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Abstract
Large language models generate high-quality re-

sponses with potential misinformation, underscor-

ing the need for regulation by distinguishing AI-

generated and human-written texts. Watermark-

ing is pivotal in this context, which involves em-

bedding hidden markers in texts during the LLM

inference phase, which is imperceptible to hu-

mans. Achieving both the detectability of inserted

watermarks and the semantic quality of generated

texts is challenging. While current watermark-

ing algorithms have made promising progress in

this direction, there remains significant scope for

improvement. To address these challenges, we

introduce a novel multi-objective optimization

(MOO) approach for watermarking that utilizes

lightweight networks to generate token-specific

watermarking logits and splitting ratios. By lever-

aging MOO to optimize for both detection and se-

mantic objective functions, our method simultane-

ously achieves detectability and semantic integrity.

Experimental results show that our method outper-

forms current watermarking techniques in enhanc-

ing the detectability of texts generated by LLMs

while maintaining their semantic coherence. Our

code is available at https://github.com/
mignonjia/TS watermark.

1. Introduction
Large Language Models (LLMs), particularly ChatGPT,

have significantly revolutionized the field of artificial intelli-

gence (AI), bringing forth unparalleled advancements and

applications with human-like capabilities (Schulman et al.,

2022). However, this rapid evolution has been accompanied
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by ethical challenges. Prominent among these are concerns

such as their potential use in election manipulation cam-

paigns (Alvarez et al., 2023; Wu et al., 2023b), the creation

of fake news and misleading web content (Augenstein et al.,

2023), and aiding academic dishonesty by facilitating cheat-

ing on homework (Team, 2023). In light of these issues, the

detection of text generated by LLMs emerges as a critical

task, underpinning the broader goals of AI ethics and safety.

Various classification-based approaches have been proposed

to determine whether a text is generated by humans or

LLMs (OpenAI, 2023; Guo et al., 2023b; Brown et al.,

1992). However, as LLM-generated texts increasingly match

the quality of human-generated ones, these methods are los-

ing their robustness. For instance, OpenAI released its own

AI classifier (OpenAI, 2023) in early 2023, but it was later

withdrawn due to its low accuracy. Recently, watermarking

techniques in LLMs have gained popularity (Abdelnabi &

Fritz, 2021; He et al., 2022a; Zhang et al., 2023; Kirchen-

bauer et al., 2023a; Kuditipudi et al., 2023; Aaronson, 2023;

Liu et al., 2023; Ren et al., 2023; Lee et al., 2023; Wang

et al., 2023; Wouters, 2023). These techniques embed hid-

den patterns in LLM-generated texts that, while impercepti-

ble to humans, can be detected by algorithms. Kirchenbauer

et al. (2023a) propose an effective watermarking method,

referred to as KGW in this paper. To generate a new token

with a watermark, the hash of the preceding token is used

as a random seed to divide the vocabulary into a green list

and a red list with a fixed splitting ratio (i.e., the percentage

of tokens in the green list). Then a constant value, known

as the watermark logit, is added to the LLM-produced log-

its on the green list tokens. This adjustment increases the

probability of selecting the ‘green’ tokens as the new token.

To identify the presence of a watermark, a statistical test is

carried out. This involves counting the number of green list

tokens in the generated text. A higher incidence of green

tokens suggests that the text is likely to contain a watermark.

The design of KGW emphasizes easy detection of water-

marked texts. However, this approach often compromises

the semantic coherence of the texts, as highlighted in Lee

et al. (2023). One primary cause of this issue is that KGW

uses a constant splitting ratio and watermark logit across

all tokens, without taking into account the context and se-
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Figure 1: The training procedure is as follows: During the LLM text generation, we utilize the γ-generator and δ-generator

to modify the probability of each token before sampling the next one. The parameters of these networks are learned through

optimization of the detection loss (Eq. 4) and semantic loss (Eq. 5) within a multi-objective optimization framework.

mantics of the specific token being generated. For instance,

given the prefix “The sun rises in the”, it is highly probable

that the next token to be generated should be “east”. But

KGW’s watermarking mechanism might not choose “east”

if the splitting ratio is low and the watermark logit is high.

A lower splitting ratio results in a smaller number of words

being added to the green list, thus significantly reducing

the chances of including the word “east” in it. On the other

hand, a higher watermark logit raises the probability of

choosing a token from this list. Consequently, it becomes

highly unlikely for “east” to be selected as the next token

for generation, which will significantly impact the semantic

coherence of the text. To mitigate this issue, adjusting the

splitting ratio and watermark logit is necessary, perhaps by

increasing the splitting ratio or decreasing the watermark

logit. Unfortunately, KGW lacks such an adaptive mecha-

nism. Conversely, if KGW utilizes a low, constant splitting

ratio and a small, uniform watermark logit for every token

to maintain semantic integrity, this approach may hinder the

watermark’s detectability. Hence, it is crucial to adaptively

assign token-specific values for these hyperparameters, si-

multaneously ensuring high detectability while maintaining

semantic integrity. Some works have been proposed to im-

prove the semantics of watermarked texts. Lee et al. (2023)

proposes a selective watermarking strategy to preserve se-

mantics by adding watermarks only to high-entropy tokens

while preserving the original logits for low-entropy tokens.

Kuditipudi et al. (2023) reduce the semantics distortion by

ensuring an unbiased distribution of tokens before and af-

ter watermarking, using an exponential minimum sampling

strategy which can positively influence semantics. However,

these works face challenges in enhancing both detectability

and semantic coherence at the same time: improving one

aspect frequently compromises the other.

To address the limitations of current methods, we introduce

a novel method (Figure 1) that simultaneously achieves two

primary goals: preserving the semantic integrity of gener-

ated texts and ensuring the effectiveness of watermark detec-

tion. Our method accomplishes the goals by dynamically ad-

justing the splitting ratio and watermark logit, controlled by

two trainable light-weight networks, for each token during

its generation. These networks process the representation of

the previous token to determine the optimal splitting ratio

and the appropriate watermark logit for the next token, su-

pervised by two loss functions: 1) Watermark detectability

via a one-sided z-test (Kirchenbauer et al., 2023a), which

quantifies the presence of green tokens in the generated text.

Since this metric is inherently non-differentiable, we intro-

duce a differentiable surrogate that allows for direct opti-

mization through gradient-based techniques during training.

2) Semantic coherence of watermarked texts, for which we

measure the cosine similarity between SimCSE (Gao et al.,

2021) embeddings of watermarked and non-watermarked

texts. We develop a multi-objective optimization frame-

work that aims to achieve both objectives concurrently. Our

method is geared towards identifying Pareto optimal solu-

tions, where improving one objective does not detrimentally

affect the other. This balanced approach ensures the effec-

tiveness of watermarking while maintaining the semantic

quality of the generated texts.

Our main contributions include:

• We introduce a novel watermarking method for LLMs

that improves both detectability and semantic coher-

ence in generated texts. Unlike earlier methods, which

often face challenges in achieving these objectives si-

multaneously, our approach employs multi-objective

optimization to achieve both of them concurrently.

• Our method employs two lightweight networks to dy-

namically determine token-specific splitting ratios and

watermark logits, avoiding uniform values across all

tokens.

• Our method has undergone comprehensive evaluation,

showing superior performance in both detectability and

semantic quality compared to leading baselines.
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2. Related Works
2.1. Watermarking Methods

Watermarking methods for large language models can be di-

vided into three categories: rule-based watermarking, neural

watermarking and inference-time watermarking. Rule-based

watermarking embeds watermarks using text transforma-

tions while ensuring that the overall semantic coherence is

not disturbed. These transformations involve altering lex-

ical properties (He et al., 2022a), manipulating linguistic

features (He et al., 2022b; Yoo et al., 2023), or substituting

synonyms (Munyer & Zhong, 2023; Yang et al., 2023). A

significant limitation of rule-based methods is that they are

vulnerable to attacks (e.g., replacing words with synonyms).

Neural watermarking employs neural networks to embed

watermarks into texts and decode them. Abdelnabi & Fritz

(2021) leverage a Transformer (Vaswani et al., 2017) en-

coder to embed a binary watermark message, which is then

extracted by a Transformer decoder. A Transformer-based

discriminator is employed to preserve the original seman-

tics of the text while applying watermarking. REMARK-

LLM (Zhang et al., 2023) employs a message encoding

network to embed an LLM-generated text and its signature

into a watermarked version. It then utilizes a message de-

coder to extract the LLM signature from this watermarked

text. Neural watermarking methods often involve compli-

cated neural networks to insert watermarks, incurring high

computational costs during text generation and watermark

detection.

