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Abstract
The classical house allocation problem involves assigning n houses (or items) to n
agents according to their preferences. A key criterion in such problems is satisfying
some fairness constraints such as envy-freeness. We consider a generalization of
this problem, called Graphical House Allocation, wherein the agents are
placed along the vertices of a graph (corresponding to a social network), and each
agent can only experience envy towards its neighbors. Our goal is to minimize
the aggregate envy among the agents as a natural fairness objective, i.e., the sum
of the envy value over all edges in a social graph.
We focus on graphical house allocation with identical valuations. When agents
have identical and evenly-spaced valuations, our problem reduces to the well-
studied Minimum Linear Arrangement. For identical valuations with possibly
uneven spacing, we show a number of deep and surprising ways in which our
setting is a departure from this classical problem. More broadly, we contribute
several structural and computational results for various classes of graphs, in-
cluding NP-hardness results for disjoint unions of paths, cycles, stars, cliques,
and complete bipartite graphs; we also obtain fixed-parameter tractable (and, in
some cases, polynomial-time) algorithms for paths, cycles, stars, cliques, complete
bipartite graphs, and their disjoint unions.
Additionally, a conceptual contribution of our work is the formulation of a struc-
tural property for disconnected graphs that we call splittability, which results in
efficient parameterized algorithms for finding optimal allocations.
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1 Introduction
The house allocation problem has attracted interest from the computer science and

multiagent systems communities for a long time. The classical problem deals with
assigning a set of n houses to n agents with (possibly) different valuations over the
houses. It is often desirable to find assignments that satisfy some economic property of
interest. In this work, we focus on the well-motivated economic notion of fairness, and
in particular, study the objective of minimizing the aggregate envy among the agents.

Despite the historical interest in this problem, to the best of our knowledge, the
house allocation problem has not been studied thoroughly over graphs, a setting in
which the agents are placed on the vertices of an undirected graph G and each agent’s
potential envy is only towards its neighbors in G, with only a few exceptions [2, 3].

Incorporating the social structure over a graph enables us to capture the underlying
restrictions of dealing with partial information, which is representative of constraints
in many real-world applications. Thus, the classical house allocation problem is the
special case of our problem when the underlying graph is complete.

Our work is in line with recent literature on examining various problems in com-
putational social choice on social networks, including voting [4–6], fair division [7, 8],
and hedonic games [9, 10]. By focusing on graphs, we aim to gain insights into how
the structure of the social network impacts fairness in house allocation. We focus on
identical valuation functions and show that even under this seemingly strong restric-
tion, the problem is computationally hard, yet structurally rich. We provide a series
of observations and insights about graph structures that help identify, and in some
cases overcome, these computational bottlenecks.

1.1 Overview and Our Contributions
We assume that the agents are placed at the vertices of a graph representing a so-
cial network, and that they have identical valuation functions over the houses. Our

A preliminary version of this paper appeared in the proceedings of the 22nd International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS) [1].

2



objective is to find an allocation of the houses among the agents to minimize the to-
tal envy in the graph. We call this the problem of Graphical House Allocation
with Identical Valuations, or Graphical House Allocation for short, where
an instance of the problem consists of the underlying graph together with the set of
values for any of the (identical) valuation functions.

This is a beautiful combinatorial problem in its own right, as it can be restated as
the problem where, given an undirected graph and a multiset of nonnegative numbers,
the numbers need to be placed on the vertices in a way that minimizes the sum of the
edgewise absolute differences.

In Section 2, we present the formal model and set up some preliminaries.
In Section 3, we present computational lower bounds and inapproximability re-

sults for the problem, even for very simple graphs. We start by establishing the
connection between the graphical house allocation problem and the Minimum Lin-
ear Arrangement problem, which has several notable similarities and differences.
We show NP-hardness for the Graphical House Allocation problem, even when
the graph is a disjoint union of paths, cycles, stars, or cliques, which all have known
polynomial-time algorithms for linear arrangements.

In Section 4, we focus on connected graphs and completely characterize optimal
allocations when the graph is a path, cycle, star, or a complete bipartite graph. We
also prove a technically involved structural result for binary trees.

In Section 5, we focus on disconnected graphs, starting with a fundamental dif-
ference between graphical house allocation and linear arrangements, motivating our
definitions of splittable, strongly splittable, and unsplittable1 disconnected graphs. We
employ these characterizations to prove algorithmic results for a variety of graphs. In
particular, we show that disjoint unions of paths, cycles, stars, and equal-sized cliques
are strongly splittable and develop natural fixed parameter tractable (FPT) algo-
rithms for these graphs.2 Moreover, we show that disjoint unions of arbitrary cliques,
as well as “balanced” complete bipartite graphs, satisfy splittability (but not strong
splittability) and admit XP algorithms.3

Finally, in Section 6, we wrap up with a concluding discussion.
In the interest of readability, we defer the details of the more involved proofs to

the appendix.

1.2 Related Work
House allocation has been traditionally studied in the economics literature under the
housing market model, where agents enter the market with a house (or an endow-
ment) each and are allowed to engage in cyclic exchanges [12]. This model has found
important practical applications, most notably in kidney exchange [13, 14].

1These terms were initially separable, strongly separable, and inseparable respectively in the conference
version [1]. They have been changed subsequently to avoid ambiguity with other standard definitions of
separability, as (different) graph theoretic properties; see Hammer and Maffray [11], for example.

2FPT is the class of problems solvable in time O(f(k) ·poly(n)), where n is the input length, k is a given
parameter, and f(·) is a computable function.

3XP is the class of problems solvable in time O(nf(k)), where n is the input length, k is a given parameter,
and f(·) is a computable function.
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While the initial work on house allocation focused on the economic notions of core
and strategyproofness [15], subsequent work has explored fairness issues. Gan et al.
[16] study the house allocation problem under ordinal preferences (specifically, weak
rankings) and provide a polynomial-time algorithm for determining the existence of
an envy-free allocation. By contrast, the problem becomes NP-hard when agents’ pref-
erences are specified as a set of pairwise comparisons [17]. Kamiyama et al. [18] study
house allocation under cardinal preferences (similar to our work) and examine the
complexity of finding a “fair” assignment for various notions of fairness such as pro-
portionality, equitability, and maximizing the number of envy-free agents (they do not
consider aggregate envy). They show that the latter problem is hard to approximate
under general valuations, and remains NP-hard even for the restricted case of binary
valuations. Madathil et al. [19] similarly study various notions of envy minimization
and show that these problems are intractable for most classes of binary, cardinal and
ordinal valuations. For binary valuations, the problem of finding the largest envy-free
partial matching has also been studied [20]. Gross-Humbert et al. [21] introduce a
notion of group envy-freeness for house allocation and present an algorithm to ap-
proximate this notion. Aziz et al. [22] study the computation of envy free allocations
when agent preferences are uncertain. Choo et al. [23] study the minimum subsidy
required to ensure envy-freeness in house allocation and its computational aspects. It
is worth noting that many of these works [16–23] assume there are more houses than
agents. On the other hand, in our work, we assume the number of houses is equal to
the number of agents.

Recent studies have considered graphical aspects of house allocation (similar to our
work), though with different objectives. For a comprehensive review of work on fairness
objectives on graphs and other structured sets, we refer the reader to the survey by
Biswas et al. [24]. For instance, Massand and Simon [2] consider house allocation under
externalities and study various kinds of stability-based objectives. Beynier et al. [3]
study local envy-freeness in house allocation, which entails checking the existence of an
allocation with no envy along any edge of the graph. Their work is close to ours, but
their model involves agents with distinct ordinal preferences (as opposed to identical
preferences). The problem under distinct preferences turns out to be computationally
intractable even for simple graph structures like paths and matchings [3].

A recent follow-up work studies approximation algorithms for the Graphical
House Allocation problem with identical valuations, and provides tight bounds on
the approximability of the aggregate envy objective for many classes of graphs [25].

There is also a growing literature on fair allocation of indivisible objects among
agents who are part of a social network. Bredereck et al. [8] study the computational
complexity of finding locally envy-free allocations when agents correspond to nodes in
a directed graph. This is very similar to our work with the key difference being that
they study the setting where each agent can receive multiple items. They present fixed-
parameter tractability results, mainly parameterized by the number of agents, though
they leave results using graph structure to future work. Eiben et al. [26] extend these
results, showing a number of parameterized complexity results relating the treewidth,
cliquewidth, number of agent types, and number of item types to the complexity of
determining if an envy-free allocation exists on a graph. It is worth noting that this
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line of work focuses on deciding if envy-free allocations exist, rather than minimizing
envy.

Other works seek to obtain envy-free allocations, maximum welfare allocations, or
other objectives by swapping objects along a graphical structure [27–30]. In particular,
Gourvès et al. [29] studies the house allocation problem as well; the key difference
being that their work considers global objectives (like Pareto efficiency) which need
to be reached via swaps between neighbors in a graph, whereas our work studies local
envy-freeness which is defined by a graphical structure.

House allocation has also been studied in the setting where the houses are nodes on
a graph (representing the neighborhood the houses are in) [31]. In that work, agents
have preferences not only over the houses, but also over their neighboring agents in
the graph according to the computed allocation.

2 Preliminaries
For any natural number t ≥ 1, we use [t] to denote the set {1, 2, . . . , t}. There is a set of
n agents N = [n] and n houses H = {h1, h2, . . . , hn} (often called items). Each agent i
has a valuation function vi : H → R≥0, where vi(h) indicates agent i’s value for house
h ∈ H. An allocation π is a bijective mapping from agents to houses. For each i ∈ N ,
π(i) is the house allocated to agent i under the allocation π, and vi(π(i)) is its utility.

Given N , H, and {vi}i∈N , our goal is to output an allocation π that is “fair” to all
the agents, for some reasonable definition of fairness. A natural way to define fairness is
using envy. An agent i is said to envy agent j under allocation π if vi(π(i)) < vi(π(j)).
While we would ideally like to find envy-free allocations, this may not always be
possible — consider a simple example with two agents and two houses, but (exactly)
one of the houses is valued at 0 by both agents. Therefore, we instead focus on the
magnitude of envy that agent i has towards agent j, for a fixed allocation π. This is
defined as envyπ(i, j) := max{vi(π(j))− vi(π(i)), 0}.

We define an undirected graph G = (N,E) over the set of agents, which represents
the underlying social network. Our goal is to compute an allocation that minimizes the
total envy along the edges of the graph, defined as Envy(π,G) :=

∑
(i,j)∈E(envyπ(i, j)+

envyπ(j, i)); note that edges are undirected. An allocation that minimizes the total
envy is referred to as a minimum envy allocation. The minimum envy allocation may
not be unique.

When the graph G is a complete graph Kn, a minimum envy allocation can be
computed in polynomial time by means of a reduction to a bipartite minimum-weight
matching problem. We prove this formally below.
Proposition 2.1. When G is the complete graph Kn, and agents have arbitrary
(non-identical) valuation functions, a minimum envy allocation can be computed in
polynomial time.

Proof. Given N , H, and {vi}i∈N , we construct a weighted bipartite graph Ĝ.
The constructed instance Ĝ is a complete bipartite graph with bipartition (N,H),
with edge weights as follows: for i ∈ N and h ∈ H, the edge (i, h) has weight∑

h′∈H\h max{vi(h′)− vi(h), 0}.
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Perfect matchings in Ĝ correspond bijectively to allocations π. In fact, if a
matching in Ĝ corresponds to an allocation π, then the weight of the matching is∑

i∈N

∑
h′∈H\π(i) max{vi(h′)− vi(π(i)), 0}, which equals Envy(π,G). Therefore, com-

puting a minimum envy allocation is equivalent to computing a minimum weight
matching in Ĝ. It is well-known that this can be done in polynomial time [32].

Unfortunately, Proposition 2.1 cannot generalize much beyond complete graphs. It
is known that for several other simple graphs like paths and matchings, computing a
minimum envy allocation is NP-complete [3]. Given this computational intractability,
we therefore explore a natural restriction of the problem, when all agents have identical
valuations, to gain insights into the computational and structural aspects of fairness in
social networks. We call this the Graphical House Allocation with Identical
Valuations problem, or Graphical House Allocation for short. Formally, an
instance of Graphical House Allocation consists of a set N of agents, a set H of
houses, an undirected graph G = (N,E), and a fixed valuation function v : H → R≥0,
that represents the common valuation function for all agents in N . Identical valuations
capture a natural aspect of real-world housing markets, where the house prices are
independent of agents.

When all agents have the same valuation function v, the total envy of an allocation
π along the edges of a graph G = (N,E) can be written as

Envy(π,G) :=
∑

(i,j)∈E

|v(π(i))− v(π(j))| .

This formulation also yields a new expression for envy along an edge e = (i, j) ∈ E
as envyπ(e) = |v(π(i))− v(π(j))|. This value equals envyπ(i, j) + envyπ(j, i), as one of
those terms is zero under identical valuations.

When G is Kn, under identical valuations, an optimal allocation is trivially
computable, as all allocations are equivalent.

For the rest of this paper, we will assume without loss of generality that the house
values are all distinct unless stated otherwise (refer to Lemma A.1 in Appendix A for
a formal justification). In particular, every agent’s valuation function (denoted by v)
gives each house a unique nonnegative value, with v(h1) < v(h2) < . . . < v(hn). We
will say h1 ≺ h2 to mean v(h1) < v(h2).

For an allocation π and a subset N ′ ⊆ N , we will refer to the set of houses received
by N ′ as π(N ′). If G′ is a subgraph of G, we will use π(G′) in the same way. For
graphs G1 and G2, we will use G1 +G2 to mean the disjoint union of G1 and G2.
Definition 2.2. For an instance of Graphical House Allocation, the valuation
interval is defined as the closed interval [v(h1), v(hn)] ⊂ R≥0 with each v(hk) marked.

