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DISTRIBUTIONALLY ROBUST OPTIMIZATION

WITH BIAS AND VARIANCE REDUCTION
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ABSTRACT

We consider the distributionally robust optimization (DRO) problem, wherein a
learner optimizes the worst-case empirical risk achievable by reweighing the ob-
served training examples. We present Prospect, a stochastic gradient-based algo-
rithm that only requires tuning a single learning rate hyperparameter, and prove
that it enjoys linear convergence for smooth regularized losses. This contrasts
with previous algorithms that either require tuning multiple hyperparameters or
potentially fail to converge due to biased gradient estimates or inadequate reg-
ularization. Empirically, we show that Prospect can converge 2-3x faster than
baselines such as SGD and stochastic saddle-point methods on distribution shift
and fairness benchmarks spanning tabular, vision, and language domains.

1 INTRODUCTION

The ingredients of empirical risk minimization (ERM) are generally considered to be: a model with
parameters w ∈ R

d (e.g. a neural network), a training set z1, . . . , zn ∈ Z of independent and
identically distributed realizations of a random variable Z ∼ P , a loss function ℓ : Rd × Z → R,
and an optimization algorithm that solves

min
w∈Rd

EZ∼Pn
[ℓ(w,Z)] , (1)

where Pn is the empirical distribution of {zi}ni=1. The fourth ingredient±often taken for granted±is
the choice of risk functional, which aggregates the distribution of ℓ(w,Z) into a univariate summary
to be minimized. The objective (1) (the expected loss under Pn) is an unbiased estimate of the
expected loss under an underlying data-generating distribution P ; however, a deployed model often
observes data from distributions other than P . Motivated by this practical phenomenon, we consider
instead an objective that explicitly captures sensitivity to such distribution shifts:

min
w∈Rd

max
Q∈Q

EZ∼Q [ℓ(w,Z)]− νD(Q∥Pn), (2)

in which Q is an uncertainty set of probability measures, ν ≥ 0 is a hyperparameter, and D(Q∥Pn)
represents the divergence of Q from the original training distribution Pn (e.g. the χ2 or Kullback
Leibler divergence). The objective (2) emulates a game in which nature pays a price of ν per unit
D(Q∥Pn) to replace the expected loss under Pn with the expected loss EZ∼Q [ℓ(w,Z)] associated
with the shifted distribution Q. Since ν penalizes these shifts, we shall refer to it as the shift cost.

Objectives of the form (2), known as distributionally robust optimization (DRO) problems, have
seen a wave of recent interest in machine learning theory and practice (Chen & Paschalidis, 2020).
Historically used in quantitative finance, a popular such objective is the conditional value-at-risk
(CVaR, a.k.a. superquantile/expected shortfall/average top-k loss). In terms of methods, the CVaR
has been used as a canonical DRO objective (Fan et al., 2017; Kawaguchi & Lu, 2020; Rahimian &
Mehrotra, 2022), as well as in unsupervised learning (Maurer et al., 2021), reinforcement learning
(Singh et al., 2020), and federated learning (Pillutla et al., 2023). In applications, it has also been
employed for robust language modeling (Liu et al., 2021) and robotics (Sharma et al., 2020). The
superquantile/CVaR falls into the broader category of spectral risk measures (SRMs), a class of
DRO objectives that includes the extremile and exponential spectral risk measure (ESRM) (Acerbi
& Tasche, 2002; Cotter & Dowd, 2006; Daouia et al., 2019).
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Motivated by 1) the success of the superquantile in applications and 2) the importance of stochastic
optimization in machine learning, the principal goal of this paper is to develop stochastic1 algo-
rithms for spectral risk minimization.

Contributions. We propose Prospect, a stochastic algorithm for optimizing spectral risk measures
with only one tunable hyperparameter: a constant learning rate. Theoretically, Prospect converges
linearly for any positive shift cost on regularized convex losses. This contrasts with previous stochas-
tic methods that fail to converge due to bias (Levy et al., 2020; Kawaguchi & Lu, 2020), may not
converge for small shift costs (Mehta et al., 2023), or have multiple hyperparameters (Palaniappan
& Bach, 2016). Experimentally, Prospect demonstrates equal or faster convergence than competi-
tors on the training objective on nearly all objectives and datasets considered, and exhibits higher
stability with respect to external metrics on fairness and distribution shift benchmarks.

Related Work. Examples of DRO formulations range throughout diverse contexts such as rein-
forcement (Liu et al., 2022b; Kallus et al., 2022; Liu et al., 2022c; Xu et al., 2023; Wang et al.,
2023; Lotidis et al., 2023; Kallus et al., 2022; Ren & Majumdar, 2022; Clement & Kroer, 2021),
continual (Wang et al., 2022), interactive (Yang et al., 2023; Mu et al., 2022; Inatsu et al., 2021;
Sinha et al., 2020), Bayesian (Tay et al., 2022; Inatsu et al., 2022), and federated (Deng et al., 2020;
Pillutla et al., 2023) learning, along with dimension reduction (Vu et al., 2022), computer vision
(Samuel & Chechik, 2021; Sapkota et al., 2021), and structured prediction (Li et al., 2022; Fathony
et al., 2018). Various forms of these objectives are parameterized by the uncertainty set Q, includ-
ing those based on f -divergences (Levy et al., 2020; Ben-Tal et al., 2013), the Wasserstein metric
(Blanchet et al., 2019b; Kuhn et al., 2019), maximum mean discrepancy (Kirschner et al., 2020;
Staib & Jegelka, 2019; Nemmour et al., 2021), or more general classes of metrics (Husain, 2020;
Shapiro, 2017). We focus on SRM objectives, as motivated in detail in Sec. 2 and Appx. B.

These objectives also yield connections to other areas in modern machine learning. They are a spe-
cial case of subpopulation shift, wherein the data-generating distribution is modeled as a mixture of
subpopulations, and the distribution shift stems from changes in the mixture. In our case, the sub-
populations are point masses at the observed data points. In the context of algorithmic fairness, the
subpopulations may represent data conditioned on some protected attribute (e.g. race, gender, age
range), and common notations of fairness such as demographic/statistical parity (Agarwal et al.,
2018; 2019) impose (informally) that model performance with respect to each subpopulation should
be roughly equal. As such, robustness to reweighting and algorithmic fairness are often aligned no-
tions (Williamson & Menon, 2019), with recent research arguing that distributionally robust models
are more fair (Hashimoto et al., 2018; Vu et al., 2022) and that fair models are more distribution-
ally robust (Mukherjee et al., 2022). In supervised learning, the data distribution is modeled as
P = PX,Y for a feature-label pair (X,Y ) and related settings of covariate shift (changes in PX and
not PY |X ) (Sugiyama et al., 2007) as well as label shift (changes in PY and not PX|Y ) (Lipton et al.,
2018) may also modeled with distributional robustness (Zhang et al., 2021) as illustrated in Fig. 1.
In these settings, distributional robustness may be described as a property of learned representations
that are transferable to multiple tasks (Søowik & Bottou, 2022).

In comparisons, we include stochastic algorithms that either are single-hyperparameter ªout-of-the-
boxº methods such as stochastic gradient descent and stochastic regularized dual averaging (Xiao,
2009), or multi-hyperparameter methods that converge linearly on strongly convex SRM-based ob-
jectives, such as LSVRG (Mehta et al., 2023) and stochastic saddle-point SAGA (Palaniappan &
Bach, 2016). Note that LSVRG may not converge for small shift costs. Other methods may achieve
sublinear convergence rates, even with multiple hyperparameters (Yu et al., 2022; Ghosh et al., 2021;
Carmon & Hausler, 2022; Li et al., 2019; Shen et al., 2022; Yazdandoost Hamedani & Jalilzadeh,
2023; Namkoong & Duchi, 2016). Non-convex settings have also been studied (Jin et al., 2021;
Jiao et al., 2022; Sagawa et al., 2020; Luo et al., 2020), as well as statistical aspects of resulting
minimizes of DRO objectives (Liu et al., 2022a; Blanchet et al., 2019a; Zeng & Lam, 2022; Maurer
et al., 2021; Lee et al., 2020; Khim et al., 2020; Zhou & Liu, 2023; Zhou et al., 2021; Cranko et al.,
2021; Søowik & Bottou, 2022). Our goal is to achieve unconditional linear convergence for smooth,
strongly convex (regularized) losses with a single hyperparameter.

1We use stochastic interchangeably with incremental, meaning algorithms that make O(1) calls per iteration
to a fixed set of oracles {(ℓi,∇ℓi)}

n

i=1
, and not streaming algorithms that sample fresh data at each iteration.
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Algorithm 1 Prospect

Inputs: Initial w0, spectrum σ, number of iterations T , regularization µ > 0, shift cost ν > 0.
Hyperparameter: Stepsize η > 0.

1: Initialize l← ℓ(w0) and gi ← ∇ℓi(w0) + µw0 for i = 1, . . . , n.
2: Set q ← argmaxq̄∈P(σ) q̄

⊤l − νD(q∥1n/n) and ρ← q.

3: Set ḡ ←∑n
i=1 ρigi ∈ R

d.
4: Set w ← w0.
5: for T iterations do
6: Sample i, j ∼ Unif[n] independently.
7: v ← nqi(∇ℓi(w) + µw)− nρigit + ḡ.
8: w ← w − ηv. ▷ Iterate Update
9: lj ← ℓj(w).

10: q ← argmaxq̄∈P(σ) q̄
⊤l − νD(q̄∥1n/n). ▷ Bias Reducing Update

11: ḡ ← ḡ − ρigi + qi (∇ℓi(w) + µw).
12: gi ← ∇ℓi(w) + µw.
13: ρi ← qi. ▷ Variance Reducing Update

Output: Final point w.

plier is γ = 1, trivially achieving zero variance. Similar to l, we prove in Sec. 3 that g−∇ℓ(w)→ 0

and ρ− qℓ(w) → 0, so we have in the notation of (6) that b̂− â→ 0. Thus, by using γ = 1, our final
stochastic gradient estimate is

â− γ(b̂− b) = nqli∇ℓi(w)− nρigi +
∑n

j=1 ρjgj , (7)

with asymptotic variance reduction factor (with respect to i ∼ Unif[n]):

Var
[
nqli∇ℓi(w)− nρigi + g⊤ρ

]

Var
[
nqli∇ℓi(w)

] → 2Ei∼Unif[n][(nq
l
i∇ℓi(w)−∇ℓ(w)⊤q)⊤(nρigi − g⊤q)]

Ei∼Unif[n]∥nqli∇ℓi(w)−∇ℓ(w)⊤q∥22
.

This results in asymptotically vanishing variance without decreasing the learning rate, as illustrated
in Fig. 2 (right). This scheme generalizes (and is inspired by) the one employed in the SAGA
optimizer (Defazio et al., 2014) for ERM, in which ρ = 1n/n. Finally, while ignored in this section

for ease of presentation, each gi will actually store the gradients of the regularized losses ℓi+µ ∥·∥22.

3 THE PROSPECT ALGORITHM

By combining the bias reduction and variance reduction schemes from the previous section, we build
an algorithm that achieves overall prediction error reduction. Thus, we now present the Prediction
Error-Reduced Optimizer for Spectral Risk Measures (Prospect) algorithm to solve

min
w∈Rd

[

Fσ(w) := Rσ(ℓ(w)) +
µ

2
∥w∥22

]

, (8)

where µ > 0 is a regularization constant. The full algorithm is given in Algorithm 1.

Instantiating Bias and Variance Reduction. Consider a current iterate w ∈ R
d. As mentioned in

Sec. 2, bias and variance reduction relies on the three approximations: the losses l for ℓ(w) ∈ R
n,

each gradient gi for ∇ℓi(w) + µw ∈ R
d, and the weights ρ for qℓ(w) ∈ P . Given initial point

w0 ∈ R
d, we initialize l = ℓ(w0), g = ∇ℓ(w0) + µ1nw

⊤
0 , and ρ = qℓ(w0) (including ḡ := g⊤ρ).

At each iterate, we sample indices i, j ∼ Unif[n] independently. The index i is used to compute
the stochastic gradient estimate (7), yielding the update direction v in line 7 at the cost of a call to
a (ℓi,∇ℓi) oracle. Then, l is updated by replacing lj with ℓj(w) costing another call to (ℓj ,∇ℓj),
and we reset q (the variable that stores ql). Next, we use i again to make the replacements of gi
with ∇ℓi(w) + µw and ρi with qi = qli. In summary, each approximation is updated every iteration
by changing one component based on the current iterate w. The indices i, j are ªdecoupledº for
theoretical convenience, but in practice using only i works similarly, which we use in Sec. 4.
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Computational Aspects. The weight update in Line 10 is solved exactly by (i) sorting the vector
of losses in O(n log n), (ii) plugging the sorted loss table l into the Pool Adjacent Violators (PAV)
algorithm running in O(n) time, as mentioned in Sec. 2. Because only one element of l changes
every iterate, we may simply bubble sort l starting from the index that was changed. While in the
worst case, this cost is O(n), it is exactly O(s) where s is the number of swaps needed to resort l.
We find in experiments that the sorted order of l stabilizes quickly. The storage of the gradient table
g requires O(nd) space in general, but it can be reduced to O(n) for generalized linear models and
nonlinear additive models. For losses of the form ℓi(w) = h(x⊤

i w, yi), for a differentiable loss h and

scalar output yi, we have ∇ℓi(w) = xi h
′(x⊤

i w, yi). We only need to store the scalar h′(x⊤
i w, yi),

so Prospect requires O(n + d) memory. In terms of computational complexity, Lines 8 and 13
require O(d) operations and Line 10 requires at most O(n) operations, so that in total the iteration
complexity is O(n+ d). In comparison, a full batch gradient descent requires O(nd) operations so
Prospect decouples efficiently the cost of computing the losses, gradients, and weights.

Convergence Analysis. We assume throughout that each ℓi is convex, G-Lipschitz, and L-smooth.
We also assume that the D = Df is an f -divergence with the generator f being αn-strongly convex

on the interval [0, n] (e.g. αn = 2n for the χ2-divergence and αn = 1 for the KL-divergence).

The convergence guarantees depend on the condition numbers κ = 1 + L/µ of the individual
regularized losses, as well as a measure κσ = nσn of the skewness of the spectrum. Note that both
κ and κσ are necessarily larger than or equal to one. Define w⋆ := argminw Fσ(w), which exists
and is unique due to the strong convexity of Fσ . The proof is given in Appx. D.6.

Theorem 1. Prospect with a small enough step size is guaranteed to converge linearly for all
ν > 0. If, in addition, the shift cost is ν ≥ Ω(G2/µαn), then the sequence of iterates (w(t))t≥1

generated by Prospect and learning rate η = (12µ(1 + κ)κσ)
−1 converges linearly at a rate

τ = 2max {n, 24κσ(κ+ 1)}, i.e.,

E∥w(t) − w⋆∥22 ≤ (1 + σ−1
n + σ−2

n ) exp(−t/τ)∥w(0) − w⋆∥22 .

The number of iterations t required by Prospect to achieve E∥w(t) − w⋆∥22 ≤ ε (provided that ν is
large enough) is t = O((n + κκσ) ln(1/ε)). This exactly matches the rate of the LSVRG (Mehta
et al., 2023), the only primal stochastic optimizer that converges linearly for spectral risk measures.
However, unlike LSVRG, Prospect is guaranteed to converge linearly for any shift cost and has a
single hyperparameter, the stepsize η. Similarly, compared to primal-dual stochastic saddle-point
methods, our algorithm requires only one learning rate, streamlining its implementation.

Prospect Variants for Non-Smooth Objectives. We may wonder about the convergence behavior
of Prospect when either the shift cost ν = 0, or the underlying losses ℓi are non-smooth. While
the smoothness of the objective is then lost, Prospect can still converge to the minimizer w⋆

0 as we
prove below. The first setting is relevant as historically, SRMs such as the superquantile have been
employed as coherent risk measures for loss distributions (Acerbi & Tasche, 2002) in the form of an
L-estimator

∑n
i=1 σil(i) (as seen in Sec. 2). If these losses are separated at the optimum, however,

we may achieve linear convergence with Prospect even with ν = 0, due to ªhidden smoothnessº of
the objective, i.e. differentiability at points for which ℓ(w) has distinct components. Assume that
each ℓi is convex and that µ > 0.

Proposition 2. Let w⋆
ν be the unique minimizer of (8) with shift cost ν ≥ 0. Assume that the values

ℓ1(w
⋆
0), . . . , ℓn(w

⋆
0) are all distinct. Then, there exists a constant ν0 > 0 such that w⋆

0 = w⋆
ν exactly

for all ν ≤ ν0. Thus, running Prospect with ν ∈ (0, ν0] converges to the minimizer w⋆
0 .

In particular, ν0 is chosen so that 2nν0 (σi+1 − σi) < ℓ(i+1)(w
⋆
0) − ℓ(i)(w

⋆
0) for each i, or as the

multiplicative factor that relates gaps in the spectrum to gaps in the optimal losses (see Appx. B).
When ℓi itself may be non-smooth, we generalize Prospect by applying it to the Moreau envelope of
each loss ℓi and its gradient (Bauschke & Combettes, 2011; Rockafellar, 1976), allowing for losses
such as those containing an ℓ1 penalty. Specifically, we consider oracles returning ∇ env(ℓi)(w)
where env(ℓi)(w) := infv∈Rd ℓi(v) + ∥w − v∥22; the update steps can be expressed in terms of
the proximal operators of the losses (Bauschke & Combettes, 2011). These oracles can easily be
accessed either in closed form or by efficient subroutines in common machine learning settings (De-
fazio, 2016; Frerix et al., 2018; Roulet & Harchaoui, 2022). The resulting algorithm enjoys a linear
convergence guarantee similar to Thm. 1 with a more liberal condition on the shift cost ν while
providing competitive performance in practice (see Appx. E).
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Appendix

The Appendix sections are organized as follows. We summarize notation in Appx. A and provide
intuition and results regarding the primal/dual objective function in Appx. B. We describe in detail
efficient implementations of the proposed algorithm in Appx. C. In Appx. D, we describe the
convergence analyses of the main algorithm. In Appx. E and Appx. F, we describe an Moreau
envelope-based variant of our method and an improved version of an existing saddle-point method,
respectively. Appx. G contains technical results shared to multiple proofs. We then describe the
experimental setup in detail in Appx. H and give additional results in Appx. I.
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A SUMMARY OF NOTATION

We collect the notation used throughout the paper in Tab. 1.

Symbol Description

µ ≥ 0 Standard regularization constant.

ν ≥ 0 Shift cost.

αn Strong convexity constant for any f generating an f -divergence.

ν̄ Shorthand ν̄ = nαnν (used in the convergence proofs).

ℓ1(w), . . . , ℓn(w) Loss functions ℓi : R
d → R.

ℓ(w) Vector of losses ℓ(w) = (ℓ1(w), . . . , ℓn(w)) for w ∈ R
d.

ri(w) Regularized loss ri(w) = ℓi(w) +
µ
2 ∥w∥22.

r(w) Vector of regularized losses r(w) = (r1(w), . . . , rn(w)).