Inference-time watermarking methods insert statistical sig-

nals into model logits during inference to improve detectabil-

ity. KGW (Kirchenbauer et al., 2023a) comes under this

umbrella. However, text watermarked by this method suf-

fers from reduced semantic coherence. A series of works

have been proposed to address this issue. Wang et al. (2023)

introduce a constraint stipulating that the perplexity of wa-

termarked text must not exceed the perplexity of the original

text, as produced by the same language model without wa-

termarking, by more than a small margin. However, this

strategy is developed through a series of approximations to

ensure practical applicability. These approximations can

lead to semantic disparities between the two texts. Chen

et al. (2023) propose to split the vocabulary into a green

list and red list in a semantically more balanced manner so

that any token in the red list can be replaced by a token in

the green list. However, their splitting method is based on

LLAMA2 (Touvron et al., 2023), which is computationally

expensive. Furthermore, Liu et al. (2023) introduce a seman-

tically invariant watermarking approach, aimed to improve

attack and security robustness. They employ Compositional-

BERT (Chanchani & Huang, 2023) to extract semantic rep-

resentations of preceding tokens and produce watermark

logits from these representations. However, this method in-

curs high computation overhead during inference due to the

utilization of Compositional-BERT. Wouters (2023) present

a closed-form solution for optimizing watermarking logits

to enhance semantic integrity, with a predetermined split-

ting ratio. However, this solution relies on assumptions

that may not hold in real-world scenarios, such as all to-

kens following identical distribution, and the absence of

distribution shifts post-watermarking. Additionally, their

analysis does not extend to determining an optimal splitting

ratio - a factor that is critical for balancing detectability and

semantic preservation. To enhance semantic coherence of

watermarked computer programs, SWEET (Lee et al., 2023)

proposes to selectively insert watermarks into high-entropy

tokens instead of every token. While this method is effec-

tive for watermarking code, it demonstrates weak detection

capabilities in texts across general domains.

2.2. Multi-Objective Optimization

Multi-objective optimization (MOO) (Deb et al., 2016) ad-

dresses the challenge of simultaneously optimizing sev-

eral objectives which often conflict with each other. The

Multiple-gradient Descent Algorithm (MGDA) (Désidéri,

2012) is a notable gradient-based approach designed for

solving MOO problems. MGDA aims to identify a single

gradient direction theoretically capable of optimizing all

objectives concurrently. If the gradients are not normal-

ized, the direction of the optimization is expected to be

mostly influenced by the gradients of small norms (Désidéri,

2012). To mitigate this, various normalization methods have

been developed (Chen et al., 2018; Milojkovic et al., 2019),

striving for a more equitable consideration of all involved

gradients. In our work, we employ MGDA to identify the

Pareto optimal solutions between detectability and semantic

coherence.

3. Preliminaries
Our work is built upon an inference-time watermarking

strategy introduced in Kirchenbauer et al. (2023a). This

watermarking technique is a two-stage process: first, em-

bedding a watermark into the text during its generation, and

second, identifying the presence of this watermark in the

text. During the generation of token s(t), the hash of the

preceding token s(t−1) serves as a random seed. This seed

is used to divide the vocabulary V into a green list, which

contains a fraction γ of the vocabulary, and a red list, con-

taining the remaining (1 − γ) fraction of the vocabulary.

The parameter γ, known as the splitting ratio, determines

the size of the green list relative to the total vocabulary.

Next, a constant watermark logit, denoted as δ, is added as

a bias to the logits of green list tokens. The sampling of

the next token is then based on these adjusted logits, softly

prompting the use of green list tokens.
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The process of detecting watermarked text does not require

access to the LLM that originally generated it. Know-

ing the specific hash function and random number gener-

ator utilized is sufficient to reproduce the red and green

lists associated with each token. The detection process

involves testing the null hypothesis H0 that the text was

generated without knowledge of the green-red list rule.

This is assessed using a one-sided z-test, with a z-score

z = (|s|G − γT )/
√
Tγ(1− γ) under H0, where |s|G rep-

resents the count of green list tokens in the watermarked text

and T denotes the length of the text. A watermark is consid-

ered successfully detected if this test leads to the rejection

of the null hypothesis, which occurs when the calculated

z-score exceeds a predetermined threshold.

4. Method
4.1. Overview

We present a novel watermarking method for LLMs, de-

signed to optimize two key aspects: detectability and seman-

tic coherence. Detectability is assessed using a one-sided

z-test that calculates a z-score based on the count of green

tokens in the text. Semantic coherence is evaluated by mea-

suring the cosine similarity between the embeddings of

watermarked and non-watermarked texts. These measures

are controlled by two hyperparameters: the split ratio γ and

watermark logit δ. Their values vary for different tokens to

reflect tokens’ unique characteristics.

To specify token-specific values of γ and δ, we employ two

light-weight networks: a γ-generator Gγ and a δ-generator

Gδ. The γ-generator processes the representation of a pre-

vious token t − 1 to determine the split ratio γt for token

t, and similarly, the δ-generator operates for the watermark

logits. These networks are optimized through a specialized

multi-objective optimization framework (Désidéri, 2012;

Sener & Koltun, 2018), aiming to simultaneously enhance

detectability and semantic coherence. Figure 1 shows an

overview of our proposed method.

4.2. Network Design

In this section, we provide a detailed description of the

γ-generator and δ-generator.

γ-Generator. The γ-generator is a lightweight multi-layer

perceptron. It takes the embedding of the preceding token

s(t−1) as input and generates a splitting ratio γt ∈ (0, 1) for

token t. Then we define a Bernoulli distribution parame-

terized by γt, denoted as B(γt), to split the vocabulary V
into a token-specific green list and red list. Specifically, for

each token v in V , we draw a sample from this distribution,

y
(t)
v ∼ B(γt), to determine whether the token belongs to

the green list. The token v is assigned to the green list if the

sampled value y
(t)
v is 1, and to the red list if it is 0.

However, the sampling process from a Bernoulli distribu-

tion is non-differentiable, which prevents the gradient-based

updating of the parameters in Gγ . To address this issue,

we utilize the Gumbel-Softmax method for differentiable

sampling (Jang et al., 2017). Specifically, for each token v
in V , we estimate the probability that it belongs to the green

list, denoted as ŷ
(t)
v , using the following formula:

ŷ(t)
v =

exp
(

log(γt)+g0
τ

)

exp
(

log(γt)+g0
τ

)
+ exp

(
log(1−γt)+g1

τ

) . (1)

Here, g0 and g1 are i.i.d samples from Gumbel(0, 1)1. Here

τ serves as a temperature parameter. As τ approaches 0,

the distribution becomes increasingly sharp, which results

in ŷ
(t)
v more closely approximating y

(t)
v . We utilize ŷ

(t)
v ,

a differentiable approximation of y
(t)
v , to softly split the

vocabulary into red and green token lists.

δ-Generator. Similarly to the γ-generator, the δ-generator

is also a lightweight multi-layer perceptron, which takes

the embedding of the preceding token s(t−1) as input and

generates a watermark logit δt ∈ R
+ for token t to bias the

green list tokens. Recall from Sec. 4.2, ŷ
(t)
v is the probability

that a token, v ∈ V , belongs to the green list. The watermark

logit δt is used to bias the model logit l
(t)
v for token v as

follows:

l̂(t)v = l(t)v + ŷ(t)v · δt. (2)

This formulation modifies the logit of token v by adding

an appropriate amount of δt, based on the likelihood of

the token being in the green list. These adjusted logits,

{l̂(t)v |v ∈ V}, are transformed into a probability vector using

SoftMax, which is then used to sample the next token.

4.3. Training Objectives

Our goals are to ensure both strong watermark detection

ability and high semantic coherence after adding the wa-

termark. To achieve these goals, we leverage two training

objectives: a detection loss measured by a differentiable

approximation of z-score and a semantic loss measured by

the cosine similarity of watermarked and unwatermarked

sentence embeddings.

Detection Loss. As described in Sec. 3, KGW (Kirchen-

bauer et al., 2023a) uses a constant green list ratio γ, and

applies a one-sided z-test for watermark detection, repre-

sented as (|s|G−γT )/
√
Tγ(1− γ). However, our method

1The Gumbel(0, 1) distribution can be sampled using inverse
transform sampling by drawing u ∼ Uniform(0, 1) and computing
g = − log(− log(u)).
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introduces a novel variation: γ is dynamically adapted for

each token based on the semantics of the preceding token.

