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Abstract

We study a generalization of the online binary prediction with expert advice
framework where at each round, the learner is allowed to pick m > 1 experts
from a pool of K experts and the overall utility is a modular or submodular
function of the chosen experts. We focus on the setting in which experts act
strategically and aim to maximize their influence on the algorithm’s predictions by
potentially misreporting their beliefs about the events. Among others, this setting
finds applications in forecasting competitions where the learner seeks not only
to make predictions by aggregating different forecasters but also to rank them
according to their relative performance. Our goal is to design algorithms that
satisfy the following two requirements: 1) Incentive-compatible: Incentivize the
experts to report their beliefs truthfully, and 2) No-regret: Achieve sublinear regret
with respect to the true beliefs of the best-fixed set of m experts in hindsight. Prior
works have studied this framework when m = 1 and provided incentive-compatible
no-regret algorithms for the problem. We first show that a simple reduction of our
problem to the m = 1 setting is neither efficient nor effective. Then, we provide
algorithms that utilize the specific structure of the utility functions to achieve the
two desired goals.

1 Introduction

Learning from a constant flow of information is one of the most prominent challenges in machine
learning. In particular, online learning requires the learner to iteratively make decisions and at the
time of making each decision, the outcome associated with it is unknown to the learner. The experts
problem is perhaps the most well-known problem in online learning [} [2} 3} 4]]. In this problem,
the learner aims to make predictions about a sequence of T binary events. To do so, the learner has
access to the advice of K experts who each have internal beliefs about the likelihood of each event.
Ateach round ¢ € [T, the learner has to choose one among the advice of K experts and upon making
her choice, the ¢-th binary event is realized and a loss bounded between zero and one is revealed. The
goal of the learner is to have no regret, i.e., to perform as well as the best-fixed expert in hindsight.

In many applications, however, the experts are strategic and wish to be selected by the learner as often
as possible. To this end, they may strategically misreport their beliefs about the events. For instance,
FiveThirtyEighlE] aggregates different pollsters according to their past performance to make a single
prediction for elections and sports matches. To do so, FiveThirtyEight maintains publicly available
pollster rating A low rating can be harmful to the pollster’s credibility and adversely impact their
revenue opportunities in the future. Therefore, instead of maximizing their expected performance by
reporting their predictions truthfully, the pollsters may decide to take risks and report more extreme
beliefs to climb higher on the leaderboard. Therefore, it is important to design algorithms that not
only achieve no-regret but also motivate the experts to report their true beliefs (incentive-compatible).

"https://fivethirtyeight.com/
“https://projects.fivethirtyeight.com/pollster-ratings/
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Otherwise, the quality of the learner’s predictions may be harmed.

As we have mentioned in Section[I.T, all the previous works on this topic have focused on the standard
experts problem where the goal is to choose a single expert among the K experts. In the offline setting,
this is equivalent to a forecasting competition in which only the single highest-ranked forecaster wins
and receives prizes. However, in many applications, a set of top-performing forecasters are awarded
perks and benefits. For instance, in the Good Judgement Project, a recent geopolitical forecasting
tournament, the top 2% of forecasters were given the “superforecaster” status and received benefits
such as paid conference travel and employment opportunities [5]. Similarly, in the latest edition of
Kaggle’s annual machine learning competition to predict the match outcomes of the NCAA March
Madness college basketball tournament (called “March Machine Learning Mania 2023’, the top 8
forecasters on the leaderboard received monetary prizes.

Variants of the m-experts problem have been previously studied in [6} 7} 8 9], however, all of these
works focused only on providing no-regret algorithms for the problem and the incentive compatibility
considerations were not taken into account. To the best of our knowledge, this is the first work that
focuses on the strategic m-experts problem where the experts may misreport their true beliefs to
increase their chances of being chosen by the learner.

For the setting with modular utilities, perhaps the simplest approach to learning well compared to
the best-fixed set of m experts while maintaining incentive compatibility is to run the incentive-
compatible WSU algorithm of [10] for the standard experts problem (the setting with m = 1) over
the set of (5 ) meta-experts where each meta-expert corresponds to one of the sets of size m. This
approach has two major drawbacks: 1) There are exponentially many meta-experts and maintaining
weights per each meta-expert and running the WSU algorithm is computationally expensive, and 2)
The dependence of the regret bound on m is sub-optimal. Therefore, for our setting, it is preferable
to design algorithms that are tailored for the m-experts problem.

1.1 Related work

Prior works have studied the experts problem under incentive compatibility considerations for two
feedback models: In the full information setting, the learner observes the reported prediction of all
experts at each round. In the partial information setting, however, the learner is restricted to choosing
a single expert at each round and does not observe the prediction of other experts. [11] considered
algorithms that maintain weights over the experts and choose experts according to these weights.
They assumed that experts’ incentives are only affected by the unnormalized weights of the algorithm
over the experts. However, since the probability of an expert being chosen by the learner equals her
normalized weight, the aforementioned assumption might not be suitable. Later on, [10] made the
assumption that at each round ¢ € [T, incentives are tied to the expert’s normalized weight (i.e., the
probability of being chosen at round ¢+ 1) and studied this problem under both feedback models. They
proposed the WSU and WSU-UX algorithms for the full information and partial information settings
respectively where both algorithms are incentive-compatible and they obtained O(v/TInK) and
O(T?/3(KInK)'/3) regret bounds for the algorithms. Then, [12] considered non-myopic strategic
experts where the goal of each expert is to maximize a conic combination of the probabilities of being
chosen in all subsequent rounds (not just the very next round). They showed that the well-known
Follow the Regularized Leader (FTRL) algorithm with the negative entropy regularizer obtains a
regret bound of O(v/T In K) while being @(%) approximately incentive-compatible, i.e., it is a
strictly dominated strategy for any expert to make reports O( \%T) distant from their true beliefs.

For the non-strategic m-experts problem with modular utilities, [[7]] proposed the Component Hedge

(CH) algorithm and obtained a regret bound of {/2m/* In(£) + m In(£) where ¢* is the cumulative
loss of the best-chosen set in hindsight. They also gave a matching lower bound for this problem. [§]
studied the FTPL algorithm with Gaussian noise distribution and provided an O(m/T In(£)) regret
bound for this setting. For the non-strategic m-experts problem with submodular utility functions, [13]]
proposed the online distorted greedy algorithm (with dual averaging algorithm as the algorithm A;
fori =1,...,m) whose regret bound is O(y/mT In(£ )). More recently, [9] studied the m-experts

problem under various choices of the utility function (sum-reward, max-reward, pairwise-reward and
monotone reward). In particular, for the setting with modular utilities (sum-reward), they proposed

*https://www.kaggle.com/competitions/march-machine-learning-mania-2023/



an algorithm that matches the optimal regret bound of the CH algorithm while being computationally
more efficient.

