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ABSTRACT

Open Modification Search (OMS) is a promising algorithm for mass
spectrometry analysis that enables the discovery of modified pep-
tides. However, OMS encounters challenges as it exponentially
extends the search scope. Existing OMS accelerators either have
limited parallelism or struggle to scale effectively with growing
data volumes. In this work, we introduce an OMS accelerator uti-
lizing multi-level-cell (MLC) RRAM memory to enhance storage
capacity by 3x. Through in-memory computing, we achieve up to
77x faster data processing with two to three orders of magnitude
better energy efficiency. Testing was done on a fabricated MLC
RRAM chip. We leverage hyperdimensional computing to tolerate
up to 10% memory errors while delivering massive parallelism in
hardware.

CCS CONCEPTS

« Computing methodologies — Symbolic and algebraic ma-
nipulation; « Hardware — Memory and dense storage.
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1 INTRODUCTION

Mass spectrometry (MS) analysis is a critical technique for studying
proteins, which serve as the fundamental components of modern
medicines. In a typical MS experiment, numerous spectra, known
as query spectra, are generated and compared with a reference data-
base containing known peptides. Proteins in MS experiments often
undergo post-translational modifications (PTM), altering mass and
properties. However, the reference database only includes spec-
tra for unmodified peptides. This complicates the search, as many
peptides may not find a match.

Open modification search (OMS) offers a promising solution to
circumvent this issue by allowing the identification of modified
spectra. In the traditional standard search, comparisons are limited
to query spectra and reference spectra that share similar precursor
mass. In contrast, OMS extends the matching scope to a broader
range. It adopts a wide precursor mass window on reference spectra,
which accounts for the mass shifts induced by PTMs and other
protein modifications. This approach enables the comparison of
spectra from modified proteins with their unmodified counterparts,
thereby facilitating a more comprehensive analysis.

However, OMS encounters challenges as it vastly expands the
search scope, necessitating a more refined design. Specifically, we
require (1) dense memory solutions given the exponentially grow-
ing size of data, and (2) algorithms that are easily parallelizable in
hardware for faster data processing. Several works have accelerated

the OMS algorithm. The ANN-SoLo tool [1] uses nearest neighbor
indexing to select candidates and employs the shifted dot product
to compute scores on those candidates. Nevertheless, ANN-SoLo
demonstrates limited data parallelism as it uses complicated high-
precision floating-point arithmetic. HyperOMS [12] encodeds input
data into high dimensional vectors and performs simple integer op-
erations. This approach results in significant increase in parallelism
on GPU architectures. However, both of them do not scale well
with the growing data volumes, necessitating high-density mem-
ory solutions. In this work, we use dense multi-level-cell (MLC)
RRAM to increase the storage capacity. In addition, we employ an
in-memory computing approach to reduce data movement, lead-
ing to faster data processing. Since MLC RRAM and in-memory
computing are usually error prone, we leverage the robustness of
hyperdimensional computing (HD) to tolerate these errors. The
main contributions of this work are as follows.

e An OMS accelerator using HD and MLC RRAM is proposed.
The proposed design achieves 3x better storage capacity per
area with comparable accuracy to state-of-the-art, allowing
for up to 10% memory error tolerance.

e We accelerate the main stages of the algorithm by process-
ing in memory. The functionality is tested through experi-
ments on a fabricated MLC RRAM chip.

e We propose several hardware-software co-design strategies,
including a multi-bit hypervector scheme and an efficient
mapping scheme to enhance computational efficiency.

2 RELATED WORK AND MOTIVATION
2.1 Open Modification Search

Mass Spectrometry (MS) is crucial in proteomic research, enabling
the analysis of complex biological samples. Open Modification
Search (OMS) marks a significant evolution in MS technology, as it
allows for the discovery of modified peptides. However, the imple-
mentation of OMS is challenging as it significantly enlarges search
space. This expanded scope includes both unmodified and modi-
fied peptide variants, leading to increased computational demands.
HyperOMS, the fastest existing OMS accelerator that operates on
GPUs, still faces a challenge with a large memory footprint [12].
This challenge arises from OMS’s inherent memory-intensive na-
ture, leading to efficiency concerns and data transfer bottlenecks.
Processing in memory enables direct computations within the mem-
ory space, offering a better solution for OMS acceleration.

