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ABSTRACT

Spectra open modification search (OMS) is the critical step in mass

spectrometry (MS) analysis and proteomics to identify peptides

underlying protein samples. However, large-scale spectra OMS is a

data-intensive workload that takes hours to days. In this work, we

propose a reconfigurable architecture based on 3D NAND ISP with

heterogeneous integration to accelerate the mass spectrum data

processing. We present two types of encoding designs for optimiza-

tion. Then we design scalable and reconfigurable 3D NAND ISP tiles

to further optimize the performance. The experiments show that

the 3D NAND ISP architecture with proper hardware configuration

achieves 14.3× to 24.2× speedup over the GPU baseline [10]. The

energy consumption is also improved by four orders of magnitude

without datamovements. The proposed design is an energy-efficient

and high-performance ISP solution for the emerging large-scale

spectra OMS.
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1 INTRODUCTION

Proteomics is a key to understanding the molecular processes of

proteins, which are responsible for a variety of activities in cell

life. Proteomics scientists use a powerful technique, called mass

spectrometry (MS), to recognize and measure peptides and proteins

underneath biological samples. Figure 1 illustrates the standard

flow to identify peptide sequences contained in protein digestion.

First, a method called tandemmass spectrometry (MS/MS) produces

a large amount of unknown query spectra data. Second, the key

step here is to compare the experimental query spectra against a

pre-built spectral reference library with known peptides, using the

spectral library searching method [12].

Figure 1: Overview of spectral library searching [9].

The algorithmic challenge of spectral library search is: a large

amount of acquired query spectra cannot be directly identified

by just using popular similarity metrics (like cosine similarity or

inner product) [5]. This is due to the data mismatch between exper-

imental and reference spectra data. The analyzed protein samples

may encounter multiple post-translational modifications (PTMs)

that modify the inherent mass and MS/MS fragmentation patterns.

However, reference spectra in pre-built spectral libraries are mainly

unmodified peptides. So more advanced searching algorithm is

needed to address PTMs. Open modification searching (OMS) is

a promising solution to accurately identify modified spectra [14].

Unlike the standard spectral library search that only queries spectra

to reference with a similar precursor mass, OMS accepts reference

spectra from a much wider range such that modified query spec-

tra are searched against their unmodified reference variants with

different precursor masses.
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Figure 2: Runtime breakdown of HOMS-TC [10] on GPU.

Spectra OMS enables the study of more complex protein inter-

action in virus-host and proteomics analysis of non-model organ-

isms [8]. However, OMS workloads create three major challenges

in terms of algorithm and data analysis acceleration. 1. OMS is

a memory-intensive workload that exhibits very low searching

speed and efficiency even with careful optimizations [2] since OMS

drastically increases the search space. 2. The increasingly available

spectra data in public databases [15] promote research develop-

ment, but the massive spectral libraries created by repository-scale

MS data [25] further increases the OMS time from hours to days.

For example, UCSD MassIVE contains 5.6 billion spectra, which

corresponds to 448TB in size [25].

Several tools have been presented to shorten the OMS time [3, 10,

13]. These tools use advanced nearest-neighbor search algorithms

with optimized metrics to boost OMS. Among the state-of-the-art

accelerations, HOMS-TC [10] with the aid of hyperdimensional

computing (HD) demonstrates the best runtime performance as

well as memory efficiency because it leverages the HD technique

to simplify the required operations to hardware-friendly Boolean

operations while maintaining good searching quality. Although

HD-based HOMS-TC significantly speeds up OMS workloads, it

still incurs a large memory footprint due to the memory-intensive

HD primitives. As shown in Figure 2, the HD encoding and database

search dominate the overall runtime even using a NVIDIA RTX

4090 GPU with 1TB/s memory bandwidth.

In-storage procesing (ISP) [17, 21, 22] is considered an effective

solution to extend available bandwidth and reduce data movement

cost. Meanwhile, the high-density 3D NAND Flash provides a cost-

effective solution that allows the storage of spectra data with over

GB or TB sizes. In this work, we combine the heterogeneous integra-

tion techniques [18] with 3D NAND ISP to develop an architecture

to accelerate HD-based OMS workloads in HOMS-TC [10] that

shows high data parallelism and energy efficiency. To accommo-

date the entire reference datasets, several tiles are required, thus

offering the reconfigurability of the 3D NAND ISP architecture. We

simulate the hardware performance with industry-grade 3D NAND

parameters [21] and implement the encoding and search circuits in

7nm FinFET technology node with ASAP7 PDK [6]. The 3D NAND

peripheral circuits are extracted from NeuroSim [24]. Our in-house

simulator shows the 3D NAND ISP has 14.3× to 24.2× speedup

versus the HOMS-TC. The energy efficientcy is also improved by

four orders of magnitude without massive data movements.

