
28

MemFHE: End-to-end Computing with Fully Homomorphic

Encryption in Memory

SARANSH GUPTA, University of California, San Diego, USA

ROSARIO CAMMAROTA, Intel Labs, USA
TAJANA ŠIMUNIĆ, University of California, San Diego, USA

The increasing amount of data and the growing complexity of problems have resulted in an ever-growing
reliance on cloud computing. However, many applications, most notably in healthcare, finance, or defense,
demand security and privacy, which today’s solutions cannot fully address. Fully homomorphic encryption
(FHE) elevates the bar of today’s solutions by adding confidentiality of data during processing. It allows
computation on fully encrypted data without the need for decryption, thus fully preserving privacy. To enable
processing encrypted data at usable levels of classic security, e.g., 128-bit, the encryption procedure introduces
noticeable data size expansion—the ciphertext is much bigger than the native aggregate of native data types.
In this article, we present MemFHE, which is the first accelerator of both client and server for the latest Ring-
GSW (Gentry et al. [17])-based homomorphic encryption schemes using Processing in Memory (PIM). PIM
alleviates the data movement issues with large FHE encrypted data while providing in situ execution and
extensive parallelism needed for FHE’s polynomial operations. While the client-PIM can homomorphically
encrypt and decrypt data, the server-PIM can process homomorphically encrypted data without decryption.
MemFHE’s server-PIM is pipelined and is designed to provide flexible bootstrapping, allowing two encryption
techniques and various FHE security levels based on the application requirements. We evaluate MemFHE for
various security levels and compare it with state-of-the-art CPU implementations for Ring-GSW-based FHE.
MemFHE is up to 20k× (265×) faster than CPU (GPU) for FHE arithmetic operations and provides on average
2,007× higher throughput than [36] while implementing neural networks with FHE.

CCS Concepts: • Security and privacy→ Cryptography; Database and storage security;

Additional Key Words and Phrases: MemFHE, fully homomorphic encryption

ACM Reference format:

Saransh Gupta, Rosario Cammarota, and Tajana Šimunić. 2024. MemFHE: End-to-end Computing with Fully
Homomorphic Encryption in Memory. ACM Trans. Embedd. Comput. Syst. 23, 2, Article 28 (March 2024),
23 pages.
https://doi.org/10.1145/3569955

This work was supported in part by CRISP, one of six centers in JUMP, an SRC program sponsored by DARPA, in part by
SRC-Global Research Collaboration grant #2997.001, in part by Intel through the DARPA DPRIVE program, and also NSF
grants #1527034, #1730158, #1826967, #1911095, and #2003279.
Authors’ addresses: S. Gupta and T. Šimunić, University of California, San Diego, La Jolla, CA; emails: {sgupta, tajana}@
ucsd.edu; R. Cammarota, Intel Labs, Irvine, CA; email: rosario.cammarota@intel.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
1539-9087/2024/03-ART28 $15.00
https://doi.org/10.1145/3569955

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:2 S. Gupta et al.

1 INTRODUCTION

Fully homomorphic encryption (FHE) allows us to apply functions of arbitrary complexity on
encrypted data (ciphertext) without the need to decrypt it. This eliminates the need for private
key exchanges and decrypting data at the server, raising the bar on security and privacy. This is
really critical in areas like healthcare, finance, insurance, and so forth, which deal with extremely
sensitive information but rely on the cloud for computing needs [5, 8, 28, 29]. However, comput-
ing on encrypted data comes at a huge data and computation cost, resulting in large performance
and memory overheads. For example, encrypting an integer in the homomorphic domain may
explode its size from a meager 4B to more than 20KB. Moreover, homomorphically multiplying
two FHE encrypted integers may require tens of millions of operations. Further, computing with
encrypted data may limit the complexity of the function that can be evaluated for a set of encryp-
tion parameters. The work in Gentry [16] proposes a procedure called bootstrapping to reduce the
growth of noise during function evaluation in the FHE domain, allowing FHE to perform more
complex operations. However, it is extremely expensive and increases the latency of evaluating a
homomorphic function by 100 to 1,000×. Recent proposals in [4, 7, 12] make bootstrapping faster
and computationally less expensive. Unfortunately, bootstrapping still remains expensive and is
the major limiting factor while using FHE to evaluate real workloads. The encryption keys used in
such schemesmay reach up to GBs in size, adding to the huge capacity and data transfer bottleneck
of FHE.
The works in [11, 33, 34, 40, 43, 48] proposed CPU and GPU implementations of RGSW-based

FHE schemes [6, 12, 38]. However, they cannot scale enough to provide the speedup needed to
make FHE feasible. Most operations in these schemes are based on polynomials and vectors, which
are difficult to accelerate due to the limited parallelism and data access provided by current systems.
Other hardware-acceleration work in [10, 46, 47, 49] accelerates previous generation schemes that
are not truly FHE and support limited functionality. Processing in memory (PIM) is an excel-
lent match for FHE since it provides extensive parallelism, bit-level granularity, and an extensive
library of compatible operations, which dramatically improves both performance and energy effi-
ciency [13, 14, 26, 30]. It addresses the issue of large data movement by processing data in memory
where it is stored. We useResistive RAM (RRAM),which has low energy requirements, has high
switching speed, is scalable, and is compatible with the CMOS fabrication process.
In this article, we present the first latest-generation end-to-end acceleration of the FHE cryp-

tosystem based on [38]. Unlike previous HE proposals, which supported a library of functions, the
latest RGSW-based cryptosystem allows computing arbitrary functions on encrypted data. Our
proposed MemFHE has two main components, the client and the server PIM accelerators. The
client PIM accelerator runs ultra-efficient in-memory operations to not only encode and decode
data but also enable ring learning with errors (RLWE) to encrypt and decrypt data. The en-
crypted data (ciphertext), along with an encrypted version of the secret key, are sent to the server
PIM accelerator for processing. The server PIM receives the ciphertext from multiple clients and
performs operations on ciphertext to generate output. To enable this, the server PIM uses PIM-
enabled bootstrapping, which keeps the accumulated noise low so that the output ciphertext
can be decrypted by the intended client. This ciphertext is sent back to the client. In MemFHE,
only the client has the means to decrypt the output ciphertext and access the unencrypted
data.
To summarize, our specific contributions are:

• We present the first end-to-end acceleration of fully homomorphic encryption in memory.
Our design accelerates both the encryption/decryption and the full FHE computation
pipelines. MemFHE employs ciphertext-level and operation-level parallelism combined

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:3

Table 1. Generations of Fully Homomorphic Encryption

Gen. Encrypt Level Security Compute Support Public Key Latency/BS BS Count Op Accuracy Type of Apps Schemes

1 Lattice Based ++ Add, mul Largest 1,000x 1x - - Gentry’09
2 Integer + Limited predefined ops Large 10x 1x Approximate Statistical CKKS, BGV, B/FV
3+ Bit/Integer* +++ Any arbitrary op Small 1x 10,000x Exact Any FHEW, TFHE

BS: Bootstrapping.

with operation-level pipelining to achieve orders of magnitude of performance improve-
ment over the traditional systems. Unlike previous work, we show how PIM can be used
to accelerate an application with high data dependency and little data-level parallelism.
Our pipelining increases latency of the un-pipelined design by 3% while providing >1,000×
throughput improvement.
• Our server PIM design includes fast bootstrapping, key switching, and modulus switching
in memory. It distributes the key memory units to reduce the instances of data contention.
It sequentially processes different inputs in different pipeline stages for the best processing
throughput.
• We accelerate the bottleneck process of bootstrapping by using a highly pipelined archi-
tecture. Our bootstrapping introduces parallel accumulation units, which support two
different types of bootstrapping techniques. We propose a novel implementation for the
core bootstrapping operation, Number Theoretic Transform (NTT). Unlike existing
works, our NTT doesn’t require any special interconnect structure. Moreover, it is flexible
and can process many NTT stages without needing extra hardware.
• Our client PIM design includes encryption and decryption. MemFHE enables encryption
efficiently in memory by exploiting bit-level access and accelerates dot product with a new
in-memory implementation.
• We evaluate MemFHE for various security levels and compare it with state-of-the-art CPU
implementations for Ring-GSW based FHE. MemFHE is up to 20k× (265×) faster than CPU
(GPU) for FHE arithmetic operations and provides on average 2,007× higher throughput
than [36] while implementing neural networks with FHE.