The motivation for Definition 2.2 is as follows. For an arbitrary allocation π, for
each edge e = (i, j) ∈ E, we can draw a line segment from v(π(i)) to v(π(j)). This line
segment has length |v(π(i)) − v(π(j))| = envyπ(e). It follows that Envy(π,G) is the
sum of the lengths of all such line segments. An optimal allocation π∗ is any allocation
that attains this minimum sum. See Figure 1 for an example of a valuation interval,
together with a graph G, and a particular allocation on G depicted under the valuation
interval.
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h1 h4 h2

h5h3

h1 h2 h3 h4 h5

1 2 4 5 6

Envy=15

Figure 1: (Left) A graph G on five agents along with a particular allocation π. The
valuations are identical and are given by v⃗ = (1, 2, 4, 5, 6). (Right) The valuation
interval is shown via the thick horizontal line in black. The five line segments in red
denote the envy along the five edges of the graph G. The total length of these line
segments is Envy(π,G) = 15.

A subset of houses H ′ = {hi1 , . . . , hik} ⊆ H with hi1 ≺ . . . ≺ hik is called con-
tiguous if there is no house h′ ∈ H \ H ′ with hi1 ≺ h′ ≺ hik . Pictorially, the values
in H ′ form an uninterrupted sub-interval of the valuation interval, with no value out-
side of H ′ appearing inside that sub-interval. In Figure 1, the subsets {h1, h2, h3} and
{h5} are contiguous, whereas the subsets {h1, h2, h5} and {h3, h5} are not. Note that
a subset of houses is contiguous if and only if it contains houses with only consecutive
indices, i.e., {h1, h2} is contiguous but {h1, h3} is not.

We will often interchangeably talk about allocating hi and allocating v(hi) to an
agent, and we will also sometimes refer to houses as being marked points on the
valuation interval. We close this section with the following useful definition.
Definition 2.3. Let (N,H,G, v) be an instance of the Graphical House Alloca-
tion problem and let π be any allocation for this instance. For any S ⊆ N and x ∈ R,
we define n<

S,π(x) as the number of agents in S who are allocated a house with a value
less than x in the allocation π. We define n>

S,π(x) similarly.

3 Hardness and Lower Bounds
In this section, we prove hardness results for the Graphical House Allocation
problem. This section is divided into three subsections; in each of these subsections, we
show hardness for a restricted version of the problem by either reducing to problems in
graph theory (Sections 3.1 and 3.2) or by reducing to the classic bin packing problem
(Section 3.3).

3.1 Connection to the Linear Arrangement Problem
The Minimum Linear Arrangement problem is the problem where, given an undi-
rected n-vertex graph G = (V,E), we want to find a bijective function π : V → [n] that
minimizes

∑
(i,j)∈E |π(i)− π(j)|. Minimum Linear Arrangement is a special case

of Graphical House Allocation where the valuation interval has evenly spaced
values (or in other words, image(v) = [n] and v is one-to-one).

For specific graphs like paths, stars, and trees, Minimum Linear Arrangement
can be solved in polynomial time [33]. However, finding a minimum linear arrangement
is NP-hard for general graphs [34], with a best known run-time of O(2nm), where |V | =
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n and |E| = m, using a dynamic programming algorithm [35]. The problem remains
NP-hard even for bipartite graphs [36]. Both of these hardness results immediately
extend to the Graphical House Allocation problem.

We also find that optimal arrangements satisfy properties that optimal house al-
locations are not guaranteed to satisfy. For example, we may assume without loss
of generality that the underlying graph G in any instance of Minimum Linear
Arrangement is connected. This is a consequence of the following observation.
Proposition 3.1 (Seidvasser [37]). If G is any Minimum Linear Arrangement in-
stance, then some optimal solution assigns a contiguous subset of [n] to each connected
component of G.

Proof. Consider an optimal solution π that does not assign contiguous subsets of [n]
to the connected components of G. Order the components of G in any arbitrary order,
say G1 ∪ . . . ∪ Gk, where Gi = (Vi, Ei) has ni vertices, for each i ∈ [k]. Consider
the allocation π′, obtained by assigning the first n1 values in [n] to G1, the next n2

values to G2, and so on, satisfying the constraint that for all intra-component pairs
j, j′ ∈ Gi, we have π′(vj) < π′(vj′) if and only if π(vj) < π(vj′). Note that π′ is well-
defined. Now, consider any edge e = (u, v) of G, and say without loss of generality
that π(v) > π(u) (and therefore, π′(v) > π′(u)). The envy along this edge e in π′ is
the length π′(v)−π′(u) = 1+ |{w : π′(u) < π′(w) < π′(v)}|. But note that any vertex
w ∈ V satisfying π′(u) < π′(w) < π′(v) must also satisfy π(u) < π(w) < π(v) (the
converse need not be true for all w). This means that the number of values falling
between π′(u) and π′(v) cannot increase from π to π′, i.e.,

π′(v)− π′(u) = 1 + |{w : π′(u) < π′(w) < π′(v)}|
≤ 1 + |{w : π(u) < π(w) < π(v)}|
= π(v)− π(u) .

It follows that the edge e incurs at most as much envy under π′ as it does under π.
Since this is true for all edges e, it follows that π′ incurs at most as much envy as
π does. Therefore, π′ is also optimal, and it is an allocation that assigns contiguous
subsets of [n] to the connected components of G.

We will see in Section 5 that in the Graphical House Allocation problem,
this property no longer holds; that is, it no longer suffices to only consider connected
graphs. We use this property (or lack thereof) to establish a separation between the
two problems. Specifically, we show that, when the graph is a disjoint union of paths
(or cycles or stars), the optimal linear arrangement can be trivially found in linear
time, but finding the optimal house allocation is NP-hard.

3.2 Connection to the Minimum Bisection Problem
Our problem is NP-complete (for arbitrary graphs and valuations), because the special
case of minimum linear arrangements is already NP-complete, as stated in Section 3.1.
We next provide a different NP-completeness proof that uses a reduction from the Min-
imum Bisection problem. This hardness proof immediately implies inapproximability
of the problem on general graphs.
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Definition 3.2. The Minimum Bisection problem asks, for an n-vertex graph G
and a natural number k, if there is a partition of V (G) into two parts of size n/2, with
at most k edges crossing the cut.

The Minimum Bisection problem is a known NP-complete problem [34, 38, 39].
Furthermore, it is also known to be hard to approximate efficiently, a fact that is useful
in light of the following observation.
Theorem 3.3. There is a polynomial-time reduction from the Minimum Bisection
problem to the Graphical House Allocation problem with identical valuations.

Proof. In the decision version of the Minimum Bisection problem, we are given an
instance ⟨G, k⟩, and we ask if there is a bisection of G with k or fewer edges crossing
the cut. Given such an instance, we construct an instance of the Graphical House
Allocation problem as follows. We use the same graph G, and our valuation interval
has a cluster of n/2 values around 0 (within a subinterval of length ϵ) and a cluster
of n/2 values around 1 (within a subinterval of length ϵ), where n is the number of
vertices of G. We will choose ϵ later.

We claim that there is a bisection of G with k or fewer edges crossing the cut if
and only if there is an allocation in our instance with total envy at most k + n2ϵ.
The forward direction is trivial, just by allocating houses to G in accordance with the
bisection. To see the converse, note that if the total envy is extremely close to k, then
at most k edges can cross the length of the valuation interval between the two clusters.

To make this condition true, we set ϵ ≈ n−3. Note that this is a polynomial-time
reduction.

It follows immediately that the inapproximability results for the Minimum Bi-
section problem carry over to the Graphical House Allocation problem. In
particular, for any fixed constant ϵ > 0, unless P = NP, there is no polynomial-
time algorithm that can approximate the optimal bisection within an additive term
of n2−ϵ [39]. This implies that we cannot approximate the optimal total envy
under the Graphical House Allocation problem within an additive term of
n2−ϵ(v(hn) − v(h1)). Since on connected graphs, any allocation must incur an envy
of at least v(hn)− v(h1), this means that the problem cannot be approximated to an
n2−ϵ multiplicative factor unless P = NP.4 Additionally, the minimum bisection prob-
lem has no PTAS unless NP has randomized algorithms in subexponential time [38];
this result applies to Graphical House Allocation as well. Thus our problem is
hard to approximate even with identical valuations.

3.3 Hardness of Graphical House Allocation with
Disconnected Graphs

Finally, in this section, we show that Graphical House Allocation is NP-complete
even on simple instances of graphs which can be solved in near-linear time in the case
of linear arrangements using Proposition 3.1, such as disjoint unions of paths, cycles,
cliques, or stars (and any combinations of them).

4It is worth remarking that any allocation is an n2-approximation for connected graphs. The result above
shows that we cannot improve this in general.
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Theorem 3.4 (Hardness of Disjoint Unions). Let A be any collection of connected
graphs, such that there is a polynomial-time, one-to-one mapping from each nonnega-
tive integer t (given in unary) to a graph in A of size t. Let G be the class of graphs
whose members are the finite sub-multisets of A (as connected components). Then,
finding a minimum envy allocation is NP-hard on the class G.

Proof. We will reduce from the Unary Bin Packing problem.5 In this problem, we
are given a set I of items, item sizes s(i) ∈ Z+ for all i ∈ I, a bin size B, and a target
integer k, all in unary. The problem asks, does there exist a packing of the items into
at most k bins? A packing is a partition of the set of items into the bins, such that for
any bin, the sum of the sizes of its constituent items does not exceed the bin size B.

Given an arbitrary instance ⟨I, s(·), B, k⟩ of Unary Bin Packing, we create an
instance of the Graphical House Allocation problem as follows. Fix some very
large C and some very small ϵ > 0, and let n = kB. For each item i ∈ I, take the
graph in A that is the image of s(i), and let G be the disjoint union of all of these
graphs. To ensure G has exactly n nodes, we add isolated vertices s(1) to the graph
to make up for the gap between total item size and total bin capacity. Note that
G ∈ G, and it is also constructible in polynomial time using the one-to-one mapping.
Define H = {h1, . . . , hn}, and for the valuation interval, define (identical) valuations
v(hj) =

⌊
j
B

⌋
· C + ϵj

B . Note that this consists of k clusters of B values, each spanning
length ϵ, with the distance between any two consecutive clusters at least C.

We wish to show that the given instance is in Unary Bin Packing if and only if
the Graphical House Allocation instance (possibly padded with isolated vertices
to add up to kB) has an allocation with envy less than C.

The forward direction is trivial; for the packing that attains the capacity con-
straints, put the graphs in the corresponding clusters on the valuation interval, putting
the isolated vertices on the remaining values. No edge is between two different clusters,
and so this allocation attains envy much smaller than C, as long as ϵ is small enough.

Conversely, if the envy is smaller than C, then no edge can span two distinct
clusters. Therefore, each connected component can be mapped to a particular cluster
on the valuation interval. Simply put the corresponding item in the corresponding bin
to obtain a packing.

Note that this is a polynomial-time reduction, as the bin packing instance was
given in unary. We can take C to be large enough and ϵ to be small enough, while still
being polynomial in the input size.

Corollary 3.5. The Graphical House Allocation problem under identical val-
uations is NP-complete on: (a) disjoint unions of arbitrary paths, (b) disjoint unions
of arbitrary cycles, (c) disjoint unions of arbitrary stars, and (d) disjoint unions of
arbitrary cliques.

In Section 5 we show that despite the hardness suggested by Corollary 3.5, it is
possible to exploit a structural property to develop FPT algorithms for the first three
problems (we also show a tractable approach to the fourth one).

5The hardness of Unary Bin Packing can be shown using a straightforward reduction from the NP-
complete problem Unary 3-Partition [40].
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(a) The star K1,5 (b) The path P7 (c) The cycle C5 (d) The graph K3,3

Figure 2: Examples of characterized connected graphs

4 Connected Graphs
In this section, we characterize optimal house allocations when the underlying graph
G is a star, path, cycle, complete bipartite graph, or binary tree.

These network structures are both mathematically convenient and ubiquitous in
real-world social layouts. Any of these layouts can occur spatially; workers may be ar-
ranged in any of the above layouts in an office or factory, and allocating resources to
these workers gives us an instance of Graphical House Allocation. Stars, paths,
and cycles in particular naturally arise in scenarios where social networks reflect physi-
cal constraints. Properties and plots within the same neighborhood are often arranged
in paths and cycles, while cities in a metro area are often spread out but connected
through the central district (creating a star). The Graphical House Allocation
problem appears when distributing items (e.g., patio sets or rain-water catchment sys-
tems) to these neighbors, or when distributing funded projects to cities in a metro area.
In both cases, agents can model their preferences using the monetary values of the
items or projects, leading to identical valuation functions. Complete bipartite graphs
reflect us-versus-them social structures. In these scenarios, members of one group are
not jealous of other members of the same group, but may be deeply offended if the
other group receives strongly preferable items. Trees appear in any hierarchical social
structure. For example, we might wish to avoid envy between managers and subor-
dinates, while being less concerned with envy amongst peers [8]. A few illustrative
graphs covered by our results are shown in Figure 2.

4.1 Stars
Consider the star graph K1,n−1, which has a single central node and n−1 other nodes
of degree 1, all of them connected to the central node but not to each other.
Theorem 4.1. If G is the star K1,n−1, then the minimum envy allocation π∗ under
identical valuations corresponds to:

• for odd n, putting the unique median value in the center of the star, and
all the houses on the degree-1 nodes in any order; the value of the envy is∑

i>(n−1)/2+1 v(hi)−
∑

i≤(n−1)/2 v(hi).
• for even n, putting either of the medians in the center of the star, and all other

houses on the degree-1 nodes in any order; the value of the envy for either median
is

∑
i>(n+1)/2 v(hi)−

∑
i<(n+1)/2 v(hi).

11



Proof. The proof is a restatement of the well-known fact that in any multiset of real
numbers, the sum of the L1-distances is minimized by the median of the multiset. It
is easy to verify that for even n, both medians yield the same value.

4.2 Paths and Cycles
Consider the path graph Pn. We can characterize optimal allocations on these paths
as follows.
Theorem 4.2. If G is the path graph Pn, then the minimum envy allocation π∗ under
identical valuations attains a total envy of v(hn)−v(h1), is unique (up to reversing the
values along the path), and corresponds to placing the houses in sorted order along Pn.

Proof. The result is trivial when n ≤ 2, so suppose n > 2. Fix an arbitrary allocation
π, and observe that h1 and hn (the minimum and maximum-valued houses) have to be
placed on some two vertices of Pn. Suppose the sub-path between them is (i1, . . . , ik),
with π(i1) = h1 and π(ik) = hn. Then, the envy along that sub-path is, using the
triangle inequality repeatedly,

k−1∑
r=1

|v(π(ir+1))− v(π(ir))| ≥ |v(π(ik))− v(π(i1))| = v(hn)− v(h1) .