(a) Encoding.

(b) Hamming similarity search.

Figure 3: Two major steps: (a) encoding and (b) search in HD-

based OMS [9]. The encoding step converts spectra peaks

into hypervectors. The search step uses Hamming similarity

to efficiently find the matched peptides.

2 BACKGROUND ON MS AND ISP

2.1 HD-based Spectra Open Modification Search

Spectra data contain the mass-to-charge ratio (m/z) and ion signal

intensity of proteins. We call them peak intensities and peak indices,

respectively. Hyperdimensional computing-based (HD-based) OMS

improves the efficiency of the conventional spectra OMS pipeline

(Figure 1) in two aspects: 1. encoding and 2. Hamming similarity

search. In this work, we use the similar HD-based OMS in [9, 10]

as the OMS algorithms.

HD Encoding for Spectra. Figure 3 shows the encoding step that

transforms the raw spectra data into hyperdimensional space, where

the spectra are expressed as binary vectors with high dimension,

called hypervectors (HVs). To model the peak shifts and intensity

changes due to PTMs, HD encoding [9, 10] considers both spa-

tial locality (for peak shift) and value locality (for peak intensity

change). Each index in the spectrum vector is assigned with the

associative position HV F such that F𝑖 corresponds to index 𝑖 , and
F ∈ {F1, F2, . . . , F𝑓 }, where 𝑓 denotes the spectrum vector dimen-

sion. Likewise, level HVs L are utilized to model the intensity values

in each index. The intensity values are quantized to𝑄 levels and L𝑖
is assigned to the associative level 𝑖 where 𝑖 ∈ [0, 𝑄).

With the two sets of encoding HVs, namely F and L, the prepro-

cessed spectrum vector with multiple pairs of peak intensities and
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indices are encoded into the HV I format as:

I =
∑

(𝑖, 𝑗 ) ∈P

F𝑖 � L𝑗 , (1)

where P denotes all pairs of peak intensities and indices represent

the element-wise multiplication. Note that the resulting aggregated

HV I is non-binary HV. We binarize it for better computation and

memory efficiency.

Hamming Similarity Search. After the encoding step, HD-based

OMS leverages Hamming similarity search to identify the reference

peptides in HV format most matched to the query HV. Specifically,

Hamming similarity is adopted as the search metric. Therefore, the

search step requires to compute the Hamming similarity between

query and reference HVs. Each spectrum has its own spectrum

charge (+2, +3, . . .) and precursor m/z value. In addition to Ham-

ming similarity, the matched reference HVs also need to satisfy

other constraints including the spectrum charge and precursor m/z

condition. The final search results satisfy both: (1) having the iden-

tical spectrum charge as the query and (2) falling into the valid

range of precursor m/z difference between query and reference.

We apply the cascade search [11] to reduce the misidentification

rate, where a narrow precursor m/z tolerance is firstly used for

the standard search and FDR filtration is applied as Figure 3(b)-•1 .

In the second phase, remaining unidentified spectra are searched

using a larger precursor m/z tolerance as•2 .

The advantages of HD-based OMS lie in: the binary HV rep-

resentation instead of the high-precision format in existing OMS

tools [3, 13], which only requires simple Hamming similarity oper-

ations during OMS. The simplified data format and computations

dramatically reduce the circuit complexity for ISP implementation.

2.2 3D NAND In-Storage Processing (ISP)

Large datasets beyond several GB in scale often require Solid State

Drives (SSD) to accommodate the entire dataset. While SSDs offer

high read-throughput, accessing the entire dataset can still incur

significant latency and energy consumption. To address this is-

sue, in-storage-processing (ISP) has been proposed as a promising

paradigm [17, 21, 22] to eliminate the overhead caused by data

movements. Figure 4 illustrates the configuration of 3D NAND ISP.

In this design, an additional set of Analog-to-Digital Converters

(ADCs) is integrated into the separated source line (SL) correspond-

ing to each block in the mature 3D NAND Flash configuration. The

weight matrix or the reference data is stored in the 3D NAND Flash,

while the input vector or the query is sent to the 3D NAND as bit

line (BL) voltages. The results of either the vector-matrix multipli-

cation of the input vector and the weight matrix or the dot product

of the reference data and the query equal to the summed currents

along the sourcelines (SLs). The ADC then converts this current

into the digital domain for post-ISP processing. Without the need

for GB-level data movements, 3D NAND ISP reduces overall latency

and lowers energy consumption. As a result, in-storageprocessing

holds great potential for optimizing the performance of systems

dealing with large datasets on SSDs.