1.2 Contributions

In this paper, we focus on a generalization of the experts problem (called “m-experts problem”)
where at each round, instead of picking a single expert, we are allowed to pick m > 1 experts and our

utility is either a modular or submodular function of the chosen experts. In particular, at round ¢ € [T]

and for a set of experts .S; C [K], the utility function is defined as f;(S;) = el 1 ZiESt ¢; ¢ and

m m
fi(Se) =1 -[Le s, Yi,t in the modular and submodular cases respectively where £; ; € [0,1] is the
loss of expert ¢ at round ¢. The goal is to design algorithms that perform as well as the best-fixed
set of m experts in hindsight (no-regret) and incentivize the experts to report their beliefs about the
events truthfully (incentive-compatible).
Towards this goal, we build upon the study of the Follow the Perturbed Leader (FTPL) algorithm
for the m-experts problem with modular utility functions by [8] and derive a sufficient condition
for the perturbation distribution to guarantee approximate incentive compatibility. Furthermore, we
show how this condition is related to the commonly used bounded hazard rate assumption for noise
distribution. In particular, we show that while FTPL with Gaussian perturbations is not incentive-
compatible, choosing Laplace or hyperbolic noise distribution guarantees approximate incentive
compatibility.
Moreover, inspired by Algorithm 1 of [[13] for online monotone submodular maximization subject
to a matroid constraint, we first introduce a simpler algorithm (called the “online distorted greedy
algorithm”) for the special case of cardinality constraints. This algorithm utilizes m incentive-
compatible algorithms for the standard experts problem (i.e., m = 1 setting) and outputs their
combined predictions. We provide (1 — £)-regret bounds for the algorithm where ¢ € [0, 1] is the
average curvature of the submodular utility functions. Therefore, applying the algorithm to the setting
where the utility functions are modular (i.e., ¢ = 0), the approximation ratio is 1. For submodular
utility functions, the algorithm achieves the optimal 1 — ¢ approximation ratio.
Finally, we validate our theoretical results through experlments on data gathered from a forecasting
competition run by FiveThirtyEight in which forecasters make predictions about the match outcomes
of the recent 2022-2023 National Football League (NFL).

2 Preliminaries

Notation. The set {1,2,...,n} is denoted by [n]. For vectors z;,y € R™, z;, and y; denote their
i-th entry respectively. Similarly, for a matrix A € R"*", we use A; ; to indicate the entry in the
matrix’s i- th row and j-th column. The inner product of two vectors z,y € R" is denoted by either
(z,y) or zTy. For a set function f, we use f(j|A) to denote f(A U {j}) f(A4).

A set function f defined over the ground set V' is monotone if forall A C B C V, f(A4) < f(B)
holds. f is called submodular if forall A C B C V and j ¢ B, f(j|A) > f(j|B) holds. In other
words, the marginal gain of adding the item j decreases as the base set gets larger. This property is
known as the diminishing returns property. If equality holds in the above inequality for all A, B,
and j, the function is called modular. As mentioned in Section atround ¢ € [T and for a set
of experts S C [K], the submodular utility function is defined as f(S;) = 1 — [[;cg, ¢i,+ Where
;. €10, 1] is the loss of expert 7 at round ¢. To show that this function is submodular, note that we
have:

FAUEH = FA) = =40 [[ e = 0= 40 [ tie = F(BUGY) — £(B),
i€A i€eB
where the inequality follows from ¢; ; € [0,1] fori € B\ A.
For a normalized monotone submodular set function f (i.e., () = 0), the curvature c 1 is defined as

[14]:
i JUVA LD
° iev  fon

It is easy to see that ¢y € [0,1] always holds. ¢; < 1 is due to monotonicity of f and ¢; > 0
follows from f being submodular. Curvature characterizes how submodular the function is. If ¢y = 0,
the function is modular, and larger values of ¢y correspond to the function exhibiting a stronger
diminishing returns structure.



3 me-experts problem

We introduce the m-experts problem in this section. In this problem, there are K experts available
and each expert makes probabilistic predictions about a sequence of T binary outcomes. At round
t € [T, expert ¢ € [K] has a private belief b; ; € [0, 1] about the outcome r; € {0,1}, where r;
and {b; ;} X | are chosen arbitrarily and potentially adversarially. Expert i reports pit € [0,1] as
her prediction to the learner. Then, the learner chooses a set S; containing m of the experts. Upon
committing to this action, the outcome r is revealed, and expert ¢ incurs a loss of £; ; = /¢ (bi,t, T¢)
where ¢ : [0,1] x {0,1} — [0, 1] is a bounded loss function. In this paper, we focus on the quadratic
loss function defined as £(b, ) = (b—r)2. The utility of the learner at round ¢ is one of the following:

e Modular utility function: f;(S;) = % — =Y ies, biv = % — =Y ies, Ubig, ).

e Submodular utility function: f;(S;) =1 — HieSt b =1— Hiest L(bi g, re).

It is easy to see that f; is monotone in both cases and f;(S;) € [0, 1] holds. Note that the utility at
each round is defined with respect to the true beliefs of the chosen experts rather than their reported
beliefs.

The goal of the learner is twofold:

1) Minimize the a-regret defined as a-Rr = E[amaxsc(x].sj=m Soreq [1(S) — Soiy fe(S1)]s
where the expectation is taken with respect to the potential randomness of the algorithm. For
the modular utility function, &« = 1 and for the submodular setting, we set o« = 1 — %f (where

f= Z;‘ll f+) which is the optimal approximation ratio for any algorithm making polynomially
many queries to the objective function.

2) Incentivize experts to report their private beliefs truthfully. To be precise, at each round ¢ € [T,
each expert ¢ € [K] acts strategically to maximize their probability of being chosen at round ¢ + 1
and the learner’s algorithm is called incentive-compatible if expert ¢ maximizes this probability by
reporting p; + = b; +. To be precise, we define the incentive compatibility property below.

Definition 1. An online learning algorithm is incentive-compatible if for every t € [T, every expert
i € [K] with belief b; 1, every report p; 1, reports of other experts p_; 4, every history of reports
{pj.s}jelk),s<t» and outcomes {r.}s<¢, we have:

Erthem(biyf,) [ﬂ—i,tJrl | bi,tapfi,h {pj,s}jE[K],s<ta {Ts}s<t]
> Erthern(bi,t) [7Ti,t+1 | DityD—it {pj,s}jE[K],s<t7 {Ts}s<t]7

where Bern(b) denotes a Bernoulli distribution with probability of success b and ;41 is the
probability of expert i being chosen at round t 4 1.

In other words, an online learning algorithm is incentive-compatible if it is in the best interest of the
experts to report their private beliefs truthfully to maximize the probability of being chosen for the
next round.

