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Abstract—The Science Demilitarized Zone (Science DMZ) is
a network environment optimized for scientific applications.
The Science DMZ model provides a reference set of network
design patterns, tuned hosts and protocol stacks dedicated to
large data transfers and streamlined security postures that
significantly improve data transfer performance, accelerating
scientific collaboration and discovery. Over the past decade,
many universities and organizations have adopted this model for
their research computing. Despite becoming increasingly popular,
there is a lack of quantitative studies comparing such a spe-
cialized network to conventional production networks regarding
network characteristics and data transfer performance. But does
a Science DMZ exhibit significantly different behavior than a
general-purpose campus network? Does it improve application
performance compared a to general-purpose network? Through
a two-year-long quantitative network measurement study, we find
that a Science DMZ exhibits lower latency, higher throughput,
and lower jitter behaviors. We also see several non-intuitive
results. For example, a DMZ may take a longer route to external
destinations and experience higher latency than the campus
network. While the DMZ model benefits researchers, the benefits
are not automatic, careful network tuning based on specific use
cases is required to realize the full potential of Science DMZs.

I. INTRODUCTION

Science and engineering applications are generating data
at an unprecedented rate, producing hundreds of terabytes
to petabytes of data within a very short time [1]-[8]. Ad-
ditionally, scientific collaborations are becoming increasingly
global, which means the researchers must transfer these
datasets over the wide area networks to various scientific
facilities [9]-[13]. Such data transfers can occur between
instruments [13], storage servers [11], [14], [15], computing
systems [14], [16], and cloud computing platforms [17], [18].
General-purpose enterprise networks are often unsuitable for
these types of data transfers since these networks prioritize
general usability and security over performance. Scientific
data transfers can face several challenges, such as bandwidth
throttling, packet loss, slow throughput due to firewalls, in-
trusion detection systems, and other middleboxes, resulting
in lower throughput, higher latency, and increased jitter and
packet loss [19] [20] [21]. These challenges ultimately result
in lower scientific productivity.

Organizations often tailor a portion of their network for
scientific data transfers to address these challenges. Such a
network is generally called a Science DMZ. Science DMZs
prioritize data transfer performance through streamlined se-
curity postures, such as simple rule-based access control lists

rather than stateful firewalls, and network tuning, such as large
Ethernet frames and larger TCP windows.

Science DMZ networks are widely deployed at US aca-
demic campuses and other countries. By the latest count,
more than 200 Science DMZs [22] are in the US alone.
While they are widely deployed, there is a lack of com-
parative, quantitative studies on how Science DMZ networks
differ from their general-purpose counterparts. To address this
gap, we have observed a general-purpose production network
alongside a Science DMZ at a university campus over the
past two years. We have deployed multiple measurement
instruments in both networks and external facilities. We have
used a number of standard network measurement tools (iperf3,
ping, traceroute) and developed our own comparison software
to measure network parameters such as RTT, Throughput,
Jitter, and Packet loss. Externally, we have looked into network
traffic to and from large cloud platforms (Google Cloud) and
the RIPE Atlas measurement platform.

These long-running measurements allowed us to understand
the nuances in performance differences on both networks. We
confirm that a Science DMZ generally provides a better envi-
ronment for data-intensive research. However, such benefits
are not automatic, and these networks may be susceptible
to higher latency, packet loss, and longer paths. Therefore,
careful network planning and optimization based on the re-
quirements of specific use cases (e.g., bulk data vs. real-time)
must be a part of such infrastructure.

II. BACKGROUND
A. General-purpose Networks vs. Science DMZs

Campus networks are typically designed to serve large
numbers of users and devices, support various applications
(e.g., email, web browsing, and video), and provide security
and quality of service [23]. Campus networks are also
equipped with firewalls to maintain network security that often
takes precedence over quality of service [23]. Because most
general-purpose data flows are small (KBs-MBs) and have a
short duration, moderate bandwidth, latency, and loss rates are
usually sufficient for these flows. Most traditional applications
on a campus network can adapt to the network’s bandwidth
and are not overly sensitive to packet loss or jitter.