2.2 RRAM and In-memory Computing

Another challenge arises from the escalating data volumes. The pub-
lic data for mass spectrometry analysis is experiencing exponential



growth [14]; however, existing memory solutions face difficulties
in scaling to meet the expanding demands.

Resistive random access memory (RRAM) is an emerging non-
volatile memory that stores data by changing its resistance. In
TSMC 22nm technology, a single-level-cell (SLC) RRAM provides
3x higher storage capacity per area than high-density SRAM (Static
Random Access Memory) [8], positioning it as an optimal solution
for extensive data storage requirements.

Despite its density advantage, RRAM can effectively contribute
to parallel in-memory acceleration. Prior research has explored the
computational power of RRAM, particularly for the MAC (multiply-
accumulate) operation that is critical in modern neural networks.
Figure 1a shows a typical configuration [18] of 1T1R RRAM array
designed for matrix vector multiplication (MVM). Input data is
mapped to analog voltages, and RRAM-stored weights are repre-
sented by their conductance. Currents are generated across multiple
rows and accumulated along the columns, following Kirchhoff’s
law. The ADC (Analog-to-Digital Converter) then converts currents
to digital values, representing the computation outputs.
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Figure 1: RRAM

Previous works [6, 20, 21] have primarily utilized SLC RRAM
for storage or computation in various applications. In SLC memory,
each RRAM device is programmable to low resistance to represent
’1” or to high resistance to represent '0’. However, the potential of
RRAM extends beyond binary storage, as it can achieve arbitrary
analog resistance states by applying different voltages, enabling the
storage of multi-bit data. This configuration is commonly referred
to as multi-level-cell (MLC) RRAM. However, adopting MLC RRAM,
while promising in increasing storage capacity, poses challenges
due to device non-idealities. RRAM suffers from conductance re-
laxation and a relatively low on-off ratio. Figure 1b illustrates the
conductance distribution in RRAM collected from a fabricated chip
[18] after 60 minutes of programming, displaying a shift in conduc-
tance that hinders accurate storage and computing. Some works
attempt to harness the potential of MLC RRAM. The authors of [4]
use RRAM as a passive array for storage only, without the com-
puting ability. In [13], they proposed an RRAM-based in-memory
computing macro, but with only three levels per cell, which doesn’t
fully use the potential of MLC RRAM. Motivated by these chal-
lenges and recognizing the limitations of existing approaches, we
propose a robust algorithm using hyperdimensional computing to
tolerate errors associated with MLC RRAM.
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3 ALGORITHM OVERVIEW

Hyperdimensional computing (HD) is a brain-inspired computing
method that emulates neuronal activity. HD encodes information
to binary high-dimensional (long) vectors called hypervectors, typi-
cally with a dimension of 1k-10k [11]. In this work, we leverage HD
for OMS acceleration, benefiting from its high degree of parallelism
in hardware implementations and robustness to errors.

Figure 2 illustrates the overall diagram, which includes data pre-
processing that turns raw data into spectra vectors. This is followed
by HD encoding and hamming search in high-dimensional space
(hyperspace). Finally, an FDR filter outputs identified peptides.