2 BACKGROUND AND MOTIVATION

2.1 FHE Schemes

Many fully homomorphic encryption schemes have been developed over the past decade. Table 1
summarizes different “generations” of FHE schemes. The first generation includes the original de-
sign from [16] and its subsequent optimizations. However, they have limited homomorphic capac-
ity due to rapid noise growth during evaluation, restricting the evaluation to a few gates at a time.
Second-generation schemes reduce the noise growth from linear to logarithmic and are based on
more standard hardness assumptions. However, they are slow, requiring minutes for simple gate
operations (HElib-IBM [25]).
The third-generation schemes use weaker hardness assumptions to minimize the bootstrapping

time and provide slower noise growth [6, 12, 17]. The work in [38] presented a framework to
enable fast bootstrapping for such schemes under different security assumptions. While being
the most general, supporting arbitrary functions, allowing many bootstrapping iterations without
the need to decrypt, and providing control over security levels, these schemes bootstrap individual
Boolean gates. Theymay be slower overall when implementingmulti-bit operations. Recent works
[21, 36, 56] have shown efficient extension of these schemes for multi-bit operations. Work in this
direction promises to deliver faster bootstrapping and better overall application latencies, while
providing the ability to perform functions of arbitrary complexity.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:4 S. Gupta et al.

2.2 FHEW Cryptosystem

The FHE in the West (FHEW) cryptosystem [38] is based on the latest generation of FHE
schemes, namely FHEW [12] and TFHE [7], and evaluates logic functions on encrypted data, i.e.,
ciphertexts, by evaluating look-up tables (LUTs). This is a foundational work toward realizing
the full potential of FHE with more efficient encryption (less data size explosion) and faster boot-
strapping for the same level of security as the previous-generation schemes. It operates at bit level,
where each data bit is encrypted into a pair consisting of a polynomial and an integer using a se-
cret key, s , with the learning-with-error (LWE) scheme. The encryption is performed for given
application parameters, q and n, where n is the degree of the polynomial. All operations and data
are taken modulus q. The typical values of n and q, presented in Section 9, results in a bit of data
being encrypted into a 0.5-1kb ciphertext. In some cases, FHEW further breaks the ciphertext in-
tegers (including each polynomial coefficient) into dr numbers, each with base Br , to control the
growth rate of noise. This further increases the ciphertext size. FHEW operates on LWE-encrypted
ciphertexts, utilizing two different encrypted versions of s , EKB and EKS . The encrypted keys may
have memory footprint in GBs.
FHEW employs a cyclotomic ring-based encryption technique, namely RGSW [17], to operate

on the ciphertexts. For each function, like NOR or XOR, that should be applied on the input cipher-
texts, FHEW stores a corresponding FHE function in the LUTs. For example, an AND operation
between two bits in plaintext translates to simple addition of their corresponding ciphertexts, fol-
lowed by AND-specific coefficient mapping. This is followed by bootstrapping, which reduces the
noise accumulated in the output ciphertext due to function implementation. If not bootstrapped,
the output ciphertext may become undecryptable. Most operations in bootstrapping happen over
the polynomial part of output ciphertext, using the encrypted version EKB of s . The ciphertext
undergoes several accumulation iterations during bootstrapping. Bootstrapping works on param-
eters with similar functionality as that of LWE encryption but that have different values, namely
N , Q , Bд , and dд . Here, all operations in accumulation happen on integers that have each been
decomposed into dд digits with base Bд . The final accumulation output is a pair of polynomials of
degree N and modulus Q . The final output ciphertext, with reduced noise, is extracted out of the
accumulation result. It is further treated with the EKS encrypted version of s to convert it back
to the original LWE-encrypted domain. This process is called key-switching. The key-switched
ciphertext is decrypted to get the output.
Apart from the large memory requirements of different FHEW components, the iterative na-

ture and high polynomial degrees of FHEW operations make it a slow and memory-intensive
process. Most data operations in FHEW are applied over polynomials that have a large compute
and memory transfer bottleneck [40]. Efficient polynomial multiplication converts the polynomial
into the frequency domain with NTT. The digit-decomposed computations of FHEW (i.e., break-
ing integers into dr or dд digits) required back-and-forth polynomial conversions between the
normal (coefficient) and NTT domain. Cumulatively, these operations make the implementation of
FHEWon CPUs/GPUs very slow. Moreover, the hugememory requirement of the third-generation
FHEW cryptosystem restricts the development of an effective FPGA/ASIC implementation. In con-
trast, MemFHE presents the first memory-centric architecture for the FHEW cryptosystem. While
MemFHE benefits from the large memory density due to its memory-centric approach, processing
in memory further enables efficient computations, extreme parallelism, and significantly reduced
data movement.

2.3 Resistive RAM-based Processing in Memory

Many PIM techniques using RRAM that implement bitwise operations, arithmetic, and search op-
erations in memory have been proposed recently [18, 22, 24, 27, 30], with support for varying

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:5

bit-widths and data types including binary, integer, fixed point, and floating point. They use the
switching-based RRAM processing-in-memory logic, where operations are governed by the volt-
age applied at the memory bitlines [22, 30]. The work in [22, 23] implements addition and multipli-
cation using the bitwise operations. A b-bit addition is implemented with b serial 1-bit additions,
which are further implemented with operations like AND, OR, and XOR, where a multiplication
operation is implemented by first generating partial products using bitwise AND and then adding
them using 1-bit additions. RRAM-based PIM may not be completely reliable. However, digital
PIM uses single-level cells (SLCs) that have been verified to work reliably even with 10% to
15% variations in the voltage/resistance [42]. The reliability benefits of SLCs outweigh the added
memory-cell requirements for SLCs, e.g., 2× area vs. 104 higher endurance [42]. Moreover, FHE pa-
rameters consider injection of noise during computation. One can model RRAM’s computational
unreliability and errors as noise while selecting FHE parameters.

2.4 Challenges in Designing a PIM-based Accelerator for FHE

While the huge memory and bandwidth requirements make FHE a good candidate for PIM, a PIM-
based FHE accelerator encounters certain challenges. As discussed above, NTT is a bottleneck
operation in FHEW. However, its implementation requires specialized hardware to allow complex
data movement characteristics of NTT. Such hardware would further make the PIM architecture
complex and less efficient when designed for generality. In this work, our scheme eliminates the
dependence on such complex circuits/designs.
In addition to this, certain arithmetic operations needed for FHE are not inherently supported

by PIM. For example, even though vector operations are very efficient in PIM, some operations
like division and modulus are not suitable. We adopt novel ways to implement such operations in
MemFHE. Further, MemFHE rethinks functions like digit-decompose, which would otherwise be
extremely difficult to implement in the highly optimized pipeline of FHEW.
Unlike most existing work that accelerates just a part (e.g., bootstrapping) of the FHEW pipeline,

MemFHE accelerates each and every function, including encryption/decryption, key generation,
key switching, modulus switching, digit decomposition, bootstrapping key management at the
server, and so forth. Accelerating each of these functions in memory while maintaining a high-
throughput rate requires careful accelerator design. Most of these functions were designed based
on the operations provided by CPU and software libraries. However, PIM inherently supports only
basic functions. Also, the architecture of PIM doesn’t inherently support the kind of pipelining
that we are accustomed to with CPUs. So, not only is the implementation of a majority of these
operations in PIM complex but also ensuring pipelined behavior in PIM is not trivial. Hence, this
article might appear to be very detail oriented, which we believe is necessary.

3 RELATEDWORK

FHE on CPUs and GPUs: The works in [11, 33, 34, 40, 43, 48] proposed CPU and GPU imple-
mentations of FHEW [12, 38] and TFHE [6] algorithms. While some implementations optimized
the parameters of applications to make it hardware-friendly, others utilized GPU acceleration tech-
niques like memory coalescing and vectorization to improvement the latency of the FHEW and
TFHE schemes. However, they cannot scale and speed up enough to make FHE feasible.

FHE FPGA/ASIC Acceleration: Almost all recent FPGA accelerators for HE are based on the
second-generation schemes. The works in [10] and [49] perform the basic HE operations for the
B/FV scheme on FPGAs. The work in [47] implements HE operations for CKKS, another second-
generation scheme, obtaining significant performance improvements vs. CPU. A recent work in
[50] accelerated basic FHE primitives, allowing it to essentially support any FHE scheme. How-
ever, it does not provide the required memory and compute bandwidth that the latest-generation

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:6 S. Gupta et al.

schemes demand. On the contrary, MemFHE implements a complete FHE computing pipeline with
the latest-generation schemes. MemFHE exploits extensive in-memory bandwidth while providing
high compute bandwidth by converting thousands of memory blocks into computing cores.
FHE PIM Accelerators: The work in CiM-HE [46] implements homomorphic arithmetic op-

erations for the second-generation B/FV scheme in SRAM. It uses CMOS-based custom memory
peripherals to support different operations. While no PIM implementation exists for computing
with RGSW schemes, the works in [20] and [45] homomorphically search over data encrypted
with a third-generation FHE [12]. Their limited functionality restricts practical use.