On the contrary, scientific data is often at terabyte- and
petabyte-scale [3], [12], [14], [18], [23]-[25]. When packet
loss occurs during such transfers, TCP reduces throughput to



levels where it can take days to complete a single data transfer
[17], [20], [26]. Energy Sciences Network (ESNet) developed
the Science DMZ architecture to address these issues and
transfer scientific data faster. A Science DMZ is a portion of a
network designed for high-performance scientific applications.
It is often separated from the campus network either physically
or logically [23]. Science DMZs also have a different security
posture than enterprise networks. Instead of using multi-layer
firewalls as in enterprise networks, Science DMZs use simple
stateless Access Control Lists (ACLs) that allow line-rate
packet processing [23] [27]. These steps decrease packet loss
and congestion and increase throughput [27]. The Science
DMZs are also often limited to specific (and vetted) users and
devices, eliminating many of the threats on general-purpose
networks and allowing Science DMZs to be equipped with
more lenient security policies [23].

B. State of Science DMZ Deployment

The Science DMZ model, since its inception by Dart et al.
[20], has seen widespread adoption and evolution, addressing
the growing data-intensive demands of scientific research.
There are currently more than 200 [22] deployments across
various organizations. The model’s effectiveness in handling
large-scale data transfers has been recognized across various
scientific disciplines [28]-[31]. [32] discuss the implemen-
tation of medical science DMZs, providing a secure yet
high-performance network environment crucial for handling
sensitive medical data. Gonzalez et al. [29] and Liu et al.
[33] have explored the challenges and solutions in monitoring
and optimizing data transfers over international research net-
work connections. These studies underscore the importance
of efficient data transfer protocols, as also highlighted by
Kissel et al. [19], to support the high-bandwidth requirements
of global scientific collaborations. The evolution of Science
DMZs encompasses advancements in data rate management
using machine learning [34], scalable designs considering
the nature of research traffic [21], and explicit feedback
mechanisms for congestion control [35]. Gegan et al. [36]
and Mazloum et al. [37] have contributed to enhancing
security and measurement capabilities within Science DMZs
and general purpose networks, addressing the critical need for
secure data environments in the wake of cybersecurity threats.

C. Studies on Science DMZ Performance

A few studies have looked at Science DMZ and application
performance. A study by Crichigno et al. [38] provides a
comprehensive guide to a Science DMZ and describes some
performance measurements. It examines TCP attributes, their
impact on network performance, the significance of specific
data transfer tools and security measures in Science DMZs,
and how such software and equipment can create bottlenecks.
Vega et al. [35] shows that a P4-based controller that
enhances data transfer rates can significantly improve net-
work performance compared to non-dedicated Science DMZ
cyberinfrastructure by an average of 21.7%. Calyam et al.
[39] present a case study demonstrating the architecture’s

effectiveness in enhancing remote scientific collaboration and
simplifying network management for High-Throughput Com-
puting services. In [40], researchers studied the effect of the
Science DMZ on network performance. They show that the
DMZ scenario returns the overall best results compared to the
no DMZ, no firewall, and no DMZ, no firewall scenarios.
There have been several other studies on Science DMZ
performance and specific tunings [21], [34]-[37], [41]-[43].
However, these studies focused on particular aspects of a
DMZ, such as data transfer performance and network tuning
but does not demonstrate quantitative improvements of a DMZ
over general-purpose networks.

III. MEASUREMENT INFRASTRUCTURE SETUP

In this study, we summarize the tools and infrastructure we
used to compare the Science DMZ and the campus commodity
network on our university campus.

A. Measurement Tools and Infrastructure

RIPE Atlas: The RIPE Atlas network is a collection of
“probes” that conduct measurements and provide a real-time
understanding of the condition of the Internet. Probes can
conduct ping, traceroute, SSL/TLS, and other measurements
to select targets [44]. We utilize RIPE Atlas to perform ping
and traceroute to and from servers on our campus.

perfSONAR: perfSONAR (performance Service-Oriented
Network monitoring ARchitecture) is an open-source network
measurement toolkit [45]. It provides many tools within one
package to test and measure network performance. These tools
include latency, throughput, trace, and disk-to-disk measure-
ments. perfSONAR identifies areas of poor performance, by
both location within the network and by a window of time
in which they occur, and flags these problem spots. For this
study, we created dedicated perfSONAR nodes and utilized
publicly available ones.

