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Abstract—The Science Demilitarized Zone (Science DMZ) is
a network environment optimized for scientific applications.
The Science DMZ model provides a reference set of network
design patterns, tuned hosts and protocol stacks dedicated to
large data transfers and streamlined security postures that
significantly improve data transfer performance, accelerating
scientific collaboration and discovery. Over the past decade,
many universities and organizations have adopted this model for
their research computing. Despite becoming increasingly popular,
there is a lack of quantitative studies comparing such a spe-
cialized network to conventional production networks regarding
network characteristics and data transfer performance. But does
a Science DMZ exhibit significantly different behavior than a
general-purpose campus network? Does it improve application
performance compared a to general-purpose network? Through
a two-year-long quantitative network measurement study, we find
that a Science DMZ exhibits lower latency, higher throughput,
and lower jitter behaviors. We also see several non-intuitive
results. For example, a DMZ may take a longer route to external
destinations and experience higher latency than the campus
network. While the DMZ model benefits researchers, the benefits
are not automatic, careful network tuning based on specific use
cases is required to realize the full potential of Science DMZs.

I. INTRODUCTION

Science and engineering applications are generating data

at an unprecedented rate, producing hundreds of terabytes

to petabytes of data within a very short time [1]–[8]. Ad-

ditionally, scientific collaborations are becoming increasingly

global, which means the researchers must transfer these

datasets over the wide area networks to various scientific

facilities [9]–[13]. Such data transfers can occur between

instruments [13], storage servers [11], [14], [15], computing

systems [14], [16], and cloud computing platforms [17], [18].

General-purpose enterprise networks are often unsuitable for

these types of data transfers since these networks prioritize

general usability and security over performance. Scientific

data transfers can face several challenges, such as bandwidth

throttling, packet loss, slow throughput due to firewalls, in-

trusion detection systems, and other middleboxes, resulting

in lower throughput, higher latency, and increased jitter and

packet loss [19] [20] [21]. These challenges ultimately result

in lower scientific productivity.

Organizations often tailor a portion of their network for

scientific data transfers to address these challenges. Such a

network is generally called a Science DMZ. Science DMZs

prioritize data transfer performance through streamlined se-

curity postures, such as simple rule-based access control lists

rather than stateful firewalls, and network tuning, such as large

Ethernet frames and larger TCP windows.

Science DMZ networks are widely deployed at US aca-

demic campuses and other countries. By the latest count,

more than 200 Science DMZs [22] are in the US alone.

While they are widely deployed, there is a lack of com-

parative, quantitative studies on how Science DMZ networks

differ from their general-purpose counterparts. To address this

gap, we have observed a general-purpose production network

alongside a Science DMZ at a university campus over the

past two years. We have deployed multiple measurement

instruments in both networks and external facilities. We have

used a number of standard network measurement tools (iperf3,

ping, traceroute) and developed our own comparison software

to measure network parameters such as RTT, Throughput,

Jitter, and Packet loss. Externally, we have looked into network

traffic to and from large cloud platforms (Google Cloud) and

the RIPE Atlas measurement platform.

These long-running measurements allowed us to understand

the nuances in performance differences on both networks. We

confirm that a Science DMZ generally provides a better envi-

ronment for data-intensive research. However, such benefits

are not automatic, and these networks may be susceptible

to higher latency, packet loss, and longer paths. Therefore,

careful network planning and optimization based on the re-

quirements of specific use cases (e.g., bulk data vs. real-time)

must be a part of such infrastructure.

II. BACKGROUND

A. General-purpose Networks vs. Science DMZs

Campus networks are typically designed to serve large

numbers of users and devices, support various applications

(e.g., email, web browsing, and video), and provide security

and quality of service [23]. Campus networks are also

equipped with firewalls to maintain network security that often

takes precedence over quality of service [23]. Because most

general-purpose data flows are small (KBs-MBs) and have a

short duration, moderate bandwidth, latency, and loss rates are

usually sufficient for these flows. Most traditional applications

on a campus network can adapt to the network’s bandwidth

and are not overly sensitive to packet loss or jitter.

On the contrary, scientific data is often at terabyte- and

petabyte-scale [3], [12], [14], [18], [23]–[25]. When packet

loss occurs during such transfers, TCP reduces throughput to



levels where it can take days to complete a single data transfer

[17], [20], [26]. Energy Sciences Network (ESNet) developed

the Science DMZ architecture to address these issues and

transfer scientific data faster. A Science DMZ is a portion of a

network designed for high-performance scientific applications.