2.3 Heterogeneous Integration

To further boost the performance, heterogeneous integration tech-

niques are proposed to stack peripheral circuits on top/bottom of
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Figure 4: Overview of 3D NAND in-storage processing (ISP)

architecture: (a) Configuration of 3D NAND ISP. An addi-

tional set of ADCs are deployed after separated SLs, which

converts The VMM results or dot product results into digital

domain. (b) Data mapping scheme of 3D NAND ISP. Taking

OMS for example, the reference dataset is mapped to the 3D

NAND array and the query for hamming similarity calcula-

tion are sent in the array as BL voltage. The summed currents

in the SL represent the dot product results and later sorted

after ADCs.

the 3D NAND Flash array. Incorporating with Cu-Cu hybrid bond-

ing [19] and CMOS under array (CUA) [20], ISP achieves a compact

form factor. CUA enables the overlapping of memory peripherals

under the array, reducing the area of a single tier. Meanwhile, the

high-density inter-chip Cu-Cu bonding connects the processing

elements on the CMOS wafer to the 3D NAND wafer, ensuring

seamless integration. The CMOS wafer can be fabricated in an

advanced technology node to yield a smaller area and better perfor-

mance. The combination of CIM with heterogeneous integration

[18] offers a compact solution for large-scale data processing with

enhanced performance. This approach opens new possibilities for

the development of low-power, high-performance, and compact

data processing systems applicable to various applications.

3 PROPOSED 3D NAND ISP ARCHITECTURE

The datasets for mass spectrometry have reference data in the num-

ber of million-level. In this work, we propose a reconfigurable ar-

chitecture based on 3D NAND ISP with heterogeneous integration

for mass spectrometry applications. The 3D NAND ISP tile pos-

sesses the capability to perform both query encoding and hamming

similarity search in HyperOMS. In this section, the architecture of

3D NAND ISP and reconfigurability are discussed.
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Figure 5: 3D NAND ISP tile with heterogeneous integration.

The high-voltage circuits are stacked underneath the 3D

NAND array using CUA. The low-voltage circuits and digi-

tal circuits are fabricated on a separated CMOS wafer in an

advanced technology node and. The 3D NAND wafer and

CMOS wafer are bonded using Cu-Cu bonds offering high-

bandwidth inter-tier communication.

3.1 3D NAND ISP Tile with Heterogeneous
Integration

Figure 5 shows the proposed 3D NAND ISP tile with heterogeneous

integration. The peripheral circuits are folded on the top and bottom

of the 3D NAND tile. Notably, the high-voltage circuits including

word line (WL)/string select line (SSL) switch matrix (SW) and

the pass transistors are fabricated underneath the 3D NAND array

using CUA approach with the transistor size equivalent to 65 nm

technology to sustain high-voltage program/erase operations of 3D

NAND Flash. On the other hand, the low-voltage circuits including

digital circuits, buffers, decoders and ADCs are fabricated on a

separate CMOS wafer in an advanced 7 nm technology node and

later face-to-face bonded on top of the 3D NAND wafer using Cu-

Cu hybrid bonding. The inter-tier Cu-Cu bonding has a tight pitch

of 1 𝜇m [23] to guarantee high bandwidth data communication

across tiers. With Heterogeneous integration, the 3D NAND ISP

can accommodate encoding circuits and search circuits, therefore

performing both encoding and OMS in a single compact tile.

3.2 In-Memory Encoding vs. Near-Memory
Encoding

The hardware implementation of XOR encoding can also be incor-

porated in an in-storage fashion. Unlike the previous ISP approach

for dot products on SLs, the in-memory encoding performs bit-wise

dot products on each BL. Figure 6 illustrates both the near-memory

and in-memory encoding hardware designs. The near-memory en-

coding method deploys a set of XOR gates after sense amplifiers

(SA) in the page buffer. The position HVs are read from 3D NAND

Flash and fed into the XOR gates alongside cached level HVs. On

the other hand, in the in-memory encoding design, the position

HVs are also stored in the 3D NAND array, while in need of storing

position HVs and the level HVs are sent in as the BL voltages. The

XOR operation can be replaced by the OR operation of two bit-wise

dot products as:

A ⊕ B =
(
Ā · B

)
∨
(
A · B̄

)
. (2)

Figure 6: Block diagrams of in-memory encoding and near-

memory encoding: (a) In-memory encoding. The positionHVs

and position HVs are stored in the 3D NAND array. The XOR

encoding is achieved by the OR result of two dot products.