Google Cloud: Google Cloud is a platform that is tradition-
ally not used for network measurements. However, in our case,
it is evident that several science use cases are utilizing the
Google Cloud for their computations. As such, we quantified
the network parameters to and from the cloud. Standard
tools: In addition to these distributed measurement platforms,
we utilized several standard tools, such as ping and traceroute.
Traceroute provides the option to use both UDP and ICMP,
and we utilized both. For performance measurements, we
utilized iPerf3 [45] - a command-line tool that measures
the throughput between two IP endpoints. It also returns
bandwidth, throughput, packet loss, and jitter from the tests.
Finally, we used tcpdump, libpcap and Wireshark to capture
and analyze traffic traces.

B. Measurement Servers

For these measurements, we created measurement servers
within the campus network as well as on the DMZ. Figures
1 and 2 show these servers. The measurement server on the
campus network is referred to as Leo. Leo ran a perfSONAR
instance and had installed standard tools such as iperf3, ping,



and traceroute. On the Science DMZ, we used three other
nodes: DTN1, DTN2, and perfSONAR1. We used DTN1 and
DTN2 for data transfer experiments and perfSONARI1 for
network measurement experiments. Externally, we used RIPE
Atlas [44], publicly available perfSONAR nodes and Google
Cloud (GCP) for our measurements.
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C. Network Routes

A commercial ISP provided Layer3 network connectivity
to the campus network. Internet2 [46], a network specifically
designed to support scientific applications, provided Layer3
connectivity to the Science DMZ. Internally, the campus
network was connected to the provider using a 10Gbps link.
All traffic passes through a gateway/firewall box that performs
packet inspection. The Science DMZ network was connected
to Internet2 at 10Gbps. This connection was served by a
gateway and a security appliance using access control lists
for security. The campus and the Science DMZ network
were logically separate. Even though they shared physical
fibers, these networks used their own VLANSs and traffic was
completely separated. Figure 1 shows the external routes. The
colored lines in Figure 1 show external (logical) connectivity
to external measurement points (mainly RIPE Atlas and
GCP). Figure 2 shows local connections between Leo, DTN,
perfSONAR, and the gateways.

D. Experiments

TABLE I: Measurement parameters for comparative analysis.

‘ LAN-side Measurements ‘ WAN-Side Measurements |

Throughput
RTT between nodes

Everything observed on LAN side
BGP routes to/from external van-
tage points

RTT between the node | Path length between campus and
and the gateway external vantage points

Jitter -

Packet loss -

We summarize our measurement experiments in Table L.
For this work, we conducted “ping” tests to measure network
latency, packet loss, and jitter. We utilized “traceroute” to
collect latency associated with network paths and identify
intermediate hops between the source and destination nodes
within each route. We utilized Iperf3 to observe throughput
between external sources, the campus network, and the DMZ.

We originated these tests inbound from RIPE Atlas and
Google Cloud Platform (GCP) virtual machines and outbound
from the three local nodes (Leo, perfSONARI1, and DTN1).

1) Internal clients — External servers Experiments: Tests
are run with one node of the campus network (Leo) and
two nodes of the DMZ (perfSONAR1 and DTN1) posing as
clients.

We run ping and traceroute to 12 select perfSONAR nodes
within the United States every 30 minutes. We send only
ten packets during these tests so as not to overwhelm the
external servers. We also used these clients to perform ping
and traceroute from GCP VM instances hosted within the
United States.

We used Iperf3 throughput experiments between two on-
campus clients (Leo and perfSONARI1) and GCP VM in-
stances, which were executed every 12 hours.

