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ABSTRACT

Using a subset of observed network links, high-order link pre-
diction (HOLP) infers missing hyperedges, that is links con-
necting three or more nodes. HOLP emerges in several appli-
cations, but existing approaches have not dealt with the asso-
ciated predictor’s performance. To overcome this limitation,
the present contribution develops a Bayesian approach and
the relevant predictive distributions that quantify model un-
certainty. Gaussian processes model the dependence of each
node to the remaining nodes. These nonparametric models
yield predictive distributions, which are fused across nodes by
means of a pseudo-likelihood based criterion. Performance is
quantified by proper measures of dispersion, which are asso-
ciated with the predictive distributions. Tests on benchmark
datasets demonstrate the benefits of the novel approach.

Index Terms— Link prediction, hypergraphs, Gaussian
processes

1. INTRODUCTION

Link prediction aims at predicting edges (pairwise links) that
are missing from a graph [11, 20, 10]. Missing edges may
either be present, albeit not observed, or they may appear in
the future, in the case of evolving networks [6].

Going beyond pairwise links, hyperedges connect three or
more nodes of a hypergraph [3, 1, 17]. They model higher-
than second-order nodal dependencies, and HOLP aims at
predicting such dependencies [23, 24]. HOLP arises natu-
rally, in e.g., drug substance networks, where nodes repre-
sent substances, and a (hyper-)edge models the pertinent drug
substances. As drugs can contain more than two substances,
going beyond predictions of pairs of nodes, is well justified.

Prior works. HOLP methods can be broadly categorized
into informal scoring, supervised, and unsupervised learning
based methods. Examples of supervised methods include
structural support vector machine [23] and neural network
based approaches [21], whereas matrix factorizations [24]

This work was supported in part by NSF grants 1901134, 2126052,
2212318, 2220292. A. Pages-Zamora was supported by grants PID2022-
137099NB-C41 funded by MCIN/AEI/ 10.13039/501100011033; and by
2021 SGR 01033 funded by Dept. de Recerca i Univ. de la Generalitat de
Catalunya 10.13039/501100002809.

979-8-3503-4485-1/24/$31.00 ©2024 IEEE 13251

and distribution similarities [5] are leveraged in unsupervised
approaches. A common limitation shared by existing ap-
proaches, regardless of category, is the inability to provide
estimates of the uncertainty associated with the predictions
made. Such estimates can be used in subsequent decision
making, or, in order to guide data collection for further model
improvement. An additional limitation faced by supervised
methods is the requirement for artificially generated “absent
hyperedges,” that is sets of nodes that are assumed not to
be connected by a hyperedge. To see why this is the case,
note that supervised methods tackle HOLP as a classification
problem of “present” versus “absent” hyperedges. Training
a classifier requires examples from both classes. Real world
networks however, typically comprise only “present” hy-
peredges, thereby necessitating artificially examples for the
“absent” class, what of course biases the learned predictor.

To overcome the limitations of existing methods, our
novel approach utilizes Gaussian processes to obtain expres-
sive probabilistic models of the dependencies amongst nodes.
Combining the resulting node-wise models through a pseudo-
likelihood yields an effective predictor, whose learning does
not require artificially generated “absent hyperedges,” unlike
supervised approaches. Finally, we leverage the predictive
distributions, learned through our Bayesian formulation, to
extract measures of uncertainty on the participation of a node
to a hyperedge, as well as on hyperedge presence predic-
tion. All in all, the novel method does not entail unnecessary
biases, while also additionally offering uncertainty estimates.

Contributions. The main novelty here is a Gaussian process
based approach to HOLP, and its performance analysis. Non-
parametric learning of nodal dependencies, and the adoption
of pseudolikelihood in the predictive model are also novel in
the context of HOLP.