∇ℓ(w) Jacobian matrix of ℓ : Rd → R
n at w (shape = n× d).

σ The vector σ = (σ1, . . . , σn) ∈ [0, 1]n where each σ1 ≤ . . . ≤ σn and they sum to 1.

P(σ) The set {Πσ : Π ∈ [0, 1]n×n,Π1n = 1n,Π
⊤
1n = 1n}, known as the permutahedron.

f Convex function f : [0,∞)→ R ∪ {+∞} generating an f -divergence.

f∗ Convex conjugate f∗(y) := supx∈R
{xy − f(x)}.

Ωf or Ω
Shift penalty function Ωf : P(σ) 7→ [0,∞).

We consider f -divergence penalties Ωf (q) = Df (q∥1n/n).

Fσ Main objective Fσ(w) = maxq∈P(σ)

{
q⊤ℓ(w)− νDf (q∥1n/n)

}
+ µ

2 ∥w∥
2
2.

qopt(l) or ql
Most unfavorable reweighting for a given vector l of losses, i.e.,

qopt(l) = argmaxq∈P(σ) q
⊤l − νD(q∥1n/n).

ql used only in main text for readability.

w⋆ Optimal weights argminw∈Rd maxq∈P(σ) q
⊤l − νD(q∥1n/n) + (µ/2) ∥w∥22.

q⋆ Most unfavorable reweighting of ℓ(w⋆), i.e., q⋆ = qopt(ℓ(w⋆))

G Lipschitz constant of each ℓi w.r.t. ∥·∥2.

L Lipschitz constant of each ∇ℓi w.r.t. ∥·∥2.

M M = L+ µ, the Lipschitz constant of each∇ri w.r.t. ∥·∥2.

Et [·] Shorthand for E
[
· |w(t)

]
, i.e., expectation conditioned on w(t).

Table 1: Notation used throughout the paper.

B PROPERTIES OF THE PRIMAL AND DUAL OBJECTIVES

Recall that we are interested in the optimization problem

min
w∈Rd

[

Fσ(w) := max
q∈P(σ)

q⊤ℓ(w)− νDf (q∥1n/n) +
µ

2
∥w∥22

]

, (10)

where Df (q∥1n/n) denotes an f -divergence between the distribution associated to the reweighting
q and the discrete uniform weights 1n/n = (1/n, . . . , 1/n) and P(σ) is the spectral risk measure
uncertainty set.

The first goal for this section will be to derive properties of the function Fσ(w), or the primal
objective, as well as the inner maximization problem, which we refer to as the dual objective. Both
will be useful in motivating and analyzing Prospect (used for the primal minimization) and various
subroutines used to compute the maximally unfavorable reweighting (i.e., the maximizer over q in
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the inner maximization). These properties do not depend on the structure of the P(σ) itself, only
that it is a closed, convex set. The second goal of the section is to provide additional background
on the choice of P(σ) from a statistical modeling perspective. The uncertainty set P(σ) is then
described further from a computational perspective in Appx. C.

Review of f -Divergences. Let q and p be any two probability mass functions defined on atoms
{1, . . . , n}. Consider a convex function f : [0,∞) 7→ R ∪ {+∞} such that f(1) = 0, f(x) is finite
for x > 0, and limx→0+ f(x) = 0. The f -divergence from q to p generated by this function f is

Df (q∥p) :=
n∑

i=1

f

(
qi
pi

)

pi,

where we define 0f (0/0) := 0 in the formula above. If there is an i such that pi = 0 but qi > 0, we
say Df (q∥p) = ∞. The χ2-divergence is generated by fχ2(x) = x2 − 1 and the KL divergence is
generated by fKL(x) = x lnx+ ι+(x) where ι+ denotes the convex indicator that is zero for x ≥ 0
and +∞ otherwise, and we define x lnx = 0 for all x < 0.

The Dual Problem. We describe the inner maximization first, that is

max
q∈P(σ)

{
q⊤l − νDf (q∥1n)

}
. (11)

Its properties will inform the algorithmic implementation for the minimization over w in (10). In
the case of an f -divergence between q and the uniform weights 1n/n, we have

Df (q∥1n/n) :=
1

n

n∑

i=1

f (nqi) . (12)

We now derive the dual problem to Equation (11). This will lead to an algorithm to solve the
optimization problem efficiently. Throughout, we denote f∗(y) := supx∈R

{xy − f(x)} as the
convex conjugate of f .

We consider the following functions whose conjugates are strictly convex. Recall that if f is smooth,
i.e., with Lispchtiz continuous gradients, then its conjugate is strongly convex, hence strictly convex.
More generally f∗ is strictly convex if f is convex and essentially smooth, that is, with gradient norm
tending to +∞ at its boundaries, see e.g. (Rockafellar, 1976) for a detailed presentation. For simple
cases such as the χ2 or KL divergence presented, strict convexity of the convex conjugate is naturally
satisfied:

fχ2(x) = x2 − 1 and f∗
χ2(y) = y2/4 + 1 (χ2-divergence)

fKL(x) = x lnx+ ι+(x) and f∗
KL(y) = exp (y − 1) . (KL-divergence)

Proposition 3. Let l ∈ R
n be a vector and π be a permutation that sorts its entries in non-decreasing

order, i.e., lπ(1) ≤ . . . ≤ lπ(n). Consider a function f strictly convex with strictly convex conjugate
defining a divergence Df . Then, the maximization over the permutahedron subject to the shift
penalty can be expressed as

max
q∈P(σ)

{
q⊤l − νDf (q∥1n/n)

}
= min

c∈R
n

c1≤...≤cn

n∑

i=1

gi(ci ; l), (13)

where we define gi(ci ; l) := σici +
ν
n f∗

(
lπ(i)−ci

ν

)

. The optima of both problems, denoted

copt(l) = argmin
c∈R

n

c1≤...≤cn

n∑

i=1

gi(ci; l), q
opt = argmax

q∈P(σ)

q⊤l − νDf (q∥1n/n),

are related as qopt(l) = ∇(νDf (·∥1n/n))
∗(l − copt

π−1(l)), that is,

qopt
i (l) =

1

n
[f∗]′

(
1
ν (li − copt

π−1(i)(l))
)

. (14)
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Proof. Let ιP(σ) denote the indicator function of the permutahedron P(σ), which is 0 inside P(σ)
and +∞ outside of P(σ). Its convex conjugate is the support function of the permutahedron, i.e.,

ι∗P(σ)(l) = max
q∈P(σ)

q⊤l.

For two closed convex functions h1 and h2 that are bounded from below, the convex conjugate of
their sum is the infimal convolution of their conjugate (Hiriart-Urruty & LemarÂechal, 2004, Propo-
sition 6.3.1):

(h1 + h2)
∗(x) = inf

y∈Rd
{h∗

1(y) + h∗
2(x− y)} .

Provided that h1+h2 is strictly convex, we have that the maximizer defining the conjugate is unique
and equal to the gradient, that is,

∇(h1 + h2)
∗(x) = argmax

z∈Rd

{
z⊤x− (h1 + h2)(z)

}
.

If, in addition, h∗
1 + h∗

2 is strictly convex and h∗
2 is differentiable, we have, by Danskin’s theo-

rem (Bertsekas, 1997),

∇(h1 + h2)
∗(x) = ∇h∗

2(x− y⋆(x)) for y⋆(x) = argmin
y∈Rd

{h∗
1(y) + h∗

2(x− y)} .

Consider then h1(q) = ιP(σ)(q) and h2(q) = Ωf (q) := νDf (q∥1n/n). Provided that f is strictly
convex with f∗ strictly convex, Df is also strictly convex with D∗

f strictly convex since Df just

decomposes as a sum of f on independent variables. We have then

sup
q∈P(σ)

{
q⊤l − Ωf (q)

}
= sup

q∈Rn

{
q⊤l − (ιP(σ)(q) + Ωf (q))

}

= (ιP(σ) +Ωf )
∗(l)

= inf
y∈Rn

{

ι∗P(σ)(y) + Ω∗
f (l − y)

}

= inf
y∈Rn

{

max
q∈P(σ)

q⊤y +Ω∗
f (l − y)

}

= inf
y∈Rn

{
n∑

i=1

σiy(i) +Ω∗
f (l − y)

}

, (15)

where y(1) ≤ . . . ≤ y(n) are the ordered values of y ∈ R
n. Moreover we have that

argmax
q∈P(σ)

{
q⊤l − Ωf (q)

}
= ∇Ω∗

f (l − y⋆(l)) for y⋆(l) = argmin
y∈Rn

{
n∑

i=1

σiy(i) +Ω∗
f (l − y)

}

.

Since for any x ∈ R
n, Ωf is decomposable into a sum of identical functions evaluated at the coor-

dinates (x1, . . . , xn), that is, Ωf (x) =
∑n

i=1 ω(xi), its convex conjugate is Ω∗
f (y) =

∑n
i=1 ω

∗(yi).

In our case, ω(xi) =
ν
nf(nxi) from Equation (12), so ω∗(yi) = (ν/n)f∗(yi/ν).

Next, by convexity of ω∗, we have that if for scalars li, lj , yi, yj such that li ≤ lj and yi ≥ yj , then
using Lem. 33, we have that

ω∗(li − yi) + ω∗(lj − yj) ≥ ω∗(li − yj) + ω∗(lj − yi).

Hence for y to minimize Ω∗
f (l − y) =

∑n
i=1 ω

∗(li − yi), the coordinates of y must be ordered

as l. That is, if π is an argsort for l, s.t. lπ(1) ≤ . . . ≤ lπ(n), then yπ(1) ≤ . . . ≤ yπ(n). Since

ι∗P(σ)(y) =
∑n

i=1 σiy(i) does not depend on the ordering of y, the solution of (15) must also be
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ordered as l such that the dual problem (15) can be written as

inf
y∈R

n

yπ(1)≤...≤yπ(n)

n∑

i=1

σiyπ(i) +
ν

n
f∗

(
lπ(i) − yπ(i)

ν

)

= inf
c∈R

n

c1≤...≤cn

n∑

i=1

σici +
ν

n
f∗

(
lπ(i) − ci

ν

)

= min
c∈R

n

c1≤...≤cn

n∑

i=1

gi(ci; l),

where we used a change of variables such that the solutions of the left and right hand sides are
related as y⋆(l) = c⋆π−1(l).

While strict convexity of the function f ensures naturally the existence of the maximizer qopt defined
above, this does not help quantify the continuity of the maximizer with respect to the given vector
of losses. For that, we need to consider strong convexity of the f -divergence on the maximization
set. The following proposition simply links the strong convexity of f to the strong convexity of the
associated weighted divergence in ℓ2 norm.

Proposition 4. Assume that f : R → R is αn-strongly convex on [0, n]. Then, q 7→ νDf (q∥1n/n)
is (νnαn)-strongly convex with respect to ∥·∥2.

Proof. Due to the αn-strong convexity of f , for any q, ρ ∈ [0, 1]n and any θ ∈ (0, 1) and any i ∈ [n],

f (θnqi + (1− θ)nρi) ≤ θf(nqi) + (1− θ)f(nρi)−
αn

2
θ(1− θ)(nqi − nρi)

2.

We average this inequality over i, yielding

1

n

n∑

i=1

f (n(θqi + (1− θ)ρi)) ≤ θ
1

n

n∑

i=1

f(nqi) + (1− θ)
1

n

n∑

i=1

f(nρi)−
αn

2
θ(1− θ)∥nqi − nρi∥2.

Defining Ωf (q) := Df (q∥1n/n), the statement above can be succinctly written as

Ωf (θq + (1− θ)ρ) ≤ θΩf (q) + (1− θ)Ωf (ρ)−
αnn

2
θ(1− θ)∥qi − ρi∥2 .

Therefore, Ωf is (αnn)-strongly convex with respect to ∥·∥2 on [0, 1]n, so q 7→ νDf (q∥1n/n) is
(νnαn)-strongly convex.

The Pool Adjacent Violators (PAV) algorithm is designed exactly for the minimization (13). The
algorithm is described for the χ2-divergence and KL-divergence with implementation steps in
Appx. C. Both the argsort π and the inverse argort π−1 are mappings from [n] = {1, . . . , n} onto
itself, but the interpretation of these indices are different for the input and output spaces [n]. The
argsort π can be thought of as an index finder, in the sense that for a vector l ∈ R

n, because
lπ(1) ≤ . . . ≤ lπ(n), π(i) can be interpreted as the index of an element of l which achieves the

rank i in the sorted vector. On the other hand, π−1(i) can be thought of as a rank finder, in that
π−1(i) = rank(i) is the position that li takes in the sorted form of l. To summarize:

π : [n]
︸︷︷︸

ranks of losses

→ [n]
︸︷︷︸

indices of training examples

while π−1 : [n]
︸︷︷︸

indices of training examples

→ [n]
︸︷︷︸

ranks of losses

We may equivalently write (14) as

qopt
i (l) =

1

n
[f∗]′

(
1
ν (li − copt

rank(i)(l))
)

. (16)

Finally, as seen in Appx. C, it will be helpful to compute qopt in sorted order. Because the f -
divergence is agnostic to the ordering of the q vector (as it is being compared to the uniform weights),
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is convex, as is its pointwise maximum (over q) of a family of convex functions q⊤ℓ(w). We have
by Lem. 5 that Fσ is continuously differentiable with

∇Fσ(w) = ∇ℓ(w)⊤qopt(ℓ(w)) + µw .

Moreover, by Nesterov (2005, Theorem 1), we have that l 7→ qopt(l) is Lipschitz continuous with
Lipschitz constant equal to the inverse of the strong convexity constant of νΩf , which is ναnn.

Returning to our canonical examples, we have that for the χ2, fχ2(x) = x2− 1 is 2-strongly convex
on R and that fKL(x) = x lnx is (1/n)-strongly convex on [0, n]. Thus, the function l 7→ qopt(l)
will have Lipschitz constant 2nν and ν, respectively.

Smoothness Properties. By applying Lem. 6 to Lipschitz continuous losses, we may achieve the
following guarantee regarding the changes in qopt with respect to w.

Lemma 7. Let f be αn-strongly convex on the interval [0, n]. For any w1, . . . , wn, w
′
1, . . . , w

′
n ∈

R
d construct ℓ̄(w1, . . . , wn) =

(
ℓi(wi)

)n

i=1
∈ R

n, as well as ℓ̄(w′
1, . . . , w

′
n) where each ℓi is G-

Lipschitz w.r.t. ∥·∥2. Then, we have

∥
∥qopt(ℓ̄(w1, . . . , wn))− qopt(ℓ̄(w′

1, . . . , w
′
n))
∥
∥
2

2
=

G2

n2α2
nν

2

n∑

i=1

∥wi − w′
i∥

2
2 .

Proof. By the Lipschitz property of qopt (Lem. 6), we have,

∥
∥qopt(ℓ̄(w1, . . . , wn))− qopt(ℓ̄(w′

1, . . . , w
′
n))
∥
∥
2

2
≤ 1

n2α2
nν

2

∥
∥ℓ̄(w1, . . . , wn)− ℓ̄(w′

1, . . . , w
′
n)
∥
∥
2

2

≤ 1

n2α2
nν

2

n∑

i=1

(ℓi(wi)− ℓi(w
′
i))

2
2

≤ G2

n2α2
nν

2

n∑

i=1

∥wi − w′
i∥

2
2 .

As a special case of Lem. 7, we may consider w1 = · · · = wn = w ∈ R
d and w′

1 = · · · = w′
n =

w′ ∈ R
d, in which case the result reads

∥
∥qopt(ℓ(w))− qopt(ℓ(w′))

∥
∥
2

2
=

G2

nα2
nν

2
∥w − w′∥22 .

Properties under No Shift Penalty. Next, we use the smoothness properties above to prove Prop. 2
by virtue of the following proposition, which states the equivalence of the minimizers of ªno-costº
and ªlow-costº objectives.

Proposition 8. Let w⋆
ν be the unique minimizer of (8) with shift cost ν ≥ 0 and χ2-divergence

penalty. Define ℓ(1)(w
⋆
0) < . . . , < ℓ(n)(w

⋆
0) to be the order statistics of ℓ1(w

⋆
0), . . . , ℓn(w

⋆
0), which

are assumed to be distinct. Consider ν0 such that

nν0 (σi+1 − σi) < ℓ(i+1)(w
⋆
0)− ℓ(i)(w

⋆
0) for i = 1, . . . , n. (18)

We have that w⋆
0 = w⋆

ν for all ν ≤ ν0.
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Proof. For a vector l ∈ R
n and ν ≥ 0, consider

hν(l) := max
q∈P(σ)

q⊤l − νn ∥q − 1n/n∥22

= max
q∈P(σ)

q⊤ (l + 2ν1n)− νn ∥q∥22 − (ν/n) ∥1n∥22

= max
q∈P(σ)

q⊤l − νn ∥q∥22 + ν

:= gν(l) + ν,

where we used that q⊤1 = 1 for all q ∈ P(σ). For ν > 0, by Danskin’s theorem (Bertsekas, 1997,
Proposition B.25),

∇hν(l) = ∇gν(l) = argmax
q∈P(σ)

q⊤l − νn ∥q∥22 = argmax
q∈P(σ)

q⊤(l/2nν)− 1

2
∥q∥22 .

Without loss of generality, assume that l is sorted, so that by applying the duality given by Prop. 3
and that f∗(t) = t2/4 + 1, we have that

copt(l) = argmin
c∈R

n

c1≤...≤cn

σici +
ν

4n

(
li − ci

ν

)2

qopt
i (l) =

1

2nν
(li − copt

i (l))

By differentiating with respect to c, we have that if unconstrained, copt
i (l) = li+2nνσi is the primal

solution and the dual solution is given by qopt
i (l) = σi, which is equal to the gradient of l 7→ g0(l)

when l has distinct elements. Thus, we derive a condition under which copt
i (l) = li + 2nνσi is

monotonically non-decreasing (i.e. has the same sorted order as l), which will be true if ν is small
enough. Specifically, we have that if

2nν0 (σi+1 − σi) < ℓ(i+1)(w
⋆
0)− ℓ(i)(w

⋆
0) for i = 1, . . . , n, (19)

for some ν0 > 0, then copt
i (l) = li +2nνσi is monotonically non-decreasing. Consequently, for any

ν ≤ ν0,

∇gν(ℓ(w⋆
0)) = ∇g0(ℓ(w⋆

0)).

Denote our objective as

Lσ,ν(w) = hν(ℓ(w)) +
µ

2
∥w∥22 ,

where we explicitly show the dependence on the shift cost ν ≥ 0. For ν = 0, since the losses
are differentiable and ℓ(w⋆

0) is composed of distinct coordinates, Lσ,0 is differentiable at w⋆
0 with

gradient ∇ℓ(w⋆
0)

⊤∇h0(ℓ(w
⋆
0)) + µw⋆

0 (Mehta et al., 2023, Proposition 2), where ∇ℓ(w⋆
0) ∈ R

n×d

denotes the Jacobian of ℓ at w⋆
0 . Using the chain rule, we successively deduce

∇Lσ,0(w
⋆
0) = 0 ⇐⇒ ∇ℓ(w⋆

0)
⊤∇h0(ℓ(w

⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇ℓ(w⋆
0)

⊤∇g0(ℓ(w⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇ℓ(w⋆
0)

⊤∇gν(ℓ(w⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇ℓ(w⋆
0)

⊤∇hν(ℓ(w
⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇Lσ,ν(w
⋆
0) = 0.