It follows that Envy(π, Pn) ≥ v(hn)− v(h1) for all allocations π. It is straightforward
to see that this minimum is attained by sorting the houses in order along the path,
and furthermore, this is unique.

Now, consider the cycle graph Cn. We characterize optimal allocations on these
cycles as follows.
Theorem 4.3. If G is the cycle graph Cn, then any minimum envy allocation π∗

under identical valuations attains a total envy of 2(v(hn)− v(h1)), and corresponds to
the following: place h1 and hn arbitrarily on any two vertices of the cycle, and then
place the remaining houses so that each of the two paths from h1 to hn along the cycle
consists of houses in sorted order.

Proof. The result is trivial when n ≤ 3, so suppose n > 3. Fix an arbitrary allocation
π, and observe that h1 and hn have to placed on some two vertices on the cycle Cn.
As in the proof of Theorem 4.2, we know each of the two paths along the cycle from
h1 to hn must have envy at least v(hn)−v(h1), and so Envy(π,Cn) ≥ 2(v(hn)−v(h1))
for all allocations π. Once again, it is straightforward to see that this minimum is
attained by sorting the houses in order along each of the two paths.

Corollary 4.4. For n ≥ 3, the number of optimal allocations along the cycle Cn is
2n−3, up to rotations and reversals.

Proof. We fix an arbitrary agent in Cn who receives h1. Subsequently, we can choose
an arbitrary subset of H \ {h1, hn} to appear along one of the paths to hn. Note that
this choice completely determines an optimal allocation, as the other path contains
the complement of the selected subset, and each subset appears in sorted order along
the paths. The number of such subsets is 2n−2. Since choosing the complement of our

12



selected subset would have given us the same allocation up to a reversal and rotation,
we have over-counted by a factor of two, and the result follows.

Perhaps slightly non-obviously, the proofs of Theorems 4.2 and 4.3 can be seen
as purely geometric arguments using the valuation interval. To see this, consider the
path Pn, and take any allocation π that does not satisfy the form stated in Theorem
4.2, and consider how the allocation looks with respect to the valuation interval. First,
observe that every sub-interval of the valuation interval between consecutive houses
needs to be covered by some line segment from the allocation. Otherwise, there would
be no edge with a house from the left to a house from the right of the sub-interval,
which is impossible, as Pn is connected. But the only way to meet this lower bound
of one line segment for each sub-interval of the valuation interval is to sort the houses
along the path. The visualization of this argument for paths is shown in Figure 3a.
The geometric argument for cycles is similar, with the allocation shown in Figure 3b.

(a) Optimal allocation on a path. (b) Optimal allocation on a cycle.

Figure 3: Visualizations of the path and cycle optimal allocations.

4.3 Complete Bipartite Graphs
Let us start with the complete bipartite graph Kr,r (r ≥ 1) where both parts have
equal size. Note that n = 2r in this case.
Theorem 4.5. When G is the graph Kr,r, the minimum envy allocation π∗ has the
following property: for every i ∈ [r] the houses {h2i−1, h2i} cannot be allocated to
agents in the same side of the bipartite graph. Moreover, all allocations which satisfy
this property have the same (optimal) envy.

Proof. For notational ease, let the graph have bipartition (L,R), with |L| = |R| = r.
We refer to the property in the theorem statement as the optimal property. This proof
will use the notation n<

L,π(x), n
>
L,π(x), n

<
R,π(x) and n>

R,π(x) from Definition 2.3.
Assume for contradiction that some optimal allocation π∗ does not satisfy the

optimal property. We will improve on this allocation, thereby reaching a contradiction.
Because π∗ does not satisfy the optimal property, there must exist an i ∈ [r] such

that both h2i−1 and h2i are allocated to the same part. Let j be the least such i where
this is true. Assume without loss of generality that h2j−1 and h2j are allocated to
agents in L.

Let {h2j−1, h2j , . . . , h2j+k} be the set of houses allocated to agents in L such that
h2j+k+1 is allocated to some agent in R. Note that by our assumption, we have k ≥ 0.
Note that 2j + k + 1 must be at most 2r because otherwise, the allocation allocates
more items to L than R, which contradicts the definition of an allocation itself.

13



h1 h2

. . . . . .

h2j−1 h2j+k+1

. . . . . .

h2j+k

. . . . . .

L R

All houses in between
h2j−1 and h2j+k

are allocated to L.

Figure 4: A pictorial description of the allocation π in the proof of Theorem 4.5. To
create the allocation π′ we swap the houses allocated to the shaded nodes, i.e., we
swap h2j+k and h2j+k+1.

Construct an allocation π′ from π∗ by swapping the houses h2j+k and h2j+k+1.
Note that we swap a house allocated to some agent in L with a house allocated to
some agent in R. This has been pictorially described in Figure 4.

Let us compute the difference in envy between allocations π∗ and π′. In this analysis
we slightly abuse notation and refer to the total envy between an agent and their
neighbors as their envy towards their neighbors. For any agent with value less than
v(h2j+k) under π∗ in L, their envy towards their neighbors in π′ is less than their envy
in π∗ by exactly v(h2j+k+1) − v(h2j+k). Similarly, for any agent with value greater
than v(h2j+k) under π∗ in L, their envy towards their neighbors in π′ is greater than
their envy in π∗ by exactly v(h2j+k+1) − v(h2j+k). Extending this reasoning, we get
the following expression for difference in envy

Envy(π′, G)− Envy(π∗, G)

=
[
n>
L,π∗(v(h2j+k))− n<

L,π∗(v(h2j+k))
]
(v(h2j+k+1)− v(h2j+k))

+
[
n<
R,π∗(v(h2j+k+1))− n>

R,π∗(v(h2j+k+1))
]
(v(h2j+k+1)− v(h2j+k))

= (v(h2j+k+1)− v(h2j+k)) [n
>
L,π∗(v(h2j+k))− n<

L,π∗(v(h2j+k))

+ n<
R,π∗(v(h2j+k+1))− n>

R,π∗(v(h2j+k+1))]

= (v(h2j+k+1)− v(h2j+k)) [(r − (k + 2 + j − 1))− (k + 1 + j − 1)

+ (j − 1)− (r − j)]

= (v(h2j+k+1)− v(h2j+k)) [2j − 2(k + j)− 2]

= (v(h2j+k+1)− v(h2j+k)) [−2k − 2]
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< 0 .

The third equality follows from our choice of j; for any i < j, exactly one of
h2i−1 and h2i is allocated to L under π∗. The inequality follows since k ≥ 0 and
v(h2j+k+1)− v(h2j+k) > 0. This implies that π′ has a lower envy than π∗, which con-
tradicts the optimality of π∗. It follows that all minimum envy allocations have the
optimal property.

We now complete the proof by showing that in any allocation that satisfies the
optimal property, for any i ∈ [r], swapping h2i−1 and h2i results in an allocation
with equal envy. This observation can be repeatedly applied to show that any two
allocations that satisfy the optimal property have the same envy. Note that permuting
the allocation within a specific part (L or R) does not affect the total envy.

Formally, let π be any allocation that satisfies the optimal property. Pick an ar-
bitrary i ∈ [r] and swap h2i−1 and h2i to create the allocation π′; Without loss of
generality, assume h2i−1 is allocated to some agent in L in π. The difference in envy
of the two allocations is given by:

Envy(π′, G)− Envy(π,G)

=
[
n>
L,π(v(h2i−1))− n<

L,π(v(h2i−1))
]
(v(h2i)− v(h2i−1))

+
[
n<
R,π(v(h2i))− n>

R,π(v(h2i))
]
(v(h2i)− v(h2i−1))

= (v(h2i)− v(h2i−1)) [n
>
L,π(v(h2i−1))− n<

L,π(v(h2i−1))

+ n<
R,π(v(h2i))− n>

R,π(v(h2i))]

= (v(h2i)− v(h2i−1)) [(r − i)− (i− 1) + (i− 1)− (r − i)]

= 0 .

This also implies a straightforward polynomial time algorithm to compute a
minimum envy allocation for instances on Kr,r.

We can now generalize this result to complete bipartite graphs where the two parts
have unequal size. We relegate the proof to Appendix B, due to its similarity with the
previous proof.
Theorem 4.6. When G is the graph Kr,s (r > s), the minimum envy allocation π∗

has the following property:
(1) If r− s =: 2m is even, then the first and last m houses are allocated to the larger

part, and for all i ∈ [s], the houses hm+2i−1 and hm+2i are allocated to different
parts.

(2) If r − s =: 2m+ 1 is odd, then the first m and last m+ 1 houses are allocated to
the larger part. For all i ∈ [s], the houses hm+2i−1 and hm+2i are allocated to the
larger and smaller parts respectively.

Moreover, all allocations which satisfy this property have the same (optimal) envy.
The following corollary is now due to a simple counting argument.

Corollary 4.7. For any complete bipartite graph Kr,s (r ≥ s),
• If r − s is even, there are 2s optimal allocations;
• If r − s is odd, there is exactly one optimal allocation,

up to permutations over allocations to the same side of the graph.
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Proof. For simplicity, let L and R denote the larger and smaller parts of the bipartition
respectively. Therefore, |L| = r ≥ s = |R|.

We wish to count the number of allocations which allocate a different set of houses
to L (and therefore, R as well). There are of course, r! allocations given a set of houses
to allocate to agents in L but we ignore this factor.

When r − s is even, there are s different choices we can make. That is, for each
i ∈ [s], we can choose which of hm+2i−1 and hm+2i goes to L and which one goes to
R (Theorem 4.6). This gives us 2s different allocations.

When r − s is odd, there is no choice since Theorem 4.6 shows that only one
specific set of houses allocated to L achieves the optimal envy. Therefore, not counting
permutations over allocations to the same part, there is only one unique allocation.

It is easy to see that the simple structural characterization of optimal solutions
from Theorem 4.6 implies a straightforward polynomial time algorithm for computing
exact optimal allocations on general complete bipartite graphs. We remark here that,
in fact, Theorem 4.6 generalizes Theorem 4.1 as well. When the number of outer (non-
center) nodes in the star is odd, there are two possible houses that can be allocated
to the center in an optimal allocation. But when the number of outer nodes is even,
any optimal allocation allocates a unique house to the center.

4.4 Binary Trees
In this subsection, we consider binary trees. A binary tree T is defined as a rooted tree
where each node has either 0 or 2 children.

Our main result is a structural property characterizing at least one of the optimal
allocations for any instance where the underlying graph is a binary tree. We call this
the local median property.
Definition 4.8 (Local Median Property). An allocation on a binary tree satisfies the
local median property if, for any internal node, exactly one of its children is allocated
a house with value less than that of the node.

The proofs in this section will use the following lemma. We define the inverse of
a valuation function v as a valuation function vinv such that vinv(h) = −v(h) for all
h ∈ H (appropriately shifted so that all values of v are nonnegative). We note that
any allocation has the same envy along any edge with respect to the inverted valuation
and the original valuation.
Lemma 4.9. The envy along any edge of the graph G under an allocation π with
respect to the valuation v is equal to the envy along the same edge of the graph G
under the allocation π with respect to the valuation vinv.

Proof. For any edge (i, j) in the graph G and any allocation π, we have

|v(π(i))− v(π(j))| = |(−v(π(i)))− (−v(π(j)))| = |vinv(π(i))− vinv(π(j))| .

We will now show that at least one minimum envy allocation satisfies the local
median property. More formally, we show the following: given a binary tree T and any
allocation π, there exists an allocation that satisfies the local median property and
has equal or lower total envy. The proof relies on the following lemma.
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Lemma 4.10. Let π be an allocation on a binary tree T , not satisfying the local median
property. Let i be an internal node furthest from the root which is not allocated the
median among the values given to it and its children. Then, there exists an allocation
π′ such that
(a) For the subtree T ′ rooted at i, we have that Envy(π(T ′), T ′) > Envy(π′(T ′), T ′);
(b) For any other subtree T ′′ not contained by T ′, we have that Envy(π(T ′′), T ′′) ≥

Envy(π′(T ′′), T ′′).

r

y

xm

xm−1

. . .

x1

u v

. . .

zm−2

zm−1

zm

(a) Before the swap (allocation π)

r

xm

xm−1

xm−2

. . .

y

u v

. . .

zm−2

zm−1

zm

(b) After the swap (allocation π′).

Figure 5: Cyclic swap to show the local median property holds (Lemma 4.10). Solid
edges are guaranteed to exist. Dashed edges may or may not exist.

Proof. Let the node i have value y under π and its children have values xm and zm
respectively under π. By assumption, either y < min{xm, zm} or y > max{xm, zm}.
We show that in either case, the lemma holds. Since allocations are bijective and
the values can be assumed to be distinct, we will refer to tree nodes using the value
allocated to them in π.

Case 1: (y < min{xm, zm}). Assume without loss of generality that xm < zm. We
construct a path recursively as follows. Initialize the path as (y). If the final node on
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the path either has no children or has at least one child with allocated value lower than
the value at the start of the path, i.e., y, then stop. Otherwise, pick the least valued
child of the final node on the path and append it to the path. This gives us a path
(y, xm, xm−1, . . . , x1) for some nodes with value xm, xm−1, . . . , x1 in T . Note that by
definition, this path has at least 2 vertices, i.e., m ≥ 1. We construct a new allocation
π′ from π by cyclically transferring houses as follows: we give the agent with value y
the house with value xm, we give the agent with value xm the house with value xm−1

and so on till finally we give the agent with value x1 the house with value y. This has
been described in Figure 5.

The solid edges and dashed edges in Figure 5 cover all possible edges e in T where
envyπ(e) ̸= envyπ′(e). From our path construction and our assumption that i is a node
furthest from the root which does not satisfy the local median property, we have the
following two properties: (a) max{xj , zj} > xj+1 > min{xj , zj} for all j ∈ [m − 1],
and (b) xj < zj for all j ∈ [m]. These two properties allow us to compare the envy
along the solid edges:

envyπ(solid) = (xm − y) + (zm − y) +

[
m∑
j=2

((xj − xj−1) + (zj−1 − xj))

]

=

[
m−1∑
j=1

(zj − xj)

]
+ (zm − y) + (xm − y) .

envyπ′(solid) = (x1 − y) + (z1 − x1) +

[
m∑
j=2

((xj − xj−1) + (zj − xj))

]

=

[
m∑
j=1

(zj − xj)

]
+ (xm − x1) + (x1 − y) .