It is often separated from the campus network either physically

or logically [23]. Science DMZs also have a different security

posture than enterprise networks. Instead of using multi-layer

firewalls as in enterprise networks, Science DMZs use simple

stateless Access Control Lists (ACLs) that allow line-rate

packet processing [23] [27]. These steps decrease packet loss

and congestion and increase throughput [27]. The Science

DMZs are also often limited to specific (and vetted) users and

devices, eliminating many of the threats on general-purpose

networks and allowing Science DMZs to be equipped with

more lenient security policies [23].

B. State of Science DMZ Deployment

The Science DMZ model, since its inception by Dart et al.

[20], has seen widespread adoption and evolution, addressing

the growing data-intensive demands of scientific research.

There are currently more than 200 [22] deployments across

various organizations. The model’s effectiveness in handling

large-scale data transfers has been recognized across various

scientific disciplines [28]–[31]. [32] discuss the implemen-

tation of medical science DMZs, providing a secure yet

high-performance network environment crucial for handling

sensitive medical data. Gonzalez et al. [29] and Liu et al.

[33] have explored the challenges and solutions in monitoring

and optimizing data transfers over international research net-

work connections. These studies underscore the importance

of efficient data transfer protocols, as also highlighted by

Kissel et al. [19], to support the high-bandwidth requirements

of global scientific collaborations. The evolution of Science

DMZs encompasses advancements in data rate management

using machine learning [34], scalable designs considering

the nature of research traffic [21], and explicit feedback

mechanisms for congestion control [35]. Gegan et al. [36]

and Mazloum et al. [37] have contributed to enhancing

security and measurement capabilities within Science DMZs

and general purpose networks, addressing the critical need for

secure data environments in the wake of cybersecurity threats.

C. Studies on Science DMZ Performance

A few studies have looked at Science DMZ and application

performance. A study by Crichigno et al. [38] provides a

comprehensive guide to a Science DMZ and describes some

performance measurements. It examines TCP attributes, their

impact on network performance, the significance of specific

data transfer tools and security measures in Science DMZs,

and how such software and equipment can create bottlenecks.

Vega et al. [35] shows that a P4-based controller that

enhances data transfer rates can significantly improve net-

work performance compared to non-dedicated Science DMZ

cyberinfrastructure by an average of 21.7%. Calyam et al.

[39] present a case study demonstrating the architecture’s

effectiveness in enhancing remote scientific collaboration and

simplifying network management for High-Throughput Com-

puting services. In [40], researchers studied the effect of the

Science DMZ on network performance. They show that the

DMZ scenario returns the overall best results compared to the

no DMZ, no firewall, and no DMZ, no firewall scenarios.

There have been several other studies on Science DMZ

performance and specific tunings [21], [34]–[37], [41]–[43].

However, these studies focused on particular aspects of a

DMZ, such as data transfer performance and network tuning

but does not demonstrate quantitative improvements of a DMZ

over general-purpose networks.

III. MEASUREMENT INFRASTRUCTURE SETUP

In this study, we summarize the tools and infrastructure we

used to compare the Science DMZ and the campus commodity

network on our university campus.

A. Measurement Tools and Infrastructure

RIPE Atlas: The RIPE Atlas network is a collection of

“probes” that conduct measurements and provide a real-time

understanding of the condition of the Internet. Probes can

conduct ping, traceroute, SSL/TLS, and other measurements

to select targets [44]. We utilize RIPE Atlas to perform ping

and traceroute to and from servers on our campus.

perfSONAR: perfSONAR (performance Service-Oriented

Network monitoring ARchitecture) is an open-source network

measurement toolkit [45]. It provides many tools within one

package to test and measure network performance. These tools

include latency, throughput, trace, and disk-to-disk measure-

ments. perfSONAR identifies areas of poor performance, by

both location within the network and by a window of time

in which they occur, and flags these problem spots. For this

study, we created dedicated perfSONAR nodes and utilized

publicly available ones.

