have observed that the superlinear distance metric generally provides more

conservative and versatile results across a broader range of functions, while the linear distance metric tends to be

more aggressive, yielding tighter lower bounds for certain functions. Consequently, we have concluded that the choice

of distance metric should depend on the characteristics of the objective function and the desired trade-off between

tightness and generality.

Looking ahead, there are two key directions for future research. Firstly, we intend to explore the application of

alternative distance metrics, such as polynomial and Gaussian distance metrics, to further investigate their impact on

Lipschitz estimation and lower bound construction. This exploration will provide a more comprehensive understanding

of the relationship between distance metrics and their performance in our approach. Additionally, we plan to apply

our method to real-world optimization problems, specifically focusing on black-box optimization, in various domains

including engineering, machine learning, and other relevant fields. By applying our method to these practical scenarios,

we will assess its utility and effectiveness in solving complex optimization challenges.

In conclusion, our proposed method offers a novel and effective approach for estimating the Lipschitz constant and

constructing lower bounds. By leveraging surrogate models and comparing different Hölder-style distance metrics,
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we have demonstrated superior performance over existing methods. With future enhancements and applications, we

anticipate that our method will contribute to advancements in optimization techniques and find practical utility in a

wide range of domains.
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A PROOFS OF THEOREMS AND COROLLARIES

Proof of Theorem 3.1. We aim to prove that there exists a data point x𝑖 ∈ D such that 𝜂𝑖 = 0 in the LP formula,

and it maximizes the fraction in Equation 15.

Let 𝜂 be the maximum of all 𝜂𝑖 in Equation 10. We then rewrite the LP formula as follows:

min𝜂 : (27a)

s.t.

− ˆ𝑙𝑓 𝜑 (x𝑖 , x̄𝑖 ) + 𝜂𝑖 = 𝑓 (x𝑖 ) − ˆ𝑓 ¯D𝑖 (x𝑖 ) ∀𝑖 = 1, . . . , |D| (27b)

𝜂 ≥ 𝜂𝑖 ∀𝑖 = 1, . . . , |D| (27c)

𝜂𝑖 ≥ 0 ∀𝑖 = 1, . . . , |D| (27d)

Let 𝑦𝑖 be the dual of Equation 27b, and let 𝜋𝑖 be the dual of the slack between 𝜂 and all 𝜂𝑖 in Equation 27c. To establish

the existence of a data point x𝑖 such that 𝜂𝑖 = 0, we introduce the complementary slackness as follows:
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(𝑦𝑖 − 𝜋𝑖 )𝜂𝑖 = 0 ∀𝑖 = 1, . . . , |D| (28a)

(𝜂 − 𝜂𝑖 )𝜋𝑖 = 0 ∀𝑖 = 1, . . . , |D| (28b)

We now write the dual problem:

max

|D |∑︁
𝑖=1

(𝑓 (x𝑖 ) − ˆ𝑓 ¯D𝑖 (x𝑖 ))𝑦𝑖 (29a)

s.t.

𝑦𝑖 − 𝜋𝑖 ≤ 0 ∀𝑖 = 1, . . . , |D| (constraint for 𝜂𝑖 ) (29b)

|D |∑︁
𝑖=1

−𝜑 (x𝑖 , x̄𝑖 )𝑦𝑖 = 0 (constraint for
ˆ𝑙𝑓 ) (29c)

|D |∑︁
𝑖=1

𝜋𝑖 = 1 ∀𝑖 = 1, . . . , |D| (constraint for 𝜂) (29d)

𝜋𝑖 ≥ 0 ∀𝑖 = 1, . . . , |D|. (29e)

Now, assume to the contrary that 𝜂𝑖 > 0 for all 𝑖 = 1, . . . , |D|. According to Equation 28a, we have 𝑦𝑖 = 𝜋𝑖 for all

𝑖 = 1, . . . , |D|.
Therefore, by constraints 29d and 29e,

𝑦𝑖 ≥ 0 and

|D |∑︁
𝑖

𝑦𝑖 = 1 ∀𝑖 = 1, . . . , |D|. (30a)

Considering the values of 𝜑 (x𝑖 , x̄𝑖 ) and the fact that 𝜑 (x𝑖 , x̄𝑖 ) is always nonnegative, we have:

𝜑 (x𝑖 , x̄𝑖 ) > 0 → −𝜑 (x𝑖 , x̄𝑖 ) < 0 ∀𝑖 = 1, . . . , |D| (31a)

Equation 30a

−−−−−−−−−−→
∃𝑦𝑖>0

−𝜑 (x𝑖 , x̄𝑖 )𝑦𝑖 < 0 ⇒
|D |∑︁
𝑖

−𝜑 (x𝑖 , x̄𝑖 )𝑦𝑖 < 0 (31b)

However, this contradicts Equation 29c.

Now that we have established the existence of a data point x𝑖 ∈ D where 𝜂𝑖 = 0 in the LP formula, our goal is to

demonstrate that the fraction in Equation 15 achieves its maximum value at x𝑖 . Assume x̃ represents the point where

𝜂 = 0, and x𝑖 ∈ D represents another point within the set of evaluated data points.