Notation. Scalar A;; denotes the (¢, j)-th entry of the matrix
A; [a]; the i-th entry of vector a; superscript | transposition;
and, I stands for the identity matrix. Moreover, | - | denotes set
cardinality, and 1{-} is the indicator function. The expecta-
tion and variance of a random variable Z are denoted by E[Z]
and V[Z], respectively. Finally, N (z; i, 0?) represents the
probability density function of a Gaussian random variable
(with mean g and variance o) taking the value z.
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2. PRELIMINARIES

Let G be an undirected hypergraph G := (V,&,), where V
is the set of nodes (vertices), and &, is the set of both ob-
served edges (pairwise links) and hyperedges (links among
three or more nodes). Conceptually, the goal is to retrieve the
set £, of unobserved hyperedges, where each hyperedge is
allowed to connect an arbitrary number of nodes. In practice,
a set of candidate hyperedges &, is considered, and the HOLP
approach assigns a score S(e*) to each candidate hyperedge
e* € &., where higher scores shall be given to candidate hy-
peredges that are deemed more likely to exist.

As is customary, the structure of hypergraph G will be rep-
resented by the incidence matrix H € {0, 1}V*I%| where
N = |V| denotes the number of nodes, and H;,,, = 1{i €
em}, that is H;,,, = 1, if node ¢ participates in (hyper) edge
em € &, and H;,, = 0 otherwise [3]. Let also H =:
m®, . .. h®)], where we shall refer to h™ as the inci-
dence vector associated with (hyper) edge e;,,, and M = |&,|.

3. GP-BASED NODAL MODELS

As a starting point, a probabilistic model is sought for each
node ¢ that relates the participation of node ¢ in a hyperedge
to the participation of the remaining nodes. Fusing the learned
models across nodes, and providing hyperedge predictions, is
discussed in the ensuing section.

Consider an arbitrary (hyper) edge e,, the associated in-
cidence vector h(® and let also hii) = [hgo), )

y 0 —1>
hE 4_)1, e hgf;)]-r where nonzero entries correspond to nodes,
other than i, that participate in (hyper) edge e,. The likeli-
hood function of our model is given by

p(h{ = 1h{7) = o(f(h(?)) (1)

where f;(-) is a nonlinear real-valued function, and the Gaus-
sian cumulative density function (CDF) ®(-) is used to map
fi to the unit interval, thereby yielding a valid probabil-
ity' [22]. In words, the participation of node 7 in hyperedge
€, is modeled by a Bernoulli distribution, whose probability
of success is a function of the participation of the remaining
nodes (cf. (1)).

In order to obtain a highly expressive Bayesian model,
a Gaussian process (GP) prior is placed on f;, with covari-
ance structure captured by a kernel xg,, where 8; collects

Letting f; := [fi(h{}),
. fqz(hiliw))]T € RM | the GP prior over functions trans-

lates to a multivariate Gaussian prior over function values,
that is p(f;[H\;,0;) = N(fi;0,K;), where Hy; := [h(l,)

the kernel hyperparameters [22].

collecting the participation status of node ¢ across observed
(hyper) edges, the posterior over latent function values f; is
obtained through Bayes’ rule as

p(fi|Hy;, h h/,0;) = N(f;;0,K;) x )

) Ty [@(fi (0 7)) i [1— @ ( f;(h{7))] 1 Him
p(h i‘H\iv 0;)

[To, p(FLip £ (b))
was used, as {H;,,}»_, are considered conditionally in-
dependent given the latent function f; [22]. The non-
Gaussianity of (2), stemming from the non-Gaussian like-
lihood (1), however, makes inference challenging. As is
customary in the context of GPs, a Gaussian approximation
to the posterior, let q(fi|H\i,h;r,0i) = N(f;;m;, A;), is
leveraged [14]. Here we will rely on the popular expectation
propagation (EP) approach [13, 9]; see also the Appendix.

Our end goal is, of course, to make predictions about un-
observed hyperedges e* ¢ &,. With regards to node 4, this
translates to potentially unseen hii. To that end, first, the pre-
dictive distribution for the latent function value f;* := f;(h{;)
is obtained as

where the factorization p(h, |f;) =

q(fi|Hy;, by, 0:)df;  (3)

with p(f7|£;,h{;, Hy; b, 0;) = N (k! K; 'my k.,
— — — * 1
k! (K" — K A;K; k), where k. := [rg, (h{,h{}),
- #ig, (0, b} T and k.. := ke, (h;, hi;) [9]. The pre-
dictive distribution for the participation of node 7 in the poten-
tial hyperedge e* is then obtained as

p(hi = 1|h{;, H, 6;) :/(I)(fi*)p(fi*|h<ivH>gi)dfz‘*~ Q)

where we used the fact that {H,,;, h; } is equivalent to H to
simplify notation.