Google Cloud: Google Cloud is a platform that is tradition-

ally not used for network measurements. However, in our case,

it is evident that several science use cases are utilizing the

Google Cloud for their computations. As such, we quantified

the network parameters to and from the cloud. Standard

tools: In addition to these distributed measurement platforms,

we utilized several standard tools, such as ping and traceroute.

Traceroute provides the option to use both UDP and ICMP,

and we utilized both. For performance measurements, we

utilized iPerf3 [45] - a command-line tool that measures

the throughput between two IP endpoints. It also returns

bandwidth, throughput, packet loss, and jitter from the tests.

Finally, we used tcpdump, libpcap and Wireshark to capture

and analyze traffic traces.

B. Measurement Servers

For these measurements, we created measurement servers

within the campus network as well as on the DMZ. Figures

1 and 2 show these servers. The measurement server on the

campus network is referred to as Leo. Leo ran a perfSONAR

instance and had installed standard tools such as iperf3, ping,





DTN1 to DTN2, and from both Leo and DTN1 to the gateway.

Ping is designated to send only ten packets during the test.

4) BGP Experiments: For BGP experiments, we utilized a

BGP dump from our Science DMZ BGP border router, which

we manage. We obtained the BGP routes from our upstream

provider on the campus network.

E. Data Analysis

We parsed the collected data from ping, traceroute, and

iperf3 into JSON and used Pandas, Seaborn, and Matplotlib

to analyze and graph the results.

We examined the ping data to interpret latency, packet loss,

and jitter. We analyzed the latency by taking all round-trip

time (RTT) occurrences and graphing them with a Cumulative

Distribution Function (CDF). We plotted daily packet loss

by dividing the sum of all packets lost over a day by all

packets sent over a day. We determined jitter by finding the

difference in latency of subsequent packets. The jitter is then

averaged daily and plotted with the standard deviation from

that average.

We used traceroute data to calculate network latency and

hop counts associated with network paths. We plot this by cat-

egorizing the measurements by the number of hops traversed

in the network path and then averaging the latency observed

for each route length.

Finally, we used iperf3 and downloaded datasets for

throughput insight. We plot this by averaging the bitrates from

each day, categorizing them into “sender” and ”receiver,” and

then plotting the averages per day.

IV. RESULTS

In this section, we discuss the comparative results from our

experiments. We ran our experiments at regular intervals, as

we described in the previous section.

A. Path Lengths

Different upstream providers serve the DMZ and the com-

modity network in this study. A commercial ISP serves the

campus network while the DMZ is served by Internet2, which

is a specialized network for research. These experiments

compare the path lengths of network destinations to/from

internal and external vantage points. Figures 3a and 3d show

the average latency and path lengths between RIPE Atlas, Leo

(located in the campus network), perfSONAR1, and DTN1

(both located in the DMZ). In both experiments, the maximum

hop counts are 19 hops, and the minimum is 8 hops.

The latency and hop counts are lower between these servers

and GCP, shown in Figures 3b and 3e. The hop count to

these servers is 10 hops compared to 19 from RIPE Atlas.

RIPE probes are hosted by various organizations and served by

various ISPs. However, Google has a more optimized peering

presence, leading to lower hop counts. The latency between

GCP and these servers is also lower. Both for the DMZ and

the campus network, the maximum latency is 300ms. But the

DMZ exhibits lower latency at all route lengths in common

with the campus network by ∼3% - 6.78%.

As exhibited in Figures 3c and 3f, when traffic is outbound

to external perfSONAR nodes, Leo experiences routes with

ranges 1-2 hops shorter than DMZ routes, and there is a point

when the commodity network performs faster than the DMZ

by 12.5% at 10 hops. However, the DMZ tends to have a

latency 20% - 36.7% lower than Leo, exclusively comparing

common path lengths. Plots of the two DMZ nodes are very

similar for this experiment, so Figure 3f was selected to

represent both nodes. However, we noticed one difference.

The DTN1 node on the DMZ has a latency, at the longest

path length of 14 hops, that is ∼6.75% lower than that

of the perfSONAR1 node on the DMZ. In these outbound

experiments, the path lengths are between 7-12 hops on the

campus network and 9-14 hops on the DMZ side. Since IP

routing can be asymmetric, there is a mismatch between the

hop counts from the inbound and the outbound experiments.