As mentioned earlier, we focus on the quadratic loss function in this paper. The quadratic loss
function is an instance of proper loss functions [15], i.e., the following holds:

IErwBern(b) [K(p, 7”)} > ErwBem(b) w(bv 7”)] Vp # ba

i.e., each expert minimizes her expected loss (according to their true belief b) by reporting truthfully.

3.1 Motivating applications

Several interesting motivating applications could be cast into our framework. We mention two classes
of such applications below.

e [orecasting competitions: In this problem, there are a set of K forecasters who aim to predict the
outcome of sports games or elections (between two candidates). At each round ¢ € [T'], information
on the past performance of the two opposing teams or candidates is revealed and forecasters provide
a probabilistic prediction (as a value between [0, 1]) about which team or candidate will win. The
learner can choose up to m forecasters at each round and her utility is simply the average of the
utilities of chosen experts.

e Online paging problem with advice [[16]: There is a library {1,..., N} of N distinct files. A
cache with limited storage capacity can store at most m files at any time. At each round ¢ € [T, a
user arrives and requests one file. The learner has access to a pool of K experts where each expert
i € [K] observes the user history and makes a probabilistic prediction p; ; € [0, 1] for the next file



request (where 1sz',t = 1). For instance, p; ; = e; if expert 4 predicts the file j € [N] where e; is
the j-th standard basis vector. Also, r, = e; if the j-th file is requested at round ¢ € [T']. The learner
can choose m of these experts at each round and put their predictions in the cache. The learner’s
prediction for round ¢t is correct if and only if one of the m chosen experts has correctly predicted
the file. Thus, the loss of expert i can be formulated as ¢; ; = ||p;.+ — 7¢||3 and the utility at round ¢
could be written as f;(S;) =2 — [, s, Lit which is exactly our submodular utility function. Note
that this is a slight generalization of our framework where instead of binary outcomes, we consider
nonbinary (categorical) outcomes. All our results could be easily extended to this setting as well.

3.2 Naive approach

The WSU algorithm of [10] for the standard experts problem is derived by drawing a connection
between online learning and wagering mechanisms. The framework of one-shot wagering mechanisms
was introduced by [[17] and is as follows: There are K experts and each expert ¢ € [K] holds a
belief b; € [0, 1] about the likelihood of an event. Expert ¢ reports a probability p; € [0,1] and a
wager w; > 0. A wagering mechanism I is a mapping from the reports p = (p1, ..., px ), wagers
w = (w1, ...,wk) and the realization r of the binary event to the payments I';(p, w, r) to expert i.
It is assumed that I'; (p, w, ) > 0 Vi € [K], i.e., no expert loses more than her wager. A wagering
mechanism is called budget-balanced if Zfil Ti(p,w,r) = Zfil w;. [17,[18] introduced a class of
incentive-compatible budget-balanced wagering mechanisms called the Weighted Score Wagering
Mechanisms (WSWDMs) which is defined as follows: For a fixed proper loss function ¢ bounded in
[0, 1], the payment to expert 7 is

K
Li(p,w,r) = w; (1 — (p;,r) + ijﬂ(pj, r)).

j=1

The proposed algorithm in [10] is called Weighted-Score Update (WSU) and the update rule for the
weights of the experts {7 }7_, is the following:

Ti i1 = NLi(pe, e, 1) + (1 — )i g,

where ;1 = % Vi € [K]. In other words, the normalized weights of the experts at round ¢ are
interpreted as the wager of the corresponding expert, and the normalized weights at round ¢ + 1 are
derived using a convex combination of the weights at the previous round and the payments in WSWM.
Note that since WSWM is budget-balanced, the derived weights at each round automatically sum to
one and there is no need to normalize the weights (which might break the incentive compatibility).
Also, considering the incentive compatibility of WSWM, the WSU algorithm is incentive-compatible
as well.

The update rule of WSU could be rewritten as follows:

K
i1 = i (1 — Loy + Zﬂ'j,tej,t) + (1 =mmie = mit(1—nLie),
=1

where L;; = {; 4 — Zfil m;+¢;j . Therefore, the WSU update rule is similar to that of the Mul-
tiplicative Weights Update (MWU) algorithm [19] with the relative loss L; ; instead of ¢; ; in the
formula.

A simple approach to solving the m-experts problem with modular utilities (€g,; = T]Y-L > jes l4)is
to define an “expert” for each of the possible (i ) sets of size m and apply the incentive-compatible
WSU algorithm of [10] for the standard experts problem to this setting. Note that we still define
incentive compatibility with respect to individual experts (instead of the (5 ) meta-experts). To be

precise, we define 7; ; = ZS:|S|:m7ieS ms,+. We can show the following:
Ui Ui
Tigp1= > e =Tie(l— —Lie) = > > T5,)ls -
S:|S|=m,ieS s#i S:|S|=m,{i,s}CS

Given that 7; 441 is linearin L; ¢, L; s = £; 4 — Zfil 7,05+ is linear in ¢; ;, and the loss function is
proper, we can conclude that incentive compatibility holds in this setting as well.
We summarize the result of this approach in the theorem below.



Theorem 1. If we apply the WSU algorithm of [10] to a standard experts problem with (7Kn ) experts

; ; [ mIn(£e . . .
corresponding to each S with |S| = m, and set n = %, the algorithm is incentive-
compatible and its regret is bounded as follows:

E[1-Rr] < O( mTln(%)).

This approach has two major drawbacks:

1) Computational complexity of maintaining weights for each (fi ) feasible sets. In particular, we
have to do exponentially many queries to the objective function at each round to update these weights.
2) The regret bound has a \/m dependence on the number of experts m that is suboptimal.

In the subsequent sections, we propose two efficient algorithmic frameworks that exploit the modular
or submodular structure of the utility function and obtain the desired regret and incentive compatibility
guarantees.

4 Follow the Perturbed Leader (FTPL) algorithm

In this section, we study the well-known Follow the Perturbed Leader (FTPL) algorithm for the
m-experts problem with modular utility functions and study its regret and incentive compatibility
guarantees. The algorithm is as follows: At each round ¢t € [T, we first take K i.i.d. samples
{7i+}£, from the noise distribution D. In particular, we focus on zero-mean symmetric noise
distributions from the exponential family, i.e., f(v;:) x exp(—v(v;.)) where v : R — Ry is

symmetric about the origin. At round ¢, we simply keep track of Zi;ll 4; s + 1yi,¢ for each i (where
7 is the step size) and pick the m experts for whom this quantity is the smallest. [8] previously studied
the FTPL algorithm for a class of problems that includes the m-experts problem. However, they only
focused on the setting with zero-mean Gaussian perturbations. In contrast, we not only extend this
analysis to all zero-mean symmetric noise distributions from the exponential family, but we also
analyze the incentive compatibility guarantees of the algorithm and determine a sufficient condition
for the perturbation distribution under which the algorithm is approximately incentive-compatible.
This condition is provided below.