We perform the data transfer experiments using Leo and
DTNI1 as clients. We downloaded Linux ISOs from publicly
available mirrors every four hours on both nodes and captured
the packet headers using tcpdump. These packet capture
datasets allowed us to analyze interpacket delay, packet loss,
round-trip time, packet retransmissions and download time.
We observed the average daily value of these metrics in
Wireshark, and we calculated the average RTT and interpacket
delay externally and then plotted the daily values from DTN
and Leo side-by-side.

2) External Client — Internal Server Experiments: We ran
ping tests from RIPE Atlas to the local nodes every hour
and traceroute tests every six hours. The ping and traceroute
measurements send three packets of size 48 bytes during each
execution. We executed a set of five experiments for each
of these tests. For each experiment, we utilized five different
RIPE Atlas source probes located within the United States.

Using the same method, we also run the ping and traceroute
tests from GCP and the local nodes. Every 30 minutes, ping
and traceroute tests run from GCP to the local nodes.
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3) Internal Clients <> Internal Servers Experiments: As
previously mentioned, ping tests are performed to measure
network latency, packet loss, and jitter, and traceroute tests are
conducted to collect latency associated with network paths and
identify intermediate hops between the source and destination
nodes within each route. These tests are executed between the
local network nodes (Leo, perfSONARI1, DTN1, DTN2), as
well as between select local network nodes and the gateway
to the campus network.

Ping and traceroute tests are executed on these routes using
the same method. Every 30 minutes, ping and traceroute tests
run from Leo to DTN, from perfSONARI to DTN, from



DTNI1 to DTN2, and from both Leo and DTN to the gateway.
Ping is designated to send only ten packets during the test.

4) BGP Experiments: For BGP experiments, we utilized a
BGP dump from our Science DMZ BGP border router, which
we manage. We obtained the BGP routes from our upstream
provider on the campus network.

E. Data Analysis

We parsed the collected data from ping, traceroute, and
iperf3 into JSON and used Pandas, Seaborn, and Matplotlib
to analyze and graph the results.

We examined the ping data to interpret latency, packet loss,
and jitter. We analyzed the latency by taking all round-trip
time (RTT) occurrences and graphing them with a Cumulative
Distribution Function (CDF). We plotted daily packet loss
by dividing the sum of all packets lost over a day by all
packets sent over a day. We determined jitter by finding the
difference in latency of subsequent packets. The jitter is then
averaged daily and plotted with the standard deviation from
that average.

We used traceroute data to calculate network latency and
hop counts associated with network paths. We plot this by cat-
egorizing the measurements by the number of hops traversed
in the network path and then averaging the latency observed
for each route length.

Finally, we used iperf3 and downloaded datasets for
throughput insight. We plot this by averaging the bitrates from
each day, categorizing them into “sender” and “receiver,” and
then plotting the averages per day.

IV. RESULTS

In this section, we discuss the comparative results from our
experiments. We ran our experiments at regular intervals, as
we described in the previous section.

A. Path Lengths

Different upstream providers serve the DMZ and the com-
modity network in this study. A commercial ISP serves the
campus network while the DMZ is served by Internet2, which
is a specialized network for research. These experiments
compare the path lengths of network destinations to/from
internal and external vantage points. Figures 3a and 3d show
the average latency and path lengths between RIPE Atlas, Leo
(located in the campus network), perfSONARI, and DTNI1
(both located in the DMZ). In both experiments, the maximum
hop counts are 19 hops, and the minimum is 8 hops.

The latency and hop counts are lower between these servers
and GCP, shown in Figures 3b and 3e. The hop count to
these servers is 10 hops compared to 19 from RIPE Atlas.
RIPE probes are hosted by various organizations and served by
various ISPs. However, Google has a more optimized peering
presence, leading to lower hop counts. The latency between
GCP and these servers is also lower. Both for the DMZ and
the campus network, the maximum latency is 300ms. But the
DMZ exhibits lower latency at all route lengths in common
with the campus network by ~3% - 6.78%.