We need to modify the z-score calculation to account for this

dynamic adaptation of γ. Thus, the mean and the standard

deviation of the distribution under H0 need to be estimated.

The generated tth token can be either a red list token or a

green list token. Under hypothesis H0, this categorization

follows a Bernoulli distribution B(γt) parameterized by γt.
To elucidate this, we define a random variable Xt ∼ B(γt),
where Xt = 1 signifies a green list token and Xt = 0 a

red list token. The mean of Xt is thus γt. Consequently,

the total count of green list tokens in the entire sequence of

length T is represented by
∑T−1

t=0 Xt.

Theorem 4.1. Consider T independent Bernoulli ran-
dom variables X1, . . . , XT , each with means μ1, . . . , μT ,
0 < μt < 1 ∀t ∈ 1, . . . , T . The sum of these variables,∑T

t=1 Xt, follows a Poisson binomial distribution. When T
is sufficiently large, this distribution can be approximated by
a Gaussian distribution with mean:

∑T
t=1 μt and variance:∑T

t=1 μt(1− μt).

Using Theorem 4.1, when T is sufficiently large, the z-score

under the null hypothesis, H0, can be approximated by the

following expression:

z =
|s|G −∑T

t=1 γt√∑T
t=1 γt(1− γt)

. (3)

Our goal is to enhance detectability by optimizing this z-

score. However, in its current formulation, the z-score is

not differentiable with respect to the parameters of the γ-

and δ-generator, due to the term |s|G. Therefore, we pro-

pose a relaxed formulation, by relaxing |s|G, the number

of green list tokens, as
∑T

t=1 p
(t)
gr . Given a red-green token

list during the generation of the tth token, p
(t)
gr represents the

probability of selecting a green token, as determined by the

modified logits in Eq. 2. This probability is computed as

the summation of the probabilities of all tokens in the green

list, where these individual probabilities are calculated using

the Softmax function applied to the modified logits. The

relaxed z-score is:

ẑ =

∑T
t=1 p

(t)
gr −∑T

t=1 γt√∑T
t=1 γt(1− γt)

. (4)

It is differentiable with respect to the parameters of the

γ and δ generators. The objective of our approach is to

maximize ẑ, thereby increasing detectability. Consequently,

the detectability loss LD is defined as LD = −ẑ, which we

aim to minimize.

Semantic Loss. To maintain the semantic integrity of wa-

termarked texts, we aim for a high degree of semantic re-

semblance to their original, non-watermarked counterparts

generated by LLMs. To evaluate the semantic similarity

between the two versions of the text, we compute the co-

sine similarity of their latent embeddings, which are gener-

ated by the RoBERTa-base model (Liu et al., 2019) from

SimCSE (Gao et al., 2021), denoted by fθ. The SimCSE

approach pretrains the RoBERTa-base model to generate

sentence embeddings under a contrastive learning frame-

work (Hadsell et al., 2006) so that the cosine similarity

of the embeddings can indicate their semantic similarity.

Specifically, considering s and sw as the non-watermarked

and watermarked LLM-generated sentences, respectively,

we improve the semantic integrity of sw by minimizing the

following semantic loss:

LS = − cossim(fθ(s), fθ(sw)), (5)

where cossim(·, ·) represents the cosine similarity operation.

The optimization variables are the weight parameters in the

γ- and δ-generator networks since the watermarking of sw
is controlled by these networks. Since the RoBERTa-base

model fθ and the LLM that generates sw share the same

tokenizer, we directly use the embedding generated by the

LLM as the input to fθ, making the operation differential

w.r.t. the γ- and δ-generator networks.

4.4. Multi-Objective Optimization

As explained earlier, the detection loss LD and semantic

loss LS have a competing relationship: solely decreasing

one of them often leads to the increase of the other. To

ensure concurrent reduction of both losses, we formulate a

multi-objective optimization problem:

min
Gγ ,Gδ

LD(Gγ , Gδ) and min
Gγ ,Gδ

LS(Gγ , Gδ). (6)

The goal of this formulation is to achieve Pareto optimality

as defined below.

Definition 4.2. (Pareto Optimality)

(a). A solution (Gγ , Gδ) dominates a solution (Gγ , Gδ) if

• LD(Gγ , Gδ) ≤ LD(Gγ , Gδ)

• LS(Gγ , Gδ) ≤ LS(Gγ , Gδ)

and at least one inequality is strict.

(b). A solution (Gγ , Gδ) is called Pareto optimal if there

exists no other solution that dominates it.

We employ the multiple-gradient descent algorithm

(MGDA) (Désidéri, 2012; Sener & Koltun, 2018), to

solve the multi-objective optimization problem described in

Eq.(6). Please refer to Appendix C for details.

5



Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for LLMs

4.5. Watermark Generation and Detection

In this section, we introduce how to generate and detect a

watermark using the trained Gγ and Gδ . The text generation

process at inference time is similar to the procedure used in

KGW. The primary difference is that we utilize a dynamic

γt and δt for each token, outputted by the trained Gγ and

Gδ, respectively, with the inputs being the embedding of

the preceding token. Detection is conducted through one-

sided z-test, specifically by using the z-score as defined in

Eq.(3). Given a generated text, Gγ is utilized to compute

γt necessary for calculating the z-score. Compared with

the original KGW method, the only additional requirement

during watermark detection is the embedding matrix of

the LLM, which is used to compute the embedding of the

preceding token.

5. Experiments
In our experiments, we insert watermarks to two prominent

LLMs: OPT-1.3B (Zhang et al., 2022), LLAMA2-7B, 13B

and 70B (Touvron et al., 2023). The evaluation of water-

marking is based on three aspects: the trade-off between

detectability and semantic integrity, computational complex-

ity, and robustness against attacks of the watermarks. We

also perform an analysis of our learned δ and γ, and present

an ablation study in Appendix K. Training details including

the hyperparameter settings can be found in Appendix D.

5.1. Experimental Settings

Dataset and Prompt. Following Kirchenbauer et al.

(2023a), we utilize texts from the news-like subset of the C4

dataset (Raffel et al., 2019) to insert watermarks. For each

text from this dataset, the last 200 tokens are truncated and

designated as the ‘baseline completion’ (i.e., human-written

texts). The remaining tokens from the start of the text are

considered the ‘prompt’. Conditioned on this prompt, the

LLM generates a token sequence equivalent in length to the

baseline completion, incorporating watermarks within this

generation. Following Kirchenbauer et al. (2023a), we filter

the dataset to include texts ranging from 500 to 1000 tokens.

This dataset is then divided randomly into three subsets:

6,400 texts for training, 500 for validation, and another 500

for testing.

Evaluation Metrics. The objective of a watermarking al-

gorithm is to effectively identify texts generated by LLMs,

i.e., achieving a high true positive rate (TPR), while not

classifying texts created by humans as LLM-generated, i.e.,

with a low false positive rate (FPR). By raising the threshold

for the z-score in detection processes, we can effectively

reduce the FPR. We set this threshold to maintain FPRs

at two different levels: 0% and 1%. This is achieved by

identifying the threshold corresponding to the top 0% (or

1%) of the z-scores of all ‘baseline completions’ on the test

set. Using these thresholds, we then evaluate the TPR for

watermarked texts generated by LLMs. Additionally, we

evaluate the semantic coherence between texts generated

with and without watermarks by LLMs. We measure this

by calculating the cosine similarity of their sentence em-

beddings, obtained using the SimCSE model (as detailed in

Sec. 4.3). The metric assesses the impact of watermarking

on the quality of generated text. For each FPR level, we plot

a trade-off curve between TPR and semantic similarity to

assess the performance of the watermarking algorithms.

We compare our methods against KGW (Kirchenbauer et al.,

2023a), SWEET (Lee et al., 2023), MultiBit (Wang et al.,

2023), SIR (Liu et al., 2023), and EXP-edit (Kuditipudi

et al., 2023). Both SWEET and SIR rely on prompts during

detection, which is impractical in many real-world scenar-

ios. To ensure a fair comparison, we also include variants

of these baselines that do not use prompts during detection,

namely SWEETNoPrompt and SIRNoPrompt. We plot trade-off

curves of TPR and semantic similarity for the two settings,

FPR=0% and FPR=1%. We vary δ within the appropri-

ate range for each baseline to generate different pairs of

TPR and semantic similarity. For KGW, SWEET, and

SWEETNoPrompt, we set γ = 0.25. For MultiBit, we use

message lengths of 9 and 7 for which the FPR is 0% and

1%, respectively. Multinomial sampling with a tempera-

ture of 1.0 and Top-k of 50 is used for text generation. For

our method, we generate different pairs of TPR and seman-

tic similarity using different initializations of the γ- and

δ-generator networks. Then we fit a curve to these pairs

(i.e., points) for each method and plot the curves to form

the Pareto frontier (Giagkiozis & Fleming, 2014), which

represents the best trade-off curve of TPR and semantic

similarity. For more details, please refer to Appendix D.