Applying the first-order optimality conditions of Lσ,0 and Lσ,ν , as well as the uniqueness of w⋆
0

completes the proof.

Prop. 2 of the main paper then follows by combining Prop. 8 above with the convergence guarantee
Thm. 1 of Prospect. Indeed, Thm. 1 shows that Prospect is able to converge linearly for arbitrarily
small ν > 0 and as long as ν ≤ ν0. Under Prop. 8, the minimizer will be equal to w⋆

0 .
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The multiple cases in the CVaR definition account for the instance in which np is not an integer.
In light of Lem. 7, when ν > 0, we have that the objective based on the uncertainty set (20) is
differentiable with Lipschitz continuous gradient (i.e. smooth). To be more specific, we may call
this the regularized or smoothed spectral risk measure. On the other hand, as described in Sec. 2,
SRMs were historically computed for any loss vector l ∈ R

n as

Rσ(l) = max
q∈P(σ)

q⊤l =
n∑

i=1

σil(i), (24)

where l(1) ≤ . . . ≤ l(n) are the order elements of l. For this reason, SRMs may also be called L-risks
(Maurer et al., 2021), based on classical L-estimators (linear combinations of order statistics) from
the statistics literature (Shorack, 2017). In fact, they were originally introduced as functionals Ls on
arbitrary real-valued probability measures (Acerbi & Tasche, 2002) given by a weighted integral of
the quantile function

Ls[F ] =

∫ 1

0

F−1(p)s(p) dp,

where F−1(p) = inf{x ∈ R : F (x) > p} is the quantile function of cumulative distribution

function (CDF) F and s is a non-negative, non-decreasing function satisfying
∫ 1

0
s(p) dp = 1. To

recover (24) we view l1, . . . , ln as a random sample and define Fn as the empirical distribution
induced by the sample. Then, the quantile function F−1

n (p) is given by the order statistic l(i) when

p ∈
(
i−1
n , i

n

)
and the discontinuity points of Fn are defined to make it left-continuous. Applying

Ls to the empirical CDF yields

Ls[Fn] =

∫ 1

0

F−1
n (p)s(p) dp =

n∑

i=1

∫ i/n

(i−1)/n

F−1
n (p)s(p) dp

=

n∑

i=1

l(i) ·
∫ i/n

(i−1)/n

s(p) dp =

n∑

i=1

σil(i)

for σi =
∫ i/n

(i−1)/n
s(p) dp. Thus, the formulae for σi for each SRM are defined by taking an n-bin

discretization of a continuous spectrum s over [0, 1). Notably, the permutation-based description of
spectral risk measures in (24) is a unique feature of the their discrete versions. For a visualization of
the feasible set P(σ) for the CVaR, extremile, and ESRM, see Fig. 7.

C EFFICIENT IMPLEMENTATION OF PROSPECT

In this section, we describe Prospect including computational details, in a way that is amenable to
implementation. For convenience, the conceptual description of the algorithm from Sec. 3 is restated
in Algorithm 1.

Efficient Implementation. We exactly solve the maximization problem

q = qopt (l) = argmax
q∈P(σ)

{

q⊤l − (ν/n)

n∑

i=1

f(nqi)

}

. (25)

by a sequence of three steps:

• Sorting: Find π such that lπ(1) ≤ . . . ≤ lπ(n).

• Isotonic regression: Apply Pool Adjacent Violators (PAV) (Subroutine 1) to solve the
isotonic regression minimization problem (13), yielding solution c = copt(l).

• Conversion: Use (14) to convert c back to q = qopt(l).

The sorting step runs in O(n lnn) elementary operations whereas the isotonic regression and con-
version steps run in O(n) operations. Crucially, retrieving q from the output c = copt(l) in the third
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Algorithm 1 Prospect (restated from Sec. 3)

Inputs: Initial w0, spectrum σ, number of iterations T , regularization µ > 0, shift cost ν > 0.
Hyperparameter: Stepsize η > 0.

1: Initialize l← ℓ(w0) and gi ← ∇ℓi(w0) + µw0 for i = 1, . . . , n.
2: Set q ← argmaxq̄∈P(σ) q̄

⊤l − νD(q∥1n/n) and ρ← q.

3: Set ḡ ←∑n
i=1 ρigi ∈ R

d.
4: Set w ← w0.
5: for T iterations do
6: Sample i, j ∼ Unif[n] independently.
7: v ← nqi(∇ℓi(w) + µw)− nρigit + ḡ. ▷ Iterate Update
8: w ← w − ηv.
9: lj ← ℓj(w). ▷ Bias Reducing Update

10: q ← argmaxq̄∈P(σ) q̄
⊤l − νD(q̄∥1n/n).

11: ḡ ← ḡ − ρigi + qi (∇ℓi(w) + µw). ▷ Variance Reducing Update
12: gi ← ∇ℓi(w) + µw.
13: ρi ← qi.

Output: Final point w.

step can be done by a single O(n)-time pass by setting

qπ(i) =
1

n
[f∗]′

(
1
ν (lπ(i) − ci)

)

for i = 1, . . . , n, as opposed to computing the inverse π−1 and use (14) directly, which in fact
requires another sorting operation and can be avoided. Because only one element of l changes on
every iteration, we may sort it by simply bubbling the value of the index that changed into its correct
position to generate the newly sorted version. The full algorithm is given Algorithm 2. We give a
brief explanation on the PAV algorithm for general f -divergences below.

Pool Adjacent Violators (PAV) Algorithm. First, recall the optimization problem we wish to solve:

min
c∈R

n

c1≤...≤cn

n∑

i=1

gi(ci; l), where gi(ci; l) := σici +
ν

n
f∗

(
lπ(i) − ci

ν

)

. (26)

The objective can be thought of as fitting a real-valued monotonic function to the points
(1, lπ(1)), . . . , (n, lπ(n)), which would require specifying its values (c1, . . . , cn) on (1, . . . , n) and

defining the function as any x ∈ [cj , cj+1] on (j, j + 1). Because lπ(1) ≤ . . . ≤ lπ(n), if we evalu-

ated our function (c1, . . . , cn) on a loss such as
∑n

i=1(lπ(i)− ci)
2, we may easily solve the problem

by returning c1 = ℓπ(1), . . . , cn = lπ(n). However, by specifying functions g1, . . . , gn we allow

our loss function to change in different regions of the inputs space {1, . . . , n}. In such cases, the
monotonicity constraint c1 ≤ . . . ≤ cn is often violated because individually minimizing gi(ci) for
each ci has no guarantee of yielding a function that is monotonic.

The idea behind the PAV algorithm is to attempt a pass at minimizing each gi individually, and
correcting violations as they appear. To provide intuition, define c∗i ∈ argminci∈R

gi(ci), and
consider i < j such that c∗i > c∗j . If f∗ is strictly convex, then gi(x) > gi(c

∗
i ) for any x < c∗i and

similarly gj(x) > gj(c
∗
j ) for any x > c∗j . Thus, to correct the violation, we decrease c∗i to c̄i and

increase c∗j to c̄j until c̄i = c̄j . We determine this midpoint precisely by

c̄i = c̄j = argmin
x∈R

gi(x) + gj(x)

as these are exactly the contributions made by these terms in the overall objective. The computation
above is called pooling the indices i and j. We may generalize this viewpoint to violating chains,
that is collections of contiguous indices (i, i + 1, . . . , i + m) such that c∗j < c∗i for all j < i and
c∗j > c∗i+m for all j > i+m, but c∗i > c∗i+m. One approach is use dynamic programming to identify
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such chains and then compute the pooled quantities

c̄i = argmin
x∈R

m∑

k=1

gi+k(x).

This requires two passes through the vector: one for identifying violators and the other for pooling.
The Pool Adjacent Violators algorithm, on the other hand, is able to perform both operations in one
pass by greedily pooling violators as they appear. This can be viewed as a meta-algorithm, as it
hinges on the notion that the solution of ªlargerº pooling problems can be easily computed from
solutions of ªsmallerº pooling problems. Precisely, for indices S ⊆ [n] = {1, . . . , n} define

Sol(S) = argmin
x∈R

∑

i∈S

gi(x).

We rely on the existence of an operation Pool, such that for any S, T ⊆ [n] such that S ∩T = ∅, we
have that

Sol(S ∪ T ) = Pool (Sol(S),m(S), Sol(T ),m(T )) , (27)

where m(S) denotes ªmetadataº associated to S, and that the number of elementary operations in
the Pool function is O(1) with respect to |S|+ |T |. We review our running examples.

For the χ2-divergence, we have that fχ2(x) = x2 − 1 and f∗
χ2(y) = y2/4 + 1, so

Sol(S) = argmin
x∈R

{

x

(
∑

i∈S

σi

)

+ |S|+ 1

4nν

∑

i∈S

(lπ(i) − x)2

}

=
1

|S|

[
∑

i∈S

lπ(i) − 2nν
∑

i∈S

σi

]

Sol(S ∪ T ) =
1

|S|+ |T |

[
∑

i∈S∪T

lπ(i) − 2nν
∑

i∈S∪T

σi

]

=
|S| Sol(S) + |T | Sol(T )

|S|+ |T | .

Thus, the metadata m(S) = |S| used in the pooling step eq. (27) is the size of each subset.

For the KL divergence, fKL(x) = x lnx and f∗
KL(y) = e−1 exp (y), so so

Sol(S) = argmin
x∈R

{

x

(
∑

i∈S

σi

)

+
ν

ne

∑

i∈S

exp
(
lπ(i)/ν

)
exp (−x/ν)

}

= ν

[

ln
∑

i∈S

exp
(
lπ(i)/ν

)
− ln

∑

i∈S

σi − lnn− 1

]

Sol(S ∪ T ) = ν

[

ln
∑

i∈S∪T

exp
(
lπ(i)/ν

)
− ln

∑

i∈S∪T

σi − lnn− 1

]

= ν

[

ln

(
∑

i∈S

exp
(
lπ(i)/ν

)
+
∑

i∈T

exp
(
lπ(i)/ν

)

)

− ln

(
∑

i∈S

σi +
∑

i∈T

σi

)

− lnn− 1

]

.

Here, we carry the metadata m(S) = (ln
∑

i∈S exp
(
lπ(i)/ν

)
, ln
∑

i∈S σi), which can easily be
combined and plugged into the function

(m1,m2), (m
′
1,m

′
2) 7→ ν [ln (expm1 + expm′

1)− ln (expm2 + expm′
2)− lnn− 1] . (28)

for two instances of metadata (m1,m2) and (m′
1,m

′
2). We carry the ªlogsumexpº instead of just

the sum of exponential quantities for numerical stability, and Equation (28) applies this operation
as well. It might be that

∑

i∈S σi = 0, e.g. for the superquantile. In this case, we may interpret
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Algorithm 2 Prospect (with exact implementation details)

Inputs: Initial points w0, spectrum σ, stepsize η > 0, number of iterations T , regularization
parameter µ > 0, shift cost ν > 0, loss/gradient oracles ℓ1, . . . , ℓn and ∇ℓ1, . . . ,∇ℓn.

1: l← ℓ(w0)R
n.

2: g ← (∇ℓi(w0) + µw0)
n
i=1 ∈ R

n×d.
3: π ← argsort(l).
4: c← PAV(l, π, σ). ▷ Subroutine 1 or Subroutine 2
5: q ← Convert(c, l, π, ν,0n). ▷ Subroutine 3
6: ρ← q.
7: ḡ ←∑n

i=1 ρigi ∈ R
d.

8: for T iterations do
9: Sample i, j ∼ Unif[n].

10: v ← nqi(∇ℓi(w) + µw)− nρigi − ḡ. ▷ Iterate Update

11: w ← w − ηv(t).
12: lj ← ℓj(w). ▷ Bias Reducing Update
13: π ← Bubble(π, l). ▷ Subroutine 4
14: c← PAV(l, π, σ).
15: q ← Convert(c, l, π, ν, q).
16: ḡ ← ḡ − ρigi + qi(∇ℓi(w) + µw). ▷ Variance Reducing Update
17: gi ← ∇ℓi(w) + µw.
18: ρi ← qi.

Output: Final point w.

Sol(S) = −∞ and evaluate exp (−∞) = 0 in the conversion formula (26). Two examples of the
PAV algorithm are given in Subroutine 1 and Subroutine 2, respectively. These operate by selecting
the unique values of the optimizer and partitions of indices that achieve that value.

Hardware Acceleration. Finally, note that all of the subroutines in Algorithm 2 (Subroutine 1/Sub-
routine 2, Subroutine 3, and Subroutine 4) all require primitive operations such as control flow and
linear scans through vectors. Because these steps are outside of the purview of oracle calls or matrix
multiplications, they benefit from just-in-time compilation on the CPU. We accelerate these subrou-
tines using the Numba package in Python and are able to achieve an approximate 50%-60% decrease
in runtime across benchmarks.

Subroutine 1 Pool Adjacent Violators (PAV) Algorithm for χ2 divergence

Inputs: Losses (ℓi)i∈[n], argsort π, and spectrum (σi)i∈[n].

1: Initialize partition endpoints (b0, b1) = (0, 1), partition value v1 = lπ(1) − 2nνσ1, number of
parts k = 1.

2: for i = 2, . . . , n do
3: Add part k = k + 1.
4: Compute vk = lπ(i) − 2nνσi.
5: while k ≥ 2 and vk−1 ≥ vk do

6: vk−1 = (bk−bk−1)vk−1+(i−bk)vk

i−bk−1
.

7: Set k = k − 1.

8: bk = i.

Output: Vector c containing ci = vk for bk−1 < i ≤ bk.
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Subroutine 2 Pool Adjacent Violators (PAV) Algorithm for KL divergence

Inputs: Losses (ℓi)i∈[n], argsort π, and spectrum (σi)i∈[n].

1: Initialize partition endpoints (b0, b1) = (0, 1), number of parts k = 1.

2: Initialize partition value v1 = ν
(
lπ(1)/ν − lnσ1 − lnn− 1

)
.

3: Initialize metadata m1 = ℓπ(1)/ν and t1 = lnσ1.
4: for i = 2, . . . , n do
5: Add part k = k + 1.
6: Compute vk = ν

(
lπ(i)/ν − lnσi − lnn− 1

)
.

7: Compute mk = ℓπ(i)/ν and tk = lnσi

8: while k ≥ 2 and vk−1 ≥ vk do
9: mk−1 = logsumexp(mk−1,mk) and tk−1 = logsumexp(tk−1, tk).

10: vk−1 = ν (mk−1 − tk−1 − lnn− 1).
11: Set k = k − 1.

12: bk = i.
Output: Vector c containing ci = vk for bk−1 < i ≤ bk.

Subroutine 3 Convert

Require: Sorted vector c ∈ R, vector l ∈ R
n, argsort π of l, shift cost ν ≥ 0, vector q ∈ R

n.
1: for i = 1, . . . , n do
2: Set qπ(i) = (1/n)[f∗]′

(
(lπ(i) − ci)/ν

)
.

3: return q.

Subroutine 4 Bubble

Require: Index jinit, sorting permutation π, loss table l.
1: j = jinit. ▷ If lπ(jinit) too small, bubble left.
2: while j > 1 and lπ(j) < lπ(j−1) do

3: Swap π(j) and π(j − 1).

4: j = jinit. ▷ If lπ(jinit) too large, bubble right.
5: while j < n and lπ(j) > lπ(j+1) do

6: Swap π(j) and π(j + 1).

7: return π
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Algorithm 3 Prospect (with iteration counters specified to accompany convergence analysis)

Inputs: Initial points w(0), stepsize η > 0, number of iterations T .

1: Set z
(0)
i = ζ

(0)
i = w(0) for all i ∈ [n].

2: q(0) = argmaxq∈P(σ) q
⊤ℓ(w(0))− ν̄Ω(q), ρ(0) = q(0).

3: Set l(0) = (ℓi(ζ
(0)
i ))ni=1 ∈ R

n, g(0) = (∇ri(z(0)i ))ni=1 ∈ R
d×n, ḡ(0) =

∑n
i=1 ρ

(0)
i g

(0)
i ∈ R

d.
4: for t = 0, . . . , T − 1 do
5: it ∼ Unif([n]), jt ∼ Unif([n]).
6:

7: v(t) = nq
(t)
it
∇rit(w(t))− (nρ

(t)
it
∇rit(z(t)it

)− ḡ(t)). ▷ Iterate Update

8: w(t+1) = w(t) − ηv(t).
9:

10: ζ
(t+1)
jt

= w(t) and ζ
(t+1)
j = ζ

(t)
j for j ̸= jt. ▷ Bias Reducing Update

11: l(t+1) = ℓ(ζ(t+1)).
12: q(t+1) = argmaxq∈P(σ) q

⊤l(t+1) − ν̄Ω(q).
13:

14: z
(t+1)
it

= w(t) and z
(t+1)
i = z

(t)
i for i ̸= it. ▷ Variance Reducing Update

15: g(t+1) = (∇ri(z(t+1)))ni=1.

16: ρ
(t+1)
it

= q
(t)
it

and ρ
(t+1)
i = ρ

(t)
i for i ̸= it.

17: ḡ(t+1) =
∑n

i=1 ρ
(t+1)
i g

(t+1)
i .

Output: Final point w(T )

D CONVERGENCE ANALYSIS OF PROSPECT

This section provides the main convergence analysis for Prospect. For readability, we reference the
version of the algorithm presented in Alg. 3, which is written to match quantities appearing in the
proof. We begin with a high-level overview, whereas the remaining subsections contain technical
lemmas of interest along with key steps in the proof.

D.1 OVERVIEW

Notation used throughout the proof is collected in Tab. 1, and is also introduced as it appears. In the
following, we denote M = L + µ the smoothness constant of the regularized losses ri. We denote

Et the expectation w.r.t to the randomness induced by picking it, jt given w(t), i.e. the conditional

expectation given w(t). The optimum of (8) is denoted w⋆ and satisfies

∇(q⋆⊤r(w⋆)) = 0, for q⋆ = argmax
q∈P(σ)

q⊤ℓ(w⋆)− ν̄Ω(q). (29)

Denote in addition l⋆ = ℓ(w⋆). For simplicity, we use the shorthand

Ω(q) :=
1

nαn
Df (q∥1n/n)

for any f -divergence Df , where αn is the strong convexity constant of the generator f over the in-
terval [0, n]. By Prop. 4, this gives that Ω a 1-strongly convex function over the probability simplex.
All forthcoming statements will reference the setting of Algorithm 3. Note that when implementing

the algorithm, storing the iterates {z(t)i }ni=1 and {ζ(t)i }ni=1 is not necessary.