Combining the two values, we get

envyπ′(solid)− envyπ(solid) = y − xm .

To compute the difference in envy along the dashed lines, some straightforward
casework is required. There are many different possible relations between u, v, x1, and
y, and between r, y, and xm. All possible cases and their corresponding results are
summarized in Table 1. There are two assumptions made in Table 1. First, without loss
of generality we assume u < v. Second, u < y, since this is the termination condition
from our path construction.

If y is the root of the tree (i.e., r does not exist and T ′ = T ), from Table 1, we get:

Envy(π′, T ′)− Envy(π, T ′)

= envyπ′(solid)− envyπ(solid) + envyπ′(dashed)− envyπ(dashed)
≤ (y − xm) + 0

< 0 .
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Cases r does not exist r < y < xm y < r < xm y < xm < r
u and v do not exist 0 (xm − y) < (xm − y) (y − xm)

u < y < v < x1 < 0 < (xm − y) < (xm − y) < (y − xm)
u < y < x1 < v 0 (xm − y) < (xm − y) (y − xm)
u < v < y < x1 < 0 < (xm − y) < (xm − y) < (y − xm)

Table 1: Cases for the possible values of envyπ′(dashed)− envyπ(dashed).

Therefore, the total envy of π′ is strictly less than that of π.
If r exists, the above analysis shows that the total envy along the subtree rooted

at y (denoted by T ′) strictly reduces. Let us now study the envy of any tree T ′′ that
is not contained by T ′. Either T ′′ contains T ′, or T ′′ and T ′ are disjoint. If they are
disjoint, then Envy(π, T ′′) = Envy(π′, T ′′), since the allocation on the subtree T ′′ is
the same in π and π′. If T ′′ strictly contains T ′, T ′′ must contain the node r. From
Table 1, we get:

Envy(π′, T ′′)− Envy(π, T ′′)

= envyπ′(solid)− envyπ(solid) + envyπ′(dashed)− envyπ(dashed)
≤ (y − xm) + (xm − y)

= 0 .

Therefore the total envy weakly decreases and we are done.
Case 2: (y > max{xm, zm}). This implies −y < min{−xm,−zm}. We can there-

fore apply Case 1 to the allocation π under the inverted valuations vinv. It follows
that, with respect to vinv, there is an allocation π′ which has a strictly lower total
envy along the subtree T ′ rooted at i and a weakly lower total envy along any subtree
T ′′ that is not contained by T ′. Applying Lemma 4.9 with the allocations π′ and π,
we get the required result.

Lemma 4.10 immediately gives rise to the following corollary.
Theorem 4.11. For any binary tree T , at least one minimum envy allocation satisfies
the local median property.

Proof. Given any tree T and a node i, we use Ti to denote the subtree of T rooted at
node i. We also use i.left and i.right to refer to i’s left and right child respectively.

Given any tree T rooted at some node i, consider the allocation π which
lexicographically minimizes the vector:

u⃗(π, T ) = (Envy(π, T ),Envy(π, Ti.left),Envy(π, Ti.right),Envy(π, Ti.left.left),

Envy(π, Ti.left.right),Envy(π, Ti.right.left),Envy(π, Ti.right.right), . . .) .

It is easy to see that π is an optimal allocation. It is also easy to see that π satisfies the
local median property as well. If π does not satisfy the local median property, applying
Lemma 4.10, we get that there is an allocation π′ such that u⃗(π, T ) is lexicographically
greater than u⃗(π′, T ), which is a contradiction.
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Unfortunately, the local median property is too weak to exploit for a polynomial
time algorithm. Ideally, we would like to use the property to show that some minimum
envy allocation satisfies an even stronger property called the global median property.
Definition 4.12 (Global Median Property). An allocation on a binary tree satisfies
the global median property if, for every internal node, all the houses in one subtree
of the node have value less than the house allocated to the node, and all the houses in
the other subtree have value greater than the house allocated to the node.

If T is a binary tree of maximum depth d where an optimal allocation satisfies the
global median property, there is a straightforward divide-and-conquer algorithm that
computes an optimal allocation in time O(4d): the algorithm guesses which subtree of
the root is allocated values more than that of the root, and which subtree is allocated
values less than that of the root. The root has a unique allocation that satisfies the
constraints placed by the guesses; the algorithm allocates the root this unique house
and then applies the same procedure to each of the subtrees of the root. The time
complexity comes from the recursive expression T (d) ≤ 4T (d − 1) + O(1), where the
4 comes from the fact that we have to solve the problem on two subtrees for each of
the two global median choices. Solving this gives us a runtime of O(4d). In particular,
if T were close to being balanced, this algorithm would run in polynomial time in the
size of T .
Conjecture 4.13. There is an algorithm that computes an optimal allocation on a
binary tree of maximum depth d in time O(4d). In particular, this algorithm runs in
polynomial time on (nearly) balanced trees.

It was recently shown in [25] that not all instances have an optimal allocation
that satisfies the global median property; in fact, there is a counterexample even on
a depth-3 complete binary tree. However, the counterexample does not rule out the
possibility of the global median property being true on “most” trees, or of efficient
algorithmic approaches not needing to exploit the local or global median properties,
so Conjecture 4.13 remains open.

4.5 General Trees
How do we take the approaches for binary trees and build towards arbitrary trees?
Note that one consequence of Theorem 4.11 is that in at least one optimal allocation
on a binary tree, the minimum and the maximum must both appear on leaves.

In the Minimum Linear Arrangement problem, it is known [37] that when the
underlying graph is a tree, some optimal allocation assigns both the minimum and
maximum values to leaves, and furthermore, the (unique) path from this minimum
to the maximum consists of monotonically increasing values. This characterization is
used crucially in designing the polynomial time algorithm on trees [33].

Empirically, this same property for trees seems to hold for non-uniformly spaced
values as well. The proof technique used in Seidvasser [37] does not extend to our
setting, but testing the problem on 1000 randomly generated trees and uniformly
random values on the interval [0, 100] always gives us these properties on trees: the
minimum and maximum values both end up on leaves.

It would be remarkable if this kind of structural characterizations held for our
problem, but we remark here that the polynomial time algorithm exploiting these
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Figure 6: For the valuation interval on top, the optimal allocation to P2 + C3 is to
give the two low-valued houses to the edge, and to give the three high-valued houses to
the triangle. This is the only allocation where the envy is negligible. For the valuation
interval on the bottom, the optimal allocation to P2 + C3 is to give the two extreme-
valued houses to the edge, and the cluster in the middle to the triangle. Any other
allocation has to count one of the long halves of the interval multiple times, and is
therefore strictly suboptimal. This is an instance where we see one of the connected
components being “split” by another in the valuation interval. We prove in Theorem
5.15 that the graph P2 + C3 is splittable, because we can always assign a contiguous
sequence of items to the C3 component, and the P2 component receives a contiguous
sequence of items ignoring the other 3 items. It is not strongly splittable because P2

does not always split C3 (as in the second example above).

characterizations [33] does not generalize. Recently, in fact, Hosseini et al. [25]
showed that the Graphical House Allocation problem, unlike Minimum Linear
Arrangement, is NP-hard on trees.

5 Disconnected Graphs
In this section, we consider disconnected graphs, starting with a structural charac-
terization, and then using that to obtain upper bounds for several natural classes of
disconnected graphs with hardness results (Section 3).

5.1 A Structural Characterization
Recall from Proposition 3.1 that optimal allocations in Minimum Linear Arrange-
ment have the property that the connected components of the graph are assigned
contiguous values. We might hope that this simple and elegant property is true for
Graphical House Allocation as well. However, this turns out to be a crucial
point of difference between these two problems: Proposition 3.1 is false in our setting,
and so we can no longer assume our graph is connected without loss of generality. To
see this, consider an instance when the underlying graph G is a disjoint union of an
edge P2 and a triangle C3. The two valuation intervals in Figure 6 yield very different
optimal structures for this same instance.
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We remark that this major departure from the Minimum Linear Arrangement
problem implies that the spacing of the values along the valuation interval becomes a
key factor in the structure of optimal allocations in Graphical House Allocation.
This serves as a motivation to classify disconnected graphs according to whether their
connected components are always assigned contiguous values for all valuation interval
instances. We call the relevant property splittability, defined as follows.
Definition 5.1 (Splitting). Let G1 = (N1, E1) and G2 = (N2, E2) be two of the
connected components of G = (N,E), and fix an arbitrary allocation π. We say G1

splits G2 in π if the values of π(G1) form a contiguous subset of the values in π(G1)∪
π(G2).
Definition 5.2 (Splittability and Strong Splittability). Let G be a disconnected graph
with connected components G1, . . . , Gk. Then,

1. G is splittable if there exists an ordering G1, . . . , Gk of the components where, for
all valuation intervals, there is an optimal allocation where for all 1 ≤ i < j ≤ k,
Gi splits Gj.

2. G is strongly splittable if, in addition to the above, Gj also splits Gi. Note that
this is only possible if an optimal allocation assigns a contiguous subset of values
to each connected component.

3. G is unsplittable if it is not splittable.
A class A of graphs is splittable (resp. strongly splittable) if every graph in it is
splittable (resp. strongly splittable). Conversely, A is unsplittable if it contains an
unsplittable graph.

Intuitively, splittability requires that the connected components of the graph G
can be ordered such that each component receives a contiguous set of values, if we
ignore items assigned to components appearing earlier in the ordering. This ordering
of the components is fixed with respect to the graph structure, and does not depend
on the valuation interval. For example, we see in Theorem 5.15 that for disjoint unions
of cliques, for any valuation interval, the cliques can be ordered in decreasing order
of size. We must assign a contiguous interval to the largest clique; upon removing
those items, we must assign a contiguous interval to the second-largest clique; and so
on. This is a descriptive statement rather than a computational statement, since it
is nontrivial to determine which contiguous interval to allocate to each component of
the graph.

For the graph to be strongly splittable, the set of values assigned to each component
must be contiguous with respect to the entire valuation interval. In this case, any
order suffices to show (strong) splittability, because any pair of components Gi and
Gj would both split each other. Figure 6 shows a graph that is splittable but not
strongly splittable, since C3 always splits P2, but P2 may not split C3, depending on
the valuation interval.

We note that G is unsplittable precisely when there is a valuation interval where
for each optimal allocation π, there are components G1 and G2 with u, u′ ∈ π(G1)
and v, v′ ∈ π(G2) such that u ≺ v ≺ u′ ≺ v′. Furthermore, G is strongly splittable
only if it is splittable.

In the Minimum Linear Arrangement problem, all disconnected graphs are
strongly splittable, by Proposition 3.1. In contrast, for our problem, Figure 6 already
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provides an example of a graph that is not strongly splittable. We discuss several
examples of strongly splittable graphs in our problem in Sections 5.2, 5.3, and 5.4; in
particular, disjoint unions of paths, cycles, stars, identical cliques, or identical complete
bipartite graphs satisfy strong splittability.

Our formulation of splittability and strong splittability has an immediate algorith-
mic consequence.
Proposition 5.3. Suppose G has k connected components (where k is not necessarily
a constant). If G is strongly splittable, and we can find a minimum envy allocation
for each component in time O(poly(n)), then we can find a minimum envy allocation
on G in time O(poly(n) · k!). If G is splittable, and we can find a minimum envy
allocation for each component in time O(poly(n)), then we can find a minimum envy
allocation on G in time nO(k).

Proof. The proof follows straightforwardly from the definitions of (strong) splittability.
If G is strongly splittable and has k connected components, we can try all k! orderings
of these components along the valuation interval. Each such ordering takes O(poly(n))
to evaluate (since k ≤ n), and one of the orderings is optimal by definition. If G is
splittable, for any ordering of its components, we can place the first component on
any of O(n) contiguous subintervals along the interval, and then place the second
component on any of the O(n) contiguous subintervals among the remaining values,
and so on. This ordering takes nO(k) time to output an optimal envy. We need to test
this on all k! orderings of the components, which costs k! · nO(k), which is still nO(k),
as k ≤ n.

It is not immediately obvious that there are splittable graphs that are not strongly
splittable. Figure 6 shows an example of such a graph (Theorem 5.15 proves split-
tability). We will see more examples of this later, but we remark that there are
even splittable forests that are not strongly splittable (Figure 7). Even less obviously,
unsplittable forests exist (Figure 8). We formalize these below.

Figure 7: Example of a splittable forest that is not strongly splittable. The forest is
trivially splittable, as one component is just a single vertex. For the bottom valuation
line, an optimal allocation must allocate the extreme clusters in the interval to the
larger connected component.

Proposition 5.4. The following are both true.
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s1

...

s3

...

s2

...

s4

s1 + 1 s2 + 1 s3 + 1 s4 + 1

Figure 8: Example of an unsplittable forest. Suppose s1 < s2 < s3 < s4, and they
satisfy for all i, j, |si − sj | ≥ 3, and for all i, j, k, si + sj > sk + 2. Then, an optimal
allocation on this instance must allocate the entire cluster of size si+1 on the valuation
interval to the corresponding star-like cluster of the given forest.

1. There exists a splittable forest that is not strongly splittable.
2. There exists an unsplittable forest.

Proof. We can prove these one part at a time.
1. The graph G given in Figure 7 is a splittable forest that is not strongly splittable.

It is trivial that G is splittable, as one component is a single vertex that always
splits the other component on the valuation interval.

Consider the lower valuation interval that is depicted in Figure 7. Assume that
the clusters along the valuation interval are sufficiently packed (each within a
subinterval of length ϵ := 0.001/n2, where n = 7), and furthermore, the sole
valuation in the middle is exactly at the center of the interval. Without loss
of generality, assume the entire valuation interval has length 1. Note that the
allocation that places the induced stars of G in the clusters attains a total envy
of at most 1.001.