5.2. Results on Detectability and Semantic Coherence

Figure 2 and 3 show results on OPT-1.3B and LLAMA2

(7B, 13B and 70B), respectively, which highlight several

key observations when comparing with the baselines.

Comparison with KGW (Kirchenbauer et al., 2023a):
Our approach improves the Pareto frontier compared to

the KGW baseline, attributable to two key factors. The first

factor is that our method uniquely learns token-specific split-

ting ratios and watermark logits, which take into account the

distinct context and semantics of each token. This is critical

because the number of semantically appropriate tokens that

can be chosen as the next token in the sequence can vary

substantially at different time steps during text generation,

depending on the context. In scenarios where this number is

small (such as the example in Sec. 1), it is essential to lower

the splitting ratio and watermark logit to reduce the wa-

termark strength. This adjustment increases the likelihood

6
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Figure 2: Comparison of the trade-off for semantic integrity

and detectability of different methods applied to OPT-1.3B.

of selecting these valid choices as the next token, thereby

maintaining semantics. Conversely, in situations where this

number is large, increasing the splitting ratio and watermark

logit to an appropriate level can improve detectability while

posing minimal risk to semantic coherence. Our method has

the adaptability that allows for token-specific adjustments

in splitting ratios and watermark logits, while KGW em-

ploys uniform values across all tokens. The second factor

distinguishing our approach is the incorporation of multi-

objective optimization, which enables simultaneous max-

imization of detectability and semantic integrity. This is

achieved by concurrently optimizing a differentiable detec-

tion loss and a semantic loss. In contrast, the KGW method

cannot explicitly optimize for these two objectives together.

Comparison with SWEET (Lee et al., 2023): Our method

achieves a better Pareto frontier than SWEET at 0% FPR

while maintaining similar performance at 1% FPR. At 0%

FPR, SWEET is notably less effective compared to our

approach and KGW, and does not achieve 100% TPR.

This may be due to its selective watermarking strategy,

which targets only high-entropy words and leaves low-

entropy words un-watermarked (δ = 0). For instance, at

(γ, δ) = (0.25, 3.0), an analysis of LLM-generated texts

that SWEET failed to detect at 0% FPR shows that, on

average, only 7 out of 200 tokens are high-entropy and el-

igible for SWEET watermarking. This limited number of

watermarkable tokens reduces SWEET’s detectability even

with high δ (see Appendix G). In contrast, both our method

and KGW achieve a 100% TPR in high δ regions. Further-

more, SWEETNoPrompt underperforms SWEET, indicating

the method’s dependence on prompts, which is impractical.

Comparison with MultiBit (Wang et al., 2023): Our

method achieves a superior Pareto frontier compared to

MultiBit. MultiBit embeds multi-bit information into LLM-

generated texts, detecting a watermark if the decoded mes-

sage matches the embedded one. However, embedding

multi-bit information often reduces text quality. To mitigate

this, Balance-Marking strategy is introduced to decrease

Table 1: Comparison of EXP-edit and Our Method

Method TPR @ 0% TPR @ 1% SimCSE

EXP-edit 0.922 0.996 0.655
EXP-edit (Top-k=50) 0.968 0.996 0.677
Ours (Top-k=50) 1.000 1.000 0.713

the perplexity of watermarked texts. However, this method

is developed through a series of approximations to ensure

practical applicability, which might limit its effectiveness.

In contrast, our method directly maximizes differentiable

metrics of semantic coherence and detectability through

multi-objective optimization, inherently improving them.

Comparison with SIR (Liu et al., 2023): Our method

achieves an improved Pareto frontier than SIR. SIR primar-

ily aims to enhance attack and security robustness, lacking

a direct approach to boost text quality. Conversely, our

method employs multi-objective optimization to effectively

enhance both text quality and watermark detectability simul-

taneously. Additionally, SIRNoPrompt significantly underper-

forms compared to SIR, indicating a strong dependence on

prompts while detection. SIR is less robust than SWEET in

the no-prompt scenario, as it exhibits a greater performance

degradation without prompts compared to SWEET.

Comparison with EXP-edit (Kuditipudi et al., 2023):
EXP-edit’s generation process, which employs exponen-

tial minimum sampling, is pseudo-random and becomes

deterministic with a watermark key, facilitating detection.

Unlike ours and other KGW-based methods, which shift

the distribution using δ, EXP-edit does not alter the output

distribution of LLMs, making it indistinguishable. Since

EXP-edit does not have a δ parameter to vary and plot

the Pareto frontier, we present the results in Table 1. Our

method outperforms EXP-edit in both detectability and Sim-

CSE, demonstrating that learning token-specific parame-

ters to watermark enables appropriately shifting the output

distribution to enhance detectability without significantly

affecting semantics. This offers more freedom to effectively

embed watermark compared to EXP-edit, which lacks this

capability (Piet et al., 2023).

Since our decoding strategy uses the default Top-k value of

50, we modified the original EXP-edit generation process,

which did not implement Top-k, to sample from the top 50

tokens, naming it EXP-edit (Top-k=50). We observe that

our method still outperforms EXP-edit (Top-k=50) in terms

of detectability and SimCSE. Moreover, indistinguishable

methods like EXP-edit, which rely on pseudo-random sam-

pling during generation, cannot easily extend to other decod-

ing methods like beam search, which do not involve random-

ness. In contrast, KGW-based methods can be applied on

top of any decoding method such as beam search (Kirchen-

bauer et al., 2023a). See Appendix H for further discussion.
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Table 2: Generation and detection speed on OPT-1.3B for

generating 200 tokens, measured in seconds. We also show

memory utilization in Table 5.

Method Generation (s) Detection (s)

No Watermark 3.220 -
KGW 3.827 0.067
SWEET 4.030 0.127
EXP-edit 24.693 155.045
SIR 8.420 0.337
MultiBit 6.500 0.610
Ours 3.946 0.166

Computation Overhead: We evaluate the computational

time of our method and the baselines for text generation and

detection in Table 2. Our method achieves higher speeds

than EXP-edit, SIR, and MultiBit, while achieving speeds

comparable to KGW, SWEET, and No Watermarking.

Generalizability: Our method demonstrates good gener-

alizability across LLMs of different sizes. As shown in

Figure 3, our model (γ- and δ-generator networks), initially

trained on OPT-1.3B, demonstrates a better Pareto frontier

when applied to LLAMA2 7B, 13B and 70B. This adapt-

ability is likely because our method learns the watermarking

parameters that reflect the general nature of language itself

(see Sec. 5.3 and Appendix I for discussions), not just on

the specific details of the LLMs.

5.3. Analysis of Learned δ and γ

In this section, we examine the values of γ and δ learned

by our method for different tokens. For each part-of-speech

(POS) category, we calculate the mean and standard devia-

tion of γ and δ values generated based on preceding tokens

that are tagged with this category. This analysis is con-

ducted on ten texts, each containing 200 tokens that have

been watermarked. The results are presented in Figure 4.

One observation is that when the preceding token is an

adjective (ADJ) or a determiner (DET), γ and δ tend to

be assigned lower values. This pattern is notable because

ADJs and DETs typically precede nouns, as detailed in Ap-

pendix I. Reducing γ leads to the selection of fewer green

tokens, while simultaneously lowering δ results in applying

a smaller watermark logit to these chosen tokens. This com-

bination effectively weakens the watermark, as it biases only

a few tokens with relatively lower strength, thereby encour-

aging the selection of the token with the highest model logit.

Applying a weaker watermark to tokens following ADJs

and DETs promotes the selection of the next token with

the highest model logit, which is most likely to be a noun.