Proof Outline. We argue convergence by way of defining a Lyapunov function V (t), which will

upper bound the quantity ∥w(t) − w⋆∥22, which will be called the ªmain termº. Specifically, define

V (t) = ∥w(t) − w⋆∥22 + c1S
(t) + c2T

(t) + c3U
(t) + c4R

(t)

30



Published as a conference paper at ICLR 2024

where c1, c2, c3, and c4 are constants to be determined later, and

S(t) =
1

n

n∑

i=1

∥nρ(t)i ∇ri(z
(t)
i )− nq∗i∇ri(w⋆)∥22, T (t) =

n∑

i=1

∥ζ(t)i − w⋆∥22,

U (t) =
1

n

n∑

j=1

∥w(t) − ζ
(t)
j ∥22, R(t) = 2ηn(q(t) − q⋆)⊤(l(t) − l⋆).

Though not included in the Lyapunov function, we will also introduce

Q(t) =
1

n

n∑

i=1

∥nq(t)i ∇ri(w(t))− nq⋆i∇ri(w⋆)∥22.

When the shift cost ν is large, we will be able to simplify the analysis by excluding the terms U (t)

and R(t). The colors are used for the convenience of the reader so that the quantities above are easy
to track from result to result. Each term in the Lyapunov function is motivated by terms that appear

when bounding the main term ∥w(t) − w⋆∥22, which appears in Step 2 below. The outline of the
proof is as follows.

1. We introduce a lemma of general interest which is the key technical step in the analysis:

bounding the bias of the gradient estimate v(t) given in line 7 of Algorithm 3.

2. We expand the main term and identify ªdescentº and ªnoiseº terms, as in a standard anal-
ysis of stochastic gradient methods. The descent term will be treated using the technical
lemma from the previous step, whereas the noise term will be upper bounded using stan-
dard techniques. In either case, additional non-negative terms are introduced that will be
incorporated into the Lyapunov function.

3. We the bound the evolution of the Lyapunov terms that are not the main term. For the large

shift cost setting, only S(t) and T (t) are needed, while U (t) and R(t) can be ignored.

4. In the final step, we tune any free constants that are encountered in previous steps. At this
point, we split the proof into two subsections, one for the large shift cost and one for any
shift cost.

D.2 KEY TECHNICAL LEMMA: BIAS OF THE PROSPECT GRADIENT ESTIMATE

In this subsection, we present the key technical step that allows for the unconditional linear conver-
gence of Prospect. When analyzing stochastic gradient methods in the smooth and strongly convex
setting, we typically expand

Et∥w(t+1) − w⋆∥22 = ∥w(t) − w⋆∥22−2η
〈

Et[v
(t)], w(t) − w⋆

〉

︸ ︷︷ ︸

descent term

+ η2Et∥v(t)∥22
︸ ︷︷ ︸

noise term

. (30)

First, note that the expectation of the primal gradient estimate v(t) is ∇r(w(t))⊤q(t), where

q(t) = argmaxq∈P(σ) q
⊤l(t) − ν̄Ω(q), where l(t) ∈ R

n denotes the estimate of the full loss vector.

Applying standard convex inequalities to the descent term yields

−
〈

∇r(w(t))⊤q(t), w(t) − w⋆
〉

≤ − µM

µ+M
∥w − w⋆∥22

− 1

µ+ L

n∑

i=1

q
(t)
i

∥
∥
∥∇ri(w(t))−∇ri(w⋆)

∥
∥
∥

2

2

−
〈

∇r(w⋆)⊤q(t), w(t) − w⋆
〉

.

The first two terms on the right-hand side are negative, which provide decrease in the expected
distance-to-optimum value on every iterate. In the empirical risk minimization setting, the final
term on the right-hand side would be zero due to the first-order optimality conditions on w⋆, as

q(t) = 1n/n, implying the decrease of Et∥w(t+1) − w⋆∥22 for small enough η. However, because
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q(t) is a potentially non-uniform vector estimated using the table of losses l(t) (as opposed to the

loss vector ℓ(w⋆) at optimum), the term −
〈
∇r(w⋆)⊤q(t), w(t) − w⋆

〉
is non-zero. Additionally,

this term is multiplied only by the learning rate η, instead of the noise terms which are multiplied by
η2. Thus, this bias term must be bounded carefully in order to achieve the convergence guarantee
under this regime. This is the subject of Lem. 9, the main result of this subsection.

Lemma 9 (Bias Bound). Consider any w ∈ R
d, l ∈ R

n, and q̄ ∈ P(σ). Define

q := qopt(l) = argmax
p∈P(σ)

p⊤l − ν̄Ω(p).

For any β1 ∈ [0, 1],

− (∇r(w)⊤q −∇r(w⋆)⊤q̄)⊤(w − w⋆)

≤ −(q − q̄)⊤(ℓ(w)− ℓ(w⋆))− µ

2
∥w − w⋆∥22

− β1

4(M + µ)κσ

1

n

n∑

i=1

∥nqi∇ri(w)− nq⋆i∇ri(w⋆)∥22 +
2β1G

2

ν̄(M + µ)κσ
n(q − q⋆)⊤(l − l⋆).

Proof. First, for any qi > 0, we have that w 7→ qiri(w) is (qiM)-smooth and (qiµ)-strongly convex,
so by applying standard convex inequalities (Lem. 30) we have that

qiri(w
⋆) ≥ qiri(w) + qi∇ri(w)⊤(w⋆ − w)

+
1

2qi(M + µ)
∥qi∇ri(w)− qi∇ri(w⋆)∥22 +

qiµ

4
∥w − w⋆∥22

≥ qiri(w) + qi∇ri(w)⊤(w⋆ − w)

+
1

2σn(M + µ)
∥qi∇ri(w)− qi∇ri(w⋆)∥22 +

qiµ

4
∥w − w⋆∥22

as qi ≤ σn. The second inequality holds for qi = 0 as well, so by summing the inequality over i and
using that

∑

i qi = 1, we have that

q⊤r(w⋆) ≥ q⊤r(w) + q⊤∇r(w)(w⋆ − w)

+
1

2σn(M + µ)

n∑

i=1

∥qi∇ri(w)− qi∇ri(w⋆)∥22 +
µ

4
∥w − w⋆∥22 .

Applying the same argument replacing q by q̄ and swapping w and w⋆ yields

q̄⊤r(w) ≥ q̄⊤r(w⋆) + q̄⊤∇r(w⋆)(w − w⋆)

+
1

2σn(M + µ)

n∑

i=1

∥q̄i∇ri(w)− q̄i∇ri(w⋆)∥22 +
µ

4
∥w − w⋆∥22 .

Summing the two inequalities yields

− (q − q̄)⊤(r(w)− r(w⋆))

≥ −
(
∇r(w)⊤q −∇r(w⋆)⊤q̄

)⊤
(w − w⋆) +

µ

2
∥w − w⋆∥22

+
1

2σn(M + µ)

[
n∑

i=1

∥qi∇ri(w)− qi∇ri(w⋆)∥22 +
n∑

i=1

∥q̄i∇ri(w)− q̄i∇ri(w⋆)∥22

]

.
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Dropping the
∑n

i=1 ∥q̄i∇ri(w)− q̄i∇ri(w⋆)∥22 term and applying a weight of β1 ∈ [0, 1] to
∑n

i=1 ∥qi∇ri(w)− qi∇ri(w⋆)∥22 still satisfies the inequality, which can equivalently be written as

−
(
∇r(w)⊤q −∇r(w⋆)⊤q̄

)⊤
(w − w⋆) ≤ −(q − q̄)⊤(r(w)− r(w⋆))− µ

2
∥w − w⋆∥22

− β1

2σn(M + µ)

n∑

i=1

∥qi∇ri(w)− qi∇ri(w⋆)∥22 . (31)

Next, because

∥qi∇ri(w)− q⋆i∇ri(w⋆)∥22 ≤ 2 ∥qi∇ri(w)− qi∇ri(w⋆)∥22 + 2(qi − q⋆i )
2 ∥∇ri(w⋆)∥22 ,

we have that (by summing over i) that

−
n∑

i=1

∥qi∇ri(w)− qi∇ri(w⋆)∥22 ≤ −
1

2

n∑

i=1

∥qi∇ri(w)− q⋆i∇ri(w⋆)∥22 + 4G2 ∥q − q⋆∥22 , (32)

where we used that each ∥∇ri(w⋆)∥2 ≤ 2G. To see this, use that ∇r(w⋆)⊤q⋆ = 0 and ∇r(w⋆) =
∇ℓ(w⋆) + µw⋆, so

∥∇ri(w⋆)∥2 = ∥∇ℓi(w⋆) + µw⋆∥2 =
∥
∥
∥∇ℓi(w⋆)−∑n

j=1 q
⋆
i∇ℓj(w⋆)

∥
∥
∥
2
≤ 2G.

Because the map qopt is the gradient of a convex and (1/ν̄)-smooth map, we also have that

∥q − q⋆∥22 =
∥
∥qopt(l)− qopt(ℓ(w⋆))

∥
∥
2

2
≤ 1

ν̄
(q − q⋆)⊤(l − ℓ(w⋆)), (33)

so we apply the above to (32) to achieve

−
n∑

i=1

∥qi∇ri(w)− qi∇ri(w⋆)∥22

≤ −1

2

n∑

i=1

∥qi∇ri(w)− q⋆i∇ri(w⋆)∥22 +
4G2

ν̄
(q − q⋆)⊤(l − ℓ(w⋆)), (34)

We also use (33) to claim non-negativity of (q−q⋆)⊤(l−ℓ(w⋆)). Finally, because
∑

i qi =
∑

i q
⋆
i =

1, we have that

(q − q̄)⊤(r(w)− r(w⋆)) = (q − q̄)⊤
(

ℓ(w) +
µ

2
∥w∥22 1n − ℓ(w⋆)− µ

2
∥w⋆∥22 1n

)

= (q − q̄)⊤ (ℓ(w)− ℓ(w⋆)) + (q − q̄)⊤1n

(

∥w∥22 − ∥w⋆∥22
)

= (q − q̄)⊤ (ℓ(w)− ℓ(w⋆)) . (35)

Combine (31), (34), and (35) along with κσ = nσn to achieve the claim.

In the next step, we apply Lem. 9, as well as a noise bound to give the initial per-iterate progress

bound on the distance-to-optimum quantity Et∥w(t+1) − w⋆∥22.

D.3 BOUNDING THE DISTANCE-TO-OPTIMUM

To outline the remainder of the proof, observe the expansion (30). With the bias bound for the
descent term in hand, we now upper bound the noise term.

Lemma 10 (Noise Bound). Consider the notations of Alg. 3, we have for any β > 0,

Et∥v(t)∥22 ≤ (1 + β)Et∥nq(t)it
∇rit(w(t))− nq⋆it∇rit(w⋆)∥22

+ (1 + β−1)Et∥nρ(t)it
∇rit(z(t)it

)− nq⋆it∇rit(w⋆)∥22.
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Proof. In the following, we use the identity E∥X − E[X]∥22 = E∥X∥22 − ∥E[X]∥22 in equations
denoted with (⋆). We denote by β an arbitrary positive number stemming from using Young’s
inequality ∥a+b∥22 ≤ (1+β)∥a∥22+(1+β−1)∥b∥22 in equation (◦). Noting that

∑n
i=1 q

⋆
i∇ri(w⋆) =

0, we get,

Et

[

∥v(t) −∇(q∗⊤r)(w⋆)∥22
]

= Et

[

∥nq(t)it
∇rit(w(t))− nq⋆it∇rit(w⋆)

+ nq⋆it∇rit(w⋆)− nρ
(t)
it
∇rit(z(t)it

)− (∇(q⋆⊤r)(w⋆)− ḡ(t))∥22
]

(⋆)
= ∥∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆)∥22
+ Et

[

∥nq(t)it
∇rit(w(t))− nq⋆it∇rit(w⋆)− (∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆))

+ nq⋆it∇rit(w⋆)− nρ
(t)
it
∇rit(z(t)it

)− (∇(q⋆⊤r)(w⋆)− ḡ(t))∥22
]

(◦)

≤ ∥∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆)∥22
+ (1 + β)Et

[

∥nq(t)it
∇rit(w(t))− nq⋆it∇rit(w⋆)− (∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆))∥22

]

+ (1 + β−1)Et

[

∥nq⋆it∇rit(w⋆)− nρ
(t)
it
∇rit(z(t)it

)− (∇(q⋆⊤r)(w⋆)− ḡ(t))∥22
]

(⋆)
= −β∥∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆)∥22
+ (1 + β)Et

[

∥nq(t)it
∇rit(w(t))− nq⋆it∇rit(w⋆)∥22

]

+ (1 + β−1)Et

[

[∥nq⋆it∇rit(w⋆)− nρ
(t)
it
∇rit(z(t)it

)∥22
]

− (1 + β−1)∥∇(q⋆⊤r)(w⋆)− ḡ(t)∥22.

We then combine the analyses of the first and second-order terms to yield the main result of this
subsection.

Lemma 11 (Analysis of distance-to-optimum term). For any constants β1 ∈ [0, 1] and β2 > 0, and
any q̄ ∈ P(σ), we have that

Et∥w(t+1) − w⋆∥22 ≤ (1− ηµ)∥w(t) − w⋆∥22
− 2η(w(t) − w⋆)⊤∇r(w⋆)q̄

− η

(
β1

2(M + µ)κσ
− η(1 + β2)

)

Q(t) + η2(1 + β−1
2 )S(t)

+
2β1G

2

ν̄(M + µ)κσ
R(t) − 2η(q(t) − q̄)⊤(ℓ(w)− ℓ(w⋆)).

Proof. Recall the expansion given in (30), which is:

Et∥w(t+1) − w⋆∥22 = ∥w(t) − w⋆∥22 − 2η
〈

Et[v
(t)], w(t) − w⋆

〉

+ η2Et∥v(t)∥22. (36)

Observe that

Et[v
(t)] =

n∑

i=1

q
(t)
i ∇r(w(t)) = ∇r(w(t))⊤q(t)
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By Lem. 9 with l = l(t), q = q(t), w = w(t), and multiplying by 2η, we have that

−2η(w(t) − w⋆)⊤∇r(w(t))⊤q(t) ≤ −2η(w(t) − w⋆)⊤∇r(w⋆)q̄ − 2η(q(t) − q̄)⊤(ℓ(w(t))− ℓ(w⋆))

− µη
∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2
− ηβ1

2(M + µ)κσ
Q(t)

+
2β1G

2

ν̄(M + µ)κσ
R(t).

The noise term is bounded by applying Lem. 10, so that for some β2 > 0,

η2Et∥v(t)∥22 ≤ η2(1 + β2)Q
(t) + η2(1 + β−1

2 )S(t).

Combine the two displays above to get the desired result.

Now, we see the appearance of S(t), T (t), U (t), and R(t) in Lem. 11. We incorporate them into the
Lyapunov function and describe their evolution in the next section.

D.4 BOUNDING THE EVOLUTION OF THE LYAPUNOV FUNCTION TERMS

We now describe the evolution of the terms S(t), T (t), U (t), R(t) from iterate t to iterate t+ 1.

The first two terms simply measure the closeness of the iterates {z(t)it
}ni=1 and {ζ(t)it

}ni=1
within the table to the optimum w⋆, measured either in closeness in weighted gradients

(S(t) = 1
n

∑n
i=1 ∥nρ

(t)
it
∇rit(z(t)it

)− nq⋆it∇rit(w⋆)∥22) or directly (T (t) =
∑n

i=1 ∥ζ
(t)
i − w⋆∥22).

Recall that Q(t) = 1
n

∑n
i=1 ∥nq

(t)
i ∇ri(w(t))− nq⋆i∇ri(w⋆)∥22.

Lemma 12. The following hold.

Et

[

S(t+1)
]

=
1

n
Q(t) +

(

1− 1

n

)

S(t),

Et

[

T (t+1)
]

= ∥w(t) − w⋆∥22 +
(

1− 1

n

)

T (t).

Proof. Write

Et

[

S(t+1)
]

=
1

n

n∑

i=1

Et

[

∥nρ(t+1)
i ∇ri(z(t+1)

i )− nq∗i∇ri(w⋆)∥22
]

=
1

n

n∑

i=1

[
1

n
∥nq(t)i ∇ri(w(t))− q⋆i∇ri(w⋆)∥22 +

(

1− 1

n

)

∥nρ(t)i ∇rit(z
(t)
i )− nq∗i∇ri(w⋆)∥22

]

=
1

n
Q(t) +

(

1− 1

n

)

S(t).

Similarly,

Et

[

T (t+1)
]

=

n∑

i=1

Et

[

∥ζ(t+1)
i − w⋆∥22

]

=

n∑

i=1

[
1

n
∥w(t) − w⋆∥22 +

(

1− 1

n

)

∥ζ(t)i − w⋆∥22
]

= ∥w(t) − w⋆∥22 +
(

1− 1

n

)

T (t).
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Next, we handle U (t) = 1
n

∑n
j=1 ∥w(t) − ζ

(t)
j ∥22, which can be ignored if we assume a particular

lower bound on ν̄.

Lemma 13. For any value of β2 > 0, we have that

Et

[

U (t+1)
]

≤ η2(1 + β2)Q
(t) + η2(1 + β−1

2 )S(t)

+
ηM2

µn

(

1− 1

n

)

T (t) +

(

1− 1

n

)
G2

2ν̄µn
R(t) +

(

1− 1

n

)

U (t).

Proof. First, note that a separate index jt (independent of it) is used to update {ζ(t)j }nj=1, so we may
first take the expected value with respect to jt conditioned on it:

Et

[

U (t+1)
]

= Et




1

n

n∑

j=1

∥w(t+1) − ζ
(t+1)
j ∥22





=
1

n
Et




1

n

n∑

j=1

∥
∥
∥w(t+1) − ζ

(t+1)
j

∥
∥
∥

2

2
| jt = j



+

(

1− 1

n

)

Et




1

n

n∑

j=1

∥w(t+1) − ζ
(t+1)
j ∥22 | jt ̸= j





=
1

n
Et

[∥
∥
∥w(t+1) − w(t)

∥
∥
∥

2

2

]

+

(

1− 1

n

)

Et




1

n

n∑

j=1

∥w(t+1) − ζ
(t)
j ∥22





=
η2

n
Et

[∥
∥
∥v(t)

∥
∥
∥

2

2

]

+

(

1− 1

n

)

Et




1

n

n∑

j=1

∥w(t+1) − ζ
(t)
j ∥22



 .

Next, we expand the second term.

1

n
Et





n∑

j=1

∥w(t+1) − ζ
(t)
j ∥22





=
1

n
Et





n∑

j=1

∥w(t+1) − w(t)∥22



+
2

n
Et





n∑

j=1

(w(t+1) − w(t))⊤(w(t) − ζ
(t)
j )



+
1

n
Et





n∑

j=1

∥ζ(t)j − w(t)∥22





= η2Et

[

∥v(t)∥22
]

− 2η

n

n∑

j=1

∇(q(t)⊤r)(w(t))⊤(w(t) − ζ
(t)
j ) +

1

n

n∑

j=1

∥ζ(t)j − w(t)∥22.