Condition 1. Forall z € R, |v/(2)| < B holds for some constant B > 0.

We have v(z) = |z| for Laplace distribution. Therefore, v/ (z) = sign(z) and B = 1. For symmetric

hyperbolic distribution, v(z) = v/1 + 22 holds. So, |/(2)| = HZQ <land B=1.

Condition|[I is closely related to a boundedness assumption on the hazard rate of the perturbation
distribution. We first define the hazard rate below.

Definition 2. The hazard rate of D at z € R is defined as
fp(2)

hazp(z) = 1= Fp(2)

where fp and Fp are the probability density function (pdf) and the cumulative density function (cdf)
of the noise distribution D. The maximum hazard rate of D is hazp = sup,cp hazp(2).

The hazard rate is a statistical tool used in survival analysis that measures how fast the tail of a
distribution decays. The theorem below shows the connection between Condition |1|and the bounded
hazard rate assumption.

Theorem 2. If Condition[I holds for the perturbation distribution D with the constant B > 0, we
have hazp < B.

However, there are distributions with bounded hazard rates for which max, |v/(z)| is unbounded (i.e.,
Condition [T]does not hold). For instance, consider the standard Gumbel distribution. In this case,
v(z) = z + exp(—z). Therefore, we have v/(z) = 1 — exp(—=z). So, if z = —oo0, [V/(2)| — 0.
Therefore, Condition [T is strictly stronger than the bounded hazard rate assumption for the noise
distribution D.

We show how Condition[I] guarantees an approximate notion of incentive compatibility for FTPL.



Theorem 3. For the FTPL algorithm with a noise distribution satisfying Condition[I|with a constant
B >0, at round t € [T, for an expert i € [K], the optimal report from the expert’s perspective p

is at most - 2 B away from her belief b; ., i.e., the following holds:
2B
L= big] < .
|p’L,t ,t|—n_23

Note that while we focused on the incentive structure in which at each round ¢ € [T'], experts wish to
maximize their probability of being chosen at round ¢ + 1, the same argument could be applied to a
more general setting where the goal is to maximize a conic combination of probabilities of being
chosen at all subsequent round s > ¢. Therefore, FTPL is approximately incentive compatible with
respect to this more general incentive structure as well.

Theorem 3] allows us to bound the regret of the FTPL algorithm with respect to the true beliefs of the
experts. First, note that FTPL obtains the following bound with respect to the reported beliefs of the
experts.

Theorem 4. For the FTPL algarithm with noise distribution D satisfying Condition [I with the
constant B > 0, if we setn = /- (K), the following holds:

T
1 K
E[E E E (pig,me) — nglllnm — E E Upje,me)] < O( BTln(E)).

t=14€S; t=1jes
Using the result of Theorem we have [p; ; — b; ¢| = | piy—bi, b; +| < —=£=. Moreover, one can easily
show that the quadratic loss function is 2-Lipschitz. Therefore, for all t 6 [ | and i € [K], we have:
4B

[(pi,e,me) — L(big, )| < TR

Putting the above results together, we can obtain the following regret bound for the FTPL algorithm.

E[1-Ry] = ZZ bit,Tt) S?sl?nmmzz bji,1t)] < O(y/BT In (K)) 8_B§B'

t 14ieS; t=1je8

BT
In( % )
summarized in the following theorem.

Theorem 5. For the FTPL algorithm with noise distribution D satisfying Condition [I with the
constant B > 0, if we setn = /1 (K), the regret bound is O(W/BTln(%)).

Given that ) = in TheoremH the expected regret bound is O(y/ BT In(£)). This result is

In order to ensure approximate incentive compatibility, the probability density function of the noise
distribution f needs to be such that { (2) Fuy) does not grow to infinity for very large z. One way to

enforce this condition is via a Lipschitzness assumption on In f. Condition [l implies that In f is
B-Lipschitz. That is why smaller values of B lead to better approximate incentive compatibility
which in turn results in smaller regret bounds (given that the term 47'C appears in the regret bound
where C'is the bound on the approximate incentive-compatibility derived in Theorem 3).

We can use the FTPL algorithm to obtain results for the partial information setting as well. [20]
showed that if the hazard rate of the noise distribution is bounded by B, applying the FTPL algorithm
to the partial information setting for the 1-expert problem leads to O(v/ BK T In K) regret bounds.
Using the result of Theorem 2, we know that if Condition [I] holds, the hazard rate is bounded.
Therefore, if the noise distribution satisfies Condition [T, FTPL applied to the m-experts problem is

approximately incentive-compatible and achieves O(y/ BKT ln(g)) regret bound.

5 Online distorted greedy algorithm

In this section, we study the setting where the utility function is submodular. In this case, we
have fi(S;) = 1 — [lies, iz = 1 — [l;eg, £(bit;me). The problem in this setting could be



written as an online monotone submodular maximization problem subject to a cardinality constraint
of size m. [21] proposed the online greedy algorithm for this problem whose (1 — %)—regret is

bounded by O(vmT In K). The algorithm works as follows: There are m instantiations Ay, . . ., Ay,
of no-regret algorithms for the 1-expert problem. At each round ¢ € [T, A; selects an expert
vy € [K] and the set Sy = {v14,...,Um 1} is selected. A; observes the reward f(v;¢|Si—1¢)
where Sj,t = {’Ul,m ey Uj,t}-
Inspired by Algorithm 1 of [13]] for online monotone submodular maximization subject to a matroid
constraint, we propose the online distorted greedy in Algorithm|I]for the special case of a cardinality
constraint. The algorithm is similar to the online greedy algorithm of [21] discussed above. However,
in the online distorted greedy algorithm, after choosing the set S; and observing the function f;,
we first compute the modular lower bound h; defined as 7, (S) = > .. fe(¢|[K] \ {i}). We define
= f¢ — hs. Note that g; is monotone submodular as well. The reward of A; for choosing v; + at
round ¢ is (1 — %)m_igt(vi,t\Si_Lt) + hy(v;¢) (in case v; ¢ € S;_1,,, we repeatedly take samples
from the weight distribution of .4; over the experts until we observe an expert not in the set S;_1 ;).
This technique was first introduced by [22]] for the corresponding offline problem and it allows us to
obtain (1 — <L )-regret bounds (where f = ZtT 1 f+) with the optimal approximation ratio (optimality
was shown by [23])) instead of the (1 — 7) -regret bounds for the online greedy algonthm
One particular choice for {A;}7, is the WSU algorithm of [10]]. We summarize the result for this
choice in the theorem below.
Theorem 6. For all i € [m), let A; be an instantiation of the WSU algorithm of [10] for the 1-expert

problem and denote f = Zthl fi. The online distorted greedy algorithm applied to the m-experts
problem obtains the following regret bound:

Bl - L)-Rr) < 3 RY

Vs the regret of algorithm A;. If c; = 0, the algorithm is incentive-compatible.

where R(T
If ¢y € (0, 1], we can use the online greedy algorithm of [21]] instead to ensure incentive compatibility
while maintaining similar bounds for the (1 — 1)-regret. [10] provided O(v/T In K) regret bounds
for the WSU algorithm. If we plug in this bound in the result of Theorem 6] the regret bound of the
online distorted greedy algorithm is O(m+/T In K). However, this bound depends linearly on m
which is suboptimal. To remedy this issue, we first provide an adaptive regret bound for the WSU
algorithm below.