4 MEMFHE SYSTEM OVERVIEW

MemFHE employs an end-to-end privacy-preserving computing system consisting of both client
and server implementations. Our architecture is based on the FHEW cryptosystem [38], which pro-
vides the slowest noise growth and hence is the most generally applicable class of FHE. MemFHE
is implemented completely in memory, using homogeneous crossbar memory arrays, and exploits
PIM to implement all FHE operations.
All computations in the MemFHE server happen in the encrypted domain. It inputs the en-

crypted ciphertexts and performs the desired operations on the ciphertexts in the basic function
unit, UFU NC , without decrypting them. Computing in the FHE domain leads to the accumulation
of noise in the resultant ciphertext. To reduce this noise and keep it below the threshold, the
server utilizes MemFHE bootstrapping. Bootstrapping is the most important but also the slowest
process in the MemFHE server pipeline due to its iterative nature. Hence, we heavily pipeline the
bootstrapping architecture, so that the slowest operations in bootstrapping happen on different
pipeline stages. We introduce novel architectures for various sub-components of bootstrapping
and perform operation-level optimizations in the bootstrapping core. As a result, the MemFHE
server can achieve a high throughput of 170 inputs/ms even for high security parameters, which
is 20k× higher than CPU [48].

In addition to the server, we also present the MemFHE client, which provides the input cipher-
texts and receives the output of the server. The client is responsible for converting raw data into the
FHE domain, using a client-specific secret key. The client in the FHEW cryptosystem encrypts a bit
of data into an LWE ciphertext. The MemFHE client accelerates LWE utilizing efficient in-memory
multiply-accumulation and shift operations. The encrypted ciphertext is sent to the server along
with an encrypted version of the client’s secret key. The client also decrypts the output of FHE
computation from the server into plaintext form.

5 MEMFHE-SERVER ARCHITECTURE

Figure 1 shows an overview of the server’s architecture. The goal of MemFHE’s server is to provide
a high throughput for operations on encrypted data. To achieve this, we create a deep pipeline. As
discussed later and evaluated in experiments, bootstrapping is the major bottleneck of the server-
side computations. Hence, we use the latency of the slowest bootstrapping stage (i.e., polynomial
multiplication) to set the maximum latency of any pipeline stage in the server. We next present
in-memory implementations of all the server components.

5.1 FHEW Function Implementation

The main strength of FHEW lies in its ability to implement arbitrary functions. FHEW achieves
this by translating each Boolean function into one or more homomorphic computation steps and
then mapping the integer output to a bootstrapping-compatible polynomial,mb . Each element of
mb is set to either Q/8 or −Q/8, the FHE equivalents of binary “1” and “0.” MemFHE allocates a
memory block that stores these translations for all functions. Function implementation is the only

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:7

Fig. 1. MemFHE server architecture.

process in theMemFHE server that follows the client’s parameters,n andq. FHEWuses polynomial
addition, subtraction, and scaling by a constant as computing steps. For example, an AND between
two bits is implemented by first homomorphically adding the corresponding ciphertexts (both the
polynomial and the integer parts), followed bymapping the integer part of the output ciphertext to
N -degree polynomialmb . Then, each coefficient ofmb in [3q/8, 7q/8) is set toQ/8 and the others
are set to −Q/8. A complete list of Boolean gates and their corresponding FHEW translations are
presented in [38]. MemFHE implements computation steps in a memory block,UFU NC , executing
polynomial additions and subtractions as described in Section 8. Scaling is performed using a series
of shift-add operations. Sincemapping happenswithin the server’s parameters,MemFHE performs
it during the initialization stage of bootstrapping discussed in Section 6.1.

5.2 Bootstrapping

Implementing functions homomorphically in an encrypted domain introduces noise in the cipher-
text, which may make it impossible to decrypt the ciphertext. Bootstrapping reduces this accumu-
lated noise. A majority of MemFHE’s resources are dedicated to the bootstrapping core. MemFHE
transfers the output of UFU NC to bootstrapping. The initialization phase of bootstrapping con-
verts the output ofUFU NC into a server-compatible encryption and initializes a cryptographic ac-
cumulator, ACC . Then, bootstrapping utilizes a series of accumulation units, UACC , to modify the
contents of ACC . The accumulation uses EKB to “decrypt away” the accumulated noise from the
output of UFU NC . MemFHE supports two types of accumulation schemes, AP [1] and GINX [15].
While GINX is more efficient for binary- and ternary-distributed secret keys, AP is more efficient
in other cases [38]. MemFHE chooses the accumulation scheme based on the client’s encryption
procedure. The output ciphertext with reduced noise is then extracted from the ACC . Section 6
details the implementation of different bootstrapping steps in MemFHE.

5.3 Key Switching

Bootstrapping encrypts the output with a different key, EKB , instead of the original key, s . Key
switching is performed to obtain an output encrypted with s , so that it can be decrypted by the
client. It utilizes the switching key, EKS , which is sent by the client to the server along with the
refreshing key, EKB . As shown in [38], key switching uses base Bs that breaks the integers into
ds digits. The N domain output of ACC gets converted to a client-compatible n. Key switching
initializes a ciphertext, cs , with an empty polynomial and the integer value of the extracted ACC .
The ciphertext cs has the parameters n andQ . Each coefficient of the ACC polynomial part selects
elements (n,Q ciphertext) from EKS and then subtracts them from the existing value of cs . This is
repeated for ds iterations. At the end of each iteration, theACC polynomial coefficients are divided
by the switching base Bs .

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:8 S. Gupta et al.

All operations in key switching are performed modulo Q . MemFHE first implements (ds − 1)
divisions as shown in Figure 1. Since Bs is known, MemFHE pre-computes and stores the value of
1/Bs . Division is now amultiplication with 1/Bs . To prevent losing data due to rounding errors, the
multiplication with 1/Bs is performed in full precision, generating twice the number of bits than
needed. This happens in parallel for all the coefficients in a row-parallel way. This is followed
by a modulo operation with Bs . Here we utilize in-memory Montgomery reduction (Section 8)
to obtain the modulus of the divided coefficients. Now, we have N × (ds − 1) coefficients that
select as many ciphertexts from EKS and perform sequential ciphertext subtractions. MemFHE
employs a tree structure to subtract the ciphertexts. Each computing element of this tree is a
memory block. Each blocks perform x sequential subtractions so that the total latency of these
subtractions is less than the throughput of the design. Hence, we pipeline the tree stage by stage.
It takes �loд2 (N .(ds − 1)/x)� tree stages to implement all the subtractions. Each subtraction is
followed by Barrett reduction (Section 8 with modulo Q). The final output of the tree, cs , is the
key-switched output.

5.4 Modulus Switching

Lastly, the output of key switching is converted from a moduloQ ciphertext to a modulo q cipher-
text. To achieve that, each element is multiplied with q and divided by Q and then rounded off to
the nearest integer. MemFHE implements modulus switching in a single memory block. The key-
switched ciphertext cs , including its integer part, is stored vertically in the memory block so that
each coefficient is in a separate row. Similar to key switching, MemFHE prestores the value q/Q .
All the ciphertext coefficients are hence multiplied with q/Q in a row-parallel way. Then, a value
of 0.5 is added to all the products in parallel using row-parallel addition as detailed in Section 8.
Now, for each memory row, the integer part represents the integer nearest to the corresponding
coefficient of cs .(q/Q). We finally take modulus of the output with q. Since q is a power of 2 for
all security parameters that MemFHE considers, modulo is equivalent to reading loд2q LSBs of the
output. If q is not a power of 2, we use Barrett reduction instead. The output of modulus switching,
also the output of the server, is a ciphertext with parameters n and q, encrypted with secret key s
of the client.

6 MEMFHE BOOTSTRAPPING

Bootstrapping inputs an encrypted version of the private key, EKB , also called the refreshing key,
along with a ciphertext. The output is a ciphertext corresponding to the input ciphertext but with
reduced noise. Bootstrapping performs iterative computations on a cryptographic accumulator,
ACC . The process involves first initializing ACC with the input ciphertext, then implementing
an iterative accumulation over ACC . Each accumulation involves a series of multiplication and
addition operations over polynomials. Finally, an element of the final ACC is extracted to obtain
the output ciphertext. In this section, we discuss the implementation of each of these steps in
MemFHE.

6.1 Initialization

The initialization phase performs two tasks: (1) setting the initial value of ACC and (2) ensuring
that the input ciphertext’s polynomial is compatible with the decomposed refreshing key.
Initializing ACC: MemFHE performs the mapping discussed in Section 5.1 in this phase. The

coefficients of the bootstrapping-compatible polynomial,mb , are each mapped to Q/8 and −Q/8
based on whether they lie inside or outside an operation-dependent range (lb,ub), [3q/8, 7q/8)
in the case of AND. To implement this mapping operation in parallel for all the coefficients of
mb , we utilize search-based PIM operations. Using exact bitwise-search operations, MemFHE

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:9

implements an in-memory compare operation, which can search a set of memory columns for
all the numbers greater than, equal to, or less than the query. The details of the operation are pre-
sented in Section 8. First, MemFHE inputs lb as a query and searches for all the numbers greater
than lb. Then, MemFHE performs searches for the numbers less than ub. The final filtered-out
rows are initialized to Q/8, while the remaining rows are initialized to −Q/8. The resultantmb is
the initial ACC value.