The first term is simply the noise term that appears in Lem. 10, whereas the last term is U (t). Next,
we have

−2∇(q(t)⊤r)(w(t))⊤(w(t) − ζ
(t)
j ) = −2(∇(q(t)⊤r)(w(t))−∇(q(t)⊤r)(ζ(t)j ))⊤(w(t) − ζ

(t)
j )

− 2(∇(q(t)⊤r)(ζ(t)j )−∇(q(t)⊤r)(w⋆))⊤(w(t) − ζ
(t)
j )

− 2(∇(q(t)⊤r)(w⋆)−∇(q⋆⊤r)(w⋆))⊤(w(t) − ζ
(t)
j ),

where the last term is introduced because ∇(q⋆⊤r)(w⋆) = 0. We bound each of the three terms.
First,

−2(∇(q(t)⊤r)(w(t))−∇(q(t)⊤r)(ζ(t)j ))⊤(w(t) − ζ
(t)
j ) ≤ −2µ

∥
∥
∥w(t) − ζ

(t)
j

∥
∥
∥

2

2

because q(t)
⊤
r is µ-strongly convex (Nesterov, 2018, Theorem 2.1.9). Second,

−2(∇(q(t)⊤r)(ζ(t)j )−∇(q(t)⊤r)(w⋆))⊤(w(t) − ζ
(t)
j ) ≤ β4∥∇(q(t)

⊤
r)(ζ

(t)
j )−∇(q(t)⊤r)(w⋆)∥22 + β−1

4 ∥ζ
(t)
j − w(t)∥22

≤ β4M
2∥ζ(t)j − w⋆∥22 + β−1

4 ∥ζ
(t)
j − w(t)∥22

36



Published as a conference paper at ICLR 2024

by Young’s inequality with parameter β4 and the M -Lipschitz continuity of∇(q(t)⊤r). Third,

−2(∇(q(t)⊤r)(w⋆)−∇(q⋆⊤r)(w⋆))⊤(w(t) − ζ
(t)
j ) = −2(∇((q(t) − q⋆)⊤ℓ)(w⋆))⊤(w(t) − ζ

(t)
j )

≤ β5∥∇((q(t) − q⋆)⊤ℓ)(w⋆)∥22 + β−1
5 ∥ζ

(t)
j − w(t)∥22

≤ β5G
2∥q(t) − q∥22 + β−1

5 ∥ζ
(t)
j − w(t)∥22,

by Young’s inequality with parameter β5 and the G-Lipschitz continuity of each ℓi. Combining with
the above, we have

−2
n∑

j=1

∇(q(t)⊤r)(w(t))⊤(w(t) − ζ
(t)
j ) ≤ β4M

2T (t) + (β−1
4 + β−1

5 − 2µ)U (t) + β5G
2n∥q(t) − q⋆∥22

≤ µ−1M2T (t) + µ−1G2n∥q(t) − q⋆∥22
when we set β4 = β5 = µ−1. Hence, we get

Et

[

U (t+1)
]

=
η2

n
Et

[∥
∥
∥v(t)

∥
∥
∥

2

2

]

+

(

1− 1

n

)

Et




1

n

n∑

j=1

∥w(t+1) − ζ
(t)
j ∥22





≤ η2Et

[∥
∥
∥v(t)

∥
∥
∥

2

2

]

− η

n

(

1− 1

n

)

2

n∑

j=1

∇(q(t)⊤r)(w(t))⊤(w(t) − ζ
(t)
j ) +

(

1− 1

n

)

U (t)

≤ η2Et

[∥
∥
∥v(t)

∥
∥
∥

2

2

]

+
η

n

(

1− 1

n

)[

µ−1M2T (t) + µ−1G2n∥q(t) − q⋆∥22
]

+

(

1− 1

n

)

U (t)

= η2Et

[∥
∥
∥v(t)

∥
∥
∥

2

2

]

+

(

1− 1

n

)
ηM2

µn
T (t) +

(

1− 1

n

)
G2

2nµ
2nη∥q(t) − q⋆∥22 +

(

1− 1

n

)

U (t)

= η2Et

[∥
∥
∥v(t)

∥
∥
∥

2

2

]

+

(

1− 1

n

)
ηM2

µn
T (t) +

(

1− 1

n

)
G2

2nµν̄
R(t) +

(

1− 1

n

)

U (t)

≤ η2(1 + β2)Q
(t) + η2(1 + β−1

2 )S(t)

+
ηM2

µn

(

1− 1

n

)

T (t) +

(

1− 1

n

)
G2

2ν̄µn
R(t) +

(

1− 1

n

)

U (t),

where the two last steps follow from Lem. 10 and Lem. 34 to claim ∥q(t)−q⋆∥22 ≤ 1
ν̄ (q

(t)−q⋆)(l(t)−
l⋆).

Finally, we consider R(t) = 2ηn(q(t) − q⋆)⊤(l(t) − l⋆). This can be viewed as a measurement of

orthogonality between the vectors q(t)−q⋆ and l(t)−l⋆, which in turn can be viewed as the directions
to the optimal gradient and optimal solution of a constrained optimization problem. Indeed, we may
define

l⋆ = argmin
l∈L

[

h(l) := max
q∈P(σ)

q⊤l − ν̄Ω(q)

]

,

and

L =
{
l ∈ R

n : l ≥ ℓ(w) for some w ∈ R
d
}
,

where the inequality is taken element-wise. The set L is a convexification of the set ℓ(Rd) which
shares a minimizer and has the same minimum value. Indeed, letting l̄ be any minimizer of h,
select w̄ such that l̄ = ℓ(w̄). Define q̄ = ∇h(l̄) = argmaxq∈P(σ) q

⊤ l̄ − ν̄Ω(q̄), and due to the

non-negativity of q̄, we have that

min
l∈L

h(l) = h(l̄) = q̄⊤ l̄ − ν̄Ω(q̄) ≥ q̄⊤ℓ(w̄)− ν̄Ω(q̄).
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Taking the maximum over q̄ shows that minl∈L h(l) = h(ℓ(w̄)). For convexity, for any l1, l2 ∈ L
satisfying l1 ≥ ℓ(w1) and l2 ≥ ℓ(w2), and any θ ∈ (0, 1), apply the following inequalities element-
wise:

θl1 + (1− θ)l2 ≥ θℓ(w1) + (1− θ)ℓ(w2) ≥ ℓ(θw1 + (1− θ)w2),

with θw1 + (1 − θ)w2 ∈ R
d. By convexity, (q(t) − q⋆)⊤(l(t) − l⋆) ≥ 0. Finally, this term is of

particular importance because the term −(q − q⋆)⊤(ℓ(w) − ℓ(w⋆)) that appears in Lem. 9 can be
used for cancellation in this case. The next result describes its evolution.

Lemma 14. For any β3 > 0, it holds that

Et

[

R(t+1)
]

≤ 2η(q(t) − q⋆)⊤(ℓ(w(t))− l⋆) +

(

1− 1

n

)

R(t)

+
ηG2n

2ν̄
β−1
3 T (t) +

2ηG2n

ν̄
(1 + β3)U

(t).

Proof. First, decompose

(q(t+1) − q⋆)⊤(l(t+1) − l⋆) = (q(t) − q⋆)⊤(l(t+1) − l⋆) + (q(t+1) − q(t))⊤(l(t+1) − l(t)) (37)

+ (q(t+1) − q(t))⊤(l(t) − l⋆). (38)

Because q(t) = qopt(l(t)) for all t, and qopt(·) is the gradient of a convex and (1/ν̄)-smooth function,
we have for the second term of (38) that

(q(t+1) − q(t))⊤(l(t+1) − l(t)) ≤ 1

ν̄
∥l(t+1) − l(t)∥22.

Next, using Young’s inequality, that is, a⊤b ≤ β3

2 ∥a∥22 +
β−1
3

2 ∥b∥22 for any β3 > 0, we have for the
third term term of (38) that

(q(t+1) − q(t))⊤(l(t) − l⋆) ≤ β3

2
∥q(t+1) − q(t)∥22 +

β−1
3

2
∥l(t) − l⋆∥22

≤ β3

2ν̄2
∥l(t+1) − l(t)∥22 +

β−1
3

2
∥l(t) − l⋆∥22.

Note that we have

Et

[

l(t+1)
]

=
1

n
ℓ(w(t)) +

(

1− 1

n

)

l(t).

Hence, we get,

1

2ηn
Et

[

R(t+1)
]

=
1

n
(q(t) − q⋆)⊤(l(w(t))− l⋆) +

(

1− 1

n

)

(q(t) − q⋆)⊤(l(t) − l⋆)

+ Et

[

(q(t+1) − q(t))⊤(l(t+1) − l(t))
]

+ Et

[

(q(t+1) − q(t))⊤(l(t) − l⋆)
]

≤ 1

n
(q(t) − q⋆)⊤(l(w(t))− l⋆) +

(

1− 1

n

)

(q(t) − q⋆)⊤(l(t) − l⋆)

+

(
1

ν̄
+

β3

2ν̄2

)

Et

[∥
∥
∥l(t+1) − l(t)

∥
∥
∥

2

2

]

+
β−1
3

2
∥l(t) − l⋆∥22

=
1

n
(q(t) − q⋆)(ℓ(w(t))− l⋆) +

(

1− 1

n

)

(q(t) − q⋆)⊤(l(t) − l⋆)

+
1

nν̄

(

1 +
β3

2ν̄

) n∑

j=1

(ℓj(w
(t))− ℓj(ζj))

2

+
β−1
3

2

n∑

j=1

(ℓj(ζj)− ℓj(w
⋆))2.
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Then, apply the G-Lipschitz continuity of each ℓi to achieve

1

2ηn
Et

[

R(t+1)
]

≤ 1

n
(q(t) − q⋆)(ℓ(w(t))− l⋆) +

(

1− 1

n

)

(q(t) − q⋆)⊤(l(t) − l⋆)

+
G2

nν̄

(

1 +
β3

2ν̄

) n∑

j=1

∥w(t) − ζ
(t)
j ∥22

+
G2β−1

3

2

n∑

j=1

∥ζ(t)j − w⋆∥22.

Replacing β3 by 2ν̄β3 gives the claim.

D.5 TUNING CONSTANTS AND FINAL RATE

Recall that our Lyapunov function is given by

V (t) = ∥w(t) − w⋆∥22 + c1S
(t) + c2T

(t) + c3U
(t) + c4R

(t).

Recall in addition the definitions

S(t) =
1

n

n∑

i=1

∥nρ(t)i ∇ri(z
(t)
i )− nq∗i∇ri(w⋆)∥22, T (t) =

n∑

i=1

∥ζ(t)i − w⋆∥22,

U (t) =
1

n

n∑

j=1

∥w(t) − ζ
(t)
j ∥22, R(t) = 2ηn(q(t) − q⋆)⊤(l(t) − l⋆).

We will derive a value τ > 0 such that for all t ≥ 0,

Et

[

V (t+1)
]

≤ (1− τ−1)V (t).

In order to describe our rates, we define the condition number κ := M/µ and recall that κσ = nσn.

D.5.1 STEP 3A: ANALYZE LARGE SHIFT COST SETTING.

The following gives the convergence rate for large shift cost.

Theorem 15. Suppose the shift cost satisfies

ν̄ ≥ 8nG2/µ.

Then, the sequence of iterates produced by Algorithm 3 with η = 1/(12(µ+M)κσ) achieves

E∥w(t) − w⋆∥22 ≤ (1 + σ−1
n + σ−2

n ) exp(−t/τ)∥w(0) − w⋆∥22 .
with

τ = 2max{n, 24κσ(κ+ 1)}.

Proof. First, invoke Lem. 11 with q′ = q(t) and β1 = 1 to obtain

Et∥w(t+1) − w⋆∥22 ≤ (1− ηµ)∥w(t) − w⋆∥22 (39)

− 2η(w(t) − w⋆)⊤∇r(w⋆)q(t) +
2G2

ν̄(M + µ)κσ
R(t) (40)

− η

(
1

2(M + µ)κσ
− η(1 + β2)

)

Q(t) + η2(1 + β−1
2 )S(t). (41)

39



Published as a conference paper at ICLR 2024

We will first bound (40), by using that∇r(w⋆)q⋆ = 0 and Young’s inequality with parameter a > 0
to write

∣
∣
∣(w(t) − w⋆)⊤∇r(w⋆)q(t)

∣
∣
∣ =

∣
∣
∣(w(t) − w⋆)⊤∇r(w⋆)(q(t) − q⋆)

∣
∣
∣

≤ a

2

∥
∥
∥∇r(w⋆)⊤(q(t) − q⋆)

∥
∥
∥

2

2
+

1

2a

∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2

≤ aG2γ2
∗

2ν̄2
T (t) +

1

2a

∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2
,

where we used in the second inequality that:

∥
∥
∥∇r(w⋆)⊤(q(t) − q⋆)

∥
∥
∥

2

2
=
∥
∥
∥∇ℓ(w⋆)⊤(q(t) − q⋆)

∥
∥
∥

2

2
≤ γ2

∗

∥
∥
∥q(t) − q⋆

∥
∥
∥

2

2
≤ γ2

∗

ν̄2

∥
∥
∥l(t) − l⋆

∥
∥
∥

2

2

≤ G2γ2
∗

ν̄2

n∑

i=1

∥ζ(t)i − w⋆∥22 =
G2γ2

∗

ν̄2
T (t).

We also have by Cauchy-Schwartz and Lipschitz continuity that

R(t) = 2ηn(q(t) − q⋆)⊤(l(t) − l⋆) ≤ 2ηn

ν̄

∥
∥
∥l(t) − l⋆

∥
∥
∥

2

2
≤ 2ηnG2

ν̄
T (t).

Combining the above displays yields

− 2η(w(t) − w⋆)⊤∇r(w⋆)q(t) +
2G2

ν̄(M + µ)κσ
R(t)

≤ ηG2

ν̄2

[

aγ2
∗ +

4nG2

(M + µ)κσ

]

T (t) +
η

a

∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2
.

We take β2 = 2, c3 = c4 = 0, and apply Lem. 12 to achieve

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤
[
τ−1 − ηµ+ ηa−1 + c2

]
∥w(t) − w⋆∥22

+

[

τ−1 +
3η2

2c1
− 1

n

]

c1S
(t)

+

[

τ−1 +
ηG2

ν̄2c2

(

aγ2
∗ +

4nG2

(M + µ)κσ

)

− 1

n

]

c2T
(t)

+

[

− η

2(M + µ)κσ
+ 3η2 +

c1
n

]

Q(t),

where τ > 0 is a to-be-specified rate constant. We now need to set the various free parameters a,
c1, c2, and η to make each of the squared bracketed terms be non-positive. We enforce τ ≥ 2n
throughout. By setting

η =
1

12(µ+M)κσ
and c1 =

nη

4(µ+M)κσ
,

we have that the bracketed constants before c1S
(t) and Q(t) vanish. Then, setting

a−1 =
µ

2
and c2 =

1

48(κ+ 1)κσ

make the bracketed constant before ∥w(t) − w⋆∥22, assuming that we enforce

τ ≥ 48(κ+ 1)κσ.

We turn to the final constant after substituting the values of a, c2, and η. We need that

ηG2

ν̄2c2

(

aγ2
∗ +

8nG2

(M + µ)κσ

)

=
8G2

ν̄2µ2

(

γ2
∗ +

2nG2

(κ+ 1)κσ

)

≤ 1

2n
,
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which occurs when

ν̄2 ≥ 16nG2

µ2

[

γ2
∗ +

2nG2

(κ+ 1)κσ

]

.

Because γ2
∗ ≤ nG2 ≤ 2nG2, this is achieved when

ν ≥ 8nG2

µ
,

completing the proof of the claim

Et

[

V (t+1)
]

≤ (1− τ−1)V (t).

To complete the proof, we bound the initial terms. Because c3 = c4 = 0, we need only to bound

S(0) and T (0).

S(0) =
1

n

n∑

i=1

∥nρ(0)i ∇ri(z
(0)
i )− nq⋆i∇ri(w⋆)∥22

=
1

n

n∑

i=1

∥nq(0)i ∇ri(w(0))− nq∗i∇ri(w⋆)∥22

≤ 2

n

n∑

i=1

∥nq(0)i ∇(ri(w(0))−∇ri(w⋆))∥22 +
2

n

n∑

i=1

∥n(q(0)i − q⋆i )∇ri(w⋆)∥22

≤ 2n

n∑

i=1

(q
(0)
i )2M2∥w(0) − w⋆∥22 + 8nG2∥q(0) − q⋆∥22

≤
[

2n ∥σ∥22 M2 +
8n2G4

ν̄2

]

∥w(0) − w⋆∥22

≤
[

2n ∥σ∥22 M2 + µ2/8
]

∥w(0) − w⋆∥22 ≤ 3nM2∥w(0) − w⋆∥22.

This means ultimately that

c1S
(0) ≤ n2

16(1 + κ−1)2κ2
σ

∥w(0) − w⋆∥22.

Next, we have

c2T
(0) =

n

48(κ+ 1)κσ

∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2
.

Thus, we can write

V (0) ≤
[

1 +
n2

16(1 + κ−1)2κ2
σ

+
n

48(κ+ 1)κσ

] ∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2

≤ (1 + σ−1
n + σ−2

n )
∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2
,

completing the proof.

D.5.2 STEP 3B: ANALYZE SMALL SHIFT COST SETTING.

To describe the rate, define δ := nG2/(µν̄). The quantity δ captures the effect of the primal regu-
larizer µ and dual regularizer ν̄ as compared to the inherent continuity properties of the underlying
losses.

41



Published as a conference paper at ICLR 2024

Theorem 16. Assume that n ≥ 2 and that the shift cost ν̄ ≤ 8nG2/µ. The sequence of iterates
produced by Algorithm 3 with

η =
1

16nµ
min

{
1

6[8δ + (κ+ 1)κσ]
,

1

4δ2 max {2nκ2, δ}

}

we have

Et

[

V (t+1)
]

≤ (1− τ−1)V (t),

Et

∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2
≤
(

5 + 16δ +
6κ2

σn

)

exp (−t/τ)
∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2

for

τ = 32nmax
{
6[8δ + (κ+ 1)κσ], 4δ

2 max
{
2nκ2, δ

}
, 1/16

}
.

Proof. First, we apply Lem. 11 with q′ = q⋆, as well as Lem. 14, Lem. 12, and Lem. 13, set c4 = 1,
and consolidate all constants to write

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤ (τ−1 − ηµ+ c2)
∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2
(42)

+

[

τ−1 − 1

n
+

2β1G
2

ν̄(M + µ)κσ
+

(

1− 1

n

)
G2c3
2ν̄µn

]

R(t) (43)

+

[

τ−1 +
1 + c3
c1

η2(1 + β−1
2 )− 1

n

]

c1S
(t) (44)

+

[

τ−1 +
ηG2n

2c2ν̄
β−1
3 +

c3ηM
2

c2µn

(

1− 1

n

)

− 1

n

]

c2T
(t) (45)

+

[

τ−1 +
2ηG2n

c3ν̄
(1 + β3)−

1

n

]

c3U
(t) (46)

+

[

− ηβ1

2(M + µ)κσ
+ η2(1 + c3)(1 + β2) +

c1
n

]

Q(t). (47)

We first set c1 = nηβ1

4(M+µ)κσ
and c2 = ηµ/2 to clean up (42) and (47). We also drop the terms

(1− 1/n) ≤ 1. Then, we notice in (43) that to achieve

2β1G
2

ν̄(M + µ)κσ
≤ 1

4n
,

we need that β1 ≤ ((M + µ)κσ)/(8nG
2/ν̄). Combined with the requirement that β1 ∈ [0, 1], we

set β1 = ((M + µ)κσ)/(8nG
2/ν̄ + (M + µ)κσ). We set β2 = 2, and can rewrite the expression
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above.