We first claim that an optimal allocation cannot place both the degree-3 vertices
in the same cluster. In such an allocation, one of the two large subintervals needs
to be covered by at least two edges, and so the total envy is at least 3/2.

We next claim that an optimal allocation cannot place a degree-3 vertex in the
center. If it does, then again by a similar casework as in the previous paragraph,
one large subinterval has to be covered by at least two edges, and so the total
envy is at least 3/2.

Therefore, every optimal allocation must place the degree-3 vertices in different
clusters. The edge between those two vertices, therefore, incurs an envy of 1 by
itself. Now, if the isolated vertex is anywhere but the center, there the center must
be a leaf attached to a degree-3 vertex. The edge from this leaf to the degree-
3 vertex incurs an additional envy of 1/2, pushing the total envy up to 3/2. It
follows that the isolated vertex must be at the center.

2. The graph given in Figure 8 is an unsplittable forest.
Assume that the clusters along the valuation interval are sufficiently packed

(each within a subinterval of length ϵ), and furthermore, they are equispaced
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along the entire valuation interval, and without loss of generality assume the
entire valuation interval has length 1.

Of course, note that each of the three “large” subintervals (of length 1/3 each)
must be counted at least once in any allocation: the first must be counted since it
is not possible to take a set of s1+1 vertices of the forest with no edges going to its
complement; the third must be counted for the same reason, using si+sj > sk+2,
making it impossible to pack in either of the components entirely within the
last cluster; and the second must be counted because neither component can fit
perfectly inside the first two clusters, again using si+sj > sk+2 and |si−sj | ≥ 3.
This immediately ensures an envy of at least 1, for any allocation.

Note that the allocation that places the induced stars of the given graph in
the corresponding clusters along the valuation interval attains a total envy of at
most 4/3+0.001 (assuming ϵ is small enough). Let the four vertices of degree 2 or
more be x1, x2, x3, x4, where xi is incident to exactly si degree-1 vertices. Let us
also number the clusters along the valuation interval 1, 2, 3, 4 from left to right.

We first claim that in any optimal allocation, xi cannot be in cluster j for j < i.
Otherwise, at least three of the si neighbors of xi must lie in other clusters, so
one of the three large subintervals must be counted three or more times. Together
with the two other subintervals (which must be counted), it is then easy to see
that the envy in this case would exceed 5/3. We next claim that xi and xj cannot
be in the same cluster, for i ̸= j. Otherwise, again, at least three edges pass over
the same large subinterval, and so the envy exceeds 5/3 again.

It follows that xi must belong to the ith cluster, for all i. The result follows
immediately.

5.2 Disjoint Unions of Paths, Cycles, and Stars
We now move on to algorithmic approaches and characterizations of minimum envy
allocations, and start with the setting where G is a disjoint union of paths. Suppose
G = Pn1

+ . . .+ Pnr
. What does an optimal allocation on G look like?

Theorem 5.5. Let G be a disjoint union of paths, Pn1
+ . . .+Pnr

. Then, G is strongly
splittable. Furthermore, in any optimal allocation, within each path, the houses appear
in sorted order.

Proof. By Theorem 4.2, we know that each of the paths should have its allocated
houses in sorted order. Now, suppose there are values hk ≺ hℓ ≺ hm, with hk and hm

being allocated to Pni
, and hℓ to a different path Pnj

. We can reallocate the houses
only on these two paths and strictly improve the allocation. For instance, suppose
Hi := π(Pni

) and Hj := π(Pnj
). We can now allocate the ni lowest-valued houses in

Hi∪Hj to Pni
and the nj highest-valued houses in Hi∪Hj to Pnj

, keeping the rest of
the allocation the same. Now, note that every subinterval among the values in Hi∪Hj

counted by both paths in this new allocation was also counted by both paths in the
old allocation. However, at least one subinterval (e.g., the subinterval between the ni

lowest values and the nj highest values) is counted by strictly fewer paths in the new
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allocation. Therefore, this leads to an allocation with strictly lower envy than before,
and this concludes the proof.

The following corollary, which follows directly from Proposition 5.3, shows an FPT
algorithm on the disjoint union of paths, parameterized by the number r of different
paths. We simply check each of the r! orderings of these paths, and return the one
with the least envy.
Corollary 5.6. We can find an optimal allocation for an instance on an undirected
n-agent graph G that is the disjoint union of paths in time Õ(nr!), where r is the
number of paths.6

If G is a disjoint union of cycles, say G = Cn1
+ . . . + Cnr

, the same theorems
characterizing optimal allocations go through, using Theorem 4.3. We omit the proofs,
but state the results formally.
Theorem 5.7. Let G be a disjoint union of cycles, Cn1

+. . .+Cnr
. Then G is strongly

splittable. Furthermore, in any optimal allocation, within each cycle, the houses appear
in the form characterized in Theorem 4.3.
Corollary 5.8. We can find an optimal allocation for an instance on an undirected
n-agent graph G that is the disjoint union of cycles in time Õ(nr!), where r is the
number of cycles.

If t is the number of different path (or cycle) lengths, then a straightforward
dynamic programming algorithm computes the minimum envy allocation in time
O(tnt+1).
Proposition 5.9. Let G be a disjoint union of paths. If t is the number of different
path lengths in G, then we can find an optimal allocation on G for any instance in
time O(tnt+1).

Proof. The result for t = 1 is trivial. For t > 1, if the distinct path lengths are
n1, . . . , nt, then suppose φ(r1, . . . , rt, ℓ) denotes the optimal envy using ri paths of
length ni, for i = 1, . . . , t, on the house set {h1, . . . , hℓ}. Using Theorem 5.5 and
Theorem 4.2, we have the recursion

φ(r1, . . . , rt, ℓ) = min{φ(r1 − 1, r2, . . . , rt, ℓ− n1) + (v(hℓ)− v(hℓ−n1+1)),

. . . , φ(r1, . . . , rt1 , rt − 1, ℓ− nt) + (v(hℓ)− v(hℓ−nt+1))}.

Dynamically solving this yields an O(tnt+1) algorithm to find the optimal allocation
on the given instance.

Corollary 5.10. Let G be a disjoint union of cycles. If t is the number of different
cycle lengths in G, then we can find an optimal allocation on G for any instance in
time O(tnt+1).

Combining the two approaches from Corollary 5.6 and Proposition 5.9, we have
a time complexity of O(min(nr!, tnt+1)). An immediate application of this dynamic
programming algorithm is for graphs with degree at most one. These graphs are special
cases of the disjoint union of paths where the path length can either be 0 or 1. By
Proposition 5.9, we can find an optimal allocation for these instances in time O(n3).

6We suppress the logarithmic factors required for integer addition henceforth, in order to avoid the minor
technical considerations of bit representation.
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Perhaps remarkably, there is no particularly elegant structural characterization
when the underlying graph G is a disjoint union of paths and cycles, even when there
is only one path and one cycle. This is a consequence of Figure 6.

Finally, a similar result holds for disjoint unions of stars, though the proof
is somewhat different. We omit the proof of Corollary 5.12, which follows from
Theorem 5.11.
Theorem 5.11. Let G be a disjoint union of stars, K1,n1 + . . . +K1,nr . Then G is
strongly splittable. Furthermore, in any optimal allocation, within each star, the houses
appear in the form characterized in Theorem 4.1.

Proof. We “split” any two stars while improving on our objective. Consider two stars
K1,n1

and K1,n2
. Let π be any optimal allocation that allocates the values a1, . . . , an1+1

to K1,n1
and b1, . . . , bn2+1 to K1,n2

.
We provide a simple two-step procedure that creates a new allocation π′ that

allocates contiguous intervals to both stars and attains total envy at most that of π.
In the first step, we simply re-arrange the values allocated to each star to ensure they
satisfy the characterization for an optimal envy allocation from Theorem 4.1. In the
second step, assuming without loss of generality the center of K1,n1

has a lower value
than that of K1,n2

, we re-arrange the values allocated to the spokes of both stars by
allocating the least n1 values to K1,n1

and the greatest n2 values to K1,n2
; crucially,

we do not change the value allocated to the center of either star. It is easy to see that
neither of these steps can increase the total envy: this is immediate by design in the
first step, and follows from a similar argument to the proof of Theorem 5.5 in the
second step.

It is also easy to see that, if the stars are not allocated contiguous intervals, the
above two step procedure changes the allocation and strictly reduces the envy. This
shows that not allocating contiguous intervals to each star is sub-optimal.

Corollary 5.12. We can find an optimal allocation for an instance on an undirected
n-agent graph G that is the disjoint union of stars in time Õ(nr!), where r is the
number of stars.

5.3 Disjoint Unions of Cliques
We now turn our attention to disjoint unions of cliques. We first demonstrate that
when all cliques have the same size, we maintain strong splittability.
Theorem 5.13. Let G be a disjoint union of cliques with equal sizes, K1

n/r+. . .+Kr
n/r.

Then, G is strongly splittable.

Proof. We prove the result for the case of two cliques Kn/2 +Kn/2. The result for r
cliques follows by showing that each pair of cliques must be split from each other.

Let (V,E) and (V ′, E′) be the set of vertices and edges of each copy of Kn/2. Let
τ : V → V ′ be any bijective mapping from V to V ′.

Let π be any allocation on Kn/2 + Kn/2, we show that if π does not allocate
contiguous intervals to each component, we can create a better allocation π′.

Let a1 < a2 < . . . < an/2 be the values allocated to the nodes in V and b1 < b2 <
. . . < bn/2 be the values allocated to the nodes in V ′ in some optimal allocation π. We
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a1a2 b6b5

Figure 9: A pictorial description of the allocation π in the proof of Theorem 5.13.
Shaded nodes denote nodes that are allocated one of the highest n/2 valued houses.
To construct π′ from π, we swap the houses allocated to the unshaded nodes on the
left clique with those allocated to the shaded nodes on the right clique.

rearrange the goods allocated to V ′ such that if node v ∈ V receives ai, then node
τ(v) receives bn/2−i. This does not change the total envy of the allocation.

If each component is not allocated a contiguous interval, the least-valued n/2
houses must have some a values and some b values. Let’s call the least-valued n/2
houses H ′ and let’s say there are k ai’s in H ′. Therefore H ′ contains a1, a2, . . . , ak and
b1, b2, . . . , bn/2−k.

We create a new allocation π′ from π as follows. For all i ∈ [k], we swap ai with
bn/2−i. Note that for each house among the least-valued n/2 houses, if ai is allocated
to v ∈ V , we swap the houses given to v and τ(v). This has been pictorially described
in Figure 9.

Let us now compute the change in envy between π′ and π. We do this by showing
that, for every edge (u, v) ∈ E, the total sum of the envies along the edges (u, v) and
(τ(u), τ(v)) decreases.

Case 1: u and v are unaffected by the swap. Then τ(u) and τ(v) are unaffected
as well. Therefore the total envy along these two edges does not change.

Case 2: u and v are both affected by the swap. Then, envyπ′(u, v) =
envyπ(τ(u), τ(v)) and envyπ(u, v) = envyπ′(τ(u), τ(v)). Therefore, the total envy along
these two edges does not change.

Case 3: Only u is affected by the swap. This means τ(v) is not affected by
the swap. The total envy along these two edges under π is

envyπ(u, v) + envyπ(τ(u), τ(v)) = (aj − ai) + (bn/2−i − bn/2−j)

where j > k > i. This can be re-written as

envyπ(u, v) + envyπ(τ(u), τ(v)) = 2min{aj , bn/2−i}+ |aj − bn/2−i|
− 2max{ai, bn/2−j}+ |ai − bn/2−j | .
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The total envy along these two edges under π′ is

envyπ′(u, v) + envyπ′(τ(u), τ(v)) = |aj − bn/2−i|+ |ai − bn/2−j | .

The change in envy is

2max{ai, bn/2−j} − 2min{aj , bn/2−i} < 0 .

The inequality holds since j > k > i.
When k ≥ 1, at least one edge belongs to Case 3 and so the total envy of π′ is

strictly less than the total envy of π.

Because the cliques are all of equal sizes and agents have identical valuations,
Theorem 5.13 implies that there is a trivial algorithm for assigning houses to agents.
We can assign the first n/r houses to one clique, the next n/r houses to the next
clique, and so on.
Corollary 5.14. We can find an optimal allocation for an instance on an undirected
n-agent graph G that is the disjoint union of equal-sized cliques in time Õ(n).

We now turn our attention to the case when the cliques are not all of the same size.
As Figure 6 demonstrates, strong splittability must be ruled out when cliques have

different sizes. We will show that splittability still holds. We show further that the
largest clique splits all other cliques, the second largest clique splits all cliques except
(possibly) the largest one, and so on. The detailed proof is quite technical, and is
relegated to Appendix C.
Theorem 5.15. Let G be a disjoint union of cliques with arbitrary sizes, Kn1 + . . .+
Knr , where n1 ≥ . . . ≥ nr. Then, G is splittable (but not necessarily strongly splittable
if the ni’s are not all equal). In particular, for all 1 ≤ i < j ≤ r, in every optimal
allocation, Kni splits Knj .

Theorem 5.15 implies an XP algorithm for finding a minimum envy allocation on
unions of cliques. We state this formally as a corollary here.
Corollary 5.16. We can find an optimal allocation for an instance on an undirected
n-agent graph G that is the disjoint union of cliques in time O(nr+2), where r is the
number of cliques.

Proof. We sort the cliques in a non-increasing order of their size to get r cliques
K1,K2, . . . ,Kr such that |K1| ≥ |K2| ≥ . . . ≥ |Kr|. From Theorem 5.15, we know
that K1 receives a contiguous set of values in the optimal allocation, subject to which,
K2 must receive a contiguous set of values among the remaining houses, and so on.

This gives us a recursive procedure where we try out all possible contiguous sets of
values of size |K1| to give to K1 and subject to that, we try out all possible contiguous
sets of values to give to K2 and so on. From Theorem 5.15, we know that one of these
allocations will be optimal, so we output the allocation we find with the lowest envy
in this way.

The pseudocode is presented in Algorithm 1. The algorithm maintains a partial
allocation π and updates it using recursive calls.