M Reference Hypervectors
ass Reference Spectra 1, #1, ooy -1, #1]
Spectrr:umetry Library Encoding [-1, -1, ..., -1, +1]
Experiment % o
o (1L Tl :
Prepr i [1,-1, oy -1, #1]
Query Spectra Query Hypervectors
§ Encoding [-1, +1, ..., -1, +1] &7
2 [, -1, ooy -1, +1] 4}
3 .
.
* Identified
miz value [-1,-1, ..., -1, +1] peptides

Figure 2: Overall flow

3.1 Data Preprocessing

Preprocessing is the initial step in MS analysis, beginning with
the extraction of prominent peak features from raw data. This in-
volves identifying and retaining peaks above a predefined intensity
threshold, typically set at 1% of the greatest peak intensity. The
goal is to eliminate background noise, resulting in a refined set
of 50 to 150 peaks representing the most useful features in each
spectrum. Next, spectra are transformed into vectors by catego-
rizing mass-to-charge (m/z) ratios into bins. The resulting vectors
contain floating-point values reflecting peak intensities. In cases
where multiple peaks fall within a bin, their intensities are summed.

3.2 Encoding

HD encodes spectra vectors into orthogonal binary hypervectors
that represent unique features within the spectra. Previous research
explored various encoding methods, such as permutation-based
[15] and random projection encoding [3]. However, these methods
may not effectively capture key features, such as m/z values and
peak intensities in the spectra. In this work, we employ an ID-Level
encoding method [9] to address this limitation.

During encoding, each peak position (m/z value) is mapped to a
hypervector with D dimensions called ID. We quantize the intensity
value for each peak to Q levels and assign each a base hypervector
denoted as [;. To generate the Q-level base hypervector, we first
create a random binary base-hypervector [y with D dimensions,
where Iy € {~1,1}P. The remaining base hypervectors [; are gen-
erated by flipping D/(2Q) bits of the preceding hypervector [;_1.
This approach ensures that neighboring [; and /11 pairs maintain
more similarity than pairs that are far apart. Previous studies have
shown that the number of quantized levels (commonly selected in
the range of Q=16~32) does not significantly impact the results for
this application [12]. Given two sets of hypervectors, a spectrum
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vector is encoded into a hypervector h (see Figure 3) using the
following equation.

h = Sign ZID,- ® LV (1)
i€eS

For each peak in spectrum S, we perform element-wise multipli-
cation between the position hypervector ID; and its corresponding
level hypervector LV; (LV; € {lo, -+ ,lp—1}). We then sum the re-
sults and apply quantization using the Sign() function to obtain

the final binary hypervector h.
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Figure 3: ID-Level Encoding

3.3 Hamming Similarity Search

After encoding, we find the most similar reference hypervector
to the query hypervector by calculating their similarity. As all
hypervectors are binary, HD replaces the cosine similarity with a
simpler Hamming similarity. The Hamming similarity, calculated
as the number of equal components in vector pairings, is measured
by dot product.

3.4 FDR Filter

The final step includes applying a false discovery rate (FDR) filter,
a widely used method for MS analysis. It introduces non-existing
decoy spectra into the spectral library. The filter then sifts through
decoy spectra selected by the search tool. The performance of dif-
ferent search tools can be compared under a fixed FDR threshold.

4 HARDWARE ACCELERATION

While data preprocessing is typically done offline, encoding and
search dominate the algorithm’s runtime (over 90%) and they are
memory-intensive tasks that best done in memory.

In the data flow, encoding is the first step conducted in memory,
followed by storing encoded hypervectors in memory. Subsequently,
a similarity search is performed. However, in this section, we in-
troduce our optimization methods in the reverse order, focusing
on the acceleration of the search before delving into the encoding.
This decision is due to the encoding’s dependence on knowledge
introduced during the search acceleration.

4.1 In-memory Hamming Similarity Search

The basic operation for hamming similarity search is the MVM
between the query hypervector and the reference hypervectors,
which can be efficiently accelerated in memory. During the search
process, we store each reference hypervector (weight) vertically.
In each cycle, a query vector (input) is fed into the array as analog
voltages (see Figure 4a).

4.1.1  Weight Mapping. We use a differential weight mapping scheme,
where two cells in a pair together store one number. Compared to
the non-differential version, it offers a better solution to challenges
arising from non-linearities, such as residual current, RRAM resis-
tance mismatches, and the on-resistance of peripheral switches.