Takeaways: Given that a specialized research network

serves the DMZ, Internet2, we expected this to have lower

hop counts for inbound and outbound traffic. However, the

DMZ experiments consistently show higher hop counts than

the campus network. This observation is critical for delay-

sensitive research applications, such as AR-VR, since moving

them into the DMZ will potentially increase their hop count,

resulting in end-to-end delay.

We conclude that just placing research use cases into

a DMZ may not automatically improve their perfor-

mance/latency. Careful discussions and planning with up-

stream providers are needed to optimize routing and/or physi-

cal path. On our campus, we discovered the upstream provider

routing traffic using a longer but less congested physical path

rather than a short but more heavily used physical path.

B. Latency

Comparing the distribution in latency in Figures 3a-3f, we

find that the latencies are between 100-400ms on the campus

network and 50-600ms on the DMZ. There is a significant

spike in latency at the penultimate hop (DMZ gateway) for

the DMZ experiments. More interestingly, the latencies are

slightly higher on the DMZ for outbound experiments since

the paths are typically longer. On the paths with higher hop

counts, both the campus network and the DMZ experience

similar latency as Figures 3c and 3f show.

Figures 4a-4c compare the latency for inbound WAN traffic

from RIPE Atlas and GCP and for outbound WAN traffic to

perfSONAR nodes. The 95 percentile latency from RIPE Atlas

to both the DMZ and campus network is around 80 ms. The

95 percentile latency from GCP to the campus network is

around 35 ms, and to the DMZ is near 37 ms. This can again

be attributed to better peering provided by GCP.

Based on Figures 3a and 3d, when traffic is inbound from

RIPE Atlas, the range of hops is the same to reach Leo and

the two DMZ nodes. Comparing only standard path lengths,

both nodes on the DMZ have similar latency, represented by

Figure 3d. A difference in latency was noted when the route

averaged 16 hops for the DMZ nodes. At that point, the DTN1

node had 11% lower latency. Both DMZ nodes often exhibit



(a) Latency and Path Lengths from RIPE
Atlas to Campus Network

(b) Latency and Path Lengths from GCP to
Campus Network

(c) Latency and Path Lengths from Campus
Network to external perfSONAR nodes

(d) Latency and Path Lengths from RIPE
Atlas to DMZ

(e) Latency and Path Lengths from GCP to
DMZ

(f) Latency and Path Lengths from DMZ to
external perfSONAR nodes

Fig. 3: Comparison of path lengths from different vantage points

34-73% lower latency than Leo, but Leo has path lengths that

have 13-30% lower latency than the DMZ.

Based on Figures 3b and 3e, when traffic is inbound from

Google Cloud, both nodes on the DMZ tend to have similar

latency, with an occasional ∼2% difference. Due to close

similarities in their plots, only Figure 3e represents the DMZ

nodes for this experiment. The campus network tends to have

similar latency to the DMZ or higher latency by ∼2% - 24%.

For the outbound experiments presented in Figure 4c, 95

percentile latency to external perfSONAR nodes is also around

35 ms on the DMZ side. On the campus network , the 95

percentile latency is near 55 ms. When traffic is outbound to

perfSONAR nodes, both nodes on the DMZ exhibit similar

latency, while the campus network experiences latency that is

30.43% - 83% slower.

Internally, we find the latency between the campus and

DMZ nodes to be very low. However, given that the path

length is minimal, the effect of the firewall is really pro-

nounced here. Most pings between campus network servers

and the DMZ exhibit a 10ms delay. The inline firewall and

access control lists (ACLs) add 8ms latency to each packet,

which is very large. Most of these additional delays can be

attributed to the firewall and packet inspection middleware.

Takeaway: Both the campus network and the DMZ exhibit

similar latency but the campus network occasionally shows

lower average latency by as much as ∼20ms (5% - 30.5%).

We find the measurements often get delayed on the DMZ

(e.g., pings not arriving), which affects results poorly. For

internal measurements, we find that firewalls negatively affect

performance, even when measurement boxes are placed on the

same campus/data center.

C. Packet Loss

The DMZ experiences more packet loss than the campus

network for inbound traffic from RIPE Atlas. While Leo

exhibits a period of 100% packet loss due to the campus

node being down, as Figure 5a shows, both nodes of the DMZ

experience 50% genuine packet loss even when the network

was up. However, the packet loss is more consistent on the

campus network, where we can observe 1-2% packet losses.