Polynomial’s Compatibility with EKB: The input ciphertext’s polynomial a needs to bemade
compatible with the decomposed refreshing key, EKB . The polynomial a undergoes the same set
of operations as those discussed in key switching, except for subtractions, with parameters n, Br ,
and dr instead of N , Bs , and ds . It results in n × dr coefficients for each input. We call them adec .
For the bootstrapping pipeline to work, all of the n × dr UACC units should receive elements from
adec s belonging to different inputs. Hence, we introduce an n × dr -sized register, in which wordi
is fed directly toUACC−i .

6.2 Accumulation

The inputs to the accumulation function include the decomposed representation of a (adec) from
the initialization step; an RGSW-encrypted refreshing key, EKB ; and the output of the initialization
step, a pair of polynomials of degree N. Accumulation preforms iterative multiplication of this
key with ACC and then addition back to ACC . It is the slowest part of bootstrapping due to high
data dependency between the iterations. It adds the result of multiplication in each iteration to
the accumulator. The dependency of the input of one ciphertext element on the output of the
previous one further prohibits the functions from being parallelized across the ciphertext elements.
However, each ciphertext element is a high-degree polynomial, allowing parallelization over the
polynomial length.

6.2.1 AP Bootstrapping. Traditionally, the refreshing key is an n-dimensional vector where
each element of the vector is either an N -degree polynomial or a pair of those. However, in AP
bootstrapping, instead of each element of EKB being an N -degree polynomial, it is a pair of 2dд
polynomials of degree N . Each dimension of the vector is further represented using the pair (Br ,
dr). Hence, the AP refreshing key is a three-dimensional matrix where each element of the ma-
trix is a pair of 2dд N -degree polynomials. MemFHE stores the refreshing key in n × dr memory
blocks such that each block stores 2Br .dд polynomials. Each EKB memory block is assigned to the
corresponding accumulation unit. The main computation of the AP bootstrapping is to perform
the accumulation function on ACC n ×dr times. Each step involves a multiplication of the current
ACC value with an element of EKB as ACC ← ACC � EKB .

Accumulation Unit (UACC). We design a bootstrapping pipeline such that the accumulation
logic consists of n × dr accumulation units, UACC . The unit address (i, j), where 0 ≤ i < n and
0 ≤ j < dr , corresponds to the (i×dr + j)th accumulation iteration. While the units cannot operate
on multiple iterations of a single ciphertext in parallel, they can process different ciphertexts in
a pipelined fashion. Each unit receives the corresponding value from adec memory and uses it
to select an element from EKB for multiplication. Since all units input EKB in each iteration, it
introduces a fetch bottleneck at the EKB . To reduce this problem, EKB is split overmultiplememory
blocks, with each UACC having a local EKB memory. EKB is independent of inputs and populated
once.
Since FHEW is based on the RGSW encryption scheme, the multiplication in the accumulation

stage happens on digit-decomposed operands to reduce the growth of noise. As explained later, the
SDD tile inUACC performs digit decomposition on the twoN -degree polynomials of ACC, splitting
each coefficient of ACC into dд numbers with loд2Bд bits each. EKB is already digit-decomposed.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:10 S. Gupta et al.

Fig. 2. Accumulation unitUACC of MemFHE.

Table 2. MemFHE Security Parameters [38]

Set Security n q N log2Q Bs Bg Br

Classical

STD128 128-bit 512 512 1,024 27 25 27 23
STD192 192-bit 512 512 2,048 37 25 213 23
STD256 256-bit 1,024 1,024 2,048 29 25 210 32

Quantum − Safe
STD128Q 128-bit 512 512 2,048 50 25 225 23
STD192Q 192-bit 1,024 1,024 2,048 35 25 212 32
STD256Q 256-bit 1,024 1,024 2,048 27 25 27 32

The output of the SDD tile, digit-decomposedACCdec , contains 2dд polynomials of degree N , simi-
lar to each part of EKB pair polynomials. NowUACC performs 4dд polynomial-wise multiplications
in parallel, 2dд between ACCdec and each part of the EKB pair as shown in Figure 2. To make the
multiplication efficient, all the polynomials are converted in the NTT domain before multiplying.
UACC employs 2dд NTT pipelines and converts ACCdec into the NTT domain. The details of our
NTT pipeline are presented in Section 6.2.3. EKB is already in the NTT domain. Polynomials in
the NTT domain are stored in a row-parallel way, such that each coefficient is stored in a separate
row as shown in Figure 2. Then, we perform row-parallel multiplication between the polynomials.
After multiplication, all products are accumulated to generate a pair of polynomials that serve as
the output ACC. Before sending the output to the next unit,UACC converts it back to the coefficient
(non-NTT).

Signed Digit Decompose (SDD): SDD decomposes a pair of polynomials into multiple poly-
nomials. The core operation is to break each polynomial coefficient (originally loд2Q bits) into
smaller loд2Bд bit signed numbers. As shown in Table 2, Bд is always a power of 2, making the pro-
cess simpler. SDD consists of one or more memory blocks that perform iterative modulus-division
operations, as shown in Figure 2. In each iteration, MemFHE selects loд2Bд LSBs (remainder of the
division by Bд) from the coefficients, preserving the remaining bits (quotient of the division). The
selected LSBs represent the first loд2Bд-bit number. This process is repeateddд times, decomposing
all coefficients into into dд loд2Bд-bit numbers. Hence, in the beginning of each iteration, we first
change the range of the coefficients from [0,Q) to [−Q/2,Q/2] by subtracting Q from all inputs
in [Q/2,Q), mapping them to [−Q/2, 0). MemFHE implements this operation in parallel for all the
coefficients of the input polynomial. Coefficients are stored in different rows, occupying the same

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:11

set of memory columns. We search for all numbers greater thanQ/2 using MemFHE’s in-memory
parallel compare operation discussed in Section 8. MemFHE then subtracts Q from all the filtered
coefficients. Similarly, the selected LSBs (remainders) are sign-extended, where MemFHE copies
the (loд2Bд − 1)th bit for all the coefficients in parallel. Then, all negative remainders are made
positive. MemFHE achieves this by searching the MSB bits of all the remainders in parallel (one
remainder per coefficient per iteration) and subtracting Q from the filtered remainders.

6.2.2 GINX Bootstrapping. The decision to run either AP or GINX bootstrapping is based on
the type of secret key used by the client. As shown in [38], GINX works better in case of binary
and ternary secret keys, while AP works better for others. GINX bootstrapping differs from AP in
two major ways. First, it utilizes binary secret keys, resulting in a smaller refreshing key EKB . EKB

in GINX has a dimension of n × 2, instead of AP’s n × Br × dr . Each element consists of 2dд poly-
nomials of degree N , the same as AP. Second, the bootstrapping function in GINX involves extra
multiplicative and additive terms to generate the effect of input-dependent polynomial rotation.
Specifically, the bootstrapping follows:

ACC ← ACC + (Xm − 1) (ACC � EKB),

wherem = �a(i) × (2N /q)� for the ith coefficient of the input ciphertext polynomial a. (Xm − 1)
is a monomial representing GINX’s “blind rotation” by m. This encodes the input in the form
of the powers of polynomial. The state-of-the-art implementation PALISADE [48] pre-computes
(Xm − 1) for all possible values of 0 ≤ m < 2N and maintains a library of their NTT counterparts.
Based on the m corresponding to a UACC , PALISADE selects a value from the library and then
multiplies it withUACC ’s output. This creates a data transfer bottleneck in a pipelined architecture
like MemFHE’s, where many units need to access the library simultaneously. On the contrary,
MemFHE exploits the bit-level access provided by PIM to implement this “rotation” efficiently.
MemFHE uses the same architecture to implement GINX as that for AP. GINX requires n × 2

UACC units. Here, unlike AP, EKB input to UACC is independent of the polynomial part a of the
ciphertext. As in the case of AP, the SDD tile ofUACC first decomposes inputACC;UACC then per-
forms the same polynomial-wise multiplication and subsequent addition and finally converts them
to the coefficient domain using INTT. Now, the output of addition represents prod = (ACC � EKB)
in the coefficient domain. We now perform in-memory row-parallel rotation on prod as discussed
in Section 8. MemFHE finally adds the rotated prod , prodr , to pre-decomposed ACC and finally
subtracts prod . The output is the GINX accumulated ACC in coefficient domain.