To analyze the time complexity, note that we compute at most O(nr) allocations.
For each allocation, finding the envy of the allocation takes O(n2) time trivially. Note
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Algorithm 1 Minimum Envy House Allocation on Cliques

procedure FindMinEnvy(N,H, {Ki}i∈[r], v)
sort {Ki} so that |K1| ≥ . . . ≥ |Kr|.
if r = 1 then

Let π be any allocation of the houses in H to agents in K1

envy = FindEnvy(π, v,K1)
return envy, π

else
π∗ ← ∅, envy∗ ←∞
for every |K1|-sized contiguous subset of values S do

Let πK1 be any allocation of the houses in S to agents in K1

envyS , πS = FindMinEnvy(N − |K1|, H \ S, {Ki+1}i∈[r−1], v)
if envy∗ > envyS + FindEnvy(πK1 , v,K1) then

π∗ ← πS

envy∗ ← envyS

return envy∗, π∗

that the sorting step is just O(r log r), which is o(n2), and is therefore subsumed by
the other term. This gives us a total time complexity of O(nr+2).

There seems to be a separation between unions of differently-sized cliques and
unions of stars, cycles, paths, or equi-sized cliques. We suspect the problem may be
W[1]-hard for unions of arbitrary cliques.

5.4 Disjoint Unions of Complete Bipartite Graphs
We can extend the techniques used in Section 5.3 to prove splittability guarantees for
complete bipartite graphs as well. The proofs in this section are significantly more
involved than the proofs in the previous section and are relegated to the appendix.

Combining techniques from Theorem 4.6 and Theorem 5.13, we can show that
disjoint unions of identical complete bipartite graphs are strongly splittable.
Theorem 5.17. If G = Kr,s for any r, s ∈ N, then G+G is strongly splittable.

Note that, as in Section 5.3, we can leverage Theorem 5.17 and Theorem 4.6 to give
us an easy FPT algorithm on disjoint unions of identical complete bipartite graphs.
We state this as a corollary without proof, as it is very similar to Corollary 5.14.
Corollary 5.18. We can find an optimal allocation for an instance on an undirected
n-agent graph G that is the disjoint union of identical complete bipartite graphs in
time Õ(n).

Next, we combine techniques from Theorem 4.6 and Theorem 5.15 to show that
disjoint unions of (unequal-sized) symmetric bipartite graphs {Kr,r}r∈N are splittable
but not strongly splittable.
Theorem 5.19. Let G be a disjoint union of symmetric complete bipartite graphs
Kn1,n1 + Kn2,n2 + . . . + Knℓ,nℓ

, where n1 ≥ n2 ≥ . . . ≥ nℓ. Then G is splittable
(but not necessarily strongly splittable if n1 > nℓ) and the order of splittability is
Kn1,n1 , . . . ,Knℓ,nℓ

.
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This is one of our most technically involved proofs, and it can be found in Appendix
C.

The following proposition shows that for these graphs, strong splittability can be
ruled out almost immediately, and so splittability is really the best property to hope
for.
Proposition 5.20. Disjoint unions of (unequal) symmetric complete bipartite graphs
are not necessarily strongly splittable.

Proof. Consider K1,1 + K2,2, which is the disjoint union of an edge and a 4-cycle.
Consider an instance {h1, . . . , h6} where v(h1) = 0, v(h6) = 1, and the values
v(h2), . . . , v(h5) are concentrated in an ϵ-interval around 0.5. Then, any optimal al-
location assigns h1 and h6 to the K1,1, showing that the graph is not strongly
splittable.

We end by noting that Theorem 5.19 immediately implies an XP algorithm to
compute a minimum envy allocation over the disjoint union of symmetric complete
bipartite graphs. We state this below but omit the proof, as it is similar to Corollary
5.16.
Corollary 5.21. We can find an optimal allocation for an instance on an undirected
n-agent graph G that is the disjoint union of symmetric complete bipartite graphs in
time nO(r), where r is the number of symmetric complete bipartite graphs.

We have shown strong splittability for disjoint copies of identical complete bipartite
graphs and splittability for symmetric complete bipartite graphs. We conjecture that
the disjoint unions of arbitrary complete bipartite graphs are splittable as well. This
result would generalize Theorems 5.19 and 5.11.
Conjecture 5.22. Let G be the disjoint union of arbitrary complete bipartite graphs.
Then G is splittable.

5.5 Splittability and Graph Properties
It is worth asking the question of whether there is a clear structural property of a
graph that determines whether it is splittable or strongly splittable. This would allow
us to generalize beyond specific classes of graphs, and state purely structural results
that would generalize several results from Sections 5.2, 5.3, and 5.4 under one compact
umbrella.

From the graph classes considered in those sections, let us examine the ones that
are regular. These would include disjoint unions of edges, cycles, equal-sized cliques,
or identical symmetric complete bipartite graphs. By Theorems 5.5, 5.7, 5.13, and
5.17, we know that each of those graphs is strongly splittable. This might lead us
to conjecture that disconnected regular graphs are strongly splittable as well. The
following proposition shows that this is not the case. In fact, they need not even be
splittable.
Proposition 5.23. There exists a 3-regular unsplittable graph.

Before we delve into the proof, we first need to define a bicycle graph.
Definition 5.24. For any odd number 2t + 1, take the cycle C2t+1, and suppose its
vertices are {v1, . . . , v2t+1} in order along the cycle. Now, add every edge (vi, vt+i) for
1 ≤ i ≤ t. This defines a graph where every vertex except for v2t+1 has degree 3. Call
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this a (2t + 1)-wheel W2t+1, and call v2t+1 its rim. Observe that m-wheels exist for
every odd m ≥ 3. Now, for any two odd numbers m1,m2, define the (m1,m2)-bicycle
Bm1,m2 as the graph obtained from a Wm1 and a Wm2 by joining the two rims by an
edge. Note that every bicycle is 3-regular.

See Figure 10 for examples of wheels and bicycles.

(a) (b) (c)

(d)

Figure 10: (a), (b) and (c) contain the wheels W5, W7, and W9 respectively. In each
case, the rim is the vertex of degree 2 at the top. (d) describes the bicycle B5,7, which
is 3-regular.

We are now ready to prove Proposition 5.23. Consider the graph G which is the
disjoint union of two bicycles, B401,201 + B301,101, and consider a valuation interval
with four equispaced clusters with 401, 301, 201, and 101 values in those clusters in
order, as shown in Figure 11. It can be shown that any optimal allocation needs to
place the entirety of W401 in the first cluster, the entirety of W301 in the second cluster,
the entirety of W201 in the third cluster, and the entirety of W101 in the fourth cluster,
contradicting splittability. The details of the proof are in Appendix C.

Finally, from the graph classes considered in Sections 5.2, 5.3, and 5.4, let us
examine the ones formed by taking the disjoint union of identical copies of the same
graph. As stated before, every single one of those examples has corresponded to a
strongly splittable graph, which again might lead to the very natural conjecture that
disconnected graphs obtained by taking disjoint unions of the same connected graph
are strongly splittable. The following proposition shows that this is not the case, and
in fact, shows unsplittability.
Proposition 5.25. There exists a connected graph G such that G+G is unsplittable.

Proof. Consider the graph G+G shown in Figure 12, along with the valuation interval.
The connected component G consists of a clique Ka, joined by an edge to a clique
Kb, joined by an edge to a clique Kc, where a ≫ b ≫ c ≫ 1. The valuation interval
consists of six clusters of width ϵ each, consisting of a, a, b, b, c, and c values in order.
Of course, in any optimal allocation, none of the Ka’s can have any presence outside
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W401 W201 W301 W101

(a)

401 301 201 101

(b)

Figure 11: The instance proving Proposition 5.23. Note that the vertices on the outer
cycles are just connected to other vertices on these cycles, not to any central vertex.

Ka Kb Kc Ka Kb Kc

(a)

a a b b c c

(b)

Figure 12: The instance proving Proposition 5.25.

of the first two clusters, as then there will be many edges crossing over at least one
of the intervals. By a similar argument, each of the Ka’s needs be entirely within one
of the first two clusters. By similar arguments, it can be shown that each of the Kb’s
needs to be inside one of the third and fourth clusters, and each of the Kc’s needs to be
inside one of the last two clusters. But now, no matter how we distribute the clusters
among the two copies of G, this cannot be splittable, as neither copy can receive a
contiguous subset of the values along the interval.

Propositions 5.23 and 5.25 above show counterexamples to seemingly quite reason-
able conjectures, and pave the way for an in-depth investigation into the mysterious
property of splittability. We relegate this to future work.
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6 Conclusion and Discussions
We investigated a generalization of the classical house allocation problem where the
agents are on the vertices of a graph representing the underlying social network, under
the condition that the agents have identical valuations. We wish to allocate the houses
to the agents so as to minimize the aggregate envy among neighbors. Even for identical
valuations, we showed that the problem is computationally hard and structurally rich.
Furthermore, our structural insights facilitate algorithmic results for several natural
and well-motivated graph classes.

There are a few natural questions for future research. We might consider other
fairness objectives such as minimizing the maximum envy present on any edge of
the graph. For evenly-spaced valuations, this corresponds to the classical graph the-
oretic property of bandwidth, which is also known to be NP-complete for general
graphs, and hard to approximate as well [41, 42]. It would be interesting to know
whether trees admit polynomial time characterizations of the minimum envy, or—
more remarkably—whether they are NP-complete but admit the structural similarities
to the Minimum Linear Arrangement problem discussed in Section 4.5. We might
hope to completely characterize all strongly splittable graphs in terms of their graph
theoretic structure. Another important future direction would be to extend some of
these results for non-identical valuations.

Supplementary information. This article has an accompanying appendix which
is 15 pages long. References appear after the appendix as required by the Springer
Nature format. An accompanying information sheet has also been submitted as part
of the supplementary material in accordance with the submission guidelines.
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Appendix A Distinct Valuations
Lemma A.1. Given any instance (N,H,G, v) of Graphical House Allocation,
there exists a valuation function v′ such that v′ gives each house a distinct value, and
any optimal allocation under v′ is also optimal under v.

Proof. Let δ > 0 be the smallest nonzero envy difference between two allocations of H
to G under the valuation v, and let γ > 0 be the smallest nonzero difference between
the values of two houses. If either δ or γ are not well-defined, then all allocations
have the same optimal envy, and we can define any arbitrary one-to-one function v′

to satisfy the lemma. So assume both δ and γ are well-defined and positive. Define
ϵ = min{δ/2, γ}. We will show that there is a one-to-one valuation function v′, such
that for any allocation π, the total envy under v′ differs from the total envy under v
by at most an additive term of ϵ. For hk ∈ H, define

v′(hk) := v(hk) +
ϵ

n22k
.

It is easy to see that this function is one-to-one by the definition of ϵ. For any allocation
π on G, consider the envy between agents i and j. If π(i) = hk and π(j) = hℓ, we
have, using the triangle inequality,

∣∣v′(π(i))− v′(π(j))
∣∣ = ∣∣∣∣v(π(i))− v(π(j)) +

ϵ

n22k
− ϵ

n22ℓ

∣∣∣∣
≤

∣∣v(π(i))− v(π(j))
∣∣+ ϵ

n2

∣∣∣∣ 12k − 1

2ℓ

∣∣∣∣
<

∣∣v(π(i))− v(π(j))
∣∣+ ϵ

n2
.

We also similarly have

∣∣v′(π(i))− v′(π(j))
∣∣ = ∣∣∣∣v(π(i))− v(π(j)) +

ϵ

n22k
− ϵ

n22ℓ

∣∣∣∣
≥

∣∣v(π(i))− v(π(j))
∣∣− ϵ

n2

∣∣∣∣ 12k − 1

2ℓ

∣∣∣∣
>

∣∣v(π(i))− v(π(j))
∣∣− ϵ

n2
.

Summing over the at most n2 edges of G, we have Envyv(G, π)−ϵ < Envyv′(G, π) <
Envyv(G, π)+ϵ, as desired, where the subscripts v and v′ denote the valuation functions
being used in each case.

For any allocation π∗ which minimizes envy under v′, if we compare against another
allocation π′ such that π∗ and π′ have different total envies under v, we see that

Envyv(G, π∗)− ϵ < Envyv′(G, π∗) ≤ Envyv′(G, π′) < Envyv(G, π′) + ϵ.
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By the definition of ϵ = min{δ/2, γ}, we can infer that if π∗ is optimal under v′,
then it must be optimal under v as well. If π∗ is not optimal under v, then there will
be an allocation π′ which is optimal under v that violates the inequality above; that
is, we will have Envyv(G, π′) ≤ Envyv(G, π∗)− 2ϵ by the definition of ϵ.

Appendix B Technical Proofs from Section 4
Theorem 4.6. When G is the graph Kr,s (r > s), the minimum envy allocation π∗

has the following property:
(1) If r− s =: 2m is even, then the first and last m houses are allocated to the larger

part, and for all i ∈ [s], the houses hm+2i−1 and hm+2i are allocated to different
parts.

(2) If r − s =: 2m+ 1 is odd, then the first m and last m+ 1 houses are allocated to
the larger part. For all i ∈ [s], the houses hm+2i−1 and hm+2i are allocated to the
larger and smaller parts respectively.

Moreover, all allocations which satisfy this property have the same (optimal) envy.

Proof. This proof is very similar to that of Theorem 4.5. Again, for notational ease, let
the graph have bipartition (L,R), with |L| = r > s = |R|. We refer to the properties
in the theorem statement when r−s is even and odd as the optimal even property and
the optimal odd property respectively. This proof will also use the notation n<

L,π(x),
n>
L,π(x), n

<
R,π(x) and n>

R,π(x) defined in Definition 2.3.
Case 1: r − s is even. We split the proof into two claims.

Claim B.1. Any optimal allocation allocates the first m houses to agents in L.

Proof of Claim B.1. Assume for contradiction that this is not true. That is, there is
an optimal allocation π such that:

π(hj) ∈ L for all j ∈ [k] for some 0 ≤ k < m,

π(hk+j) ∈ R for all j ∈ [l] for some l > 0,

π(hk+l+1) ∈ L.

Create an allocation π′ from π by swapping hk+l and hk+l+1. We can now compare
the aggregate envy of π and π′ using arguments similar to those in Theorem 4.5.