Theorem 7. The regret of the WSU algorithm of [10] is bounded by O(+/|Lr|In K + In K) where

|Lr| is the cumulative absolute loss of the algorithm.

Note that the bound in Theorem|[7]adapts to the hardness of the problem. In the worst case, we have

|Lr| = T and recover the O(v/T In K) bound proved in [10]. However, for smaller values of |Lr|,
the bound in Theorem [7 improves that of [10]. For the non-strategic setting with modular utilities,

[7] proposed the Component Hedge (CH) algorithm and obtained a regret bound of 4/ 2m/* ln(%) +

mln(%) where /* is the cumulative loss of the best-chosen set in hindsight. They also gave a
matching lower bound for this problem. Applying the same analysis as in Theorem 7 to the setting of
the naive approach with ( ) meta-experts, we can show that the regret bound of WSU matches the
aforementioned lower bound.

We can use the above adaptive regret bound to improve the regret bound of the online distorted
greedy algorithm. First, note that at round ¢ € [T'], the sum of the absolute value of losses incurred by
{A;}, is bounded as follows:

S (= ) gwnlSia) + Bevi)) < 3 (90(0ialSic1.) + hulwi)) = fi(50) < 1

i=1 i=1

=fe(vi,e|Si—1,¢)

Therefore, if we denote the cumulative absolute losses incurred by A; with |L¥) |, we have:

doILY|<T.
i=1



Algorithm 1 Online distorted greedy algorithm

Initialization: Initialize m instances Ay, ..., A, of online algorithms for the 1-expert problem.
fort=1,...,T do
fori=1,...,mdo
A; chooses the expert v; ; and S; ¢ = {v1,¢,...,Vit}
end for

Play the set S; = Sy, = {v1,4, .., Um,} and observe f;.
Compute the modular function h;(S) = >, ft(i|[K] \ {7}) and set g; = f; — hy.

fori=1,...,mdo
Feedback the cost —(1 — %)m*igt(vi,t|5¢,1,t) — hy(viyt) to A;.
end for
end for

Using the result of Theorem|/7| we know that the regret bound of the online distorted greedy algorithm
is Yot 4/ LYK + min K. DERY. || is maximized when |LY)| = L forall i € [m].

Thus, in the worst case, the expected (1 — <L )-regret bound is O(vVmT In K + mIn K).
While we focused on submodular utility functions in this section, we can also apply the online distorted
greedy algorithm to the setting with modular utilities. In this case, we have ¢y = 0, and therefore, the

algorithm is incentive-compatible and its 1-regret is bounded by O(vmT In K + m In K). Unlike
the FTPL algorithm that is only approximately incentive-compatible, the online distorted greedy
algorithm applied to modular utility functions is incentive-compatible. However, this comes at the
price of an extra v/m term in the regret bound.

6 Experiments

In this section, we evaluate the performance of our proposed algorithms for modular utility functions
on a publicly available dataset from a FiveThirtyEight forecasting competitimﬂ in which forecasters
make predictions about the match outcomes of the 2022—-2023 National Football League (NFL).
Before each match, FiveThirtyEight provides information on the past performance of the two
opposing teams. Forecasters observe this information and make probabilistic predictions about the
likelihood of each team winning the match. Considering that there are 284 different matches in the
dataset, we set 7' = 284. Out of the 9982 forecasters who participated in this competition, only 274
made predictions for every single match. We consider two cases: K = 20 and K = 100. To reduce
variance, for each case, we sample 5 groups of K forecasters from the 274 and run FTPL and Online
Distorted Greedy (ODG) 10 times. We set m = 5. Given that FTPL is only approximately incentive-
compatible and according to the result of Theorem the reported beliefs could be —25— distant from

n—2B
the true beliefs, we add a uniformly random value in the range [;_22%, nzg 5] to the true beliefs to

model this fact. We use the standard Laplace distribution as the perturbation for FTPL. Hence, we
set B = 1. For both algorithms, the step size 7 is chosen according to our theoretical results. In
Figure|1] we plot the average regret 1E [ maxgc ().(sj=m Sovry fr(S) — St _ fr(S:)] of the two
algorithms over time (along with error bands corresponding to 20th and 80th percentiles) along with
that of the FiveThirtyEight aggregated predictions for K = 20 and K = 100 settings. Note that while
our proposed algorithms choose m predictions at each round ¢ € [T, the FiveThirtyEight aggregated
prediction is a single scalar value. The plots suggest that while the regret of all three algorithms
converges to zero as t gets larger, both our proposed algorithms have superior performance compared
to that of the FiveThirtyEight predictions.

7 Conclusion and future directions

In this paper, we studied the m-experts problem, a generalization of the standard binary prediction
with expert advice problem where at each round ¢ € [T]: 1) The algorithm is allowed to pick m > 1
experts and its utility is a modular or submodular function of the chosen experts, and 2) The experts
are strategic and may misreport their true beliefs about the ¢-th event to increase their probability of

*https://github.com/fivethirtyeight/nfl-elo-game
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Figure 1: Running average of regret over time for (a) K = 20 and (b) K = 100.

being chosen at the next round (round ¢ + 1). The goal is to design algorithms that incentivize experts
to report truthfully (i.e., incentive-compatible) and obtain sublinear regret bounds with respect to
the true beliefs of the experts (i.e., no-regret). We proposed two algorithmic frameworks for this
problem. In Section [, we introduced the Follow the Perturbed Leader (FTPL) algorithm. Under a
certain condition for the noise distribution (Condition[T), this algorithm is approximately incentive-
compatible and achieves sublinear regret bounds for modular utility functions. Moreover, in Section
[5, we proposed the online distorted greedy algorithm that applies to both modular and submodular
utility functions. This algorithm is incentive-compatible but its regret bound is slightly worse than
that of FTPL.