6.2.3 NTT and INTT Pipeline. NTT is a generalization of fast Fourier transform (FFT) that
performs transformation over a ring instead of complex numbers. In FHE, it is mainly used in
polynomial multiplication where it converts a polynomial (by default in coefficient domain) into
its frequency (NTT) domain equivalent. A polynomial multiplication in the coefficient domain
translates to an element-wise multiplication in the NTT domain, enabling extensive parallelism
for high-degree polynomials. However, the process of converting to and from the NTT domain
is complex. The state-of-the-art implementations of NTT [41, 47] utilize algorithms where the
coefficient access pattern for an n-degree polynomial changes for each of the loд2n stages of the
NTT pipeline. Instead, we utilize Singleton’s FFT algorithm proposed in [51] and later accelerated
in [9, 35, 54] to implement MemFHE’s NTT pipeline. Figure 3(a) shows the signal flow graph
for Singleton’s FFT algorithm. We observe that the coefficient access pattern for the algorithm
remains the same for every stage. MemFHE exploits this property to avoid using NTT-specific
interconnects.
Data Mapping: Figure 3(b) shows the data layout of one NTT stage in MemFHE. We write

an n-degree input polynomial, a, in n/2 rows such that a pair of coefficients with indices 2i and

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:12 S. Gupta et al.

Fig. 3. Singleton’s NTT in MemFHE.

(2i + 1) share the ith row of the memory block. All such pairs are hence written in separate rows,
utilizing the same columns. A twiddle factor is associated with each pair, which is pre-computed
and stored in the corresponding row. Each pair generates the ith and (i +n/2)th coefficients of the
output polynomial in the ith row of the block.

Computation: Each NTT stage of MemFHE performs three compute operations. First, we per-
form row-parallel multiplication between the coefficients with odd indices (2i + 1) and the corre-
sponding twiddle factorW . Second, we add the generated products to the coefficients with even
indices (2i) in a row-parallel way to generate the first n/2 coefficients of the output polynomial.
Lastly, we subtract the products from the even-indexed coefficients in a row-parallel way to obtain
the remaining output coefficients. The details of the row-parallel operation execution are presented
in Section 8.
Stage-to-stage Data Transfer: Figure 3(c) shows the data transferred in each transfer phase.

We perform column-wise data transfer, where each column consists of one bit from all (or a subset
of) rows of the memory block. In one data transfer phase, q column transfers can transfer as many
q-bit numbers as the rows in the memory. As discussed in data mapping, the output polynomial is
present inn/2 rows such that indices [0,n/2−1] are stored in one set of columns and the remaining
indices in another set of columns. Hence, we need four data transfer phases. The first data transfer
reads the even-indexed coefficients from [0,n/2−1] and writes them to the next stage according to
the data mapping scheme, while the second data transfer does the same for the even-indexed coef-
ficients from [n/2,n−1]. Similarly, the third and fourth data transfer phases deal with odd-indexed
coefficients. These data transfers read selected rows from one memory block, send it over a con-
ventional local interconnect, and write them at a contiguous location of the destination memory.

Operation Pipeline:We pipeline our NTT implementation at the granularity of an NTT stage.
Hence, the pipeline depth is given by the number of NTT stages: (n×dr)× (2loд2n+2). Each stage
works in parallel over different inputs. As discussed in Section 9, each MemFHE memory block
contains 1,024 rows. Hence, one memory block can implement an NTT stage for up to a 2,048-
degree polynomial, requiring a total of 11(loд22048) memory blocks for whole NTT. For n < 2,048,
we perform NTT overm = 2048/n inputs at the same time in parallel, while requiring only loд2n
stages in the pipeline. In order to maintain the computation and data transfer characteristics, we
interleave the inputs as shown in Figure 3(e). Here, the output throughput of the pipeline becomes
m× the original throughput. For n > 2,048, MemFHE allocates multiple memory blocks per stage
and implements a deeper pipeline. Since MemFHE’s NTT is stage-wise pipelined, the throughput
of the larger NTT is the same as that for n = 2,048.

Inverse NTT (INTT): NTT and INTT utilize the same hardware and have identical data-
mapping, computation, transfer, and pipelining schemes. The two operations differ only in the

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:13

twiddle factors they use. During the pre-compute step, the INTT pipeline generates the twiddle
factors,w−k , which are inverse of those used in NTT. The rest of the process is the same.

6.3 Extraction

After accumulation,ACC consists of a pair of polynomials. Extraction is a simple mapping process
that converts ACC to a ciphertext. The first polynomial of ACC represents the polynomial part of
the bootstrapped output ciphertext, whereas the constant term (corresponding to degree-0) of the
second polynomial represents the integer part. To reverse the mapping operation that occurred
during the initialization phase, Q/8 is added (modulo Q) to the integer part.

7 MEMFHE CLIENT ARCHITECTURE

7.1 Encryption

Client encryption converts a message bit, m, into a ciphertext of the type (a, b), where a is an
integer polynomial of length n, while b is an integer. This encryption utilizes the LWE encryption
technique [37, 38, 44] and is defined as LWEs (m) = (a,b) = (a, (a.s + e +m

′) mod q), wherem′ is
an encoded version ofm, s is the secret key, and e is an integer error added to the message.
Evaluatingm′ involves dividing the message,m, with a message modulus t and thenmultiplying

the output with the application parameter, q/2. According to the state-of-the-art implementation
in [48] and the security parameters presented in [38] and Section 9, t and q are always powers of
2. Hence, MemFHE scalesm tom’ using in-memory shift and add operations. We first extract the
loд2t LSBs of m. Then, in-memory multiplication with q/2 is simply a left shift operation onm%t
by loд2 (q/2). Since all the operations in encryption are done modulo q, we extract the loд2q LSBs
of the output. In the case when q is not a power of 2, we perform modulo operations as described
in Section 8.
Generating integer b requires a dot product between vectors a and s , followed by adding e and

m′. To generate this dot product, we utilize the secret key memory, SKmem . It stores the vector
corresponding to secret key s in a row-parallel way such that all the elements of s occupy the
same set of memory bitlines and each element is stored in a different row. The incoming vector a
is written such that the corresponding elements of a and s are present in the same row.
We implement row-parallel integer multiplication between the elements of the two vectors. Our

row-parallel execution performs vector-wide multiplication with the same latency as that of a
single multiplication, discussed in Section 8. This is followed by an addition of all the products. To
add, we perform column-parallel in-memory addition operations on the output products such as
those proposed in [13] but using the in-memory switching techniques instead of sense amplifier-
based operations of [13]. In the following discussion, we denote the bitwidth of each product
(i.e., loд2q) with the letter p. Here, we accumulate each bit position independently, so that k p-bit
numbers are reduced to p loд2k-bit numbers after (k − 2) column-parallel 1-bit additions for each
of the p bit positions. To further reduce the output to a single number, we transpose the output of
column-parallel addition so that the outputs for all p columns are stored in the same row. It takes
p data transfers, loд2k bits per transfer, to read the outputs column-wise and store them in a row.
We then perform bit-serial addition to obtain the final integer output, which takes p × loд2k 1-bit
additions. This output represents the dot product a.s , to which we add integers e andm’.

7.2 Decryption

Client decryption converts the server’s output ciphertext, (a,b), back to a bit message, m, as
Round (4/q ∗ (b − a.s)), where s is the client’s private key. MemFHE first uses the dot product
implementation of MemFHE’s encryption to obtain a.s , followed by a subtraction operation with

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:14 S. Gupta et al.

b. The subtraction is followed by a modulo q operation, where MemFHE simply reads the loд2q
LSBs of the output. Scaling is done with 4/q by discarding the loд2 (q/4) LSBs. Round (.) is imple-
mented similar to the rounding function discussed during modulus switching in Section 5.4.

8 MEMFHE COMPUTATIONS

Here, we detail PIM implementation of MemFHE operations.
Vectorized Data Organization: MemFHE implements vectorized versions of its operations.

An input vector, with n b-bit elements, is stored such that n elements occupy n different rows but
share the same b memory columns.
Row-parallel Addition and Multiplication: A b-bit addition in MemFHE is implemented

using bitwise AND, OR, and XOR and requires (6b + 1) memory cycles [22]. Similarly, multipli-
cation is performed by generating partial products and serially adding them. MemFHE optimizes
the multiplication in [23] by sharing the memory cells among intermediate outputs of addition
and utilizing faster operations proposed in [22]. This significantly reduces the time to perform
full-precision b-bit multiplication from (13b2 − 14b − 6) to (7b2 + 4b) memory cycles, while the
total memory required reduces from (20b − 5) to 13b. This increases the maximum possible multi-
plication bitwidth from 51 bits in [23] to 78 bits in MemFHE.

Modulus/Modulo: The modulus operation gives the remainder of a division. In the context of
FHE, modulus is used to avoid overflow during computation. Hence, most operations in MemFHE
are followed by modulus. In most cases in the MemFHE server, modulus is taken with respect
to a prime number. We perform PIM variants of Barrett [2] (for addition) and Montgomery [39]
(for multiplication) reductions using shift and add operations, as done in [41]. This requires prior
knowledge of the modulus base, which is governed by the security parameters (and hence known)
in MemFHE. If taken with respect to a power of 2, then modulus just selects the corresponding
LSBs of the input.
Comparison: The comparison operation in MemFHE can compare an input query with the

data stored in MemFHE’s memory blocks. We exploit the associative operations proposed in [18]
to search for a bit of data in a memory column. To compare data stored in b columns and r rows of
a memory block with a b-bit query, we perform bit-by-bit search. Starting from MSB, associative
search is applied for each memory column and all memory rows. Associative search circuit [18]
selects all rows where there is a mismatch between the stored and query bit.
Rotation: Rotation in MemFHE is equivalent to reading out a memory row (column), bit-wise

rotating them at the input register of the block, and writing it back.
Shift: MemFHE implements the shift operation by simply selecting or deselecting bitlines for

the corresponding LSB/MSBs. If sign extension is required, then MemFHE copies the data stored
at the original MSB bitline.