Envy(π′, G)− Envy(π,G)

= [n<
L,π(v(hk+l+1))− n>

L,π(v(hk+l+1))](v(hk+l+1)− v(hk+l))

+ [n>
R,π(v(hk+l))− n<

R,π(v(hk+l))](v(hk+l+1)− v(hk+l))

= (v(hk+l+1)− v(hk+l))

[n<
L,π(v(hk+l+1))− n>

L,π(v(hk+l+1)) + n>
R,π(v(hk+l))− n<

R,π(v(hk+l))]

= [k − (r − (k + 1)) + (s− l)− (l − 1)](v(h2i)− v(h2i−1))

= [2k − (r − s) + 2− 2l](v(h2i)− v(h2i−1))
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< 0.

The last inequality follows from the fact that l ≥ 1 and k < m = (r − s)/2. This
contradicts the optimality of π.

Claim B.2. In any optimal allocation, for any i ∈ [s], hm+2i−1 and hm+2i cannot be
allocated to the same part.

Proof of Claim B.2. Assume for contradiction that this is not true. Let π be an
optimal allocation that satisfies Claim B.1 but not Claim B.2. Choose j as the
least i such that hm+2i−1 and hm+2i are allocated to the same part, say L. Let
{hm+2j−1, hm+2j , . . . , hm+2j+k} be a set of houses allocated to agents in L such that
hm+2j+k+1 is allocated to some agent in R (k ≥ 0). Create an allocation π′ from π by
swapping hm+2j+k and hm+2j+k+1. We can compare the envy between π′ and π.

Envy(π′, G)− Envy(π,G)

= [n>
L,π(v(hm+2j+k))− n<

L,π(v(hm+2j+k))](v(hm+2j+k+1)− v(hm+2j+k))

+ [n<
R,π(v(hm+2j+k+1))− n>

R,π(v(hm+2j+k+1))](v(hm+2j+k+1)− v(hm+2j+k))

= (v(hm+2j+k+1)− v(hm+2j+k))[n
>
L,π(v(hm+2j+k))− n<

L,π(v(hm+2j+k))

+ n<
R,π(v(hm+2j+k+1))− n>

R,π(v(hm+2j+k+1))]

= (v(hm+2j+k+1)− v(hm+2j+k))[(r − (m+ k + 2 + j − 1))

− (m+ k + 1 + j − 1) + (j − 1)− (s− j)]

= [2j − 2(k + j)− 2](v(hm+2j+k+1)− v(hm+2j+k))

= [−2k − 2](v(hm+2j+k+1)− v(hm+2j+k))

< 0.

The final inequality holds since k ≥ 0. Again, we contradict the optimality of π.

Claim B.2 also implies that none of the final m = (r − s)/2 houses are allocated
to agents in R; this is because all agents in R have already been assigned houses by
Claim B.2. We can therefore conclude that these houses must be allocated to agents
in L in any optimal allocation.

To show that any allocation that satisfies the optimal even property has the same
aggregate envy, we use a swapping based argument similar to Theorem 4.5. Let π be
any allocation that satisfies the optimal even property. Pick an arbitrary i ∈ [s] and
let π′ be the allocation that results from swapping hm+2i−1 and hm+2i in π. Assume
that hm+2i−1 is allocated to L in π. The proof for R flows similarly. Let us compare
the envy of the two allocations.

Envy(π′, G)− Envy(π,G)

= [n>
L,π(v(hm+2i−1))− n<

L,π(v(hm+2i−1))](v(hm+2i)− v(hm+2i−1))

+ [n<
R,π(v(hm+2i))− n>

R,π(v(hm+2i))](v(hm+2i)− v(hm+2i−1))
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= (v(hm+2i)− v(hm+2i−1))

[n>
L,π(v(hm+2i−1))− n<

L,π(v(hm+2i−1)) + n<
R,π(v(hm+2i))− n>

R,π(v(hm+2i))]

= [(r − (i+m))− (m+ i− 1) + (i− 1)− (s− i)](v(hm+2i)− v(hm+2i−1))

= 0.

Case 2: r− s is odd. This is, unsurprisingly, very similar to the previous case. We
similarly split the proof into two claims.

Claim B.3. Any optimal allocation allocates the first m houses to agents in L.

The proof of this claim is exactly the same as the proof to the Claim B.1. The key
difference in this case is that m = (r − s − 1)/2 but this does not affect the proof as
we can still use the inequality k < (r−s)/2 since k < m. So we move on to the second
claim.

Claim B.4. In any optimal allocation, for any i ∈ [s], hm+2i−1 is allocated to some
agent in L and hm+2i is allocated to some agent in R.

Proof. This proof is again very similar to Claim B.2. However, there are some subtle
differences.

Assume for contradiction that the claim is not true. Let π be an optimal allocation
that satisfies Claim B.3 but not Claim B.4. Choose j as the least i where the claim
is violated. That is, either hm+2j−1 is allocated to R or hm+2j is allocated to L. In
this proof, we assume the latter has occured. The proof for the former is very similar.
In other words, both hm+2j−1 and hm+2j are allocated to some agents in L. Let
hm+2j−1, hm+2j , . . . , hm+2j+k be a set of houses allocated to agents in L such that
hm+2j+k+1 is allocated to some agent in R. Let π′ be the allocation that results from
swapping hm+2j+k and hm+2j+k+1. We can compare the envy between π′ and π:

Envy(π′, G)− Envy(π,G)

= [n>
L,π(v(hm+2j+k))− n<

L,π(v(hm+2j+k))](v(hm+2j+k+1)− v(hm+2j+k))

+ [n<
R,π(v(hm+2j+k+1))− n>

R,π(v(hm+2j+k+1))](v(hm+2j+k+1)− v(hm+2j+k))

= (v(hm+2j+k+1)− v(hm+2j+k))[n
>
L,π(v(hm+2j+k))− n<

L,π(v(hm+2j+k))

+ n<
R,π(v(hm+2j+k+1))− n>

R,π(v(hm+2j+k+1))]

= (v(hm+2j+k+1)− v(hm+2j+k))

[(r − (m+ k + 2 + j − 1))− (m+ k + 1 + j − 1) + (j − 1)− (s− j)]

= [2j − 2(k + j)− 1](v(hm+2j+k+1)− v(hm+2j+k))

= [−2k − 1](v(hm+2j+k+1)− v(hm+2j+k))

< 0.

The final inequality holds since k ≥ 0. The optimality of π has been contradicted.

Claim B.4 also implies that none of the final m+ 1 houses are allocated to agents
in R. We can therefore conclude that these houses must be allocated to agents in L
in any optimal allocation.
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Note that the optimal odd property specifies exactly which houses must be allo-
cated to L and R in any optimal allocation. Any two allocations which satisfy the
optimal odd property can only differ over which agents in L and R houses are allo-
cated to and not which houses are allocated to L and R. It is easy to see that this
difference cannot lead to a difference in envy over the complete bipartite graph.

Appendix C Technical Proofs from Section 5
Theorem 5.15. Let G be a disjoint union of cliques with arbitrary sizes, Kn1

+ . . .+
Knr

, where n1 ≥ . . . ≥ nr. Then, G is splittable (but not necessarily strongly splittable
if the ni’s are not all equal). In particular, for all 1 ≤ i < j ≤ r, in every optimal
allocation, Kni

splits Knj
.

Proof. Let π be any minimum envy allocation. Assume for contradiction that there
exist two cliques (say K and K ′) such that |K| > |K ′| and K does not receive a
contiguous set of valuations with respect to the houses in K ∪ K ′. The case where
|K| = |K ′| has been shown in Theorem 5.13. Let the houses in K ∪ K ′ have values
{a1, a2, . . . , a|K∪K′|} such that a1 < a2 < . . . < a|K∪K′|. Since each house has a unique
value, we refer to houses using their values for the rest of this proof.

By our assumptions, the houses allocated to K must be split. Therefore there must
be some houses in K ′ that are better than the houses allocated to some nodes in K
and worse than houses allocated to other nodes in K. This can be formalized as follows

π(aj) ∈ K ′ for all j ∈ [ℓ] and some ℓ ≥ 0

π(al+j) ∈ K for all j ∈ [m] and some m > 0

π(al+m+j) ∈ K ′ for all j ∈ [k] and some k > 0

π(al+m+k+1) ∈ K

We will frequently use the notation n<
K,π(x) and n>

K,π(x) (defined in Definition 2.3)
for each clique K.

Construct the allocation π′ starting at π and swapping the houses al+m+k and
al+m+k+1. For any node in K whose value is less than al+m+k+1 under π, the total
envy between them and their neighbors increases by al+m+k+1−al+m+k in π′. For any
node in K whose value is greater than al+m+k+1 under π, the total envy between them
and their neighbors decreases by al+m+k+1 − al+m+k in π′. We can show something
similar for K ′. This gives us the total change in envy as

Envy(π′, G)− Envy(π,G)

= Envy(π′,K ∪K ′)− Envy(π,K ∪K ′)

=
[
n<
K′,π(al+m+k)− n>

K′,π(al+m+k)
]
(al+m+k+1 − al+m+k)

+
[
n>
K,π(al+m+k+1)− n<

K,π(al+m+l+1)
]
(al+m+k+1 − al+m+k)

= (al+m+k+1 − al+m+k)[
n<
K′,π(al+m+k)− n>

K′,π(al+m+k) + n>
K,π(al+m+k+1)− n<

K,π(al+m+l+1)
]
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= [(l + k − 1)− (|K ′| − l − k) + (|K| − (m+ 1))−m] (al+m+k+1 − al+m+k)

= [|K| − |K ′|+ 2(l + k)− 2m− 2] (al+m+k+1 − al+m+k)

Note that due to the optimality of π, we must have Envy(π′, G)−Envy(π,G) ≥ 0. Since
al+m+k+1−al+m+k > 0 by construction, this implies |K|−|K ′|+2(l+k)−2m−2 ≥ 0.
Removing the −2, we get |K| − |K ′|+ 2(l + k)− 2m > 0. This gives us the following
observation.

Observation C.1. |K ′| − |K| − 2(l + k) + 2m < 0

Construct another allocation π′′ as follows: start at π and for every j ∈ [min{m, k}],
swap al+m+1−j with al+m+j . In each swap, we swap one house in K with one house
in K ′. Using a similar argument, we can compare the total envy of π′′ and π.

Envy(π′′, G)− Envy(π,G)

= Envy(π′′,K ∪K ′)− Envy(π,K ∪K ′)

=
[
n<
K,π(al+m+1−min{m,k})− n>

K,π(al+m) + n>
K′,π(al+m+min{m,k})− n<

K′,π(al+m+1)
] ∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)


= [(m−min{m, k})− (|K| −m) + (|K ′| − (l +min{k,m}))− l] ∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)


= [|K ′| − |K|+ 2m− 2(min{m, k}+ l)] ∑

j∈[min{m,k}]

(al+m+j − al+m+1−j)

 (C1)

Note that the second term is always strictly positive since al+m+j > al+m+1−j for all
j ∈ min{m, k}. If we show that the first term |K ′| − |K| + 2m − 2(min{m, k} + l) is
negative, we contradict the optimality of π. We have two possible cases.

Case 1: k ≤ m. In this case, (C1) reduces to

Envy(π′′, G)− Envy(π,G)

= [|K ′| − |K|+ 2m− 2(k + l)]

 ∑
j∈[min{m,k}]

(al+m+j − al+m+1−j)


From Observation C.1, the first term is negative.

Case 2: k > m. In this case, (C1) reduces to

Envy(π′′, G)− Envy(π,G)
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= [|K ′| − |K|+ 2m− 2(m+ l)]

 ∑
j∈[min{m,k}]

(al+m+j − al+m+1−j)


= [|K ′| − |K| − 2l]

 ∑
j∈[min{m,k}]

(al+m+j − al+m+1−j)


Since |K| > |K ′| and l ≥ 0, the first term is negative.

To conclude, it cannot be the case that the houses in K are split.

Theorem 5.17. If G = Kr,s for any r, s ∈ N, then G+G is strongly splittable.

Proof. Let (V = L ∪ R,E) and (V ′ = L′ ∪ R′, E′) be the set of vertices and edges of
each copy of G. There exists a bijective mapping τ : V 7→ V ′ such that for every node
v ∈ V , τ(v) ∈ L′ if and only if v ∈ L.

Let π be any allocation on G+G, we show that if π does not allocate contiguous
intervals to each component, we can create a better allocation π′.

Let a1 < a2 < . . . ar+s be the values allocated to the nodes in V and b1 < b2 <
. . . br+s be the values allocated to the nodes in V ′ in some optimal allocation π. We
rearrange the goods allocated to V ′ such that if node v ∈ V receives ai, then node
τ(v) receives br+s−i. If the allocation of a values to V is optimal, then from our
characterization of bipartite graphs (Theorem 4.6), we know that this allocation of b
houses to V ′ is optimal as well.

If each component is not allocated a contiguous interval, the least valued r + s
houses must have some a values and some b values. Let’s call the least valued r + s
houses H ′ and let’s say there are k ai’s in H ′. Therefore H ′ contains a1, a2, . . . , ak and
b1, b2, . . . , br+s−k.

We create a new allocation π′ starting at π and for all i ∈ [k], we swap ai with
br+s−i. Note that for each house among the least-valued r+ s houses, if ai is allocated
to v ∈ V , we swap the houses given to v and τ(v), thereby creating π′ from π.

Let us now compute the change in envy between π′ and π. We do this by showing
that, for every edge (u, v) ∈ E, the total sum of the envies along the edges (u, v)
and (τ(u), τ(v)) decreases. Before we go into the math, note that if (u, v) ∈ E, then
(τ(u), τ(v)) ∈ E′ by our definition of τ .

Case 1: u and v are unaffected by the swap. Then τ(u) and τ(v) are unaffected
as well. Therefore the total envy along these two edges does not change.

Case 2: u and v are both affected by the swap. Then, envyπ′(u, v) =
envyπ(τ(u), τ(v)) and envyπ(u, v) = envyπ′(τ(u), τ(v)). Therefore, the total envy along
these two edges does not change.