Recalling Equation 10b we have:

ˆ𝑙𝑓 =
ˆ𝑓 ¯D𝑖 (x𝑖 ) − 𝑓 (x𝑖 ) − 𝜂𝑖

𝜑 (x𝑖 , x̄𝑖 )
→

ˆ𝑓 ¯D𝑖 (x𝑖 ) − 𝑓 (x𝑖 )
𝜑 (x𝑖 , x̄𝑖 )

− 𝜂𝑖

𝜑 (x𝑖 , x̄𝑖 )
,∀𝑖 = 1, . . . , |D| (32)

Since we know that 𝜂𝑖 ≥ 0 and 𝜑 (x𝑖 , x̄𝑖 ) > 0, it follows that:
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𝜂𝑖

𝜑 (x𝑖 , x̄𝑖 )
≥ 0 =⇒

ˆ𝑓 ¯D𝑖 (x̃) − 𝑓 (x̃)
𝜑 (x̃, ˜̄x)

≥
ˆ𝑓 ¯D𝑖 (x𝑖 ) − 𝑓 (x𝑖 )
𝜑 (x𝑖 , x̄𝑖 )

− 𝜂𝑖

𝜑 (x𝑖 , x̄𝑖 )
(33)

We can observe that for x̃ ∈ D where 𝜂 = 0, Equation 15 is always greater than the right-hand side (RHS) for other

points such as x𝑖 where 𝜂𝑖 > 0, as depicted in Equation 33. Thus, the claim holds true. □

Proof of Corollary 3.2. We assume that the surrogate model is trained on the given data D and has an accuracy

sufficient to provide reasonable Lipschitz constant approximations. Using Theorem 3.1, we know that the Lipschitz

constant
ˆ𝑙 for each distance metric is given by:

ˆ𝑙 = max

x𝑖 ∈D

ˆ𝑓 ¯D𝑖 (x𝑖 ) − 𝑓 (x𝑖 )
𝜑 (x𝑖 , x̄𝑖 )

(34)

Without loss of generality, we can consider the numerator ( ˆ𝑓 ¯D𝑖 (x𝑖 ) − 𝑓 (x𝑖 )) to be the same for all the distance

metrics. Moreover, since each distance metric is increasing by Equation 14, the maximum points are the same for all the

distance metrics; that is,

x̃ ∈ arg max

x𝑖 ∈D
𝜑sup (x𝑖 , x̄𝑖 ) = arg max

x𝑖 ∈D
𝜑 lin (x𝑖 , x̄𝑖 ) = arg max

x𝑖 ∈D
𝜑sub (x𝑖 , x̄𝑖 ) (35)

Because the numerator of Equation 34 is independent of the distance metric, we have the following equality.

ˆ𝑙sup𝜑sup (x̃, ¯x̃) = ˆ𝑙 lin𝜑 lin (x̃, ¯x̃) = ˆ𝑙sub𝜑sub (x̃, ¯x̃) (36)

Thus, the ordering of the
ˆ𝑙 values will be determined by the denominator 𝜑 (x𝑖 , x̄𝑖 ).

Based on the definition of the distance metric, we have:

𝜑sup (x𝑖 , x̄𝑖 ) > 𝜑 lin (x𝑖 , x̄𝑖 ) > 𝜑sub (x𝑖 , x̄𝑖 ) (37)

Therefore, the ordering of the Lipschitz constant approximations
ˆ𝑙𝑠𝑢𝑝 , ˆ𝑙𝑙𝑖𝑛 , and ˆ𝑙𝑠𝑢𝑏 will be opposite to the ordering

of the 𝜑 values:

ˆ𝑙sup < ˆ𝑙 lin < ˆ𝑙sub (38)

□

Proof of Theorem 3.3. Recalling from Equations 16 and 17 we construct lower bounds as follows:

𝜌sup (x) = ˆ𝑙sup · 𝜑sup (x, x̄) −→ ˆ𝑓
sup

𝑙𝑏
(x) = ˆ𝑓 (x) − 𝜌sup (x)

𝜌 lin (x) = ˆ𝑙𝑙𝑖𝑛 · 𝜑 lin (x, x̄) −→ ˆ𝑓 lin
𝑙𝑏

(x) = ˆ𝑓 (x) − 𝜌 lin (x)

𝜌sub (x) = ˆ𝑙sub · 𝜑𝑠𝑢𝑏 (x, x̄) −→ ˆ𝑓 sub
𝑙𝑏

(x) = ˆ𝑓 (x) − 𝜌sub (x)

Based upon Equation 36 from Corollary 3.2, we the following equality.

𝜌sup (x̃) = 𝜌 lin (x̃) = 𝜌sub (x̃) (39)

Now, for any point x ∈ U that satisfies the assumption in Equation 18, we can conclude:

𝜌sup (x) > 𝜌 lin (x) > 𝜌sub (x) (40)
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Finally, subtracting the 𝜌 (x) from the surrogate model predictions, we obtain the lower bounds for all x. Since
𝜌sup (x) > 𝜌 lin (x) > 𝜌sub (x) holds for all x ∈ U based on the order of Lipschitz constant approximations and the

properties of the distance metrics, we can conclude that:

ˆ𝑓
sup

𝑙𝑏
(x) < ˆ𝑓 lin

𝑙𝑏
(x) < ˆ𝑓 sub

𝑙𝑏
(x) . (41)

□
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