9 EVALUATION

9.1 Simulation Setup

We simulateMemFHE using a cycle-accurate simulator. The simulator considers thememory block
size (1,024 × 1,024 bits in our experiments), the precision for each operation, the degree of polyno-
mials, the locations, and the organization of the data. We use HSPICE for circuit-level simulations
and calculate energy consumption and performance of all the MemFHE operations with 28nm
process node. We adopt an RRAM device with the VTEAM model [31] and switching delay of
1.1ns [52]. The parameters of the model have been set to mimic the behavior of practical RRAM
memory chips [53]. RRAM components of the design have a SET and RESET voltage of 2V and 1V,
respectively, with a high-to-low resistance ratio of 10MΩ/10kΩ. A detailed list of parameters is

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:15

presented in [26, 30]. However, the proposed architecture works with most processing-in-memory
implementations based on digital data.
MemFHE is based on the FHEW cryptosystem of the PALISADE library [48]. We perform our

evaluation over multiple security parameter sets as described in [38] and summarized in Table 2.

9.2 MemFHE-server Pipeline Analysis

Figure 4 shows the throughput, latency, energy consumed, and memory required for one MemFHE
server pipeline with different parameter settings. We compare the throughput-optimized and
area-optimized implementations of the pipeline. The two implementations differ in the way they
pipeline NTT/INTT. While the area-optimized version follows the stage-wise pipelining mech-
anism discussed in Section 6.2.3, the throughput-optimized design implements a finer-grained
pipeline. It further breaks an NTT stage into three pipeline stages, first for multiplication with
twiddle, second for reduction of the product and addition/subtraction, and third for final reduc-
tion and data transfer to the next stage.
Throughput-optimized MemFHE: We observe that the four design metrics change signifi-

cantly with the security levels. Throughput is highly dependent on Q , the bitwidth of server-side
computations. More precisely, throughput varies approximately with (loд2Q)2. This happens be-
cause the slowest operation of the pipeline, i.e., the coefficient-wise multiplication, has an im-
plementation latency of O (Q2) in MemFHE. MemFHE’s latency is dependent on Q2 as well as
the polynomial degree of input ciphertext, n, and parameter dr and varies approximately with
n.dr .(loд2Q)

2. The MemFHE server consumes a total energy of 34mJ (164mJ) for processing an
input in a 128-bit classical (quantum-safe) FHE setting. While the quantum-safe implementations
consume higher energy than their classical counterparts, the difference reduces as the security
level increases. The total memory consumed by MemFHE’s server changes with different parame-
ter settings as well. It varies approximately with n.N .dд , consuming 37GB (47GB) for a complete
server pipeline running 128-bit classical (quantum-safe) FHE. We further observe that the accu-
mulation of the cryptographic accumulator,ACC , consumes on average 96.5% of the total memory
requirement of the server pipeline, while contributing 99.7% to the total latency. Accumulation
makes up 99.9% of the total bootstrapping computational effort. Hence, this effectively represents
the performance of bootstrapping.
Area-optimized MemFHE:While MemFHE provides extensive throughput benefits, it takes a

considerable amount of area. Moreover, since memory is the main resource in MemFHE, we opti-
mized our implementation for area. We observe that an area-optimized MemFHE-server pipeline
consumes 2.5× fewer memory resources on average as compared to the throughput-optimized
design, while reducing the throughput by approximately 2.2×. In contrast, the latency increases
by 75%. This happens because we reduce the number of pipeline stages by 3× in the area-optimized
design but at the same time increase the latency of each pipeline stage by 2.2×. Since the operations
remain the same in both of the designs, their total energy consumption is similar. This highlights
one of the advantages of PIM as pipelining doesn’t have operational and storage overhead since
outputs of most operations are generated in the memory block and hence stored inherently.

9.3 MemFHE-server Scalability

We take the area-optimized MemFHE for different security levels and scale it to the given memory
size. MemFHE has a minimum memory requirement, which is storage needed for the refreshing
and switching keys. The different key sizes in MemFHE are presented in Table 3. To scale down
from a pipeline’s ideal memory size described in Section 9.2 and Figure 4, we reduce the number
of NTT cores. To scale up, we increase the number of parallel pipelines.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:16 S. Gupta et al.

Fig. 4. MemFHE-server pipeline results for a bitwise operation. The suffix Q represents quantum-safe secu-
rity guarantee.

Table 3. MemFHE Key Sizes (in MB)

STD128 STD192 STD256 STD128Q STD192Q STD256Q

EKS 253 925 1,269 1,719 1,750 1,013
EKB (AP) 322 897 1,920 1,150 2,304 1,792
EKB (GINX) 14 39 60 50 72 56
Total (AP) 575 1,822 3,189 2,869 4,054 2,805
Total (GINX) 267 964 1,329 1,769 1,822 1,069

Figure 5 shows the throughput of the server for different security levels under different memory
constraints. Missing bars in the figure show the cases when the available memory is not sufficient
to implement MemFHE. We observe that MemFHE’s throughput changes almost linearly with the
total memory availability. It increases from the ideal 77 inputs/ms with 14GB memory consump-
tion to 307 inputs/ms with 64GB for 128-bit security level, while it decreases to 7 inputs/ms with
2GB memory size. However, in some cases the changes isn’t linear. For example, for the quantum-
safe 128-bit security configuration, MemFHE’s throughput of 20 inputs/ms doesn’t change when
going from the ideal 20GB to 32GB. This happens because the increase in memory is not sufficient
to support two pipelines. At the same time, increasing the memory availability further to 64GB
increases the throughput by 3× to 61 inputs/ms because 64GB memory has enough resources to
fit three STD128Q pipelines.

9.4 MemFHE-client Analysis

The MemFHE client encrypts bits to ciphertexts and decrypts processed ciphertexts back to bits.
Figure 6(a) shows the encryption latency and energy consumption for the MemFHE client at

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:17

Fig. 5. MemFHE-server throughput for different memory sizes. The missing bars represents memory lower
than the minimum required size.

Fig. 6. Encryption in MemFHE client. (a) Latency and energy consumption and (b) throughput for different
memory sizes.

different security levels for a bit. Decryption involves the same operations and has roughly the
same latency as that of encryption. The latency of encryption depends on the ciphertext modulus,
q, and the polynomial degree, n. As expected, the dot product a.s is the slowest operation in
encryption, taking 98% of the total latency. Encrypting a bit to a 128-bit (256-bit) quantum-safe

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:18 S. Gupta et al.

Fig. 7. End-to-end latency for implementing add and multiply ops in MemFHE.

ciphertext in MemFHE takes 3us (5.5us), while it consumes 4nJ (9.8nJ) of energy. On the other
hand, the CPU is on average 171× slower. For example, CPU requires 550us to encrypt a bit for
128-bit quantum-safe FHE.

MemFHE requires a total of 128KB (256KB)memory (onememory block) for generating a 128-bit
(256-bit) quantum-safe ciphertext. However, similar to the MemFHE server, the client is also scal-
able and employs multiple encrypting-decrypting memory blocks for processing multiple inputs
in parallel. Figure 6(b) shows how the throughput of theMemFHE client changes with the available
memory sizes. The figure shows the combined encrypt-decrypt throughput. Eachmemory block in
MemFHE can be dynamically configured to run either encryption or decryption. We observe that
the client’s throughput increases linearly with the increase in the total memory size, going from
0.2 inputs/us for 256KB memory to nearly 47 inputs/us for 64MB for quantum-safe 256-bit
encryption.

9.5 Arithmetic Operations in MemFHE

In this subsection, we show the end-to-end performance of MemFHEwhile implementing addition
and multiplication. We utilize Kogge-Stone adders for addition operation as well as accumulation
of partial products during multiplication. This reduces the critical path of the circuits and, hence,
the end-to-end latency for an input. Provided sufficient independent inputs, MemFHE can imple-
ment all these operations with the same throughput as shown in Section 9.2, processing up to 174
inputs/ms at 256-bit quantum-safe security.
Figure 7 shows the latency of running different types of additions and multiplications in the

MemFHE pipeline for various security settings. We observe that for individual operations, the
latency is limited by their critical path. The latencies for individual addition vary with O (loд2b),
where b is the bitwidth of the operation, taking 353ms (705ms) for an 8-bit (64-bit) addition while
providing 256-bit quantum-safe security. For multiplication, the latency varies with O (b .loд2b),
taking 2.8s (45s) for an 8-bit (64-bit) multiplication.