This work could be extended in several interesting directions. First, none of the algorithms discussed
here or in prior works have taken into account the properties of the quadratic loss function. In
particular, this loss function is exp-concave, and [4] showed that for exp-concave loss functions in the
1-expert problem, the regret bound could be improved to O(ln K) using the Hedge algorithm without
the incentive compatibility property. Designing incentive-compatible algorithms with similarly
improved regret bounds for the 1-expert and m-experts problems is yet to be done. In order to
obtain the O(In K)) regret bound for the 1-expert problem (with squared loss) using the Hedge
algorithm, the algorithm makes a single prediction Zfil 7 ¢Pic at round ¢ € [T and its loss is
(Zfil i pit — rt)?. In other words, choosing an expert i € K| with probability m; ; at round ¢ is
not good enough to obtain the improved O(In K) regret bound. Moving on to the m-expert problem,
the main challenge for obtaining regret bounds better than O(\/T) is to decide how to aggregate the
K predictions as m scalar values. Second, while we focused on the particular choice of quadratic
loss functions, the setting could be extended to other loss functions as well. It is not clear to what
extent our results hold when moving beyond the quadratic loss function. Finally, [16] introduced a
framework for augmenting online algorithms for various online problems with predictions or pieces
of advice. An interesting future research direction is to extend this setting to the case where the
predictions are given by strategic experts and study incentive compatibility guarantees for online
problems beyond the m-experts problem.
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Appendix

A Missing proofs

A.1 Proof of Theorem

Attimet =1, we set g1 = ﬁ for each set .S where |S| = m and update these weights as follows:

TS, t+1 = Ws,t(l - 77LS,t)v

where Lg; = ls; — ZS’:|S’|:m msrilgrpand bgy = % > icg lit- If we denote the optimal set as
S*, we can write:

T
1
1> TS*T+1 = T H 1- ULS*
m t=1
Taking the natural logarithm of both sides, we have:
T
K
0>—In (m) + Zln(l —nLg- ).

t=1

We can use the inequality In(1 — z) > —x — 22 for z < % (we choose 7 later such that this inequality
holds) to obtain:

0> — ( )—nZLs*t— 2ZL2*,.
Rearranging the terms and dividing both sides by 7, we have:
,ZLSH< + ZLQ*,.

Using the fact that Ry = — 23:1 Lg- 1, the inequality (5) < (%)m and |Lg¢| < 1VS,t, we can
write:

mIn(£¢)
Ry < 2m) op
n
Ke
Setting = mln% =) we obtain the regret bound O(y/mT In(£)). Note that the assumption

NLg~ 1+ < % (used in the proof) holds if T' > 4m ln(%). Therefore, we assume 7' is large enough to
satisfy this inequality.

A.2 Proof of Theorem

We can show that if B = max, |¢/(z)], the hazard rate of the distribution is bounded above by B as

well. To see this, fix z > 0. Note that 5 K (I) 7= I_J;flx) <3 f Ef()w) for a symmetric zero-mean

distribution and therefore, we only need to bound the hazard rate at x > 0 to bound hazp. We can
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write:

fo(z) _ fol2)
1—Fp(x) [ fp(z)dz

__ exp(—v(z))

I exp(—v(2))d=
- 1
- [.7 exp(v(z) — v(z))dz
@ 1

[ exp((a — 2)1/(2))dz
® 1
= [ exp(B(x — 2))dz

1

~ (1/B)
=B

where we have used the mean-value theorem in (a) and z, is in the line segment between x and z.
Also, note that since x, z > 0, z, > 0 holds as well and therefore, v/ (z,) > 0. We have used this
fact along with x — z < 0 to obtain (b). Therefore, we have hazp < B.

A.3 Proof of Theorem 3|

Let’s fix round ¢ € [T] and expert ¢ € [K]. For j # i, denote xg% = 22;11 s + D5, + Mt
as the total losses of expert j up to round ¢ plus noise if 7, = 0. Similarly, we can define ;vgti =
S s+ (1=pj.0) 2 +17,¢. Define X7 (XY as the m-th smallest value in {x% izt ({x%}#i).
Note that |Xét) - X {t)| < 1 holds because for each j # i, we have |a:§t()) — argt“ < 1. Also, let
L= 22;11 4; . If ry = 0, expert 7 is chosen at round ¢ + 1 if and only if L + p?’t + Y <= Xét).

Similarly, for the case r; = 1, expert i is chosen if and only if L + (1 — p; )% + v, <= Xft).
Rearranging the terms, we can write:

mis+L— X < —pl, ifry =0,
i+ L— XD < —(1—piy)? ifry=1.

Given that f(v;¢) o exp(—v(viz)). if we define Yy = nyis + L — X7 and ¥ = npy; + L — X7,
we have:

Yo — (L — x{)
n

v — (L —x")
n

fo(Yo) oc exp(—( );

fi(Yn) ocexp(—v( ))-

Therefore, if F and F; denote the cdf, we can write the probability of expert 7 being chosen at round
t+ 1as Fo(—p?,) and Fy(—(1 — p; +)?) for the cases r; = 0 and 7, = 1 respectively. Putting the
above results together, we can write the expected utility of expert i (according to her belief b ) at
round ¢ as follows:

B, ~emoutti(hr. ) [Ust] = (1 = bit) Fo(—p3 ;) + bi e Fy(—(1 = pie)?).
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Taking the derivative and setting it to zero, we have:

d
E,., ~Bemoutii(b; ) [Uit] = —2pi¢(1 — bi,t)fo(—]??,t) +2(1 = pi)bie fr(=(1 = pig)?) =0,

dpi s
_p2
2f1(—(1 = pi)®) (= pie(1 = bi,t)m

—p2,—(L—X"
exp(—v( Pit (17 0 )))
—(1—pie)2—(L—X"

(1-p )77( )))

+ (1= pie)bis) =0,

—pit(1 —biy) +(1=pi)bir =0,

exp(—v/(

O -pa)? = (=X, k= (LX)
U U
=A

— pi,t(l — bi,t) CXP(V( )) +(1 — pi,t)bi,t = O

Ideally, we want A to be as close to 1 as possible because if A = 1, pj, = b; ; and the algorithm
would be incentive-compatible. In general, we have: ’
. bit
Dit =31 _1 A"
bit+(1—b;1)A
Note that this is not a closed-form solution for p;; because A is also a function of p; ;. We can

observe that for p; ; < pj ;, the derivative of the utility function is positive, and for p; + > p; ;, the
derivative is negative.