The stored weights in RRAM are encoded reference hypervectors.
A differential pair, comprising two cells in adjacent rows within
the same column, together stores one dimension value W. Their
conductance g} and g; are programmed to the opposite value with
respect to the middle level gp4x /2 as follows.

1
91~+ = 5(1 + W/Wmax)gmax (2)
_ 1
g9; = 5(1 - W/Wmax)gmax (3)

4.1.2  Sensing Scheme. Conventional current sensing [6, 21] suffers
from limited throughput due to constraints in concurrent row driv-
ing and increased energy consumption resulting from static current
during sensing. To mitigate these effects, we apply open-circuit
voltage sensing [18] with a differential scheme.
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Figure 4: RRAM for MVM

During MVM, the input (query) hypervector is simultaneously
transmitted through differential BL voltages to represent signed
inputs (Figure 4a). All activated rows contributing to the MAC out-
put, numbering N, receive a high signal from the WL. The resulting
currents are collected by the capacitor, generating a voltage on the
SL according to the following equation.

Vs,
CT = Z(;(Vref + Vpulse < Xi = Vsr) - g;"—"'
i=l
N (4)
Z(Vref - Vpulse “Xi = Vsr) - g:
i=0
Once the SL voltage reaches the steady state,
SN Xi- (g —97)
Vs = Vref e Vpulse ©)

Ngmax

the ADC then converts the voltage into a digital output. According
to Equation 5, the resulting output voltage demonstrates a linear
relation with the expected MAC output.
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Figure 5: Encoding in RRAM

4.1.3  Errors from Memory. HD exhibits robustness to errors as a
result of the the distributed and associative nature of hypervectors.
Matched patterns have a significantly higher similarity than un-
matched pattern pairs. This substantial difference in similarity acts
as a form of tolerance to memory errors.

4.2 Encoding In Memory

Encoding maps input data into hypervectors. The key operation
in encoding (see Equation 1) is a MAC, which can be accelerated
in memory. However, encoding involves element-wise operations,
which are challenging to accelerate as effectively as MVM in mem-
ory. Based on these observations, optimizing the encoding processes
within the memory domain is important.

We use the same weight mapping as in search to convert hy-
pervectors to RRAM conductance, as well as the same differential
sensing scheme. RRAM can conduct MAC operations, which in-
volve multiplication of the input and weight on the same row and
addition vertically inside a column. Due to constraints on the orien-
tation of these operations, each position hypervector ID (weight W)
is stored horizontally, while multiple level hypervectors LV (inputs
X) are simultaneously fed into the array bit by bit.

4.2.1 Efficient Encoding. However, the memory array is less profi-
cient in element-wise operations as compared to MVM. In MVM,
during each cycle when inputs are applied, multiple columns are
activated, and each of them generates one MAC output, resulting
in multiple MACs per cycle (see Figure 4a and 5b). On the other
hand, in element-wise operations, only one corresponding output
from the array is valid in each cycle (see Figure 5a). Consequently,
we need more cycles to finish the same amount of MAC compu-
tation. Another challenge arises from the fact that, even though
only one column of output is valid, it is not possible to selectively
activate cells in that specific column. In the memory array, BL and
WL are shared by all cells on the same row. When input comes, all
cells on that row are driven, consuming power, even though some
of them are generating unnecessary results. This makes it more
power-hungry compared to MVM.