Case 3: Only u is affected by the swap. This means τ(v) is not affected by
the swap. The total envy along these two edges under π is

envyπ(u, v) + envyπ(τ(u), τ(v)) = (aj − ai) + (br+s−i − br+s−j)
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where j > k > i. This can be re-written as

envyπ(u, v) + envyπ(τ(u), τ(v)) = 2min{aj , br+s−i}+ |aj − br+s−i|
− 2max{ai, br+s−j}+ |ai − br+s−j |

The total envy along these two edges under π′ is

envyπ′(u, v) + envyπ′(τ(u), τ(v)) = |aj − br+s−i|+ |ai − br+s−j |

The change in envy is

2max{ai, br+s−j} − 2min{aj , br+s−i} < 0

The inequality holds since j > k > i.
When k ≥ 1, at least one edge belongs to Case 3 and so the total envy of π′ is

strictly less than the total envy of π.

Theorem 5.19. Let G be a disjoint union of symmetric complete bipartite graphs
Kn1,n1

+ Kn2,n2
+ . . . + Knℓ,nℓ

, where n1 ≥ n2 ≥ . . . ≥ nℓ. Then G is splittable
(but not necessarily strongly splittable if n1 > nℓ) and the order of splittability is
Kn1,n1

, . . . ,Knℓ,nℓ
.

Proof. We prove complete symmetric bipartite graphs are not strongly splittable in
Proposition 5.20, so we focus on proving splittability here. Consider two complete
bipartite graphs G1 = Kr,r and G2 = Ks,s such that r < s. Assume houses with
values a1, . . . a2r+2s such that a1 < . . . < a2r+2s are allocated to these two graphs.
Since house values are unique, we will say the value ai is allocated to a node j if the
unique house with value ai is allocated to the node j.

We need to show that Ks,s is allocated a contiguous interval of values in at least
one optimal allocation. Assume for contradiction that this is not true. Let π be an
allocation where

a1, . . . , aℓ1 is allocated to G1 for some ℓ1 ≥ 0

aℓ1+1, . . . , aℓ1+ℓ2 is allocated to G2 for some ℓ2 > 0

aℓ1+ℓ2+1, . . . , aℓ1+ℓ2+ℓ3 is allocated to G1 for some ℓ3 > 0

aℓ1+ℓ2+ℓ3+1 is allocated to G2 for some ℓ3 > 0

Since we assumed no optimal allocation gives a contiguous set of values to G2, all
optimal allocations must have the above structure for some ℓ1, ℓ2 and ℓ3. If there are
multiple optimal allocations, pick one such that ℓ1 is maximized. Break any further ties
by picking one such that ℓ2 is maximized. Finally, break ties by ensuring ℓ1+ ℓ2+ ℓ3 is
minimized. If there are still multiple envy minimizing allocations, pick one arbitrarily.

Since G1 and G2 are complete bipartite graphs, we refer to the nodes in the ‘left’
part of G1 and G2 using L1 and L2 respectively. Similarly, we refer to the ‘right’
part of nodes using R1 and R2. Since we assume π is optimal, the allocations to G1
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. . . . . .

aℓ1+ℓ2+ℓ3 to be
swapped with
aℓ1+ℓ2+ℓ3+1

. . . . . .

⌈
n<
G1

(aℓ1+ℓ2+ℓ3
)

2

⌉
edges

whose envy increases by
aℓ1+ℓ2+ℓ3+1 − aℓ1+ℓ2+ℓ3

after swap.

r −
⌈

n<
G1

(aℓ1+ℓ2+ℓ3
)

2

⌉
edges

whose envy decreases by
aℓ1+ℓ2+ℓ3+1 − aℓ1+ℓ2+ℓ3

after swap.
Kr,r

Figure C1: Measuring the value Envy(π′, G1 + G2) − Envy(π,G1 + G2). We assume
values are allocated in increasing order from the top to the bottom with least valued
nodes at the top of the graph and the highest valued nodes at the bottom of the graph.
Only the edges which see a change in envy are drawn. The exact change in envy for
the edges in Kr,r is described. A similar argument can be used to measure the exact
change in envy in Ks,s.

and G2 must satisfy the structural properties from Theorem 4.5. Specifically, if the
values b1, . . . , b2y are allocated to Gi for some i ∈ [2], we assume b1, b3, b5, . . . , b2y−1

are allocated to Li.
Swap aℓ1+ℓ2+ℓ3 with aℓ1+ℓ2+ℓ3+1 in π to create a new allocation π′. Let us compare

the envies of π and π′. Observe that

Envy(π′, G1 +G2)− Envy(π,G1 +G2)

= (aℓ1+ℓ2+ℓ3+1 − aℓ1+ℓ2+ℓ3)×[⌈
n<
G1

(aℓ1+ℓ2+ℓ3)

2

⌉
−
(
r −

⌈
n<
G1

(aℓ1+ℓ2+ℓ3)

2

⌉)
−
⌈
n<
G2

(aℓ1+ℓ2+ℓ3+1)

2

⌉
+

(
s−

⌈
n<
G2

(aℓ1+ℓ2+ℓ3+1)

2

⌉)]
= (aℓ1+ℓ2+ℓ3+1 − aℓ1+ℓ2+ℓ3)×

[
2

⌈
ℓ1 + ℓ3 − 1

2

⌉
− 2

⌈
ℓ2
2

⌉
+ s− r

]
(C2)

where n<
Gi,π

(x) and n>
Gi,π

(x) are defined according to Definition 2.3.
An explanation for how this expression is computed is presented in Figure C1. Note

that (C2) must be strictly positive by our choice of optimal allocation — π′ either
has a bigger ℓ2 or has a smaller ℓ1 + ℓ2 + ℓ3 than π. The first term in (C2) is always
positive, the second term only contains integers, so it must be lower bounded by 1.
This gives us the following observation:
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Observation C.2. 2
⌈
ℓ1+ℓ3−1

2

⌉
− 2

⌈
ℓ2
2

⌉
+ s− r ≥ 1.

Let us now construct a third allocation π′′ from π by swapping
{aℓ1+ℓ2−min{ℓ2,ℓ3}+1, . . . , aℓ1+ℓ2} from G2 with {aℓ1+ℓ2+1, . . . , aℓ1+ℓ2+min{ℓ2,ℓ3}} from
G1. When we swap these two sets, we ensure we swap them in order. That is,

aℓ1+ℓ2−min{ℓ2,ℓ3}+1 is swapped with aℓ1+ℓ2+1,

aℓ1+ℓ2−min{ℓ2,ℓ3}+2 is swapped with aℓ1+ℓ2+2,

and so on. Note that we swap exactly min{ℓ2, ℓ3} values and with this careful swap, the
edges between the values in each of these sets is preserved. That is, an edge between
aℓ1+ℓ2+1 and aℓ1+ℓ2+2 exists in π′′ if and only if it exists in π. Using an argument
similar to Figure C1, we can find the difference in envy between π′′ and π as:

Envy(π′′, G1 +G2)− Envy(π,G1 +G2)

= c1

[⌈
n<
G2

(aℓ1+ℓ2−min{ℓ2,ℓ3}+1)

2

⌉
−
(
s−

⌊
min{ℓ2, ℓ3}

2

⌋
−
⌈
n<
G2

(aℓ1+ℓ2−min{ℓ2,ℓ3}+1)

2

⌉)

−
⌈
n<
G1

(aℓ1+ℓ2+1)

2

⌉
+

(
r −

⌊
min{ℓ2, ℓ3}

2

⌋
−
⌈
n<
G1

(aℓ1+ℓ2+1)

2

⌉)]

+ c2

[⌊
n<
G2

(aℓ1+ℓ2−min{ℓ2,ℓ3}+1)

2

⌋
−
(
s−

⌈
min{ℓ2, ℓ3}

2

⌉
−
⌊
n<
G2

(aℓ1+ℓ2−min{ℓ2,ℓ3}+1)

2

⌋)

−
⌊
n<
G1

(aℓ1+ℓ2+1)

2

⌋
+

(
r −

⌈
min{ℓ2, ℓ3}

2

⌉
−
⌊
n<
G1

(aℓ1+ℓ2+1)

2

⌋)]

where c1 =

⌈
min{ℓ2,ℓ3}

2

⌉
−1∑

j=0

(
aℓ1+ℓ2+2j+1 − aℓ1+ℓ2−min{ℓ2,ℓ3}+2j+1

)

and c2 =

⌊
min{ℓ2,ℓ3}

2

⌋
−1∑

j=0

(
aℓ1+ℓ2+2j+2 − aℓ1+ℓ2−min{ℓ2,ℓ3}+2j+2

)
.

The only thing to keep in mind about c1 and c2 are that they are positive constants.
The above expression can be simplified as

Envy(π′′, G1 +G2)− Envy(π,G1 +G2)

= c1

[
2

⌈
ℓ2 −min{ℓ2, ℓ3}

2

⌉
− 2

⌈
ℓ1
2

⌉
+ r − s

]
+ c2

[
2

⌊
ℓ2 −min{ℓ2, ℓ3}

2

⌋
− 2

⌊
ℓ1
2

⌋
+ r − s

]
≤ (c1 + c2)
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[
max

{
2

⌈
ℓ2 −min{ℓ2, ℓ3}

2

⌉
− 2

⌈
ℓ1
2

⌉
, 2

⌊
ℓ2 −min{ℓ2, ℓ3}

2

⌋
− 2

⌊
ℓ1
2

⌋}
+ r − s

]
(C3)

Again, (C3) must be strictly positive due to our choice of optimal allocation. c1 and
c2 are positive constants, so this comes down to the second term. Note immediately
that the second term cannot be positive if ℓ2 ≤ ℓ3. Therefore, we can assume ℓ2 > ℓ3,
and using the fact that all the terms inside the second term are integers, we can make
the following observation:

Observation C.3. max
{
2
⌈
ℓ2−ℓ3

2

⌉
− 2

⌈
ℓ1
2

⌉
, 2

⌊
ℓ2−ℓ3

2

⌋
− 2

⌊
ℓ1
2

⌋}
+ r − s ≥ 1.

Adding up Observations C.2 and C.3, we get

max

{
2

⌈
ℓ2 − ℓ3

2

⌉
− 2

⌈
ℓ1
2

⌉
+ 2

⌈
ℓ1 + ℓ3 − 1

2

⌉
− 2

⌈
ℓ2
2

⌉
,

2

⌊
ℓ2 − ℓ3

2

⌋
− 2

⌊
ℓ1
2

⌋
+ 2

⌈
ℓ1 + ℓ3 − 1

2

⌉
− 2

⌈
ℓ2
2

⌉}
≥ 2

It is easy to verify that the left hand side in the above inequality is upper bounded
at 1; if there were no ceilings or floors, the left hand side would equal −1. The ceilings
and floors, adversarially set, can only increase this value by 2. Therefore, the above
expression can never be true and we have arrived at a glorious contradiction.

Proposition 5.23. There exists a 3-regular unsplittable graph.

Proof. The following lemma will prove to be useful.

Lemma C.4. For any wheel W2t+1, and any two non-rim vertices u1, u2 ∈ V (W2t+1),
there are three u1-u2 paths that are disjoint except at the endpoints.

Proof. The shortest path P0 along the outer cycle is one path from u1 to u2. Call
the remainder of the outer cycle the “longer u1-u2 path”. Now, consider the path P1

going from u1 to its mate along its diagonal, and then to u2 along the longer u1-u2

path. Also consider the path P2 that takes u1 to the mate of u2 along the cycle on
the longer u1-u2 path, and then across to u2 on the diagonal. Note that P0, P1, and
P2 are all internally disjoint paths on this graph from u1 to u2. See Figure C2 for an
illustration.

We continue with the proof. Consider the instance shown in Figure 11. Call the
inter-cluster gaps I1, I2, and I3 respectively. By analyzing the size of any minimum
cut in the given graph with exactly 401 vertices on one side, we can easily show that
every allocation will need to have at least one edge go over I1 (since there is no way to
put 401 vertices of the graph without having at least one edge across the cut). Using a
similar argument on minimum cuts with exactly 702 (resp. 903) vertices on one side,
we can also show that at least two (resp. one) edges must go over I2 (resp. I3) in every
allocation. So, the optimal envy must be at least |I1|+ 2|I2|+ |I3|. Furthermore, this
is realizable by the obvious allocation that maps the cluster sizes to the corresponding
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u1
u2

Figure C2: Illustrative example of three disjoint paths between non-rim vertices u1

and u2, drawn here in three different colors: red, blue, and green.

wheels. Therefore, any allocation that puts more than one edge on either I1 or I3, or
more than two edges on I2, must be strictly suboptimal.

Consider any optimal allocation. We first claim that W101 must be entirely inside
the fourth cluster. Otherwise, some other wheel W ′ has its vertices appearing in the
last cluster. If only the rim of W ′ appears in the last cluster, then its two neighbors
in W ′ both appear in other clusters, so that I3 has at least two edges passing over it,
contradiction. So some non-rim vertex of W ′ appears in the fourth cluster. The fourth
cluster is not enough to fit all of W ′, and so some non-rim vertex from W ′ appears in
a different cluster as well. By Lemma C.4, this requires at least three edges over I3,
contradiction. Therefore, W101 fits snugly inside the fourth cluster.

We now claim that W201 must be entirely inside the third cluster. Otherwise,
either W301 or W401 has some presence in the third cluster, say W301. If this is a
non-rim vertex, then again by Lemma C.4, we must have at least three edges over
I2, contradiction. So at best, the third cluster can have a rim vertex from W301. This
vertex’s neighbors in W301 must be on either the first or second cluster, accounting
for two edges above the interval I2. But then, the third cluster must have some vertex
from the bicycle B401,201, but also does not have enough space to fit the entire bicycle.
Hence, there must also be at least one edge over the interval I2 from the bicycle
B401,201, accounting for a total of three or more edges over I2, contradiction. A similar
argument holds when W401 has some presence in the third cluster.

Finally, we claim that the copy of W401 must be entirely inside the first cluster.
Otherwise, there is at least one vertex from W301 in the first cluster, and therefore at
least one vertex from W401 in the second cluster. Of course, the second cluster cannot
fit in at least 100 vertices from W401, and so there is at least one non-rim W401-vertex
in the second cluster (otherwise its two neighbors correspond to two edges over I1,
contradiction), and at least one non-rim W401 vertex in the first cluster, which by
Lemma C.4 is a contradiction.
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