As exhibited in Figures 3c and 3f, when traffic is outbound
to external perfSONAR nodes, Leo experiences routes with
ranges 1-2 hops shorter than DMZ routes, and there is a point
when the commodity network performs faster than the DMZ
by 12.5% at 10 hops. However, the DMZ tends to have a
latency 20% - 36.7% lower than Leo, exclusively comparing
common path lengths. Plots of the two DMZ nodes are very
similar for this experiment, so Figure 3f was selected to
represent both nodes. However, we noticed one difference.
The DTNI node on the DMZ has a latency, at the longest
path length of 14 hops, that is ~6.75% lower than that
of the perfSONARI1 node on the DMZ. In these outbound
experiments, the path lengths are between 7-12 hops on the
campus network and 9-14 hops on the DMZ side. Since IP
routing can be asymmetric, there is a mismatch between the
hop counts from the inbound and the outbound experiments.

Takeaways: Given that a specialized research network
serves the DMZ, Internet2, we expected this to have lower
hop counts for inbound and outbound traffic. However, the
DMZ experiments consistently show higher hop counts than
the campus network. This observation is critical for delay-
sensitive research applications, such as AR-VR, since moving
them into the DMZ will potentially increase their hop count,
resulting in end-to-end delay.

We conclude that just placing research use cases into
a DMZ may not automatically improve their perfor-
mance/latency. Careful discussions and planning with up-
stream providers are needed to optimize routing and/or physi-
cal path. On our campus, we discovered the upstream provider
routing traffic using a longer but less congested physical path
rather than a short but more heavily used physical path.

B. Latency

Comparing the distribution in latency in Figures 3a-3f, we
find that the latencies are between 100-400ms on the campus
network and 50-600ms on the DMZ. There is a significant
spike in latency at the penultimate hop (DMZ gateway) for
the DMZ experiments. More interestingly, the latencies are
slightly higher on the DMZ for outbound experiments since
the paths are typically longer. On the paths with higher hop
counts, both the campus network and the DMZ experience
similar latency as Figures 3c and 3f show.

Figures 4a-4c compare the latency for inbound WAN traffic
from RIPE Atlas and GCP and for outbound WAN traffic to
perfSONAR nodes. The 95 percentile latency from RIPE Atlas
to both the DMZ and campus network is around 80 ms. The
95 percentile latency from GCP to the campus network is
around 35 ms, and to the DMZ is near 37 ms. This can again
be attributed to better peering provided by GCP.

Based on Figures 3a and 3d, when traffic is inbound from
RIPE Atlas, the range of hops is the same to reach Leo and
the two DMZ nodes. Comparing only standard path lengths,
both nodes on the DMZ have similar latency, represented by
Figure 3d. A difference in latency was noted when the route
averaged 16 hops for the DMZ nodes. At that point, the DTN
node had 11% lower latency. Both DMZ nodes often exhibit
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34-73% lower latency than Leo, but Leo has path lengths that
have 13-30% lower latency than the DMZ.

Based on Figures 3b and 3e, when traffic is inbound from
Google Cloud, both nodes on the DMZ tend to have similar
latency, with an occasional ~2% difference. Due to close
similarities in their plots, only Figure 3e represents the DMZ
nodes for this experiment. The campus network tends to have
similar latency to the DMZ or higher latency by ~2% - 24%.

For the outbound experiments presented in Figure 4c, 95
percentile latency to external perfSONAR nodes is also around
35 ms on the DMZ side. On the campus network , the 95
percentile latency is near 55 ms. When traffic is outbound to
perfSONAR nodes, both nodes on the DMZ exhibit similar
latency, while the campus network experiences latency that is
30.43% - 83% slower.

Internally, we find the latency between the campus and
DMZ nodes to be very low. However, given that the path
length is minimal, the effect of the firewall is really pro-
nounced here. Most pings between campus network servers
and the DMZ exhibit a 10ms delay. The inline firewall and
access control lists (ACLs) add 8ms latency to each packet,
which is very large. Most of these additional delays can be
attributed to the firewall and packet inspection middleware.