Based on this observation, we aim to transform the element-wise
operation into an MVM-style to enhance throughput and energy
efficiency. This is achieved by modifying the way we generate
inputs (level hypervectors). Given that the number of base LV
hypervectors (Q=16~32) is much less than the hyperspace size,
the choice of LV hypervectors has minimal impact on final results.
Instead of randomly generating a base LV hypervector, the D-bit

hypervector is divided into several chunks, where all bit values
within each chunk are identical. Instead of feeding the entire D-bit
LV hypervectors into the array bit by bit, we now do it chunk by
chunk since all values inside one chunk are the same. The number
of chunks should be selected based on algorithm-related factors
such as HD dimension, the number of base LV hypervectors, as well
as hardware-related factors including array size, and the column-
sharing arrangement for ADCs. Overall, this modification allows
all element-wise MAC outputs within one chunk to be obtained in
a single cycle, resembling the MVM fashion.

4.2.2  Multi-bit Hypervector. In prior HD research [10, 12, 16, 20],
input data is represented by binary hypervectors for further use.
However, inspired by the fact that MLC hardware has the capacity
to store multi-bits per cell, and considering that synapses in the
brain have 4.7-bit precision [2], there arises a potential that using a
multi-bit hypervector scheme could produce better performance.

Instead of generating a binary hypervector ID € {-1,1}P, we
apply a multi-bit approach. Each dimension of the ID hypervector
could be up to 3 bits, for example, ID € {-4,-3,-2,-1,1,2,3, 4}D.
Additionally, this adaptation introduces no additional hardware
cost, while raising the bit precision in input level hypervectors LV
would increase the overall number of cycles for processing, since
inputs are fed into the array in a bit-serial fashion.

4.2.3  Errors from Memory. During encoding, final outputs are
quantized to binary using the Sign() function, requiring only a
low-resolution MAC output. This tolerates errors from memory
cells, for example, a single bit flipping would not significantly affect
the output. It also reduces ADC design requirements, minimizing
computing errors introduced by the ADC.

4.3 Hypervector Storage

After encoding, we stored the encoded hypervectors in memory. In
MLC RRAM, each cell can exhibit 2" levels of conductance, allow-
ing it to store n-bit data per cell (n = 1, 2, 3). Reference hypervectors
used for computation in later stages (Hamming search) are stored
in a differential manner, as shown in the previous section. How-
ever, to maximize storage capacity, we store all query hypervectors
using the following non-differential method. We reshape the D-bit
hypervector into segments of n-bits each, forming a new D/n-bit
vector denoted as h’, and map them to unsigned integer values
accordingly. These h’ are then further mapped onto the RRAM
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conductances g. The following example illustrates how to store a
hypervector within 4-level-cell RRAM (n=2 bits per cell).

Integer V' € &
{0,---,3}P/2

Binary value to store h € &

{(=1,-1),---, (1, 1)}P/?

Conductance g

5 EVALUATION

5.1 Experiment Setup

5.1.1  MLC RRAM Chip Measurement. We tested our algorithm on
a fabricated MLC RRAM chip [18] in 130nm technology with a total
of 3 million RRAM cells. The Xilinx FPGA integrated on an Opal
Kelly XEM6310 module serves as the communication bridge be-
tween host computer and the chip (Figure 6). The chip loads/writes
the input/output hypervectors from/to off-chip text files.

5.1.2  OMS Workload and Benchmark. We evaluate the design using
two real-world datasets. The first dataset uses iPRG2012 (16k spec-
tra in total) [5] as query and human HCD vyeast library (1M spectra
in total) [17] as reference. The second dataset uses HEK293 b1906
(47k spectra in total) [7] as query and human spectral library (3M
spectra in total) [19] as reference. We compare our result against
two state-of-the-art OMS work, ANN-SoLo [1] on CPU/GPU and
HyperOMS [12] on GPU. Baseline benchmarking is conducted on
the NVIDIA GeForce RTX 4090 GPU and the Intel Core i7-11700K

CPU, respectively. Parameters for data preprocessing and FDR fil-
tering are presented in Table 1.
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5.2 MLC RRAM Measurement

5.2.1  RRAM for hypervector storage. RRAM relaxation predomi-
nantly occurs at the initial stages, so collecting data after 1 or 2 days
does not significantly matter. Therefore, we collect data right after
programming, after 30 minutes, 60 minutes, and 1 day, respectively.
Figure 8 illustrates the histogram of the conductance, from which
we compute the bit error rate data in Figure 7 based on the mapping
method described in Section 4.3. Our design can store up to 3 bits
per cell, leading to a 3x improvement in storage capacity.