Implementing 1,024 independent additions and multiplications does not increase the latency
significantly. Instead, these independent inputs fill up MemFHE’s pipeline, which was otherwise
severely underutilized. For example, performing 1,024 8-bit additions/multiplications takes only
twice the total time as that for single addition/multiplication in 128-bit quantum-safe settings. For
256-bit quantum-safe FHE, the latency for 1,024 8-bit additions/multiplications is actually similar to

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:19

Table 4. Workloads for Learning in MemFHE [36]

Dataset Network Topology Accuracy #GateOps
MNIST C-B-A-P-C-P-F-B-A-F [19] 99.54% 856K
CIFAR-10 [C-B-A-C-B-A-P]×3-F-F [3] 92.54% 211M
ImageNet ShuffleNet [55] 69.4% 1.1G
Penn Treebank [32] LSTM: t-step 25, 300-unit layer; ReLU [32] 89.8 PPW 24.4M

C: convolution layer; A: activation layer; B: batch normalization; P: pooling layer; F: fully connected layer; PPW:
perplexity per word.

that for a single addition/multiplication. This happens because theMemFHE pipeline for STD256Q
is much deeper than that of STD128Q, allowing more operations to fill up the pipeline. Even for
1,024 64-bit multiplications, MemFHE is at most 13× slower than one 64-bit multiplication. Hence,
MemFHE truly shines when there are enough independent operations to fill the pipeline.
Lastly, Figure 7 also shows the latency of different addition and multiplication operations, nor-

malized to MemFHE, for an Intel i7-9700 CPU with 64GB of RAM in a 128-bit classical security
setting in log scale. The results were obtained using single-threaded implementation of the state-
of-the-art PALISADE library [48] as detailed in [38]. We observe that CPU is on average 35× (295×)
slower than MemFHE for individual 8-bit (64-bit) arithmetic operations. For 1,024 arithmetic oper-
ations, MemFHE is on average 20,573× faster than CPU. This is due to the highly pipelined archi-
tecture of MemFHE that can deliver higher throughput for large data. We also compare MemFHE
with Nvidia GTX 1080 GPU with 8GB memory [40]. We see that MemFHE is on average 53× faster
than GPU for 32-element-long vector additions and multiplications. However, the latency of FHE
computations in [40] scales linearly with vector length beyond 8, while MemFHE is able to main-
tain the same latency for a vector length of 160 for 32-bit multiplications. This makes MemFHE up
to 265× faster than GPU.
MemFHE Ops and Memory Block Size: The memory block size in MemFHE refers to the

physical memory size that can be used as a compute element. However, many such blocks can be
architecturally combined to form a bigger memory block. The main effect of block size is the size
of operations that can be implemented. For example, from Section 8, 64-bit multiplication requires
832 (= 13 × 64) columns. If the physical memory width is less than this, then we can’t imple-
ment that operation without incurring the performance/area cost of making copies of the inputs
and intermediate outputs. To reduce the complexity of design, the maximum size of operation in
MemFHE is limited by the memory width. For example, for an implementation with a memory
block of size 512×512 bits (32kB), MemFHE can implement up to 32-bit multiplication. For a given
precision and block size, we can generate area- and latency-optimized MemFHE designs. While
the performance of the area-optimized design will depend on the block size, the performance of
the latency-optimized design is minimally affected by block size.

9.6 Learning in MemFHE

We show MemFHE performance for complicated learning tasks. Our evaluation is inspired from
theCPU implementation of TFHE-baseddeepneural networks (DNNs) in [36], whichwe refer to
as TDNN for simplicity. TDNN converts DNN operations into TFHE-compatible functions. We use
the same functions to evaluate MemFHE as it also supports TFHE. Table 4 details the datasets and
the corresponding network topologies used for evaluation. TDNN works in both fully homomor-
phic (TDNN-FHE) mode and leveled mode (TDNN-Lvl). While TDNN-FHE bootstraps each gate
operation, TDNN-Lvl bootstraps only higher-level operations like polynomial multiplications and
additions [36].

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:20 S. Gupta et al.

Fig. 8. Inference throughput of MemFHE and TDNN [36] for different datasets. MemFHE utilizes (a) 64GB
memory and (b) 1TB memory. TDNN-FHE and TDNN-Lvl provide 163-bit and 152-bit security guarantees.

Figure 8(a) shows the inference throughput of MemFHE and TDNN over various datasets.
MemFHE is scaled to have a total of 64GB memory size. While MemFHE provides a range of
classical and quantum-safe security guarantees, TDNN provides 163-bit (152-bit) security guaran-
tee in FHE (leveled) mode. We observe that as compared to TDNN-FHE, MemFHE provides on
average 2,007× higher throughput (inference/s) for classical FHE. Moreover, MemFHE has 827×
higher throughput while ensuring quantum-safe FHE, while TDNN-FHE just provides classical se-
curity. We also observe that MemFHE in quantum-safe provides similar throughput as TDNN-Lvl.
This is a huge improvement because leveled HE accelerates computations on encrypted data by
performing multiple operations without bootstrapping. However, it limits the achievable security
levels. Moreover, encrypting in leveled mode is dependent on the complexity of the target oper-
ation and cannot implement arbitrary operations. MemFHE achieves the throughput of a leveled
implementation while running FHE.
TDNN presented in [36] runs on an Intel Xeon E7-4850 CPU with 1TB DRAM. To perform a

similar memory size evaluation, we also scale MemFHE up to 1TB memory. Figure 8 summarizes
the results. We observe that MemFHE’s throughput further increases on average by 19× (17×) for
classical (quantum-safe) FHE. This translates to four orders of magnitude higher throughput than
TDNN-FHE. This huge improvement inMemFHE comes from (1) significant reduction in total data
transfers and (2) the significantly higher number of processing in memory cores. Unlike traditional
systems, off-chip data transfers in MemFHE consist only of the communication between the client
and server. The high density of memory allows us to have a large number of PIM-enabled cores in
the system, allowing for higher parallelism and deeper pipelining.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:21

10 CONCLUSION

We presented MemFHE, the first end-to-end acceleration of fully homomorphic encryption in PIM.
We designed accelerators for both the client and server for the latest RGSW-based homomorphic
encryption schemes. MemFHE reduces the data transfer bottlenecks and enables extensive paral-
lelism. MemFHE raises the bar of today’s systems security, providing both classical and quantum-
safe security guarantees.

REFERENCES

[1] Jacob Alperin-Sheriff and Chris Peikert. 2014. Faster bootstrapping with polynomial error. In Annual Cryptology Con-

ference. Springer, 297–314.
[2] Paul Barrett. 1986. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard

digital signal processor. In CRYPTO.
[3] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Emmanuel Prouff. 2017. Privacy-

preserving classification on deep neural network. IACR Cryptol. ePrint Arch. 2017 (2017), 35.
[4] HaoChen andKyoohyungHan. 2018. Homomorphic lower digits removal and improved FHE bootstrapping. InAnnual

International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 315–337.
[5] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from fully homomorphic encryption with

malicious security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1223–1237.

[6] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. 2016. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In International Conference on the Theory and Application of Cryptology and

Information Security. Springer, 3–33.
[7] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020. TFHE: Fast fully homomorphic en-

cryption over the torus. Journal of Cryptology 33, 1 (2020), 34–91.
[8] Edward J. Chou, Arun Gururajan, Kim Laine, Nitin Kumar Goel, Anna Bertiger, and Jack W. Stokes. 2020. Privacy-

preserving phishing web page classification via fully homomorphic encryption. In 2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP’20). IEEE, 2792–2796.
[9] Hüsrev Cılasun, Salonik Resch, Zamshed Iqbal Chowdhury, Erin Olson, Masoud Zabihi, Zhengyang Zhao, Thomas

Peterson, Jian-Ping Wang, Sachin S. Sapatnekar, and Ulya Karpuzcu. 2020. Crafft: High resolution FFT accelerator in
spintronic computational ram. In 2020 57th ACM/IEEE Design Automation Conference (DAC’20). IEEE, 1–6.

[10] David Bruce Cousins, Kurt Rohloff, and Daniel Sumorok. 2016. Designing an FPGA-accelerated homomorphic encryp-
tion co-processor. IEEE Transactions on Emerging Topics in Computing 5, 2 (2016), 193–206.