(b) Near-memory encoding. The position HVs are read from

the 3D NAND array and complete the XOR encoding with

the cached level HVs.

Figure 7: Reconfigurable 3D NAND ISP architecture. The tile

performs encoding and search operation. Combining several

tiles with H-tree routing provides flexibility to assigned en-

coding or search to the specified tile for optimization.

Integrating a set of AND gates after two sense amplifiers, the in-

memory requires less logic area with respect to the simplicity of the

OR gate compared to the XOR gate. The tradeoff will be discussed

in the Evaluation section.

3.3 Reconfigurability

Since the 3D NAND ISP tile performs encoding and search, mul-

tiple tiles can be partitioned for specific tasks, e.g., encoding and

search tiles. The versatility offers the reconfigurability for the chip

to accelerate specified tasks with optimized tile designs. Figure 7

demonstrates the reconfigurable architecture of the 3D NAND ISP

tiles. The tiles communicate through H-tree routing on the top

CMOS tier with memory controllers. This H-tree routing offers

inter-tile communications including tile-to-tile data transmission

and broadcasting. The reconfigurable architecture design provides

a design space for optimization when dealing with various datasets

with different parameters.
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Figure 8: Data flow in the 3D NAND ISP architecture. The

preprocessed spectra are fetched and encoded by the encod-

ing tiles. The encoded query is broadcast to the search tiles

for the Hamming similarity search in parallel. Finally, the

sorted top-k results are sent out.

Table 1: Datasets and spectrum preprocessing configurtions.

Dataset

Parameter Name iPRG2012 [4] HEK293 [5]

Max peaks in spectra 50

Min / max m/z 101 / 1500

Bin size 0.05 0.04

Precursor m/z tolerance (narrow) 20ppm 5ppm

Precursor m/z tolerance (wide) 500Da 500Da

3.4 Data Flow

Figure 8 illustrates the data flow of the architecture. First, the pre-

processed spectral data is fetched through the IO sequentially. The

specified encoding tiles encode the pre-processed spectral data

into query hypervectors, which are subsequently broadcasted to

the search tiles for simultaneous parallel searching. Finally, the

hamming similarities are sorted after exploring all the search spaces,

and the top-k results are sent out serially through the IO interface.

4 EVALUATION

4.1 Methodology

Datasets. We use two real-world datasets, including: 1. small-scale

iPRG2012 dataset [4] (total spectra: 15, 867) as query while yeast

spectral dataset [16] with the human HCD spectral library (total

spectra: 1, 162, 392) as reference. 2. large-scale HEK293 (Human

Embryonic Kidney 293) dataset [5] (total spectra per query: 46, 665
on average) as query while the human spectral library [1, 26] (total

spectra: 2, 992, 672) as reference. The query and reference spectra

follow the preprocessing flow of existing works [2, 3, 10]. The

preprocessing configurations for query and reference spectra are

listed in Table 1. The low-quality spectra with less than ten peaks

and a 250m/zmass range or peaks within a 0.05m/zwindow around

the precursor m/z were removed. All MS data, spectral libraries,

preprocessed spectra, and identification results are available on the

MassIVE repository with the dataset identifier MSV000091183.

Benchmarking. The evaluation of software baselines is run on

Intel i7-11700K CPU with 64GB of RAM, and NVIDIA Geforce RTX

4090 with 24GB of VRAM. We measure the energy consumption

of the CPU and GPU using Intel Power Gadget and nvidia-smi,
respectively. We count the number of identifications to compare

Figure 9: Impact of ADC precision on the OMS search quality

in terms of identified peptides.

the search quality. All search results are evaluated at fixed 1% FDR

threshold, using Pyteomics [7].

Hardware Modeling. The hardware parameters of the proposed

3D NAND are listed in Table 2. The HD encoder and search cir-

cuits are implemented using Verilog and synthesized on ASAP 7nm

PDK[6]. The peripheral circuits of the 3D NAND array are extracted

fromNeuroSim [24]. The clock frequency is set to 1GHz. To estimate

the performance and energy efficiency of proposed ISP designs, we

develop an in-house simulator to run the trace extracted from the

HOMS-TC [10] software.