The GP-based formulation adopted provides a principled
way for hyperparameter selection [22]. This is accomplished
by maximizing over 6; the marginal likelihood, as per

0, = argmax/p(hﬂfi)q(fﬂH\hhiT76i)dfi. 5)
0;

To illustrate the importance of hyperparameters in our con-
text, let us turn our attention to the squared exponential auto-
matic relevance determination (SE-ARD) kernel [22]

\¢ N
1) l l 14
.,hijiw)] and the kernel matrix K; € RM*M js formed (hiwh< ) o exp ( Z (h<) ( o ) /Ui)
D 4.1 T vt
as [K]ir = ko, (W h")). With h] = [Hyp,..., Hiy
K] (. By) | ] that is leveraged here, where 8; := [07,..., 07 y_,)]. The
I'This is also referred to as the probit likelihood. inverse of each scale parameter o;, indicates how relevant
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Fig. 1: ROC curves for hyperedge prediction on the (a) tags—ask-ubuntu and (b) tags-math-sx datasets. Comparison
of the proposed HOLP approach against HPRA [8], CMM [24], HPLSF [23], Katz index and number of common neighbors.

node in position v is to predicting the participation of node
1. Therefore, having a principled way to optimize over 8; al-
lows for a nonparametric model of nodal dependencies, that
is not only adaptable, but also explainable. Note finally that
we will drop 8; from our notation, as 8; — éi hereafter.

Remark 1. As the cubic complexity associated with com-
puting K~ ! hinders scalability, low-rank approximants of the
kernel matrix are leveraged, based on the deterministic train-
ing conditional approximation [18, 16].

4. HOLP AND UNCERTAINTY ESTIMATES

The goal in HOLP is to assign to each candidate hyperedge
e* € &. ascore S(e*), that is predictive of hyperedge pres-
ence. Our scoring function amounts to fusing the node-wise
predictors (cf. (4)) by relying on the notion of pseudolikeli-
hood [4]. Formally, we have

N
S(e) = [ p(hi 0%, H) ~ p(h*[H) (©)
i=1

where h™* is the incidence vector associated with e*. Note
that this scoring rule is rather intuitive, as it amounts to the
approximate likelihood of the candidate hyperedge e*, given
the observed edges and hyperedges collected in H.

Estimates of various notions of uncertainty, both at the
node and at the hyperedge level, can be obtained within the
proposed framework. As a starting point, consider the pre-
dictive likelihood for the participation of node ¢ in candidate
hyperedge e*, as per (4). The key observation here is that
®(fF) is a random variable, due to the random function f;,
and thus random variable f;. Intuitively, a lower variance
V[®(f;)] indicates that the Bernoulli parameter concentrates
more tightly around its mean E[®(f)] = p(h; = 1|h{;, H),
thereby indicating lower model uncertainty with regards to
the participation of node ¢ in candidate hyperedge e*.

To render the uncertainty estimates obtained across differ-
ent nodes and hyperedges comparable, it is prudent to bring
them to a common scale by using a normalized measure of

dispersion, such as the coefﬁcient of variation [19], defined
here as C;( = ,/V )/E[®(fF)]. See also [7] for
related concepts

At the hyperedge level, we can proceed analogously.
First, in order to compactly write (4) as a function of the
participation of node i in e*, let us introduce h} := 2h} — 1.
It follows that

p(h: [y, H) = / (e fp(fr G ) ()

where we used the fact that p(h} = 0]-) = 1—p(h} = 1]-) and
the Gaussian CDF property ®(—t) = 1 — ®(¢). Substituting
for the per-node predictive likelihoods as per (7) in (6) and
applying Fubini’s theorem we obtain

/ / (BLfD) .- @Ry i) (®)

p(fihiy, H) .. p(fy by, H) dff . .. dfy.

As S(e*|fy, ..., [%) == ®(hify) ... ®(h% fi) is a random
variable, the scoring function in (8) is now viewed as an
expectation S(e*) = E;[S(e*|f],..., f&)] with respect to
the measure p := p(fy|h{y,H)...p(fX|hiy, H). A no-
tion of uncertainty at the hyperedge level can be obtained as
However, Uy, (e*) may inflate uncertainty as it tries to capture
the uncertainty of both nodes v € e* being present in e*
and nodes v ¢ e* being absent from e*. A perhaps more
reasonable metric is obtained by conditioning on v ¢ e*
being absent, and focusing on the participating nodes, that

is letting U(e?) = /Val@(hy, f1,)... 05 . £ )/
Es[®(hy, f3,) - @Ry . f5..)] where {vi,...,vex} =
{v:vee}.