This approach thereby enhances both semantic coherence

and syntactic consistency. Similarly, our method allocates

increased values of γ and δ following punctuation (PUNCT)

(a) LLAMA2-7B

(b) LLAMA2-13B

(c) LLAMA2-70B

Figure 3: Performance of Ours (trained on OPT-1.3B) and

KGW when applied to LLAMA2 7B, 13B, and 70B.

tokens. Given the minimal constraints on subsequent tokens

after PUNCT, as detailed in Appendix I, our model poten-

tially exploits this flexibility to embed a stronger watermark.

It does so by putting more words into the green list (via

assigning higher γ values) and enhancing the preference for

these tokens through elevated δ values.

5.4. Robustness Against Attacks on Watermarks

Considering that watermarked text can be easily altered to

remove the watermark, thereby making detection challeng-

ing, we evaluate the robustness of our method against two

prevalent attacks: 1) the Paraphrase Attack (Krishna et al.,

2023), where watermarked text is rephrased by another

LLM, aiming to weaken the watermark while preserving

the original semantics; 2) the Copy-Paste Attack (Kirchen-

bauer et al., 2023b), which inserts watermarked text into its

corresponding human-generated prompts used for its cre-

ation; this attack weakens the detection of watermarks as it

increases the number of red tokens in the sentence.
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Figure 4: Distribution of watermark logit δ (left y-axis) and

splitting ratio γ (right y-axis) across different part-of-speech

categories of the preceding token.

Paraphrase Attack. We utilized the Dipper paraphrase

model (Krishna et al., 2023) to perform paraphrase at-

tacks. The model is finetuned from the T5-XXL (Raffel

et al., 2020) model of 11B parameters, which is larger

than the OPT-1.3B model we used for text generation. The

larger model size results in improved generation capabili-

ties (Brown et al., 2020), ultimately leading to a more potent

attack. We set the paraphrase strength to the same level as

recommended in the Dipper GitHub repository for water-

mark detection, specifically lex=40, div=100.

Figure 5 shows that our method is more robust against

paraphrase attacks than KGW, as evidenced by its supe-

rior Pareto frontier. This can be attributed to the fact that

paraphrasing tends to preserve local lexical structures, in-

cluding punctuation patterns. As discussed in Sec. 5.3, our

approach inserts strong watermarks around punctuations.

These watermarks remain intact even after paraphrasing,

ensuring the detectability of the watermark in the altered

text. Such a mechanism is lacking in KGW.

Copy-Paste Attack. Our method is evaluated against two

types of copy-paste attacks: Copy-Paste-1 and Copy-Paste-

3. In Copy-Paste-1, the entire watermarked text is inserted

at a random position within the prompt. In Copy-Paste-

3, the watermarked text is split into three segments, each

of which is then randomly inserted at different positions

in the prompt. The detection process is conducted in a

similar fashion as in Kirchenbauer et al. (2023b), using a

sliding window to compute the maximum z-score across

text subsequences. The window size is 200 for Copy-Paste-1

and 60 for Copy-Paste-3.

As shown in Figures 6, our method outperforms KGW in

achieving a superior Pareto frontier across both scenarios.

This improvement is largely due to the enhanced z-score, a

direct result of our multi-objective optimization framework,

which effectively increases the number of green tokens in

the watermarked text. This ensures successful watermark

detection even when human texts are inserted.

Figure 5: Comparison of our method with KGW under the

Dipper paraphrase attack.

Figure 6: Comparison of our method with KGW under the

Copy-Paste-1 (the two figures at the top) and Copy-Paste-3

attack (the two figures at the bottom).

6. Conclusion
In this work, we introduce a novel multi-objective optimiza-

tion framework for watermarking LLMs during inference

time. This method is designed to simultaneously optimize

two light-weight networks, responsible for generating token-

specific splitting ratios and watermark logits. The core

objective of this approach is to minimize both detection

loss and semantic loss, striving to find a Pareto optimal

solution that enhances watermark detectability while pre-

serving the semantic integrity of the generated text. Experi-

ments demonstrate that our method consistently improves

the Pareto frontier, surpassing previous techniques by offer-

ing improved watermark detectability and semantic integrity

concurrently. Furthermore, our approach exhibits enhanced

robustness against strong attacks, such as paraphrasing and

copy-paste attacks, highlighting its practical effectiveness

in safeguarding LLM outputs.
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Impact Statement
Our watermarking method for LLMs carries significant so-

cietal implications. By improving the detection of machine-

generated texts, our approach has the potential to prevent the

usage of LLMs in harmful activities, such as election ma-

nipulation campaigns, the dissemination of fake news, and

academic dishonesty. Furthermore, when used responsibly,

watermarking algorithms contribute to the protection of in-

tellectual property rights, benefiting companies and content

creators, and reducing the risk of unauthorized use. How-

ever, we realize the ethical considerations associated with

our work, as the misapplication of these tools could mis-

takenly label human-generated content as LLM-generated,

potentially leading to accusations of plagiarism against in-

nocent individuals.
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A. Post-Hoc Text Detection
Here is a supplement of related works, specifically focusing on the literature for post-hoc text detection. Post-hoc text

detection aims to distinguish generated texts from human-authored texts by analyzing generated texts without access to the

LLMs (i.e., treating them as black boxes). These methods primarily leverage features extracted using external language

models or by training models to act as detectors. Gehrmann et al. (2019) proposes the use of statistical metrics such

as perplexity, entropy, and n-gram frequency to detect LLM-generated texts, as those metrics for generated texts may

be different from human-written texts. Given a target text S, Sniffer (Li et al., 2023) uses multiple accessible language

models to compute a list of perplexity for the given text S, and train a linear classifier based on the perplexity features.

and LLMDet (Wu et al., 2023a) rely on perplexity-based features for detection. In addition, there are supervised learning

methods where classifiers are trained to specifically distinguish between texts generated by humans and LLMs. Fröhling &

Zubiaga (2021) and Solaiman et al. (2019) utilized SVMs and regressions based on statistical features for LLM-generated

text detection, while Rodriguez et al. (2022) and Zhong et al. (2020) employed neural networks for this purpose. Other

works, such as those by Solaiman et al. (2019), Ippolito et al. (2019), Guo et al. (2023b), Yu et al. (2023), and the OpenAI

Detector (OpenAI, 2023), involve fine-tuning a pre-trained RoBERTa (Liu et al., 2019) classifier for the detection of

LLM-generated texts.

However, the diverse and evolving nature of LLM-generated texts presents challenges in developing robust post-hoc

detection techniques. For instance, the detection strategies effective for GPT-2 may not be applicable to GPT-3, highlighting

the evolving complexity of these models (Gambini et al., 2022). Additionally, these detection models are susceptible to

adversarial attacks, which can deteriorate their performance (Wolff & Wolff, 2020). A significant challenge in post-hoc text

detection is the minimal difference between LLM-generated and human-authored texts, often leading to human content

being mislabeled as LLM-generated (Liang et al., 2023). To mitigate these issues, watermarking approaches have been

proposed that embed statistical signals during text generation that help distinguish it from human generated texts. These

methods reduce false positive rates and substantially improve detection capabilities.

B. Proof of Theorem 4.1
The proof of Theorem 4.1 is detailed in Cuzzocrea et al. (2021). The theorem is applicable under the condition that

0 < μt < 1 ∀t ∈ 1, . . . , T ; that is, μt �= 0 and μt �= 1. This assumption is valid in our context since γt is neither 0 nor 1 for

any t. Specifically, γt = 0 would imply the absence of any tokens in the green list, indicating that watermarking has not

been applied, whereas γt = 1 would suggest that every token is in the green list, rendering detection infeasible.

C. Multiple-Gradient Descent Algorithm
As explained in Sec. 4.4, we jointly optimize over the detection loss LD and semantic loss LS using multiple-gradient

descent algorithm (MGDA) (Désidéri, 2012; Sener & Koltun, 2018), which is formulated as:

min
Gγ ,Gδ

LD(Gγ , Gδ) and min
Gγ ,Gδ

LS(Gγ , Gδ).

In MGDA, the gradients of LD and LS with respect to (Gγ , Gδ) are firstly computed, which are denoted as gD and gS ,

respectively. The resultant gradient vector, g, is then estimated using gD and gS that directs the optimization towards Pareto

optimal solutions. This is determined as the minimum norm point within the convex hull formed by gD and gS , which is

formulated as follows:
λ∗ = argminλ∈[0,1] ‖λgD + (1− λ)gS‖2 (7)

Note that the closed form of λ∗ can be obtained using a few simple operations following Sener & Koltun (2018).