In the subsequent sections, all data are collected at least 2 hours
after programming to account for RRAM relaxation effects.

5.2.2  RRAM for computing. For encoding, we compare the binary
outputs from RRAM with the corresponding ground truth binary
values to calculate bit error rate. In the case of in-memory hamming

Table 1: OMS workload settings

Dataset iPRG2012 HEK293
number of query spectra 16k 47k
number of reference spectra 1M 3M
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Figure 8: Conductance relaxation effect of 1/4/8-level RRAM
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search, as the output consists of integer numbers rather than binary,
we report the normalized mean square error. Figure 9 illustrates
the error rates with 1/2/3 bits storage per cell, corresponding to
2/4/8 level MLC cells, respectively. With an increasing number of
activated rows, we achieve higher throughput but experience more
computation errors.
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Figure 9: Computation errors

Compared with the state-of-the-art MLC RRAM design for in-
memory computing [13], which can only drive a maximum of 4
rows with 3-level RRAM, our design can activate up to 64 rows (use
this setting in following section) with 8-level RRAM, indicating an
16x increase in throughput along with greater storage capacity. The
performance gain is due to improvements in RRAM device, design
strategy, and benefits from robust HD.

5.3 OMS results

5.3.1 Search quality. Biological data analysis is complicated, and
there is no ground truth data for the search results. Consequently,
we compare our results with existing tools. We set the dimension to
be 8k with an ID hypervector precision of 3 bits. Figure 10 shows
the comparisons of the identified peptides. It indicates that the
majority of the identified peptides from our work align with those
identified by other tools, indicating the validity of our results.

ANN_SolLo

This_Work ANN_SoLo

This_Work

HyperOMS HyperOMS

(a) iPRG2012 dataset (b) HEK293 dataset
Figure 10: Venn Diagram of identified peptides



5.3.2  HD robustness. With HD dimension being 8k, we introduce
varying levels of bit error rates for encoding and search into the
HD algorithm. Figure 11 shows that our design can tolerate up to
10% errors. Another notable finding is the enhanced performance
achieved through the utilization of multi-bit hypervector scheme.

HD robustness on iPRG2012 dataset

HD robustness on HEK293 dataset

Bit Error Rate (BER) Bit Error Rate (BER)

Figure 11: HD robustness

5.3.3 Speedup and Energy Improvement. We simulated the speedup
and energy efficiency improvement on iPRG2012 dataset. Our work
exhibits 1.7x faster than HyperOMS on GPU, 24.8x/76.7x than ANN-
SoLo on GPU/CPU, with 500x-3000x more energy efficiency than
state-of-the-art tools (see Figure 12). And we expect our perfor-
mance to scale with more advanced CMOS technology.
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5.3.4 HD dimension. The HD dimension is a key factor that im-
pacts final results. Lower dimension is more sensitive to noise
and exhibits limited separability (see Figure 13). However, an ex-
cessively high dimension introduces more computation resource
requirements, emphasizing the need for a balanced consideration
for target applications.

6 CONCLUSION

In this paper, we propose an accelerator for open modification li-
brary searching. We use multi-level-cell RRAM to increase storage
capacity by 3x, along with a robust hyperdimensional computing
algorithm that can tolerate up to 10% errors from memory. We accel-
erate the main stages by computing in memory, leading to 1.7x-76.7x
faster processing and 500x-3000x energy efficiency improvement.
The functionality of our accelerator has been successfully veri-
fied on a fabricated RRAM chip. Although our accelerator focuses
on mass spectrometry applications, the ideas of robust HD and
hardware acceleration techniques have the potential for broader
applications beyond the realm of mass spectrometry.
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