The perfSONAR1 node on the DMZ exhibits more packet

loss than the DTN1 node on the DMZ; it loses ∼5% more

packets than DTN1 over three months, as Figure 5a shows.

This is potentially because more experiments were conducted

on the perfSONAR1 node than on DTN1. When traffic is

incoming from Google Cloud, there is no packet loss pattern

across DMZ or campus network. When traffic is outbound to

external perfSONAR nodes, the campus network experiences

more packet loss than the DMZ, but the perfSONAR1 node ex-

periences more packet loss than the DTN1 node. perfSONAR1

exhibits ∼2% more packet loss than DTN1. The campus

network exhibits ∼.2% more packet loss than perfSONAR1

and ∼5.7% more packet loss than DTN1 as Figures 5b shows.

Takeaways: The campus network experiences more regular

packet loss. Firewalls and middleboxes contribute to these

packet loss events. Packet loss also occurs on the outbound

paths from campus, again, potentially due to the presence

of firewalls. This observation is important since large data

transfers are sensitive to packet loss. Placing research use

cases on a shared campus network will affect data transfer

performance. Such use cases should be placed in a DMZ

network, which has a lower loss rate due to the simplified

nature of such networks.



(a) Latency comparison between RIPE Atlas
to campus and RIPE Atlas to DMZ nodes

(b) Latency from GCP to campus and DMZ
nodes

(c) Latency from campus and DMZ to external
perfSONAR nodes

(a) Packet loss from RIPE Atlas to campus and DMZ nodes (b) Packet loss from campus/DMZ to external perfSONAR nodes

D. Jitter

Jitter is an important matrix for video and other real-

time applications. In these experiments, we compare the jitter

between the campus network and the DMZ.

When traffic is inbound from RIPE Atlas, Leo, the campus

node, exhibits lower average jitter than the DTN1 or perf-

SONAR1 nodes as Figures 6d and 6e show. Jitter on the

campus route tends to be 60-78% lower than on the DMZ

routes on average. DTN1 tends to exhibit higher variation

in its daily jitter than perfSONAR1 by as much as 37

milliseconds, but the two DMZ nodes exhibit similar overall

performance.

When traffic is inbound from GCP to Leo and the DMZ

nodes, all three routes exhibit similar average jitter patterns

between 0-1 milliseconds, only ever differing by fractions of

milliseconds. Figure 6c represents the average jitter pattern,

and differences in standard deviation from all three nodes

are noted. Leo’s route often experiences more deviation in its

jitter than the DMZ nodes by as much as two milliseconds.

The DTN1 node and perfSONAR1 node experienced a similar

jitter pattern, so only the perfSONAR1 plot was selected to

convey this experiment. However, the two nodes’ difference

in variation was noted. The DTN1 node experiences more

deviation than the perfSONAR1 node by as much as 1.5

milliseconds.

When traffic is outbound to perfSONAR nodes, as shown in

Figures 6a and 6b, Leo and the DMZ nodes typically have an

average jitter between 0-1 milliseconds. However, Leo often

reaches higher jitter rates up to 10-63 milliseconds greater

than the DMZ nodes.

Takeaways: Campus networks experience more jitter than

their DMZ counterparts. The average jitter on the campus

network is higher due to a higher number of competing flows.

E. Data Transfer Throughput

One of the main reasons for creating DMZs is the higher

data transfer rate that it enables. This section compares data

transfer rates between the DMZ and the campus network. As

mentioned earlier, for these tests, we downloaded publicly

available Linux ISOs. We performed both experiments back to

back to reduce variations in network conditions. Additionally,

we did not tune the TCP stacks on the hosts. While such tuning

significantly improves the data transfer rates, we wanted to

establish a baseline comparison. Further tuning will improve

data transfer performance in both DMZ and campus networks.

As Figure 7a shows, the average throughput was much

higher on the DMZ when compared to the campus network.

The host on the campus network could achieve only 50Mbps,

while the host on the DMZ achieved close to 1Gbps. The

slower data transfers are a result of packet loss and in-line

firewall. On the other hand, the DMZ performs well since it

only uses ACLs, and the loss rate is also low.

We also looked at the TCP window sizes for these transfers,

shown in Figures 7b and 7c. We looked at both the “Bytes

out” window size (bytes in flight) and the received window

size, and the DTN had more oversized windows in both cases.