—p? —a—u(a'—a
We can bound A as follows: Let g(u) = f(ptf()) where a = L — Xft) +1—2p;4,
a=L- Xét) and f(z) = exp(—v(z)). Taking derivative of g with respect to u, we obtain:

—p2,—a—u(a'—a —p2,—a—u(a’—a
) (a/ —a)/(F— 070 7 ( )) -y —a—ula —a) (a/ —a)y/(FR 0 7Y 7 ( ))
g'(u) = f( )= g(u).
n n n
Therefore, we can write:
—p?,—ad —p?,—a
In f(—H0) — I f(—5) = I g(1) ~ Ing(0)

1 7
:/zﬂmm
o 9g(u)
/ a)yl(—l’f,t—a—“(a/—a))

1(a — ZPi—amula —a)
:/ 1 du.
0 n

We have @’ — a = Xft) - X(gt) + 2p;+ — 1. Therefore, —2 < @’ — a < 2 holds. Moreover, we

have —B < v/ (W) < B due to Condition |l Putting the above results together, the
following holds:

9B —p?, —d —p},—a_ 2B

o cmA = (R Ty (P T < 22

n n n

Therefore, A € [exp(%),exp(%)]. Let h(pit) = pix — Py = Pit — l”Jr(bllijbt)A Since

pi4 € [0,1], we have h(0) < 0 and h(1) > 0. Taking the derivative of h with respect to p; ;, we
have:

—ps —(1=ps.)—(L—X® ; —p?,—(L—X§"
dh | bl = b AUy (SR IS o By (2R )
dpi (bie + (1 —bit)A)? .

i iti _ _2Bbii(1=bi)A - dh_ .
Using Condltlon we have 1 Tt (b A = dpsr- Therefore, we can write:

dh S 2Bb; (1 —b; 1)A 2Bb; 1(1 —b;1)A

b )
1— : =1 >1— 2
dp;s — nbis+(1—0b
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We choose 7 later such that > B for the last inequality to hold. So, h is strictly increasing, there is
exactly one solution p; ,, and the derivative is positive below it and negative above it.
If we replace A with something larger in p; +» the value decreases and vice versa. Therefore, we can
write:
bit
b+ (1— bi,t)eXp(?,iB)
bit
exp(“28) 1 by, (1~ exp(22))
bit
exp(=2F)
bt

— 1-2B
n

o nb; ¢

- n—2B

2Bb; +

n—2B
2B

n—2B’

p;'k,t <

IN

=04

< b+

Similarly, we can lower bound p; , as follows:

bi,¢
i+ (1= bi,t)exp(%)
bit
xp(2E) — by (exp(22) 1)
bi ¢
Z ()
= biytexp(ﬁ)

*
T >
pz,t—b

>bi(1——

( 77)
2B

>bjy— —.
n

Putting the above results together, we conclude that |p} ; — b; s

2B
< P holds.

A.4 Proof of Theoremd]

Letn > 0 and X be the set of (¥) feasible sets of size m for this problem. Denote L; € R¥ as

the partial sum of losses for all experts before round ¢, i.e., [L¢]; = Zi;ll ?; s. The update rule of

FTPL at round ¢t € [T] is my = argmin, ¢ y(x, Ly + ny,). First, we analyze the expected regret of
the algorithm below.

Define ¢;(0) = E,, px[mingex(z,0 + nv)]. Then, we have V¢i(L;) =
E'\/tNDK [arg minw6X<xa Lt + 77’7t>] = E’WNDK [Trt] and <V¢t(Lt)a Et) = E%NDK Kﬂ-t’ gt)]
Using the Taylor’s expansion of ¢, we can write:

1 ’ 1 ’
G1(Liyr) = ¢t(Lt)+<v¢t(Lt)a€t>+§<£ta v2¢t(Lt)€t> = ¢t(Lt)+]E%~DK[<7Tt,€t>]+§<ft, V2¢t(Lt)ft>,
where L; is in the line segment between L, and L,y = L; + ¢;. By definition, ¢; is the minimum

of linear functions and therefore, it is concave. Thus, V2¢t(L;) is negative semidefinite. Note that
since ~y; is simply K i.i.d. samples of the noise distribution for all ¢ € [T'], we have ¢;(6) = ¢(0) =
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E, px [mingecx(x, 0 + n7)]. Taking the sum over ¢ € [T] and rearranging the terms, we obtain:

T 1 T

E[>_{m, )] = o(Lrsa) = (L) = 5 3 {0 V2ulLo)lo).
t=1 0 t=1

Using Jensen’s inequality, we can write:
¢(Lr41) =E,px [gg;(l@% Lyir+n7)] < ggg}EwDKK% Ly +ny)] = g}:_ig(l<xaLT+1>'

Therefore, we can rearrange the terms and bound the expected regret as follows:
T T
1 1 . 1 1 /
E[Rr] = EEWDK[ZWM] = —min(z, L) < ——6(0) — 5 — > (4, VPG (Ly) ).

p m z€ m —

To bound the first term on the right hand side, we can use the fact that D is symmetric to write:
—¢(0) = —E, px[minfz, )] = nE, px[max(z, —)] = nE,px [max(z, 7)].

Now, we move on to bound the second term in the regret bound. Given that the losses of the experts
at each round ¢ € [T'] are bounded between 0 and 1, we have ||¢;||o < 1. Therefore, we have:

—(0, V2o (L)) < D V2 (L)
i,j€[K]
By definition, if we denote 71(0) = argmin, ¢y (x, ), we have:

1 ' dv(v;)
V2. 4(L,) = =B px[r(L RAVinAY
w¢( t) 0 ~~DK [W( ¢ 1Y) dv; ]
Given the concavity of ¢, diagonal entries of the Hessian V2¢ are non-positive. We can also use
177 (0) = m to show that the off-diagonal entries are non-negative and each row or column of the

Hessian sums up to 0. Therefore, we have } -, g |V§’jq§(L;)| =2 Zfil Vf’igb(L;). Putting the
above results together, we can bound the regret as follows:
T K

1 o
EW~DK [g?g(% T+ 77771 ; ;E’YNDK [T(Ly — 1)

n

m

E[Rr] <

‘We can bound the first term as follows:

1
E~px [max(z,7)] < inf —In ( ;{EVNDK [exp(s(z,7))])

1 K
inf —In ( Z HEWND[GXP(S%%)])

5:5>0 8§
rzeX i=1

. 1 m
S:ISn>f0 g In (‘X|(E71~D [P«XP(S%)]) )

. 1 m
s:lil>fo s In ||+ 5 InE,, ~plexp(sy1)]

_.m m
< inf — 1n(;) + 5 By ep [exp(s71)]

To bound the second term in the regret bound, we can use Conditionmto write:

K / dl/(’y) K / K /
D _Bopli(Ly —m)i—p =) < BY [ Eyenli(Le 1)l = BEno[)_#(L, —n)i] = Bom.
i=1 ¢ i=1 i=1

Putting the above results together, we have:

K BT
Therefore, if we setn = %, the regret bound is O(y/ BT ln(%)) In the proof of Theorem E,

we assumed that 7 is chosen such that > B. So, we assume 7' > B ln(%).
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A.5 Proof of Theorem
For i € [m] and t € [T}, define:

B1a(8) = (1= )" 7gi(S) + hu(S).