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤
(

τ−1 − ηµ

2

)∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2

+

[

τ−1 − 3

4n
+

G2c3
2ν̄µn

]

R(t)

+

[

τ−1 +
6(1 + c3)(M + µ)κσ

nβ1
η − 1

n

]

c1S
(t)

+

[

τ−1 +
G2n

µν̄
β−1
3 +

c3M
2

µ2n
− 1

n

]

c2T
(t)

+

[

τ−1 +
2ηG2n

c3ν̄
(1 + β3)−

1

n

]

c3U
(t)

+

[

− ηβ1

4(M + µ)κσ
+ 3η2(1 + c3)

]

Q(t).

Next, set the learning rate to be

η ≤ β1

12(1 + c3)(M + µ)κσ
(48)

to cancel out Q(t) and achieve

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤
(

τ−1 − ηµ

2

)∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2

+

[

τ−1 − 3

4n
+

G2c3
2ν̄µn

]

R(t)

+

[

τ−1 − 1

2n

]

c1S
(t)

+

[

τ−1 +
G2n

µν̄
β−1
3 +

c3M
2

µ2n
− 1

n

]

c2T
(t)

+

[

τ−1 +
2ηG2n

c3ν̄
(1 + β3)−

1

n

]

c3U
(t).

Requiring now that τ ≥ 2n, we may also cancel the S(t) term. We substitute δ = nG2/(µν̄) to
achieve

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤
(

τ−1 − ηµ

2

)∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2

+

[

− 1

4n
+

c3δ

2n2

]

R(t)

+

[

− 1

2n
+

δ

β3
+

c3M
2

µ2n

]

c2T
(t)

+

[

− 1

2n
+

2µηδ

c3
(1 + β3)

]

c3U
(t).
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It remains to select c3 and β3. As such, we set β3 = 4nδ and use that 1 + 4nδ ≤ 8nδ when n ≥ 2
and δ ≥ 1/8 as assumed, and so

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤
(

τ−1 − ηµ

2

)∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2

+

[

− 1

4n
+

c3δ

2n2

]

R(t)

+

[

− 1

4n
+

c3κ
2

n

]

c2T
(t)

+

[

− 1

2n
+

16nµηδ2

c3

]

c3U
(t).

We require now that

c3 =
1

2
min

{
1

2κ2
,
n

δ

}

,

which cancels T (t) and R(t), leaving

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤
(

τ−1 − ηµ

2

)∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2

+

[

− 1

2n
+ 32µηδ2 max

{
2nκ2, δ

}
]

c3U
(t).

From the above, we retrieve the requirement that

η ≤ 1

64nµδ2 max {2nκ2, δ} . (49)

It now remains to set η. By substituting in the values for β1 and c3 into (48), we have that

η
want

≤ β1

12(1 + c3)(M + µ)κσ
=

1

12(1 + c3)[8µδ + (M + µ)κσ]

≥ 1

(12 + 6n/δ)[8µδ + (M + µ)κσ]

≥ 1

(12 + 48n)[8µδ + (M + µ)κσ]

≥ 1

96n[8µδ + (M + µ)κσ]
.

The combination of (49) and the above display yields

η = min

{
1

96n[8µδ + (M + µ)κσ]
,

1

64nµδ2 max {2nκ2, δ}

}

=
1

16nµ
min

{
1

6[8δ + (κ+ 1)κσ]
,

1

4δ2 max {2nκ2, δ}

}

.

We need finally that τ ≥ 2/(µη), resulting in the requirement

τ ≥ 32nmax
{
6[8δ + (κ+ 1)κσ], 4δ

2 max
{
2nκ2, δ

}}
.

This is achieved by setting

τ = 32nmax
{
6[8δ + (κ+ 1)κσ], 4δ

2 max
{
2nκ2, δ

}
, 1/16

}
.

completing the proof of the claim

Et

[

V (t+1)
]

≤ (1− τ−1)V (t).
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Next, we bound the initial terms to achieve the final rate. First, we bound η which is used in all of
the terms. Because δ ≥ 1/8,

η ≤ 1

16nµ
· 1

4δ2 max {2nκ2, δ} ≤
1

64nµδ3
≤ 8

nµ
. (50)

Then,

S(0) =
1

n

n∑

i=1

∥nρ(0)i ∇ri(z
(0)
i )− nq⋆i∇ri(w⋆)∥22

=
1

n

n∑

i=1

∥nq(0)i ∇ri(w(0))− nq∗i∇ri(w⋆)∥22

≤ 2

n

n∑

i=1

∥nq(0)i ∇(ri(w(0))−∇ri(w⋆))∥22 +
2

n

n∑

i=1

∥n(q(0)i − q⋆i )∇ri(w⋆)∥22

≤ 2n

n∑

i=1

(q
(0)
i )2M2∥w(0) − w⋆∥22 + 8nG2∥q(0) − q⋆∥22

≤
[

2n ∥σ∥22 M2 +
8n2G2

ν̄2

]

∥w(0) − w⋆∥22

≤
[

2n ∥σ∥22 M2 + µ2/8
]

∥w(0) − w⋆∥22 ≤ 3nM2∥w(0) − w⋆∥22.

Continuing with β1 ≤ 1 and (50),

c1S
(0) =

nηβ1

4(M + µ)κσ
S(0)

≤ 2

µ(M + µ)κσ
· 3nM2∥w(0) − w⋆∥22

≤ 6nκ2

(1 + κ)κσ
∥w(0) − w⋆∥22

≤ 6κ2

σn
∥w(0) − w⋆∥22.

Next, we have T (0) = n
∥
∥w(0) − w⋆

∥
∥
2

2
and by (50),

c2T
(0) =

ηµ

2
· n
∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2

≤ 4
∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2
.

Because U (0) = 0, it is bounded trivially. For R(0), with c4 = 1 we have

R(0) = 2nη(qopt(ℓ(w(0)))− qopt(ℓ(w⋆)))⊤(ℓ(w(0))− ℓ(w⋆))

≤ 2nη

ν̄

∥
∥
∥ℓ(w(0))− ℓ(w⋆)

∥
∥
∥

2

2

≤ 2n2ηG2

ν̄

∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2

≤ 16nG2

µν̄

∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2

= 16δ
∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2
.
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Combining each of these terms together, we have that

V (0) ≤
(

5 + 16δ +
6κ2

σn

)∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2
,

completing the proof.

D.6 PROOF OF MAIN RESULT

The objective is once again

Fσ(w) = max
q∈P(σ)

q⊤ℓ(w)− νDf (q∥1n/n) +
µ

2
∥w∥22

= max
q∈P(σ)

q⊤ℓ(w)− nαnν
1

nαn
Df (q∥1n/n) +

µ

2
∥w∥22

= max
q∈P(σ)

q⊤ℓ(w)− nαnνΩ(q) +
µ

2
∥w∥22

= max
q∈P(σ)

q⊤ℓ(w)− ν̄Ω(q) +
µ

2
∥w∥22 ,

where Ω(q) = Df (q∥1n/n)/nαn is the penalty scaled to be 1-strongly convex and we simply notate
ν̄ = nαnν. The previous subsections give the convergence analysis in the cases of large and small
values of ν̄. They are combined below.

Theorem 1. Prospect with a small enough step size is guaranteed to converge linearly for all
ν > 0. If, in addition, the shift cost is ν ≥ Ω(G2/µαn), then the sequence of iterates (w(t))t≥1

generated by Prospect and learning rate η = (12µ(1 + κ)κσ)
−1 converges linearly at a rate

τ = 2max {n, 24κσ(κ+ 1)}, i.e.,

E∥w(t) − w⋆∥22 ≤ (1 + σ−1
n + σ−2

n ) exp(−t/τ)∥w(0) − w⋆∥22 .

Proof. Combine Thm. 15 (the analysis for ν̄ ≥ 8nG2/µ) and Thm. 16 (the analysis for ν̄ ≤
8nG2/µ) to achieve convergence for any value of ν̄. Substitute ν̄ = nαnν so that the condition
ν̄ ≥ 8nG2/µ reads as ν ≥ G2/(µαn).

E IMPROVING PROSPECT WITH MOREAU ENVELOPES

As mentioned in Sec. 3, we may want to generalize Prospect to non-smooth settings which arise
either when the shift cost ν = 0 or when the underlying losses (ℓi) are non-smooth. The former
case is already addressed by Prop. 8 in Appx. B. The latter case can be handled by considering a
variant of Prospect applied to the Moreau envelope of the losses, as defined below. Not only does
this extend the algorithm to non-smooth losses, it also allows even in the smooth setting for a less
stringent lower bound on ν required for the O((n + κσκ) ln(1/ε)) rate. The rest of this section
contains necessary background, implementation details, and the adjustments to the analysis.

E.1 OVERVIEW

We first describe the method and practical details of the implementation, followed by the conver-
gence analysis in the next section.

Notation. The Moreau envelope and the proximal (prox) operator of a convex function f : Rd →
R are respectively defined for a constant η > 0 as

Mη[f ](w) = min
z∈Rd

{

f(z) +
1

2η
∥w − z∥22

}

, (51)

proxηf (w) = argmin
z∈Rd

{

f(z) +
1

2η
∥w − z∥22

}

. (52)
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A fundamental property is that the gradient of the Moreau envelope is related to the proximal oper-
ator:

∇Mη[f ](w) =
1

η
(w − proxηf (w)) . (53)

For simplicity, we denote ν̄ = 2nν.

Algorithm Description. The algorithm is nearly equivalent to Algorithm 3, but makes the follow-

ing changes. We sample it ∼ q(t) non-uniformly in the sense that P [it = i] = q
(t)
i . We do not store

an additional vector of weights ρ(t), and use q(t) in all associated steps. This does not change the
expectation of the update direction or the control variate, but creates minor changes in the analysis
of the variance term. In the iterate update, we replace the gradient descent-like update with

u(t) = w(t) + η(g
(t)
it
− ḡ(t))

w(t+1) = proxηrit (u
(t)).

The vector u(t) adds the control variate to w(t) before passing it to the proximal operator. The
second change is that the elements of the gradient table are updated using jt and the gradients of the
Moreau envelope. That is,

g
(t+1)
jt

= ∇Mη[rjt ]
(
w(t) + η(g

(t)
jt
− ḡ(t))

)
,

g
(t+1)
j = g

(t)
j for j ̸= jt.

Plugging these changes into Algorithm 3 produces the Prospect-Moreau variant.

Implementation Details. The proximal operators can be computed in closed form or algorithmi-
cally for common losses. We list here the implementations for some losses of interest. The proximal
operators for the binary or multiclass logistic losses cannot be obtained in closed form, we approxi-
mate them by one Newton step.

Squared loss. For the squared loss, defined as ℓ(w) = 1
2 (w

⊤x− y)2 for x ∈ R
d, y ∈ R, then

proxηℓ(w) = w − ηx

1 + η ∥x∥2
(
x⊤w − y

)
.

Binary logistic loss. For the binary logistic loss defined for x ∈ R
d, y ∈ {0, 1}, w ∈ R

d as

ℓ(w) = −y ln(σ(x⊤w)) − (1 − y) ln(1 − σ(x⊤w)) = −yx⊤w + ln(1 + ex
⊤w), we approximate

the proximal operator by one Newton step, whose formulation reduces to

proxηℓ(w) ≈ w − ηg

1 + ηq∥x∥22
x

Multinomial logistic loss. For the multinomial logistic loss of a linear model defined by W on a
sample (x, y) as ℓ(W ) = −y⊤Wx + ln(exp(Wx)⊤1). for x ∈ R

d, y ∈ {0, 1}k, y⊤1 = 1, W ∈
R

k×d, we consider approximating the proximal operator by one Newton-step, whose formulation
reduces to

proxηℓ(W ) ≈W − ηz∗x⊤

z∗ = z1 − λ∗z2,

z1 = −y ⊘ z3 + z2, z2 = σ(Wx)⊘ z3, z3 = (1+ η∥x∥22σ(Wx)), λ∗ =
z⊤1 1

z⊤2 1
.

Regularized losses. For a convex ℓ : Rd → R, define r(w) = ℓ(w) + (µ/2) ∥w∥2. Then, we have,

proxηr(w) = prox ηℓ
1+ηµ

(
w

1 + ηµ

)

.
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E.2 CONVERGENCE ANALYSIS

Prospect-Moreau satisfies the following convergence bound. Recall that γ⋆ = ∥∇ℓ(w⋆)∥2.

Theorem 17. Suppose the smoothing parameter ν̄ is set large enough as

ν̄ ≥ γ∗G

M
min

{√

2nκ

4κ∗
σ − 1

, 2κ

}

,

and define a constant
τ = 2 +max{2(n− 1), κ(4κ∗

σ − 1)} ,
for κ∗

σ = σn/σ1. Then, the sequence of iterates (w(t)) generated by Prospect-Moreau with learning
rate η = M−1 min {1/(4κ∗

σ − 1), κ/(n− 1)} satisfies

E

∥
∥
∥w(t) − w⋆

∥
∥
∥

2

2
≤ (n+ 3/2) exp(−t/τ)

∥
∥
∥w(0) − w⋆

∥
∥
∥

2

2
.

We now prove Thm. 17, using similar techniques as in Appx. D.

Additional Notation. Further, we define w∗
i = w∗ + η∇ri(w∗). By analyzing the first-order

conditions of the prox, it is easy to see that

proxηri(w
∗
i ) = w∗ . (54)

We will use the Lyapunov function

V (t) =
∥
∥
∥w(t) − w∗

∥
∥
∥

2

+ c1

n∑

i=1

∥
∥
∥z

(t)
i − w∗

∥
∥
∥

2

+
c2
M2

n∑

i=1

∥
∥
∥g

(t)
i −∇ri(w∗)

∥
∥
∥

2

. (55)

The first step is to analyze the effect of the update on w(t) as the first term of the Lyapunov function.

Proposition 18. The iterates of Prospect-Moreau satisfy

(1 + µη)Et

∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

≤
∥
∥
∥w(t) − w∗

∥
∥
∥

2

+ 2η2σn

n∑

i=1

∥
∥
∥g

(t)
i −∇ri(w∗)

∥
∥
∥

2

+
2η2γ2

∗G
2

ν̄2

n∑

i=1

∥
∥
∥z

(t)
i − w∗

∥
∥
∥

2

− η2
(

1 +
1

Mη

)

σ1

n∑

i=1

∥
∥
∥∇Mη[ri]

(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥
∥
∥

2

.

Proof. We use the co-coercivity of the prox operator (Thm. 31) to get

(1 + µη)Et

∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

= (1 + µη)Et

∥
∥
∥proxηrit (u

(t))− proxηrit (w
∗
it)
∥
∥
∥

2

≤ Et⟨u(t) − w∗
it , proxηrit (u

(t))− proxηrit (w
∗
it)⟩

= Et⟨u(t) − w∗
it , w

(t+1) − w∗⟩
= Et⟨u(t) − w

(t)
it

, w(t) − w∗⟩
︸ ︷︷ ︸

=:T1

+Et⟨u(t) − w∗
it , w

(t+1) − w(t)⟩
︸ ︷︷ ︸

=:T2

,

(56)

where we added and subtracted w(t) in the last step.

For the first term, we observe that Et[u
(t)] = w(t) and Et[w

∗
it
] = w∗ + η Et[∇rit(w∗)] so that

T1 =
〈

Et[u
(t) − w∗

it ], w
(t) − w∗

〉

=
∥
∥
∥w(t) − w∗

∥
∥
∥

2

+ η
〈

Et[∇rit(w∗)], w(t) − w∗
〉

. (57)
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For T2, note that

w(t+1) − w(t) = −η
(

∇Mη[rit ](u
(t))− g

(t)
it

+ ḡ(t)
)

.

We manipulate T2 to set ourselves up to apply co-coercivity of prox-gradient by adding and sub-
tracting ∇Mη[rit ](w

∗
it
) as follows:

T2 = − η Et⟨u(t) − w
(t)
it

,∇Mη[rit ](u
(t))− g

(t)
it

+ ḡ(t)⟩
=−η Et⟨u(t) − w∗

it ,∇Mη[rit ](u
(t))−∇Mη[rit ](w

∗
it)⟩

︸ ︷︷ ︸

=:T ′
2

−η Et⟨u(t) − w∗
it ,∇Mη[rit ](w

∗
it)− g

(t)
it

+ ḡ(t)⟩
︸ ︷︷ ︸

=:T ′′
2

.

Now, co-coercivity of the prox-gradient (Thm. 32) of the M -smooth function rit gives

T ′
2 ≤ −η2

(

1 +
1

Mη

)

Et

∥
∥
∥∇Mη[rit ](u

(t))−∇Mη[rit ](w
∗
it)
∥
∥
∥

2

. (58)

Next, we use u(t) = w(t)+η(g
(t)
it
− ḡ(t)), and w∗

i = w∗+η∇ri(w∗) and∇Mη[ri](w
∗
i ) = ∇ri(w∗)

to get

T ′′
2 = −η Et⟨w(t) − w∗ − η(∇rit(w∗)− g

(t)
it

+ ḡ(t)),∇rit(w∗)− g
(t)
it

+ ḡ(t)⟩

= −η ⟨w(t) − w∗,Et[∇rit(w∗)]⟩+ η2 Et

∥
∥
∥g

(t)
it
− ḡ(t) −∇rit(w∗)

∥
∥
∥

2

,

where we used that Et[g
(t)
it

] = ḡ(t). Next, we use ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 for any vectors x, y

and E∥X − E[X]∥2 ≤ E∥X∥2 for any random vector X to get

T ′′
2 ≤ −η ⟨w(t) − w∗,Et[∇rit(w∗)]⟩+ 2η2 Et

∥
∥
∥g

(t)
it
−∇rit(w∗)

∥
∥
∥

2

+ 2η2 ∥Et[∇rit(w∗)]∥2 .

(59)

Plugging (59), (58), and (59) into (56) gives us

(1 + µη)Et

∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

≤
∥
∥
∥w(t) − w∗

∥
∥
∥

2

+ 2η2 Et

∥
∥
∥g

(t)
it
−∇rit(w∗)

∥
∥
∥

2

+ 2η2 ∥Et [∇rit(w∗)]∥2

− η2
(

1 +
1

Mη

)

Et

∥
∥
∥∇Mη[rit ](u

(t))−∇rit(w∗)
∥
∥
∥

2

.