λ∗ =

⎧⎪⎨
⎪⎩

1, if gT
DgS ≥ gT

DgD

0, if gT
DgS ≥ gT

SgS
(gS−gD)T gS

‖gD−gS‖2 , otherwise

Using the obtained optimal λ∗, we estimate the resultant gradient direction as the convex combination of gD and gS .

g = λ∗gD + (1− λ∗)gS (8)
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Then at each step, the parameters of (Gγ , Gδ) are updated using the resultant gradient vector, g, to optimize towards

Pareto optimal solutions. This process is repeatedly executed until the end of total number of epochs. Theoretically,

Multiple-Gradient Descent Algorithm (MGDA) is proven to converge to a Pareto stationary solution (Désidéri, 2012; Sener

& Koltun, 2018).

D. Experimental Details
Training Details. A two-layer multilayer perceptron (MLP) is used as the γ and δ generators, with the hidden layer

dimension set to 64 and LeakyReLU as the hidden layer activation function (Maas et al., 2013). To ensure output values are

within the 0 to 1 range, the final layer of the γ-generator incorporates a Sigmoid function. The weights of the MLPs are the

only parameters we update during training. These weights were initialized using the Kaiming method (He et al., 2015), and

the Adam optimizer (Kingma & Ba, 2014) was utilized for optimization. The training process involved a batch size of 8 and

spanned 2 epochs with a fixed learning rate 1e− 4. We set the temperature in Gumbel Softmax to be 0.1. Every 100 steps, a

checkpoint was saved, and the best-performing checkpoint on the validation set - judged in terms of improved detection

and semantic coherence - was selected for the final evaluation. The reported results reflect the performance of this selected

checkpoint on the test set, and we perform the inference using a batch size of 20.

Evaluation Details on Llama-2. For Llama-2 7B and 13B, we directly loaded the original model from Hugging Face

library. For Llama-2 70B, we loaded a 4-bit quantized model 2 to fit the model to a single GPU.

Hardware. The experiments are performed on Nvidia A100 GPUs with 80 GB of memory, including training and

inference. Each experiment is run on a single GPU without model or data parallelism. We load the LLMs directly from

huggingface (Wolf et al., 2019) in float16, and use PyTorch autocast to train our MLPs in full precision. Each

training instance takes 20 hours using 60 GB of memory.

Curve-Fit. For all our results, we plot the curves given the points using curve fit under Python scipy module. We

use the five-parameter logistic curve (Gottschalk & Dunn, 2005) and the exponential curve to fit the points.

y = d+
a− d

(1 + (x/c)b)
g , y = −a ∗ ebx + c. (9)

Here (x, y) are the points we trying to fit, and the letters a, b, c, d, g are parameters to fit the points. Initially, we apply the

first function, which has a strong expressive ability, allowing it to fit a wide range of curve shapes. However, due to this high

expressiveness and the limited number of data points, it may not always yield a concave curve. If so, we then resort to the

second function, which is less versatile compared to the first, but its constrained fitting capability makes it more suitable for

ensuring a concave curve shape in cases where data points are limited.

Trade-off Curves Between TPR and Semantic Similarity. The trade-off curve between true positive rate (TPR) and

semantic similarity at a specified false positive rate (FPR) is plotted for our method and the baselines for comparison. In

this section, we outline the procedure for plotting the trade-off curves for different methods studied in this work. For each

method, we plot this curve by varying the parameters that directly influence TPR and semantic similarity among their

appropriate choices.

For KGW, we identified γ = 0.25 as optimal and varied δ in [1.0, 3.0] to ensure a strong watermark, i.e., TPR > 0.6 at a

low FPR. We concluded that γ = 0.25 was the best choice among the possible values of {0.1, 0.25, 0.5} specified in the

paper, based on the following analysis: We fixed γ at one of the values in {0.1, 0.25, 0.5}, varied δ in the range of [1.0, 3.0],
and plotted their corresponding TPR and semantic similarity values, as shown in Figure 7. We observed that the curve

corresponding to γ = 0.25 was slightly higher than the others. Therefore, we concluded that γ = 0.25 is relatively better,

a finding also mentioned in their GitHub repository. Consequently, we identified the combination of γ = 0.25 and δ in

the range of [1.0, 3.0] as Pareto optimal. We then varied these parameters to obtain their corresponding TPR and semantic

similarity values for KGW on the test set.

For the SWEET and SWEETNoPrompt methods, we set γ at 0.25 and varied δ within the range of [1.0, 8.0]. We explored

higher δ values to improve detectability by favoring green token selection. However, even with increased δ, a 100% TPR at

2https://huggingface.co/TheBloke/Llama-2-70B-GPTQ
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Figure 7: Fix γ = {0.1, 0.25, 0.5} and varying δ for KGW.

0% FPR was not achieved. Furthermore, we did not adopt their entropy threshold value directly, as it is specifically tailored

to code generation. Instead, we calculated a new threshold tailored to our training dataset, using the same method they

described. Specifically, for each token in a training example, we measured the entropy of generating the next token using

LLM. These measurements were then used to estimate the entropy distribution. Finally, we set the threshold as the mean of

this distribution. By varying these δ parameters, we obtained corresponding TPR and semantic similarity values on the

test set, which were then plotted to create the curve for SWEET. Similarly, for SIR and SIRNoPrompt, we varied δ within the

range of [0.6, 2.0]. They are more sensitive to the δ parameter. For SIR, during watermark detection, we use prompts and

the generated completions to get watermark logits, and calculate z values by averaging the watermark logits of the generated

tokens. For SIRNoPrompt, we only use the generated completions to get watermark logits and calculate z values.

MultiBit is designed to encode a multi-bit message into generated text, with successful watermark detection occurring

when the decoded message matches the embedded watermark. The message length is strategically chosen to maintain a

predetermined FPR. We determined the FPR by calculating the percentage of human-written texts that were incorrectly

decoded as containing the watermark message. We utilized the smallest message lengths that yielded FPRs no higher than

0% and 1%, specifically 9 and 7 bits, respectively. This baseline does not employ a splitting ratio γ. For the watermark logit

δ, we vary in the range [0.9, 10.0].

EXP-edit uses exponential minimum sampling which is an approach to sample from a multinomial distribution. We set

the temperature to the default value of 1. Additionally, our method and other baselines employ a Top-k value of 50 during

generation. However, the original EXP-edit generation process did not include the Top-k feature, so we modified EXP-edit

to incorporate this feature for a fair comparison. We refer to this modified version as EXP-edit (Top-k=50). It is important to

note that indistinguishable methods like EXP-edit, which are based on pseudo-random sampling during generation, cannot

easily extend to other decoding strategies like greedy sampling or beam search, where no randomness is involved.

In our method, we initialize the parameters γt and δt to the values in {(0.1, 1.0), (0.25, 1.0), (0.25, 1.25), (0.25, 1.5),
(0.25, 1.75), (0.25, 2.0)} for all t. These initializations represent the six best pairs of γ and δ as shown in Figure 7. We

further optimize them within our multi-objective framework to improve detectability and semantic coherence. The TPR and

semantic similarity corresponding to these pairs are plotted on the test set to generate the performance curve for our method.

E. Results on PPL and Z-Score
Figure 8 illustrates the trade-off between the average z-score and SimCSE performance, as well as between the average

z-score and the oracle model perplexity (PPL), measured by OPT-2.7B. In Figure 2, we have already demonstrated that

our model achieves a superior Pareto frontier in terms of TPR and SimCSE. Extending this finding, Figure 8 shows that

our model also surpasses KGW in both average z-score and SimCSE metrics. Additionally, in terms of PPL, our method

performs comparably to the baseline methods.
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Figure 8: The trade-off between average z-score and semantic similarity (left) and oracle model perplexity (right).

Figure 9: Comparison of our method with KGW using one-sided z-score thresholds estimated with theoretical FPR (denoted

by the subscript ‘th’). The results under empirical FPR (denoted by the subscript ‘exp’), shown in Figure 2 of the main

paper, are also included for comparison. The empirical and theoretical FPR curves are closely aligned or overlapping in

most regions, indicating that they are close estimates.

F. Results Based on Theoretical FPR
We computed the theoretical FPR of our method based on the assumption used in KGW that the length of the generated

text is sufficiently large. Under this assumption, the Poisson binomial distribution in our method can be approximated by a

normal distribution according to the central limit theorem, enabling the use of a z-test to determine the theoretical FPR.

Similarly, KGW calculates the theoretical FPR by approximating its binomial distribution with a normal distribution. Given

FPR of 0.2% and 1%, the corresponding one-sided z-scores under the normal distribution are 2.88 and 2.33, respectively.