The received window size was larger on Leo several times, but

the throughput was low. This observation is consistent with

what we would expect on a lossy link. Figure 7d corroborates

these observations. We ran regular iperf3 tests between hosts



(a) Jitter observed from Campus Network to external perfSONAR
nodes

(b) Jitter observed from DMZ to external perfSONAR nodes

(c) Jitter observed from GCP to DMZ (d) Jitter observed from RIPE Atlas to Campus Network

(e) Jitter observed from RIPE Atlas to DMZ (f) Jitter observed from Campus to DMZ

Fig. 6: Jitter Comparison

on Google Cloud, DMZ, and the campus network. The DMZ

host consistently outperforms the campus host in both upload

and download performance.

Takeaways: The general purpose network performs signif-

icantly worse than a DMZ regarding file transfer performance

since it has more packet loss, the TCP window is smaller, and

firewalls add latency to the packets.

F. BGP Path Comparison

This section compares the BGP path lengths between the

DMZ and the campus network. We downloaded the BGP

tables from the DMZ BGP router and campus ISP’s BGP

router. First, we noticed that the commercial ISP had more

additional routes than the Science DMZ router. The campus

network had 715,810 BGP routes compared to 94,773 on the

Science DMZ router. The campus BGP table also had three

entries per destination as backup routes. We believe these are

artifacts of BGP configurations. Other than having more route

options in case of a failure and the capability of better load

balancing, more BGP routes provide no additional advantages.

We then compared BGP hop counts between these net-

works. Figure 7e shows the distribution. The general purpose

network generally had a large number of paths with hop counts

six or less (note the split Y axis). The DMZ also showed

similar patterns. Since the DMZ had less number of routes,

we separated the intersection of these two tables and compared

them in Figure 7f. We found that the path lengths for the DMZ

were slightly lower for shorter-length paths (hop counts <3).

For other DMZ routes, the hop count was larger than that of

the campus routes. While BGP and IP path lengths are not

always strictly correlated, these observations corroborate our

findings in the previous experiments.

Takeaways: The DMZ has less path diversity and longer

path lengths than the campus network. While this may not

directly affect performance, the resiliency of the DMZ can

be improved by using additional fallback routes. Further, the

path length can be reduced by creating better peering, which

requires negotiation with the upstream provider.

V. CONCLUSIONS

Science DMZs represent a paradigm shift in network de-

sign, tailored explicitly for scientific applications and distinct

from traditional campus or general-purpose networks. The

core principles of the Science DMZ, such as optimized paths

for large data transfers and minimized security interference,

position it as an advantageous environment for research and

scientific collaboration. Over recent years, its adoption by

numerous universities and organizations highlights its value



(a) Average daily throughput observed from
Data Transfer Experiments

(b) Average daily “bytes out” window size
observed from Data Transfer Experiments

(c) Average daily “received” window size ob-
served from Data Transfer Experiments

(d) Average daily throughput observed from
iperf3 experiments to GCP

(e) BGP Path Lengths (f) BGP Path Lengths

Fig. 7: Comparative Analysis of Data Transfer Metrics and BGP Path Lengths. DTN1 is a Data Transfer Node on the DMZ,

Leo is a server on the Campus Network

in the academic and research communities. Our compre-

hensive study over two years presents a nuanced picture.

We confirm that the Science DMZ exhibits lower latency,

higher throughput, and better file transfer performance. Packet

loss, smaller TCP windows, and added latency from firewalls

in campus networks significantly hinder their efficiency in

handling large-scale data transfers.

Science DMZs are not without limitations. We observed

non-intuitive results such as higher latency in specific scenar-

ios and increased hop counts compared to campus networks.

These findings suggest that while the Science DMZ can

enhance certain aspects of network performance, it may not

uniformly outperform campus networks in all areas, particu-

larly in delay-sensitive applications like AR/VR. Our study

reveals that the DMZ has less path diversity and longer

path lengths than campus networks. While this impacts per-

formance, strategic enhancements, such as developing better

peering agreements and incorporating fallback routes, could

mitigate these limitations. In summary, the Science DMZ

model offers distinct advantages for specific research appli-

cations. However, it is not a one-size-fits-all solution. Such

deployments must be carefully tailored to the particular needs

and use cases of the communities they serve.
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