Takeaway: Both the campus network and the DMZ exhibit
similar latency but the campus network occasionally shows
lower average latency by as much as ~20ms (5% - 30.5%).
We find the measurements often get delayed on the DMZ
(e.g., pings not arriving), which affects results poorly. For
internal measurements, we find that firewalls negatively affect
performance, even when measurement boxes are placed on the
same campus/data center.

C. Packet Loss

The DMZ experiences more packet loss than the campus
network for inbound traffic from RIPE Atlas. While Leo
exhibits a period of 100% packet loss due to the campus
node being down, as Figure 5a shows, both nodes of the DMZ
experience 50% genuine packet loss even when the network
was up. However, the packet loss is more consistent on the
campus network, where we can observe 1-2% packet losses.

The perfSONARI1 node on the DMZ exhibits more packet
loss than the DTN1 node on the DMZ; it loses ~5% more
packets than DTN1 over three months, as Figure 5a shows.
This is potentially because more experiments were conducted
on the perfSONARI node than on DTN1. When traffic is
incoming from Google Cloud, there is no packet loss pattern
across DMZ or campus network. When traffic is outbound to
external perfSONAR nodes, the campus network experiences
more packet loss than the DMZ, but the perfSONAR1 node ex-
periences more packet loss than the DTN1 node. perfSONAR1
exhibits ~2% more packet loss than DTNI1. The campus
network exhibits ~.2% more packet loss than perfSONARI1
and ~5.7% more packet loss than DTN1 as Figures 5b shows.

Takeaways: The campus network experiences more regular
packet loss. Firewalls and middleboxes contribute to these
packet loss events. Packet loss also occurs on the outbound
paths from campus, again, potentially due to the presence
of firewalls. This observation is important since large data
transfers are sensitive to packet loss. Placing research use
cases on a shared campus network will affect data transfer
performance. Such use cases should be placed in a DMZ
network, which has a lower loss rate due to the simplified
nature of such networks.
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D. Jitter

Jitter is an important matrix for video and other real-
time applications. In these experiments, we compare the jitter
between the campus network and the DMZ.

When traffic is inbound from RIPE Atlas, Leo, the campus
node, exhibits lower average jitter than the DTNI1 or perf-
SONARI nodes as Figures 6d and 6e show. Jitter on the
campus route tends to be 60-78% lower than on the DMZ
routes on average. DTNI1 tends to exhibit higher variation
in its daily jitter than perfSONARI by as much as 37
milliseconds, but the two DMZ nodes exhibit similar overall
performance.

When traffic is inbound from GCP to Leo and the DMZ
nodes, all three routes exhibit similar average jitter patterns
between 0-1 milliseconds, only ever differing by fractions of
milliseconds. Figure 6c represents the average jitter pattern,
and differences in standard deviation from all three nodes
are noted. Leo’s route often experiences more deviation in its
jitter than the DMZ nodes by as much as two milliseconds.
The DTN1 node and perfSONAR1 node experienced a similar
jitter pattern, so only the perfSONARI plot was selected to
convey this experiment. However, the two nodes’ difference
in variation was noted. The DTN1 node experiences more
deviation than the perfSONARI node by as much as 1.5
milliseconds.

When traffic is outbound to perfSONAR nodes, as shown in
Figures 6a and 6b, Leo and the DMZ nodes typically have an
average jitter between 0-1 milliseconds. However, Leo often
reaches higher jitter rates up to 10-63 milliseconds greater
than the DMZ nodes.
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Takeaways: Campus networks experience more jitter than
their DMZ counterparts. The average jitter on the campus
network is higher due to a higher number of competing flows.

E. Data Transfer Throughput

One of the main reasons for creating DMZs is the higher
data transfer rate that it enables. This section compares data
transfer rates between the DMZ and the campus network. As
mentioned earlier, for these tests, we downloaded publicly
available Linux ISOs. We performed both experiments back to
back to reduce variations in network conditions. Additionally,
we did not tune the TCP stacks on the hosts. While such tuning
significantly improves the data transfer rates, we wanted to
establish a baseline comparison. Further tuning will improve
data transfer performance in both DMZ and campus networks.