(60)

Next, we note that P(σ) ⊂ [σ1, σn]
n to get,

Et ∥git −∇rit(w∗)∥2 =
n∑

i=1

q
(t)
i ∥gi −∇ri(w∗)∥2 ≤ σn

n∑

i=1

∥gi −∇ri(w∗)∥2 , and

Et

∥
∥
∥∇Mη[rit ](u

(t))−∇rit(w∗)
∥
∥
∥

2

=

n∑

i=1

q
(t)
i

∥
∥
∥∇Mη[ri]

(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥
∥
∥

2

≥ σ1

n∑

i=1

∥
∥
∥∇Mη[ri]

(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥
∥
∥

2

.
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Moreover, we also have that

∥Et[∇rit(w∗)]∥2 =
∥
∥
∥∇ℓ(w⋆)⊤(qopt(l(t))− qopt(ℓ(w⋆)))]

∥
∥
∥

2

γ2
∗

∥
∥
∥qopt(l(t))− qopt(ℓ(w⋆)))

∥
∥
∥

2

2

≤ γ2
∗G

2

ν̄2

n∑

i=1

∥
∥
∥z

(t)
i − w∗

∥
∥
∥

2

.

Plugging these back into (60) completes the proof.

Next, we analyze the other two terms of the Lyapunov function. The proof is trivial, so we omit it.

Proposition 19. We have,

Et

[
n∑

i=1

∥
∥
∥z

(t+1)
i − w∗

∥
∥
∥

2
]

=(1− n−1)

n∑

i=1

∥
∥
∥z

(t)
i − w∗

∥
∥
∥

2

+
∥
∥
∥w(t) − w∗

∥
∥
∥

2

,

Et

[
n∑

i=1

∥
∥
∥g

(t+1)
i −∇ri(w∗)

∥
∥
∥

2
]

=(1− n−1)

n∑

i=1

∥
∥
∥g

(t)
i −∇ri(w∗)

∥
∥
∥

2

+
1

n

n∑

i=1

∥
∥
∥∇Mη[ri]

(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥
∥
∥

2

.

We are now ready to prove Thm. 17.

Proof of Thm. 17. Let τ > 1 be a constant to be determined later and let Γ := γ2
∗G

2/(M2ν̄2)
denote the effect of the smoothing. Combining Props. 18 and 19, we can write

Et[V
(t)]− (1− τ−1)V (t) ≤ −

∥
∥
∥w(t) − w∗

∥
∥
∥

2
(

µη

1 + µη
− c1 − τ−1

)

− σ1

n∑

i=1

∥
∥
∥∇Mη[ri]

(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥
∥
∥

2
(
η2(1 + (Mη)−1)

1 + µη
− c2

nσ1M2

)

−
n∑

i=1

∥
∥
∥z

(t)
i − w∗

∥
∥
∥

2
(

c1(n
−1 − τ−1)− 2η2γ2

∗G
2

(1 + µη)ν̄2

)

−
n∑

i=1

∥
∥
∥g

(t)
i −∇ri(w∗)

∥
∥
∥

2
(

c2
M2

(n−1 − τ−1)− 2η2σn

1 + µη

)

.

(61)

Let η = b/M . Our goal is to set the constants b, c1, c2, τ > 0 so that the right side above is non-
positive and τ is as small as possible. We will require τ ≥ 2n so that n−1 − τ−1 ≥ (2n)−1. Thus,
we can have the right side nonpositive with

b

b+ κ
− c1 − τ−1 ≥ 0 (62a)

b(b+ 1) ≥ c2
nσ1

(

1 +
b

κ

)

(62b)

c1
2n
− 2b2Γ

1 + b/κ
≥ 0 (62c)

c2
2n
− 2b2σn

1 + b/κ
≥ 0 . (62d)
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Let us set c1 = τ−1. By setting c2 = 4κnσnb
2/(b+ κ), we ensure that (62d) is satisfied. Next, we

satisfy (62a) with
b

b+ κ
= 2τ−1 ⇐⇒ b =

2κ

τ − 2
.

Now, (62b) is an inequality only in τ . It is satisfied with τ ≥ τ∗ := 2 + 2κ(4κ∗
σ − 1). This lets us

fix τ = max{2n, τ∗} throughout, which leads to the value of η as claimed in the theorem statement.
Finally, (62c) requires

4nκ2Γ

τ − 2
≤ 1 ⇐⇒ ν̄ ≥

√
nκγ∗G

M
min

{√

2

κ(4κ∗
σ − 1)

,
2√
n

}

.

Thus, under these conditions, the right-hand side of (61) is non-negative. Iterating (61) over t
updates, we get

E[V (t)] = (1− τ−1)tV (0) ≤ exp(−t/τ)V (0) .

To complete the proof, we note that c1 ≤ 1/(2n) and

c2 =
4κnσnb

2

b+ κ
= 8

κκσ

τ
b ≤ 8

κκσ

κ(4κ∗
σ − 1)

1

κ∗
σ − 1

≤ 8

9
.

This lets us use the fact that∇ri is M -Lipschitz to bound

V (0) =
∥
∥
∥w(0) − w∗

∥
∥
∥+ c1

n∑

i=1

∥
∥
∥w(0) − w∗

∥
∥
∥

2

+
c2
M2

n∑

i=1

∥
∥
∥∇ri(w(0))−∇ri(w∗)

∥
∥
∥

2

≤ (n+ 3/2)
∥
∥
∥w(0) − w∗

∥
∥
∥

2

.

F IMPROVING THE DIRECT SADDLE-POINT BASELINE

In Sec. 4 we compared against the existing method of Palaniappan & Bach (2016), which views
our objective (8) in its min-max form directly and applies variance reduction techniques to both the
primal and dual sequences. In order to make the comparison more convincing, we also improve
this method both theoretically and empirically by utilizing different learning rates for the primal
and dual sequences. In this section, we provide a new convergence analysis for this improved two-
hyperparameter variant, which we dub SaddleSAGA, under the χ2-divergence penalty.

F.1 OVERVIEW

As in Appx. E, we begin with the additional notation and description of the algorithm, followed by
the convergence analysis.

Notation. For simplicity, we denote ν̄ = 2nν, and consider directly the min-max problem

min
w∈Rd

max
q∈P(σ)

[

Ψ(w, q) := q⊤ℓ(w) +
µ

2
∥w∥22 −

ν̄

2
∥q − 1n/n∥22

]

. (63)

Note that the function Ψ is strongly convex in its first argument and strongly concave in its second
argument. A pair (w⋆, q⋆) is called a saddle point of the convex-concave function Ψ if

max
q∈P(σ)

Ψ(w⋆, q) ≤ Ψ(w⋆, q⋆) ≤ min
w∈Rd

Ψ(w, q⋆) .

In our setting, we can verify that the pair w⋆ = argminFσ and q⋆ = qopt(ℓ(w⋆)) is the unique
saddle point of Ψ.
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Algorithm Description. The algorithm makes use of proximal operators (as described in Appx. E
in addition), which is defined for a convex function f : Rd → R, and x ∈ R

d as

proxf (x) = argmin
y∈Rd

f(y) +
1

2
∥x− y∥22.

The method is nearly equivalent to Algorithm 3, but applies the update

v(t) = nq
(t)
it
∇ℓit(w(t))− (nρ

(t)
it
g
(t)
it

)− ḡ(t))

w(t+1) = proxηµ∥·∥2
2
(w(t) − ηv(t))

to the primal iterates and

π(t) = nℓit(w
(t))eit − (nl

(t)
it
eit − l(t))

q(t+1) = proxιP(σ)+δν̄∥·−1n/n∥2
2/2

(q(t) − δπ(t))

to the dual iterates, where δ > 0 is the dual learning rate. The vector π(t) plays the role of an

update direction, and the proximal update on q(t+1) can be solved with the PAV algorithm, as seen
in Appx. C. Overall, the time and space complexity is identical to that of Prospect.

Rate of Convergence. We prove the following rate of convergence for SaddleSAGA.

Theorem 20. The iterates (w(t), q(t)) of SaddleSAGA with learning rates

η = min

{
1

µ
,

1

6(Lκσ + 2G2n/ν̄)

}

, δ = min

{
1

ν̄
,

µ

8n2G2

}

converge linearly to the saddle point of (63). In particular, for non-trivial regularization µν̄ ≤
8n2G2 and µ ≤ 6(Lκσ+2G2n/ν̄), the number of iterations t to get ∥w(t)−w⋆∥22+c∥q(t)−q⋆∥22 ≤ ε
(for some constant c) is at most

O

((

n+ κκσ +
n2G2

µν̄

)

ln
1

ε

)

.

The proof of this statement is given as Cor. 26 later in this section. To compare to the original
variant, the rate obtained by Palaniappan & Bach (2016) in terms of our problem’s constants is

O

((

n+
nG2

µν̄
+ nκ2

)

ln
1

ε

)

.

Compared to this, the rate we prove for SaddleSAGA improves κ2 to κκσ while suffering an ad-
ditional factor of n in the n2G2/(µν̄) term. Empirical comparisons between SaddleSAGA and the
original algorithm are given in Appx. I. As compared to Prospect, SaddleSAGA matches the rate of
Thm. 1 only when the shift cost ν̄ is large enough.

F.2 CONVERGENCE ANALYSIS

In the following, we denote by Et [·] the expecation of a quantity according to the randomness of

it conditioned on w(t), q(t). Throughout the proof, we consider that the losses are L-smooth and
G-Lipschitz continuous.

Evolution of Distances-to-Optimum. We start by using the contraction properties of the proximal
operator to bound the evolution of the distances to the saddle point (w⋆, q⋆).
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Lemma 21. We have,

Et

[

∥w(t+1) − w⋆∥22
]

≤ 1

(1 + ηµ)2

(

∥w(t) − w⋆∥22

− 2η(∇(q(t)⊤ℓ)(w(t))−∇(q∗⊤ℓ)(w⋆))⊤(w(t) − w⋆)

+ η2Et

[

∥v(t) −∇(q∗⊤ℓ)(w⋆)∥22
] )

Et

[

∥q(t+1) − q⋆∥22
]

≤ 1

(1 + δν̄)2

(

∥q(t) − q⋆∥22

+ 2δ(ℓ(w(t))− ℓ(w⋆))⊤(q(t) − q⋆)

+ δ2Et

[

∥π(t) − ℓ(w⋆)∥22
] )

.

Proof. By considering the first-order optimality conditions of the problem one verifies that w⋆, q⋆

satisfy for any η, δ,

w⋆ = proxηµ∥·∥2
2/2

(w⋆ − η∇(q⋆⊤ℓ)(w⋆)), q⋆ = proxιP(σ)+δν̄∥·−1n/n∥2
2/2

(q⋆ + δℓ(w⋆)).

Recall that the proximal operator of a c-strongly convex function h is contractive such that
∥ proxh(z)− proxh(z

′)∥2 ≤ 1
1+c∥z − z′∥2. In our case, it means that

∥w(t+1) − w⋆∥2 ≤
1

1 + ηµ
∥w(t) − ηv(t) − (w⋆ − η∇(q⋆⊤ℓ)(w⋆))∥2,

∥q(t+1) − q⋆∥2 ≤
1

1 + δν̄
∥q(t) + δπ(t) − (q⋆ + δℓ(w⋆))∥2.

By taking the squared norm, the expectation, expanding the squared norms and using that

Et

[
v(t)
]
= ∇(q(t)⊤ℓ)(w(t)), Et

[
π(t)

]
= ℓ(w(t)), we get the result.

Evolution of Variance Term. We consider the evolution of the additional variance term added to
the dual variables.

Lemma 22. We have for any β2 > 0,

Et

[

∥π(t) − ℓ(w⋆)∥22
]

≤ (n+ (n− 1)β2)nG
2∥w(t) − w⋆∥22

+ (n− 1)(1 + β−1
2 )∥ℓ(w⋆)− l(t)∥22.

Proof. As in the proof of Lem. 10, we have for some β2 > 0,

Et

[

∥π(t) − ℓ(w⋆)∥22
]

= Eit

[

∥(nℓit(w(t))− nℓit(w
⋆))eit

+ (nℓit(w
⋆)− nℓit(z

(t)
it

))eit − (ℓ(w⋆)− l(t))∥22
]

≤ −β2∥ℓ(w(t))− ℓ(w⋆)∥22
+ (1 + β2)Et

[

∥(nℓit(w(t))− nℓit(w
⋆))eit∥22

]

+ (1 + β−1
2 )Et

[

∥(nℓit(w⋆)− nℓit(z
(t)
it

))eit∥22
]

− (1 + β−1
2 )∥ℓ(w⋆)− l(t)∥22

= (n+ (n− 1)β2)∥ℓ(w(t))− ℓ(w⋆)∥22
+ (n− 1)(1 + β−1

2 )∥ℓ(w⋆)− l(t)∥22
≤ (n+ (n− 1)β2)nG

2∥w(t) − w⋆∥22
+ (n− 1)(1 + β−1

2 )∥ℓ(w⋆)− l(t)∥22.
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Incorporating Smoothness and Convexity of the Losses. The improved algorithm we devel-
oped here, for the purpose of a fair comparison to our own algorithm, differs from the original one
from Palaniappan & Bach (2016) by Cor. 24 stemming from Lem. 23. We exploit the smoothness

and convexity of the losses to get a negative term −Et

[
∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22

]
used

to temper the variance of the primal updates at the price of an additional positive term ∥q(t) − q⋆∥22.

The sum of both being positive we can dampen the effect of the additional positive term ∥q(t)−q⋆∥22
at the price of getting a less negative term −Et

[
∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22

]
.

Lemma 23. For any q1, q2 ∈ P(σ), w1, w2 ∈ R
d, we have,

(q1 − q2)
⊤(ℓ(w1)− ℓ(w2))− (∇(q⊤1 ℓ)(w1)−∇(q⊤2 ℓ)(w2))

⊤(w1 − w2)

≤ − 1

2Lnσmax

(
Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq2,i∇ℓi(w2)∥22 + ∥nq1,i∇ℓ(w2)− nq2,i∇ℓ(w1)∥22

])

+
G2

Lσmax
∥q1 − q2∥22.

Proof. For any q ∈ P(σ) and any w, v ∈ R
d, we have by smoothness and convexity of qiℓi, for

qi > 0

qiℓi(v) ≥ qiℓi(w) + qi∇ℓi(w)⊤(v − w) +
1

2Lqi
∥qi∇ℓi(w)− qi∇ℓi(v)∥22 (64)

≥ qiℓi(w) + qi∇ℓi(w)⊤(v − w) +
1

2Ln2σmax
∥nqi∇ℓi(w)− nqi∇ℓi(v)∥22. (65)

Note that the second inequality is then true even if qi = 0, since in that case all terms are 0.
Therefore, for any q1, q2 ∈ P(σ), and any w1, w2, we have

q⊤1 ℓ(w2) ≥ q⊤1 ℓ(w1) +∇(q⊤1 ℓ)(w1)
⊤(w2 − w1) +

1

2Lnσmax
Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq1,i∇ℓi(w2)∥22

]
,

q⊤2 ℓ(w1) ≥ q⊤2 ℓ(w2) +∇(q⊤2 ℓ)(w2)
⊤(w1 − w2) +

1

2Lnσmax
Ei∼Unif[n]

[
∥nq2,i∇ℓ(w1)− nq2,i∇ℓ(w2)∥22

]
.

Combining these inequalities, we get

− (q1 − q2)
⊤(ℓ(w1)− ℓ(w2)) + (∇(q⊤1 ℓ)(w1)−∇(q⊤2 ℓ)(w2))

⊤(w1 − w2)

≥ 1

2Lnσmax

(
Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq1,i∇ℓi(w2)∥22 + ∥nq2,i∇ℓ(w1)− nq2,i∇ℓ(w2)∥22

])
.

For any 4 vectors a, b, c, d,

∥a− b∥22 + ∥c− d∥22 = ∥a− c∥22 + ∥b− d∥22 − 2(a− d)⊤(b− c).

Applying this for a = q1,i∇ℓi(w1), b = qi,1∇ℓi(w2), c = q2,i∇ℓi(w2), d = q2,i∇ℓi(w1), we get

− (q1 − q2)
⊤(ℓ(w1)− ℓ(w2)) + (∇(q⊤1 ℓ)(w1)−∇(q⊤2 ℓ)(w2))

⊤(w1 − w2)

≥ 1

2Lnσmax

(

Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq2,i∇ℓi(w2)∥22 + ∥nq1,i∇ℓ(w2)− nq2,i∇ℓ(w1)∥22

]

− 2n2
Ei∼Unif[n]

[
(q1,i − q2,i)

2∇ℓi(w1)
⊤∇ℓi(w2)

] )

.

Reorganizing the terms and bounding ∇ℓi(w1)
⊤∇ℓi(w2) by G2 we get the result.
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Corollary 24. We have for any α ∈ [0, 1]

Et

[
(1 + ηµ)2

η
∥w(t+1) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(t+1) − q⋆∥22

]

≤ η−1∥w(t) − w⋆∥22 +
(

δ−1 +
2αG2

Lσmax

)

∥q(t) − q⋆∥22

+ ηEt

[

∥v(t) −∇(q∗⊤ℓ)(w⋆)∥22
]

+ δEt

[

∥π(t) − ℓ(w⋆)∥22
]

− α

Lnσmax
Et

[

∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22
]

.

Proof. Follows from Lem. 23

Lyapunov Function and Overall Convergence. Thm. 25 shows that an appropriately defined
Lyapunov function incorporating the distances to the optima, decrease exponentially.

Theorem 25. Define the Lyapunov function

V (t) =
(1 + ηµ)2

η
∥w(t) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(t) − q⋆∥22

+ c1

n∑

i=1

∥nρ(t)i ∇ℓi(z
(t)
i )− nq∗i∇ℓi(w⋆)∥22 +

c2
G2
∥l(t) − ℓ(w⋆)∥22,

with c1 = n
2(Lκσ+2G2n/ν̄) and c2 = µ

2 with κσ = nσmax. By taking

η = min

{
1

µ
,

1

6(Lκσ + 2G2n/ν̄)

}

, δ = min

{
1

ν̄
,

µ

8n2G2

}

,

we have

Et

[

V (t+1)
]

≤ (1− τ−1)V (t),

for some τ > 1. In particular, for small regularizations, i.e., µν̄ ≤ 8n2G2 and µ ≤ 6(Lκσ +
2G2n/ν̄), we have

τ = max

{

2n, 4 +
24Lκσ

µ
+

48G2n

µν̄
, 2 +

16G2n2

ν̄µ

}

.