For all ¢ € [m], we can write

1 . 1 .
¢i,t(Sit) — im1,4(Sic1e) = (1 — E)mﬂgt(si,t) +he(Sie) — (1= E)mf(kl)gt(si—l,t) — he(Siz1t)
1 ) 1 1 .
= (1= )" (9e(Sie) = 9e(Sim1.0)) + he(vie) + — (1 = — )" ge(Sie1e)-
Taking the sum over ¢ € [T], we obtain:
T 1 T T . L T
;(d)i,t(si,t) — ¢i—1,4(Si—1,0)) = (1 — E)m ‘ ;(gt(s ) —9:(Si—1)) + ; he(vie) + E(l - E)mﬂ ;gt(sz‘—l,t)

1 T T 1 1 T
—(1— m—1i . . i 1— m—1i . .
( m) ;:1 9t (Vi) Si—14) + ;:1 hi(vie) + m( m) ;:1 9t(Si-1,t)

If the regret of A; is bounded above by Rgf) and the optimal benchmark solution is OPT =
{vf,...,v5}, forall j € [m], we can write:

T T
1 i

D (= ) g5 1Sim1) +he(v) = D (1 Tl (Vi Sic1,e) + he(viy)) < R
t=1 t=1
Putting the above inequalities together, we have:

T 1 1 T m 1 T m

D (9ie(Sie) = imra(Sica)) = — (L= )" Y Y (@ 1Siman) + 3D he(¥])

t=1 t=1 j=1 t=1 j=1

1 T
+—(1- mlzgt i1,t) R()~

m

We can use submodularity and monotonicity of g; to write:
9t(OPT)—g¢(Si—1,t) < ge(OPTUS;_1,4)—g¢(Si—1,t) Z 9e (v} [Si—1,U{or, .. 04 }) < th F1Si-1e)

We can combine the last two inequalities to write:
T T

T m
S (600(Sid) — b5 14(Si 1)) > "3 (OPT) — (i) + =S )
t [

S\H

t=1

1 1 ) ,
- - m 7 - _ R(l)
+ m m t:Zlg 1,t T
1 1 T 1 T m )
= —(1-—)" "N gi(0PT) + EZth(v;) ~ R,
t=1 t=1 j=1

Taking the sum over ¢ € [m], we have:

m T m m
ZZ (bzt ¢2 lt z 1t Ziz m 1th OPT Zth(’U;)—ZR%)
t=1 i=1 mi4 t=1 t=1 j=1 i=1
T T m )
=(1-(1- Z (OPT) + > hy(OPT) — > RY)
t=1 t=1 =1
T T m )
(1—= Z (OPT) + > hy(OPT) = > RY.
t=1 t=1 =1
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On the other hand, we have:

m

T T T
Zz(bzt —¢i—1,t(Si—1,¢) Z¢mt )—®0,t(S0,¢)) thst +hi(St))
t=1 t=1

t=1 i=1

HMH

Combining the last two inequalities, we obtain:

T T T m
STRS) =1 - %) > g:(0PT) + >~ he(OPT) — 3~ RY
t=1 t=1 t=1 i=1

T T T m
—(1- é) 3 fi(OPT) — (1 - é) > m(OPT) + 3~ hy(OPT) — Y RY
t=1 t=1 t=1 =1
1. 1 & - (i)
=(1--) > £i(OPT) + . > h(OPT) - Y " Rj
t=1 t=1 =1
>(1- 1)2T:f (OPT) + ﬂif (OPT) — 3" RY)
B ¢ t=1 t ¢ t=1 t =1 3
T m
—(1- %)Zlft(om P
t= i=

where [ = Zthl f+- Rearranging the terms, we obtain the (1 — = )-regret bound of the online
distorted greedy algorithm as follows:

T T m
= )Y ROPT) =37 (S < 3O RY

To see why the online greedy algorithm is incentive-compatible, note that at round ¢ € [T, the loss
of expert j € [K] for the instance A;; i € [K] is:

—fe(31Si=1,t) H let(liy —1).

k€Si 1t

If we use ]( t) 1 to denote the probability of expert j being chosen at round ¢ 4+ 1 by A;, we can write:

(z) (z) (4)
M =ma(t=n T e wZW Lo
kESi—1,t
wj(lt) 41 is linear in ¢;; and expert j does not have control over the term [, i1, Crt (because

Si—1,¢ is unknown to the expert). Therefore, to maximize 71'5? 1> expert j can only aim to minimize

By, ~Bem(b,1) ;¢ Zf 1 7751265 ¢]. Given that the quadratic loss function is proper, we can conclude
that A; is incentive- compatlble Moreover, since the online greedy algorithm simply outputs the
predictions of {A;}/£,, this algorithm is incentive-compatible as well. For the case with ¢; = 0,
the loss of expert j € [K] for each instance A;; ¢ € [K] in both online greedy algorithm and online
distorted greedy algorithm is simply %(ﬁj’t — 1) and the same argument holds.

A.6 Proof of Theorem (7|

First, assume that the losses are non-negative. Using the update rule of the algorithm, we can write:

T
12> e py1 = M1 H(l — L~ ),
=1

12% II a=nii-n) TI (=nLio).

t:Lgx >0 t:Lyx ;<0
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We can use the inequalities 1 —nz > (1 —n)* forz € [0,1]and 1 —nz > (14n)~* forz € [-1,0]
to write:

1> % H (1 _ n)Li*,t_ H (1 +’I7)_Li*'t7

t:Lyx ;>0 t:Lyx ;<0

0>—-InK + Z Li«4In(1—n Z L« ¢ In(1+ 7).

t:Lgx >0 t:Lgx <0

Given the inequalities In(1 — ) > —z — z? and In(1 + z) > z — x? for z < 1, we have:

0> -nK+(-n—n?) > Lies—@0-1? > Lpy,

t:Lgx >0 L <0

T T
02—1nK—nZLi*7t—U22|L’*, )
t=1
T
_ZLM<%+ Z|L*t
t=1

Given that L« ; = £;= 4 — 7l f;, we can write:

T
In K
RT<T+772|& t‘”t€t|<7+7l Zlf

t=1 t=1 —

T +77(|LT| +|L7|),

where |L.| and | Lp| are the cumulative absolute loss of the benchmark and the algorithm respectively.

Therefore, if we set = min{1, , /%} we obtain an O(y/max{|Lr[, [L;[}In K + In K)

regret bound. Given that Ry = Ly — L%, if |Lp| = Ly < L% = |L%|, the regret is negative and if
|Lr| = Ly > L% = |L%], |Lr|In K

O(/|Lr|In K + In K) always holds.
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