[11] Wei Dai and Berk Sunar. [n.d.]. Cuda-accelerated fully homomorphic encryption library, August 2019.
[12] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping homomorphic encryption in less than a second. In

Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 617–640.
[13] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Dennis Sylvester, David Blaaauw,

and Reetuparna Das. 2018. Neural cache: Bit-serial in-cache acceleration of deep neural networks. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA’18). IEEE, 383–396.
[14] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality cache for data parallel acceleration. In Proceedings of

the 46th International Symposium on Computer Architecture. 397–410.
[15] Nicolas Gama, Malika Izabachene, Phong Q. Nguyen, and Xiang Xie. 2016. Structural lattice reduction: Generalized

worst-case to average-case reductions and homomorphic cryptosystems. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 528–558.
[16] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Sym-

posium on Theory of Computing. 169–178.
[17] Craig Gentry, Amit Sahai, and BrentWaters. 2013. Homomorphic encryption from learning with errors: Conceptually-

simpler, asymptotically-faster, attribute-based. In Annual Cryptology Conference. Springer, 75–92.
[18] Amirali Ghofrani, Abbas Rahimi, Miguel A. Lastras-Montaño, Luca Benini, Rajesh K. Gupta, and Kwang-Ting Cheng.

2016. Associative memristive memory for approximate computing in GPUs. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems 6, 2 (2016), 222–234.
[19] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. 2016. Cryp-

tonets: Applying neural networks to encrypted data with high throughput and accuracy. In International Conference

on Machine Learning. PMLR, 201–210.
[20] Alvin Oliver Glova, Itir Akgun, Shuangchen Li, Xing Hu, and Yuan Xie. 2019. Near-data acceleration of privacy-

preserving biomarker search with 3D-stacked memory. In 2019 Design, Automation & Test in Europe Conference &

Exhibition (DATE’19). IEEE, 800–805.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

28:22 S. Gupta et al.

[21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. 2021. Revisiting the functional bootstrap in TFHE. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2021), 229–253.

[22] Saransh Gupta, Mohsen Imani, and Tajana Rosing. 2018. FELIX: Fast and energy-efficient logic in memory. In Proceed-

ings of the International Conference on Computer-aided Design. ACM, 55.
[23] Ameer Haj-Ali, Rotem Ben-Hur, Nimrod Wald, and Shahar Kvatinsky. 2018. Efficient algorithms for in-memory fixed

point multiplication using magic. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS’18). IEEE, 1–5.
[24] Ameer Haj-Ali, Rotem Ben-Hur, Nimrod Wald, Ronny Ronen, and Shahar Kvatinsky. 2018. Imaging: In-memory algo-

rithms for image processing. IEEE Transactions on Circuits and Systems I: Regular Papers 65, 12 (2018), 4258–4271.
[25] Shai Halevi and Victor Shoup. 2014. Algorithms in Helib. In Annual Cryptology Conference. Springer, 554–571.
[26] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim: In-memory acceleration of deep

neural network training with high precision. In 2019 ACM/IEEE 46th Annual International Symposium on Computer

Architecture (ISCA’19). IEEE, 802–815.
[27] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou, Yeseong Kim, and Tajana Rosing. 2020. DUAL:

Acceleration of clustering algorithms using digital-based processing in-memory. In Proceedings of the International

Symposium on Microarchitecture. IEEE/ACM.
[28] Miran Kim, Arif Harmanci, Jean-Philippe Bossuat, Sergiu Carpov, Jung Hee Cheon, Ilaria Chillotti, Wonhee Cho,

David Froelicher, Nicolas Gama, Mariya Georgieva, et al. 2020. Ultra-fast homomorphic encryption models enable
secure outsourcing of genotype imputation. bioRxiv (2020).

[29] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. 2020. Semi-parallel logistic regression for GWAS on
encrypted data. BMC Medical Genomics 13, 7 (2020), 1–13.

[30] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G. Friedman, Avinoam Kolodny, and
Uri C. Weiser. 2014. MAGIC – memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs 61,
11 (2014), 895–899.

[31] Shahar Kvatinsky, Misbah Ramadan, Eby G. Friedman, and Avinoam Kolodny. 2015. VTEAM: A general model for
voltage-controlled memristors. IEEE Transactions on Circuits and Systems II: Express Briefs 62, 8 (2015), 786–790.

[32] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. 2015. A simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941 (2015).

[33] Moon Sung Lee, Yongje Lee, Jung Hee Cheon, and Yunheung Paek. 2015. Accelerating bootstrapping in FHEW using
GPUs. In 2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP’15).
IEEE, 128–135.

[34] Xinya Lei, Ruixin Guo, Feng Zhang, Lizhe Wang, Rui Xu, and Guangzhi Qu. 2019. Optimizing FHEW With heteroge-
neous high-performance computing. IEEE Transactions on Industrial Informatics 16, 8 (2019), 5335–5344.

[35] Zhenyu Liu, Yang Song, Takeshi Ikenaga, and Satoshi Goto. 2005. A VLSI array processing oriented fast fourier trans-
form algorithm and hardware implementation. IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences 88, 12 (2005), 3523–3530.
[36] Qian Lou and Lei Jiang. 2019. SHE: A fast and accurate deep neural network for encrypted data. Advances in Neural

Information Processing Systems (2019).
[37] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and learning with errors over rings. In

Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 1–23.
[38] Daniele Micciancio and Yuriy Polyakov. 2020. Bootstrapping in FHEW-like cryptosystems. IACR Cryptol. ePrint Arch.

2020 (2020), 86.
[39] Peter L. Montgomery. 1985. Modular multiplication without trial division. Mathematics of Computation (1985).
[40] Toufique Morshed, Md Momin Al Aziz, and Noman Mohammed. 2020. CPU and GPU accelerated fully homomorphic

encryption. In 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE, 142–153.
[41] Hamid Nejatollahi, Saransh Gupta, Mohsen Imani, Tajana Simunic Rosing, Rosario Cammarota, and Nikil Dutt. 2020.

CryptoPIM: In-memory acceleration for lattice-based cryptographic hardware. In 2020 57th ACM/IEEE Design Automa-

tion Conference (DAC’20). IEEE, 1–6.
[42] Dimin Niu, Qiaosha Zou, Cong Xu, and Yuan Xie. 2013. Low power multi-level-cell resistive memory design with

incomplete data mapping. In 2013 IEEE 31st International Conference on Computer Design (ICCD’13). IEEE, 131–137.
[43] NuCypher. 2018. NuFHE, a GPU-powered Torus FHE implementation. https://github.com/nucypher/nufhe.
[44] Oded Regev. 2009. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM

(JACM) 56, 6 (2009), 1–40.
[45] Dayane Reis, Michael T. Niemier, and Xiaobo Sharon Hu. 2019. A computing-in-memory engine for searching on

homomorphically encrypted data. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 5,
2 (2019), 123–131.

[46] Dayane Reis, Jonathan Takeshita, Taeho Jung, Michael Niemier, and Xiaobo Sharon Hu. 2020. Computing-in-memory
for performance and energy-efficient homomorphic encryption. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 28, 11 (2020), 2300–2313.

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

MemFHE: End-to-end Computing with Fully Homomorphic Encryption in Memory 28:23

[47] M. Sadegh Riazi, Kim Laine, Blake Pelton, andWei Dai. 2020. HEAX: An architecture for computing on encrypted data.
In Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating

Systems. 1295–1309.
[48] Kurt Rohloff and Yuriy Polyakov. [n.d.]. The PALISADE lattice cryptography library, 1.2017. https://git.njit.edu/

palisade/PALISADE.
[49] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. FPGA-based

high-performance parallel architecture for homomorphic computing on encrypted data. In 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA’19). IEEE, 387–398.
[50] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslinski, Christopher Peikert, and

Daniel Sanchez. 2021. F1: A fast and programmable accelerator for fully homomorphic encryption. InMICRO-54: 54th

Annual IEEE/ACM International Symposium on Microarchitecture. 238–252.
[51] R. Singleton. 1967. A method for computing the fast Fourier transform with auxiliary memory and limited high-speed

storage. IEEE Transactions on Audio and Electroacoustics 15, 2 (1967), 91–98.
[52] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. 2016. Logic design within memristive memories

using memristor-aided loGIC (MAGIC). IEEE Transactions on Nanotechnology 15, 4 (2016), 635–650.
[53] J. Joshua Yang, Dmitri B. Strukov, and Duncan R. Stewart. 2013. Memristive devices for computing. Nature Nanotech-

nology 8, 1 (2013), 13–24.
[54] Hasan Erdem Yantir, Wenzhe Guo, Ahmed M. Eltawil, Fadi J. Kurdahi, and Khaled Nabil Salama. 2019. An ultra-area-

efficient 1024-point in-memory FFT processor. Micromachines 10, 8 (2019), 509.
[55] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An extremely efficient convolutional

neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
6848–6856.

[56] Junwei Zhou, Junjiong Li, Emmanouil Panaousis, and Kaitai Liang. 2020. Deep binarized convolutional neural net-
work inferences over encrypted data. In 2020 7th IEEE International Conference on Cyber Security and Cloud Comput-

ing (CSCloud’20)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom’20). IEEE,
160–167.

Received 1 April 2022; revised 26 July 2022; accepted 2 October 2022

ACM Transactions on Embedded Computing Systems, Vol. 23, No. 2, Article 28. Publication date: March 2024.