Table 2: Hardware Simulation Parameters

Paramters Values

Advanced Technology 7 nm FinFET Process
CMOS VDD1 0.7 V
Tier ADC Type 6-bit SAR ADC

Encoder Dimension 8192

3D NAND Equivalent Feature Size F 13 nm
Physical SSL Pitch 220 nm

Parameter[21] BL Pitch 100 nm
No. of WL 32
No. of SSL 16
No. of BL 1/2/4/8 KB

No. of Block 128

Tile Size 0.379/0.757/1.51/3.03 mm2

WL Staircase Pitch 500 nm

3D NAND WL Read Voltage 1V/4.5 V
Electrical (𝑉𝑠𝑒𝑙𝑒𝑐𝑡 /𝑉𝑝𝑎𝑠𝑠 )

Parameter[21] SSL Read Voltage 4.5 V (activated)
BL Read Voltage 0.2V

𝐼𝑜𝑛 /𝐼𝑜𝑓 𝑓 2 nA/1 pA

CMOS Technology 65 nm Process
under Array VDD2 1V

4.2 Performance and Energy Evaluation

ADC precision. To simulate the performance, the ADC precision

for the 3D NAND ISP is needed to be determined. ADC introduces

additional quantization errors, which degrades the accuracy. Fig-

ure 9 demonstrates the impact of ADC precision on the OMS search

quality. The quantization error is negligible when ADC is 6-bit.

Therefore, we design the ADCs with 6-bit SAR ADC.
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Figure 10: Hardware simulation results of in-memory encod-

ing versus near-memory encoding. Note that BL number is

8192.

Figure 11: Hardware simulation results of various page sizes

(1KB/2KB/4KB/8KB) for near-memory encoding implemen-

tation.

In-memory encoding vs near-memory encoding. For the 3D

NAND ISP hardware evaluation, we first compare the performance

of the two hardware implementation methods for encoding. Fig-

ure 10 shows the simulation results of in-memory encoding and

near-memory encoding. Note that the BL number is set to 1KB

(8192) for fair comparison. Although in-memory encoding can re-

duce the circuit complexity, the doubled read operations for position

HVs yield longer latency and larger energy consumption for the

specific XOR encoding approach. In-memory encoding will out-

perform near-memory encoding in the more complex encoding

methods. Later simulations are based on near-memory encoding.

Page size scaling. The latency and energy consumption of a 3D

NANDmemory array is dominated by theWL charging/discharging.

Therefore, a sizable page offers a degree of freedom to further

optimize the performance. Figure 11 shows the hardware simulation

results of various page sizes, i.e., numbers of BL. We selectively

simulate 1KB(8192), 2KB(16384), 4KB(32768) and 8KB (65536). With

respect to the dimension of hypervectors is 8192, the minimum

number of BL is set to 8192 to avoid additional partial sum overhead.

The simulation results show a larger number of BL yields worse

performance. This is because the latency and energy consumption

of WL operations are scaled accordingly. We propose to design the

3D NAND ISP with a minimum page size that equals the dimension

of hypervectors for agile operations.

Tile scaling. The reconfigurable design also provides the scalability

for further speedup. Figure 12 shows the hardware simulation re-

sults of scaled tile numbers. As the number of tile scales, the latency

Figure 12: Hardware simulation results of scaled tile numbers

for near-memory encoding implementation. Note that BL

number is 8192.

Table 3: Speedup over the state-of-the-art OMS library on

GPU, HOMS-TC [10]. The HEK293 runtime is the average

runtime for each query file.

Workload Spectra OMS

Dataset iPRG2012 HEK293

HOMS-TC [10] 2.08s (1×) 10.4s (1×)

This work 0.145s (14.3×) 0.429s (24.2×)

is decreased. However, the scaling of latency is not inversely linear

due to the digital processing overhead. We propose to scale the tile

number by 2× to obtain an optimized result with a reasonable area

of 14.4 and 35.6 mm2 for iPRG2012 and HEK293, respectively.

Speedup versus GPU. With the optimized configuration of 3D

NAND ISP, we compare the performance versus CPU and GPU.

Table 3 compares the latency for HOMS-TC which accelerates Hy-

perOMS on GPU and HyperOMS on 3D NAND ISP. The proposed

3D NAND ISP has 14.3× and 24.2× speedup on respective datasets.

The simulated energy consumptions are 0.067 J and 0.491 J. Consid-

ering the average power of GPU 450 W, 3D NAND ISP improves

the energy efficiency by four orders of magnitude.

5 CONCLUSION

In this work, we propose the 3D NAND ISP architecture to accel-

erate memory-intensive spectral open modification search (OMS)

workloads. We also present two types of encoding design and deter-

mine the near-memory encoding for the state-of-the-art HD-based

OMS algorithm [9, 10]. The proposed 3D NAND ISP provides recon-

figurability and scalability for further optimization. Without the

need to move massive data from SSD and memory, the energy con-

sumption is significantly reduced by four orders of magnitude and

14.3× to 24.2× speedup is achieved over the GPU baseline [10]. Our

design is an energy-efficient and high-performance ISP solution for

the emerging large-scale spectra OMS.
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