The experimental results corresponding to these theoretical FPR are shown in Figure 9, where our approach demonstrated

superior performance compared to KGW. It is important to note that the theoretical FPR calculations for both KGW and our

method may not be entirely precise due to the approximations of distributions (Fernandez et al., 2023).

Alongside the curves corresponding to theoretical FPR, we also present curves corresponding to the empirical FPR,

as shown in Figure 2 of the main paper. The empirical FPR are computed using 500 human-written texts. For

KGW, we fixed γ = 0.25 as the splitting ratio, and the empirical thresholds for KGW were 2.82 and 2.17 for

FPR of 0.2% and 1%, respectively. The empirical thresholds of our method, for the six different initializations

(0.25, 2.0), (0.25, 1.75), (0.25, 1.5), (0.25, 1.25), (0.25, 1.0), (0.1, 1.0), are as follows. At an FPR of 0.2%, the thresh-

olds are {2.68, 2.74, 3.11, 3.14, 2.87, 3.30}. At an FPR of 1%, the thresholds are {2.22, 2.24, 2.42, 2.31, 2.35, 2.70}. Each

point in our method has its own empirical FPR because we learn different splitting ratios, which impact the detection results.

We observe that both the empirical and theoretical FPR curves are very close or overlapping in most regions, indicating that

they are close estimates.
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Table 3: Comparison of TPR and PPL for No Watermark, EXP-edit, and Our Method on OPT-1.3B. The temperature is set

to 1. Top-k=0 indicates sampling from the entire vocabulary. Exponential minimum sampling is an approach to sample

from a multinomial distribution.

Method Decoding Strategy TPR @ 0% TPR @ 1% PPL

No Watermark

Beam search (Num Beams=2) - - 1.628

Greedy decoding - - 1.761

Multinomial sampling (Top-k=50) - - 8.210

Multinomial sampling (Top-k=0) - - 13.241

EXP-edit
Exponential minimum sampling (Top-k=50) 0.968 0.996 9.602

Exponential minimum sampling (Top-k=0) 0.922 0.996 16.235

Ours

Beam search (Num Beams=2) 0.994 0.994 1.847
Greedy decoding 0.984 0.986 2.140

Multinomial sampling (Top-k=50) 1.000 1.000 12.227

G. Further Discussion on SWEET
At (γ, δ) = (0.25, 3.0), an analysis of LLM-generated texts that SWEET fails to detect at 0% FPR indicates that, on average,

only 7 out of 200 tokens are high-entropy and suitable for SWEET watermarking. This limited number of watermarkable

tokens diminishes SWEET’s detectability, even at high δ. To illustrate this limitation, consider a hypothetical scenario: even

if, in the best case scenario (which is rare), all 7 out of 7 tokens are identified as green tokens, the z-score calculated using

the formula (|s|G − γT )/
√
Tγ(1− γ) is 4.58. As per SWEET’s implementation, T is the total number of high-entropy

tokens, and |s|G represents the identified green list tokens among them. However, with a higher number of watermarkable

tokens, say 70, even if 50 were identified as green tokens, the z-score would increase to 8.97. Thus, the limited number of

high-entropy tokens in SWEET hampers its detectability, highlighting the need for more watermarkable tokens for effective

watermarking.

H. Further Discussion on EXP-edit
In this section, we delve into a detailed comparison of our method with EXP-edit. EXP-edit’s generation process, which

employs exponential minimum sampling, is pseudo-random. This pseudo-random sampling process enables sampling from

a multinomial distribution. By using a watermark key, this pseudo-random process becomes deterministic. Detection of the

watermark relies on an edit score (Kuditipudi et al., 2023), which measures the likelihood of the text being watermarked

given this watermark key.

EXP-edit is considered an indistinguishable method because it does not bias the output LLM distribution towards specific

tokens, instead exploiting the randomness of the sampling strategy for embedding the watermark. We examine this

indistinguishable property using the perplexity (PPL) of the generated texts. We use an oracle model, OPT-2.7B, to compute

PPL of generated text. PPL can estimate whether the output text is sampled from the same probability distribution, as such

samples will have closer PPL values. However, it is important to note that PPL is not a reliable indicator of semantic quality.

For example, the authors of Piet et al. (2023) found that PPL favored repeated texts, with one model producing a partial

response followed by repeated ‘l’ characters, which was preferred due to its lower PPL.

The indistinguishable property of EXP-edit is evident when comparing the PPL values. Under multinomial sampling from

the entire vocabulary, No watermark generation (Top-k=0) has a PPL of 13.241, while EXP-edit has a PPL of 16.235, as

shown in Table 3. Similarly, with Top-k=50, the PPL of EXP-edit (9.602) is close to that of No watermark (8.210).

On the other hand, control over the decoding strategy is also necessary to meet specific goals. For instance, if the goal is

to attain the lowest PPL, beam search or greedy decoding can be used. As shown, No watermark with beam search, with

number of beams 2, achieves the lowest PPL of 1.628, followed by greedy decoding with a PPL of 1.761. Our method,

based on KGW, biases the distribution towards a specific set of tokens for embedding the watermark and can be applied

on top of any decoding strategy as a heuristic. As demonstrated, our method with beam search decoding (num beams = 2)

achieves a PPL of 1.847, and with greedy decoding, a PPL of 2.140, outperforming both variants of EXP-edit. Additionally,
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Table 4: Qualitative result on a randomly selected test example is presented. This includes the prompt, the no-watermark

text, the watermarked text from the KGW method, and the watermarked text from our method. To assess detectability, we

provide the z-scores for the no-watermark text, the KGW method, and our method. The z-score for the no-watermark text

is calculated under the assumption that it was generated by our method. Additionally, we include SimCSE evaluations to

measure the similarity between the text generated by the KGW and our methods, and the no-watermarked text.

Prompt
· · · Typically, when the assessed value goes up

dramatically for a big multi-tenant commercial building,

the property owner isn’t the one on the hook for the bill —

it’s the tenants.

Sylvester, who previously sat on the B.C. Assessment

Board and the Downtown Vancouver Business

Improvement Association, said she’s been discussing the

idea with various people recently, including, just in the last

week, the former chair of B.C. Assessment, and a

provincial cabinet minister.

But property-tax agent Paul Sullivan said while the idea is

“not without merit,” there are some

No watermark (z-score: -0.40)
issues with it, including who would be responsible.

“Who is going to be responsible for paying this? Who are

the landlords?” he asked. “Are they just the large

commercial property owners? Are they multi-tenant

buildings where the entire business is owned by the

landlord?”

But Sylseter said the city could do it by creating a new

low-impact category. Under her plan, which she’s

presented in a report, the existing triple-net category

would become a low-impact category, which would allow

small businesses to still pay the higher property rates.

It will provide relief to the business community, · · ·
KGW (z-score: 5.77, SimCSE: 0.73)
questions about the size of the proposed subcategory.

“To my understanding it’s going to be a single income

property-income tax scheme,’’ Sullivan said. “So as a

result, there are going to be, quite a few, many (businesses)

that probably would fall to that part instead of the

(mainstream) part.”

For example, Sullivan noted, under the city’s existing tax

rate, a small-business operator would pay 80 per cent of

the property-tax rate on an $800,000 home, and 15 per

cent on anything above.

But if Sylvester proposes a new subcategory within that

tax bracket, that employee would pay less as a business

has a “limited ability to grow their cash.” · · ·

Ours (z-score: 6.45, SimCSE: 0.85)
questions about the size of the proposed change, what it

would mean to businesses that don’t have large landlords,

and how it would apply to all commercial-property

owners.

“The biggest issue is how it would apply to non-residential

buildings. If you consider that the vast majority of

Vancouver is for residential, what are the implications of a

change that would apply to non-residential buildings only?”

said Sullivan.

But Sylvester said her proposal is to put the property-tax

rate on small businesses in the form of an exemption, so

businesses like hers — which range from small bakeries to

boutique clothing shops — would not pay triple-net.· · ·

our method achieves good TPR values at both 0% and 1% FPR. In contrast, it is not straightforward to extend EXP-edit to

greedy and beam search, which do not involve randomness.

Furthermore, the authors of Piet et al. (2023) claim that indistinguishable methods are overly restrictive, and KGW-based

methods offer more freedom to the user, enabling better detectability without significant loss of text quality.