Proof. Let us denote

T (t) =
1

n

n∑

i=1

∥nρ(t)i ∇ℓi(z
(t)
i )− nq∗i∇ℓi(w⋆)∥22, S(t) = ∥l(t) − ℓ(w⋆)∥22,

we have,

Et

[

T (t+1)
]

≤ 1

n2

n∑

i=1

∥nq(t)i ∇ℓi(w(t))− nq∗i∇ℓi(w⋆)∥22 +
(

1− 1

n

)

T (t),

Et

[

S(t+1)
]

≤ G2∥w(t) − w⋆∥22 +
(

1− 1

n

)

S(t).
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By combining Cor. 24, Lem. 10, Lem. 22 we have, denoting κσ = nσmax,

Et

[

V (t+1)
]

≤
(
η−1 + δ(n+ (n− 1)β2)nG

2 + c2
)
∥w(t) − w⋆∥22

+

(

δ−1 +
2αnG2

Lκσ

)

∥q(t) − q⋆∥22

+

(

η(1 + β1) +
c1
n
− α

Lnσmax

)

Ei∼Unif[n]

[

∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22
]

+

(

η(1 + β−1
1 ) + c1

(

1− 1

n

))
1

n

n∑

i=1

∥nρ(t)i ∇ℓi(z
(t)
i )− nq∗i∇ℓi(w⋆)∥22

+

(

δ(n− 1)(1 + β−1
2 ) +

c2
G2

(

1− 1

n

))

∥ℓ(w⋆)− l(t)∥22.

Therefore for some τ > 1, we have

Et

[

V (t+1)
]

− (1− τ−1)V (t) ≤ K1∥w(t) − w⋆∥22 +K2∥q(t) − q⋆∥22

+K3Ei∼Unif[n]

[

∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22
]

+K4
1

n

n∑

i=1

∥nρ(t)i ∇ℓi(z
(t)
i )− nq∗i∇ℓi(w⋆)∥22 +K5∥ℓ(w⋆)− l(t)∥22,

with,

K1 =
(1 + ηµ)2

η

(

1 + η
(
(n+ (n− 1)β2)nG

2δ + c2
)

(1 + ηµ)2
− (1− τ−1)

)

K2 =
(1 + δν̄)2

δ

(
1 + 2δαG2n/(Lκσ)

(1 + δν̄)2
− (1− τ−1)

)

K3 = η(1 + β1) +
c1
n
− α

Lκσ

K4 = c1

(

η(1 + β−1
1 )

1

c1
+

(

1− 1

n

)

− (1− τ−1)

)

K5 =
c2
G2

(

δ(n− 1)(1 + β−1
2 )

G2

c2
+

(

1− 1

n

)

− (1− τ−1)

)

.

Fix β1 = 2, β2 = 1. Denote also η̄ = ηµ
1+ηµ ∈ (0, 1) and δ̄ = δν̄

1+δν̄ ∈ (0, 1) with e.g. η = η̄
µ(1+η̄) .

We have then for c1/n = α/(2Lκσ) and c2 = µ/2,

K1 ≤ ηµ2η̄

(

η̄2 −
(

1− 2n2G2δ

µ

)

η̄ + τ−1

)

K2 ≤ δν̄2δ̄

(

δ̄2 − 2

(

1− αG2n

Lκσ ν̄

)

δ̄ + τ−1

)

K3 = 3η − α

2Lκσ

K4 = c1

(

3η
Lκσ

nα
− 1

n
+ τ−1

)

K5 ≤
c2
G2

(

δ
4nG2

µ
− 1

n
+ τ−1

)

.
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We can further take 3η ≤ α/(2Lκσ) and δ ≤ µ/(8n2G2). By imposing the constraint τ ≥ 2n, we
can simplify

K1 ≤ ηµ2η̄

(

η̄2 − 3

4
η̄ + τ−1

)

K2 ≤ δν̄2δ̄

(

δ̄2 − 2

(

1− αG2n

Lκσ ν̄

)

δ̄ + τ−1

)

K3 ≤ 0,K4 ≤ 0,K5 ≤ 0.

Recall that α must be chosen in [0, 1]. Taking then

α =
Lκσ

Lκσ + 2G2n/ν̄
≤ Lκσ ν̄

2G2n
,

we get

K1 ≤ ηµ2η̄

(

η̄2 − 3

4
η̄ + τ−1

)

, K2 ≤ δν̄2δ̄
(
δ̄2 − δ̄ + τ−1

)
.

By taking η ≤ 1/µ, δ ≤ 1/ν̄, we get η̄ ≤ 1/2, δ̄ ≤ 1/2 and so η̄2 − 3
4 η̄ ≤ − 1

4 η̄ and δ̄2 − δ̄ ≤ − 1
2 δ̄.

Therefore taking

η = min

{
1

µ
,

1

6(Lκσ + 2G2n/ν̄)

}

, δ = min

{
1

ν̄
,

µ

8n2G2

}

,

we get Ki ≤ 0 for all i as long as τ ≥ max{2n, 4/η̄, 2/δ̄}. In our case,

4

η̄
=

{

4
(

1 + 6Lκσ

µ + 12G2n
µν̄

)

if µ ≤ 6(Lκσ + 2G2n/ν̄),

8 otherwise,

2

δ̄
=

{

2
(

1 + 8G2n2

ν̄µ

)

if µν̄ ≤ 8n2G2,

4 otherwise.

The result follows.

Corollary 26. Under the setting of Thm. 25, after t iterations of SaddleSAGA, we have

E

[
(1 + ηµ)2

η
∥w(t) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(t) − q⋆∥22

]

≤ exp(−t/τ)
(

(1 + ηµ)2

η
∥w(0) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(0) − q⋆∥22

+ c1n
2

n∑

i=1

∥nq(0)i ∇ℓi(w(0))− q∗i∇ℓi(w⋆)∥22 +
c2
G2
∥ℓ(w(0))− ℓ(w⋆)∥22

)

.

G TECHNICAL RESULTS FROM CONVEX ANALYSIS

Herein, we collect several results, mostly from Nesterov (2018), used throughout the paper. In the
following, let ∥·∥ denote an arbitrary norm on R

d and let ∥·∥∗ denote its associated dual norm.

The first concerns L-smooth function, or those with L-Lipschitz continuous gradient.

Theorem 27. (Nesterov, 2018, Theorem 2.1.5) The conditions below are considered for any x, y ∈
R

d and α ∈ [0, 1]. The following are equivalent for a differentiable function f : Rd → R.

1. f is convex and L-smooth with respect to ∥·∥.

2. 0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L
2 ∥x− y∥2.

3. f(x) + ⟨∇f(x), y − x⟩+ 1
2L ∥∇f(x)−∇f(y)∥

2
∗ ≤ f(y).
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4. 1
L ∥∇f(x)−∇f(y)∥

2
∗ ≤ ⟨∇f(x)−∇f(y), x− y⟩.

5. 0 ≤ ⟨∇f(x)−∇f(y), x− y⟩ ≤ L ∥x− y∥2.

Next, we detail the properties of strongly convex functions.

Theorem 28. (Nesterov, 2018, Theorem 2.1.10) If f : Rd → R is µ-strongly convex and differen-
tiable, then for any x, y ∈ R

d,

• f(y) ≤ f(x) + ⟨f(x), y − x⟩+ 1
2µ ∥∇f(x)−∇f(y)∥

2
∗.

• ⟨∇f(x)−∇f(y), x− y⟩ ≤ 1
µ ∥∇f(x)−∇f(y)∥

2
∗.

• µ ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥∗.

Finally, functions that are both smooth and strongly convex enjoy a number of relevant primal-dual
properties.

Theorem 29. (Nesterov, 2018, Theorem 2.1.12) If f is both L-smooth and µ-strongly convex, then
for any x, y ∈ R

d,

−⟨∇f(x), x− y⟩ = − µL
µ+L ∥x− y∥2 − 1

µ+L ∥∇f(x)−∇f(y)∥
2 − ⟨∇f(y), x− y⟩ . (66)

Lemma 30. Let f : Rd → R be µ-strongly convex and M -smooth. Then, we have for any w, v ∈
R

d,

f(v) ≥ f(w) +∇f(w)⊤(v − w) +
1

2(M + µ)
∥∇f(w)−∇f(v)∥22 +

µ

4
∥w − v∥22.

Proof. The function g = f − µ∥ · ∥22/2 is convex and M − µ smooth. Hence, we have by line 3 of
Thm. 27 for any w, v ∈ R

d,

g(v) ≥ g(w) +∇g(w)⊤(v − w) +
1

2(M − µ)
∥∇g(v)−∇g(w)∥22.

Expanding g and ∇g, we get

f(v) ≥ f(w) +∇f(w)⊤(v − w) +
1

2(M − µ)
∥∇f(w)−∇f(v)∥22

+
µM

2(M − µ)
∥w − v∥22 −

µ

M − µ
(∇f(w)−∇f(v))⊤(w − v).

Using Young’s inequality, that is, a⊤b ≤ α
2 ∥a∥22 + α−1

2 ∥b∥22, we have

f(v) ≥ f(w) +∇f(w)⊤(v − w) +
1− αµ

2(M − µ)
∥∇f(w)−∇f(v)∥22

+
µ(M − α−1)

2(M − µ)
∥w − v∥22.

Taking α = 2
µ+M gives the claim.

We state a few properties of the prox operator.

Theorem 31 (Co-coercivity of the prox). If f : Rd → R is µ-strongly convex, then we have for any
constant η > 0 that

⟨x− y, proxηf (x)− proxηf (y)⟩ ≥ (1 + ηµ)
∥
∥proxηf (x)− proxηf (y)

∥
∥
2
.

The same result applied to the convex conjugate f⋆ of f and noting that ∇Mη[f ](x) =
proxf⋆/η(x/η) gives the following result:
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Dataset d ntrain ntest Task Source

yacht 6 244 62 Regression UCI

energy 8 614 154 Regression UCI

concrete 8 824 206 Regression UCI

kin8nm 8 6,553 1,639 Regression OpenML

power 4 7,654 1,914 Regression UCI

diabetes 33 4,000 1,000 Binary Classification Fairlearn

acsincome 202 4,000 1,000 Regression Fairlearn

amazon 535 10,000 10,000 Multiclass Classification WILDS

iwildcam 9420 20,000 5,000 Multiclass Classification WILDS

Table 2: Dataset attributes and dimensionality d, train sample size ntrain, and test sample size ntest.

Theorem 32 (Co-coercivity of the prox). If f : Rd → R is L-smooth, then we have for any constant
η > 0 that

⟨x− y,∇Mη[f ](x)−∇Mη[f ](y)⟩ ≥ η

(

1 +
1

Lη

)

∥∇Mη[f ](x)−∇Mη[f ](y)∥2 .

Lemma 33. For a convex function f : R→ R ∪ {+∞}, if x1 ≥ x2 and y2 ≥ y1, then

f(y1 − x1) + f(y2 − x2) ≥ f(y2 − x1) + f(y1 − x2).

Proof. First, observe that

y2 − x2 ≥ y2 − x1 ≥ y1 − x1 and y2 − x2 ≥ y1 − x2 ≥ y1 − x1.

Thus, y2 − x1 and y1 − x2 both lie between y2 − x2 and y1 − x1 and can be expressed as a convex
combination of the two endpoints, that is

y2 − x1 = α(y2 − x2) + (1− α)(y1 − x1)

y1 − x2 = β(y2 − x2) + (1− β)(y1 − x1)

for some α, β ∈ [0, 1]. By solving for α we get α = 1− β. Apply the definition of convexity to get

f(y2 − x1) ≤ αf(y2 − x2) + (1− α)f(y1 − x1)

f(y1 − x2) ≤ (1− α)f(y2 − x2) + αf(y1 − x1).

Sum both inequalities to achieve the desired result.

Lemma 34. Define for l ∈ R
n,

h(l) = max
q∈P(σ)

l⊤q − ν̄

2
∥q − 1n/n∥22.

The function h is 1/ν̄-smooth and convex such that for any l, l′ ∈ R
n,

ν̄∥∇h(l)−∇h(l′)∥22 ≤ (∇h(l)−∇h(l′))⊤(l − l′) ≤ 1

ν̄
∥l − l′∥22.

H EXPERIMENTAL DETAILS

H.1 TASKS & OBJECTIVES

In all settings, we consider supervised learning tasks specified by losses of the form

ℓi(w) = h(yi, w
⊤φ(xi)),
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where we consider an input xi ∈ X, a feature map φ : X → R
d, and a label yi ∈ Y. The function

h : Y× R→ R measures the error between the true label and another value which is the prediction
in regression and the logit probabilities of the associated classes in classification. In the regression
tasks, Y = R and we used the squared loss

ℓi(w) =
1

2
(yi − w⊤ϕ(xi))

2 .

For binary classification, we have Y = {−1, 1}, denoting a negative and positive class. We used the
binary logistic loss

ℓi(w) = −yix⊤
i w + ln(1 + ex

⊤

i w) .

For multiclass classification, Y = {1, . . . , C} where C is the number of classes. We used the
multinomial logistic loss:

ℓi(w) = − ln pyi
(xi;w), where pyi

(xi;w) :=
exp

(
w⊤

·yxi

)

∑C
y′=1 exp

(

w⊤
·y′xi

) , w ∈ R
d×C

The design matrix (φ(x1), . . . , φ(xn)) ∈ R
n×d is standardized to have columns with zero mean and

unit variance, and the estimated mean and variance from the training set is used to standardize the
test sets as well. Our final objectives are of the form

Fσ(w) = max
q∈P(σ)

n∑

i=1

qiℓi(w)− νn ∥q − 1n/n∥22 +
µ

2
∥w∥22

for shift cost ν ≥ 0 and regularization constant µ ≥ 0.

H.2 DATASETS

We detail the datasets used in the experiments. If not specified below, the input space X = R
d and

φ is the identity map. The sample sizes, dimensions, and source of the datasets are summarized in
Tab. 2, where d refers to the dimension of each φ(xi).

(a) yacht: prediction of the residuary resistance of a sailing yacht based on its physical attributes
Tsanas & Xifara (2012).

(b) energy: prediction of the cooling load of a building based on its physical attributes Ba-
ressi Segota et al. (2020).

(c) concrete: prediction of the compressive strength of a concrete type based on its physical and
chemical attributes Yeh (2006).

(d) kin8nm: prediction of the distance of an 8 link all-revolute robot arm to a spatial endpoint
(Akujuobi & Zhang, 2017).

(e) power: prediction of net hourly electrical energy output of a power plant given environmental
factors (TÈufekci, 2014).

(f) diabetes: prediction of readmission for diabetes patients based on 10 years worth of clinical
care data at 130 US hospitals (Rizvi et al., 2014).

(g) acsincome: prediction of income of US adults given features compiled from the American
Community Survey (ACS) Public Use Microdata Sample (PUMS) (Ding et al., 2021).

(h) amazon: prediction of the review score of a sentence taken from Amazon products. Each input
x ∈ X is a sentence in natural language and the feature map φ(x) ∈ R

d is generated by the
following steps:

• A BERT neural network Devlin et al. (2019) (fine-tuned on 10, 000 held-out examples) is
applied to the text xi, resulting in vector x′

i.

• The x′
1, . . . , x

′
n are normalized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in 105 components that explain
99% of the variance, resulting in vectors x′′

i ∈ R
105. The d in Tab. 2 refers to the total

dimension of the parameter vectors for all 5 classes.

(i) iwildcam: prediction of an animal or flora in an image from wilderness camera traps, with
heterogeneity in illumination, camera angle, background, vegetation, color, and relative animal
frequencies Beery et al. (2020). Each input x ∈ X is an image the feature map φ(x) ∈ R

d is
generated by the following steps:
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• A ResNet50 neural network He et al. (2016) that is pretrained on ImageNet Deng et al.
(2009) is applied to the image xi, resulting in vector x′

i.

• The x′
1, . . . , x

′
n are normalized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in d = 157 components that
explain 99% of the variance. The d in Tab. 2 refers to the total dimension of the parameter
vectors for all 60 classes.

H.3 HYPERPARAMETER SELECTION

We fix a minibatch size of 64 SGD and SRDA and an epoch length of N = n for LSVRG. For
SaddleSAGA we consider three schemes for selecting the primal and dual learning rates that reduce
to searching for a single parameter η > 0, as described in Appx. I. In practice, the regularization
parameter µ and shift cost ν are tuned by a statistical metric, i.e. generalization error as measured
on a validation set. We study the optimization performance of the methods for multiple values of
each in Appx. I.

For the tuned hyperparameters, we use the following method. Let k ∈ {1, . . . ,K} be a seed that
determines algorithmic randomness. This corresponds to sampling a minibatch without replacement
for SGD and SRDA and a single sampled index for SaddleSAGA, LSVRG, and Prospect. Letting
Lk(η) denote the average value of the training loss of the last ten passes using learning rate η and

seed k, the quantity L(η) = 1
K

∑K
k=1 Lk(η) was minimized to select η. The learning rate η is

chosen in the set {1 × 10−4, 3 × 10−4, 1 × 10−3, 3 × 10−3, 1 × 10−2, 3 × 10−2, 1 × 10−1, 3 ×
10−1, 1× 100, 3× 100}, with two orders of magnitude lower numbers used in acsincome due to
its sparsity. We discard any learning rates that cause the optimizer to diverge for any seed.

H.4 COMPUTE ENVIRONMENT

No GPUs were used in the study; Experiments were run on a CPU workstation with an Intel i9
processor, a clock speed of 2.80GHz, 32 virtual cores, and 126G of memory. The code used in this
project was written in Python 3 using the PyTorch and Numba packages for automatic differentiation
and just-in-time compilation, respectively.

I ADDITIONAL EXPERIMENTS

Varying Risk Parameters. We study the effect of varying the risk parameters, that is (p, b, γ) for
the p-CVaR (Equation (21)), b-extremile (Equation (22)), γ-ESRM (Equation (23)), choosing the
spectrum to increase the condition number κσ = nσn compared to the experiments in the main
text. We use p = 0.25, b = 2.5, and γ = 1/e−2 to generate ªhardº version of the superquantile,
extremile, and ESRM. Fig. 8 plots the corresponding training curves for four datasets of varying
sample sizes: yacht, energy, concrete, and iwildcam. We see that the comparison of
methods is the same as the original methods, that is that Prospect performs the best or close to
best in terms of optimization trajectories. Except on concrete, SaddleSAGA generally matches
the performance of Prospect. The trajectory of LSVRG is noticeably noisier than on the original
settings; we hypothesize that the bias accrued by this epoch-based algorithm is exacerbated by the
skewness in the spectrum, as mentioned in Mehta et al. (2023, Proposition 1).

Lowering or Removing Shift Cost. A relevant setting is the low or no shift cost regime, as this
allows the adversary to make arbitrary distribution shifts (while still constrained to P(σ)). These
settings correspond to ν = 10−3 and ν = 0, respectively. The low-cost experiment is displayed in
Fig. 9 while Fig. 10 displays these curves for the no-cost experiment. When ν = 0, the optimization
problem can equivalently be written as

min
w∈Rd

[

max
q∈P(σ)

q⊤ℓ(w) +
µ

2
∥w∥22 =

n∑

i=1

σiℓ(i)(w) +
µ

2
∥w∥22

]

.

In this case, we always have that qopt(l) = (σπ−1(1), . . . , σπ−1(n)), where π sorts l. Here, w is
chosen to optimize a linear combination of order statistics of the losses. In the low shift cost settings,
performance trends are qualitatively similar to those seen from ν = 1. Interestingly, for the no-cost
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