As Figure 7a shows, the average throughput was much
higher on the DMZ when compared to the campus network.
The host on the campus network could achieve only 50Mbps,
while the host on the DMZ achieved close to 1Gbps. The
slower data transfers are a result of packet loss and in-line
firewall. On the other hand, the DMZ performs well since it
only uses ACLs, and the loss rate is also low.

We also looked at the TCP window sizes for these transfers,
shown in Figures 7b and 7c. We looked at both the “Bytes
out” window size (bytes in flight) and the received window
size, and the DTN had more oversized windows in both cases.
The received window size was larger on Leo several times, but
the throughput was low. This observation is consistent with
what we would expect on a lossy link. Figure 7d corroborates
these observations. We ran regular iperf3 tests between hosts
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Fig. 6: Jitter Comparison

on Google Cloud, DMZ, and the campus network. The DMZ
host consistently outperforms the campus host in both upload
and download performance.

Takeaways: The general purpose network performs signif-
icantly worse than a DMZ regarding file transfer performance
since it has more packet loss, the TCP window is smaller, and
firewalls add latency to the packets.

F. BGP Path Comparison

This section compares the BGP path lengths between the
DMZ and the campus network. We downloaded the BGP
tables from the DMZ BGP router and campus ISP’s BGP
router. First, we noticed that the commercial ISP had more
additional routes than the Science DMZ router. The campus
network had 715,810 BGP routes compared to 94,773 on the
Science DMZ router. The campus BGP table also had three
entries per destination as backup routes. We believe these are
artifacts of BGP configurations. Other than having more route
options in case of a failure and the capability of better load
balancing, more BGP routes provide no additional advantages.

We then compared BGP hop counts between these net-
works. Figure 7e shows the distribution. The general purpose
network generally had a large number of paths with hop counts
six or less (note the split Y axis). The DMZ also showed

similar patterns. Since the DMZ had less number of routes,
we separated the intersection of these two tables and compared
them in Figure 7f. We found that the path lengths for the DMZ
were slightly lower for shorter-length paths (hop counts <3).
For other DMZ routes, the hop count was larger than that of
the campus routes. While BGP and IP path lengths are not
always strictly correlated, these observations corroborate our
findings in the previous experiments.

Takeaways: The DMZ has less path diversity and longer
path lengths than the campus network. While this may not
directly affect performance, the resiliency of the DMZ can
be improved by using additional fallback routes. Further, the
path length can be reduced by creating better peering, which
requires negotiation with the upstream provider.

V. CONCLUSIONS

Science DMZs represent a paradigm shift in network de-
sign, tailored explicitly for scientific applications and distinct
from traditional campus or general-purpose networks. The
core principles of the Science DMZ, such as optimized paths
for large data transfers and minimized security interference,
position it as an advantageous environment for research and
scientific collaboration. Over recent years, its adoption by
numerous universities and organizations highlights its value
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in the academic and research communities. Our compre-
hensive study over two years presents a nuanced picture.
We confirm that the Science DMZ exhibits lower latency,
higher throughput, and better file transfer performance. Packet
loss, smaller TCP windows, and added latency from firewalls
in campus networks significantly hinder their efficiency in
handling large-scale data transfers.

Science DMZs are not without limitations. We observed
non-intuitive results such as higher latency in specific scenar-
ios and increased hop counts compared to campus networks.
These findings suggest that while the Science DMZ can
enhance certain aspects of network performance, it may not
uniformly outperform campus networks in all areas, particu-
larly in delay-sensitive applications like AR/VR. Our study
reveals that the DMZ has less path diversity and longer
path lengths than campus networks. While this impacts per-
formance, strategic enhancements, such as developing better
peering agreements and incorporating fallback routes, could
mitigate these limitations. In summary, the Science DMZ
model offers distinct advantages for specific research appli-
cations. However, it is not a one-size-fits-all solution. Such
deployments must be carefully tailored to the particular needs
and use cases of the communities they serve.
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