I. Further Analysis on Influence of Preceding Tokens on Watermark Strength
In Sec. 5.3, we analyze the learned watermark logits, δ, and splitting ratios, γ. Our analysis indicates that lower γ and δ
values (weaker watermark) are assigned to adjectives (ADJ) and determiners (DET), likely due to the high likelihood of a

noun following. In contrast, punctuation (PUNCT) is assigned higher γ and δ values (stronger watermark) possibly due to

the absence of restrictions on the subsequent token. To further support this claim, we estimated the transition probabilities

from adjectives, determiners, and punctuation to the next token’s part of speech (POS) tag using our training dataset. Notably,

our observations show that a determiner is followed by a noun with a 0.7 probability, while an adjective is followed by a

noun with a 0.56 probability. In the case of punctuation, we observed a nearly uniform distribution over the next token’s

POS tags. These observations reinforce our claims in Sec. 5.3.
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Figure 10: Comparison of multi-objective optimization and weighted sum optimization. For the weighted sum optimization,

we set λws to 4× 10−4 based on the averaged value of λmoo

1−λmoo
during the optimization.

(a) Generation length = 50 tokens. (b) Generation length = 400 tokens.

Figure 11: Comparison of our method with KGW on short and long text generations. For short text generations, we set the

generation length to 50 tokens. For long text generations, we set the generation length to 400 tokens.

J. Qualitative Analysis
We present a qualitative analysis of an example randomly selected from the test set in Table 4. Using the same prompt, we

compare the no-watermark generation, KGW generation, and our model’s generation. We observe that our method has a

higher z-score (6.45) compared to the one obtained from the KGW method (5.77). Additionally, the SimCSE score is also

higher for our method (0.85) compared to KGW (0.73).

We can also qualitatively observe the impact of the token-specific watermarking employed by our method. For example,

consider the sequence ‘...would apply to all commercial...’ from the third line of our method. Here, ‘apply’ follows ‘would,’

‘to’ follows ‘apply,’ and ‘all’ follows ‘to,’ with each of these tokens being marked as green. In contrast, the token succeeding

‘all,’ i.e., ‘commercial,’ is marked as red. Upon calculating the splitting ratio (γ) and the watermark logit (δ) for ‘would,’

‘apply,’ ‘to,’ and ‘all,’ we find that ‘all’ is the only token associated with both a low γ and a low δ. This demonstrates that

our method adapts its watermarking strength to maintain semantic coherence for significant words like ‘commercial,’ which

is present in the prompt. Conversely, for tokens like ‘apply,’ ‘to,’ ‘all,’ our model enforces a stronger watermark, aiming to

boost detectability.

On the other hand, the KGW method exhibits limitations in handling token specificity. For instance, examining the sequence

‘...a single income property...’ from the second line of a KGW-generated text reveals this issue. KGW applies uniform γ and

δ values across all tokens, leading to the generation of a green token ‘income,’ which is less relevant to the main idea.

K. Ablation Study: Comparison of MOO and Weighted Sum Optimization
Multi-Objective Optimization (MOO) offers a more advanced approach than traditional weighted sum optimization for

balancing various objectives. In contrast to weighted sum, which depends on a fixed hyperparameter to balance two

objectives, MOO dynamically estimates the optimal gradient direction, effectively managing the trade-off between the

objectives.
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Table 5: Memory utilization of OPT-1.3B for generating 200 tokens, measured in MB.

Method Generation (MB) Detection (MB)

No Watermark 3475 -
KGW 3477 503
SWEET 3477 4933
EXP-edit 3486 416
SIR 5475 2425
MultiBit 4517 1485
Ours 3731 643

To demonstrate the effectiveness of MOO, we compare it with the weighted sum approach. For weighted sum, our γ- and

δ-generators are trained on a single objective function that combines LD and LS using a trade-off parameter λws, formulated

as:

L = LS + λwsLD. (10)

In MOO, the optimal λmoo is calculated for each iteration to balance the gradients from both objectives. This dynamic

adjustment of λ leads us towards the Pareto optimal solution, showcasing MOO’s superior capability in handling multiple

objectives.

In this analysis, we set the λws to 4× 10−4. This value is based on our MOO experiment for a fair comparison. Although

λmoo is dynamically adjusted throughout the training process, we calculate its average value across this process and use

it to determine λws. However, since the resultant gradient in MOO is a convex combination of gradients from individual

objectives, using λmoo as the coefficient, we set λws as λmoo/(1− λmoo), which turns out to be the aforementioned value.

We train with the following initialization: (0.25, 0.75), (0.25, 1.0), (0.25, 1.25), (0.25, 1.5), (0.25, 1.75), and (0.25, 2.0).

The results in Figure 10 show that 5 out of 6 points obtained by weighted sum optimization fall below the Pareto frontier

established by MOO, demonstrating the effectiveness of MOO. These findings suggest that, for weighted sum optimization,

improving performance for each initialization requires estimating the optimal λws through trial and error, a process that

can be exhaustive. However, by employing MOO, our method dynamically estimates this trade-off parameter, ensuring

convergence towards the Pareto optimal solution.

L. Computational Costs
We evaluate the computational time of our method for both text generation and watermark detection, and compare it to the

baselines. Table 2 shows the results. We also show memory utilization in Table 5. Our method exhibits higher generation and

detection speeds compared to EXP-edit, SIR, and MultiBit. The generation and detection time of our method is comparable

to that of KGW, SWEET, and No Watermarking. Overall, our method achieves superior detectability and semantic coherence

without a significant increase in computational cost or memory cost.

M. Performance Across Varied Generation Lengths
In our main experiments, the generation length was set to 200 tokens. Here, we extend our evaluation to include both shorter

and longer text generations. For short text generations, we configured the prompt length to at least 200 tokens, followed by

a generation of 50 tokens by the LLM. For longer texts, the prompt was set to a minimum of 600 tokens, with the LLM

generating 400 tokens. We used the C4 news-like dataset and the OPT-1.3B model for these text generations. As illustrated

in Figure 11, our method is relatively better than KGW, showcasing the efficacy of our approach across various generation

lengths.

N. Performance on Different Datasets
We further evaluated our learned models (γ- and δ-generator networks), initially trained on the C4 dataset, on two

additional datasets without further training. The Essays dataset (Schuhmann, 2023) comprises sets of instructions paired

with corresponding essays. For this dataset, we used the instructions as prompts to generate essay responses. The HC3

dataset (Guo et al., 2023a) contains ChatGPT-generated text, and we use the initial 100 tokens of the ChatGPT-generated
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(a) Essays dataset (b) HC3 dataset

Figure 12: Comparison of our method with KGW on the Essays and HC3 datasets.

text as prompts to generate the completions. The OPT-1.3B LLM was used for the experiment, with the generation length

fixed at 200 tokens. As shown in Figure 12, our method outperforms the baseline KGW method, demonstrating the robust

transferability of the γ and δ networks across different datasets.

O. Modified Corruption Attack
In this evaluation, we assume the attacker knows the γ value for each token as determined by our method, enabling them

to perform a corruption attack based on this knowledge. To investigate how varying γ values affect attack efficacy, we

conducted experiments with three types of corruptions:

• Using our trained γ network to select 30 tokens in the vocabulary with the lowest γ values; then randomly substituting

P% of the tokens in a watermarked text with tokens uniformly selected from this low-γ list.

• Using our trained γ network to select 30 tokens in the vocabulary with the highest γ values; then randomly substituting

P% of the tokens in a watermarked text with tokens uniformly selected from this high-γ list.

• Randomly substituting P% of the tokens in a watermarked text with tokens drawn uniformly from the vocabulary.

We tested our method using substitution ratios (P%) of 20% and 50%, and the results are shown in Figure 13. Our

method consistently outperformed KGW across all attack scenarios. This underscores the robustness of our method against

Corruption Attack, even when the watermarked text is corrupted using tokens selected based on γ values derived from our

trained γ network. The strong robustness of our method mainly stems from the improved z-score, achieved through our

multi-objective optimization framework that concurrently maximizes the z-score and SimCSE. As a result, even when a

Corruption Attack attempts to alter the γ scores of certain tokens, the remaining tokens maintain a sufficiently high z-score,

facilitating the easy detection of the watermark.
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(a) Substitution using low-γ tokens. (b) Substitution using high-γ tokens.

(c) Substitution using random tokens.

Figure 13: Corruption attack where the attacker substitutes P% of tokens with low-γ, high-γ, and random tokens when the

FPR is 1%. P is set to 20% and 50%.
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