5. NUMERICAL TESTS

To assess the performance of our novel approach, tests
were performed on the first N = 100 vertices and M =
100, 000 (hyper) edges of the a) tags—ask-ubuntu, and
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Fig. 2: Uncertainty estimates in the tags—ask—-ubuntu dataset.

b) tags—math-sx datasets. Nodes correspond to tags and
each hyperedge connects the tags associated with a single
question on the “Ask Ubuntu” and “Mathematics Stack Ex-
change” websites; see [2] for a detailed description.

In our tests, several HOLP alternatives were considered,
including the hyperedge prediction using resource alloca-
tion (HPRA) method [8]; coordinated matrix minimization
(CMM) [24]; the supervised hyperlink prediction using latent
social features (HPLSF) approach [23]; as well as higher-
order counterparts of standard link prediction scores, such
as the Katz index and the number of common neighbors;
see [24] for a detailed description.

With regards to the proposed approach, the SE-ARD ker-
nel was used. Regarding CMM, all hyperparameters were set
as per the original work [24], and we report the best results
achieved across the embedding dimensionalities considered
therein, namely {10, 20, 30}.

The set of unobserved hyperedges &£, was obtained by
holding out 20% of hyperedges that were the last to appear
in each dataset. As the goal is to assess hyperedge prediction
performance, our candidate set &, in the testing phase should
also include “absent hyperedges.” It is important to note that
&, is used here only for evaluation purposes. In particular, we
relied on the clique negative sampling (CNS) scheme of [15],
which is a higher-order counterpart of the widely used ap-
proach of [12], to generate the “absent hyperedge” set £, with
|€a| = |Ex|. Finally, our test set is obtained as €. = &, U &,.

In the first test, the hyperedge prediction performance of
the proposed approach was compared to that of competing al-
ternatives. The results are depicted in the form of receiver
operating characteristics (ROC) curves in Fig. 1. The pro-
posed approach offers the best performance in both datasets.
This can be attributed to the highly expressive model consid-
ered here, that also does not introduce unnecessary biases in
the form of artificial “absent hyperedges.”

As no ground truth is available regarding uncertainty, the
purpose of the second test was to perform a sanity check on
the uncertainty estimates provided by the proposed approach.
Let C(e*) = \Tl*\ > icex Ci(e*) denote the coefficient of
variation, averaged across nodes participating in each hyper-
edge e, € &. In Fig. 2a, C(e*) is plotted versus the (aver-
age) number of (hyper) edges in H in which pairs of nodes

contained in e,, that is (¢, j) C e, coappeared. The results
are provided in the form of box plots. As expected, the uncer-
tainty is lower for hyperedges whose comprising nodes fea-
tured a greater number of pairwise interactions in the training
data. Similar observations can be made when considering the
hyperedge level uncertainty U (e*); see Fig. 2b.

6. CONCLUSIONS

The present work introduced a novel approach to high-order
link prediction. Gaussian process based learning was lever-
aged in order to build probabilistic models for the dependence
structure of each node. Candidate hyperedge scores were ob-
tained by fusing the predictions of node-wise models through
a pseudolikelihood function. Finally, estimates of the uncer-
tainty, both at the node and hyperedge level, were introduced.
Tests on benchmark datasets demonstrated the superior hy-
peredge prediction performance of the novel approach, rel-
ative to alternatives, as well as its uncertainty quantification
capabilities.

7. APPENDIX

At a high level, EP first considers an approximation of the
likelihood as per q(Hym|[fi]lm) ~ ZSON([£i]m; i, 552).
EP then optimizes over parameters 7, :={ ;15,? , f),(,ll) , Z,(,Zl) },I\,/L[:1
so that, for each m, the marginals q([fi]m|hiT,H\,») x
JN(£:;0,K;) HM Zﬁ?N([fi]m/; [LSL),, @f,i),)d[fi]\m agree

m’=1
with marginals [\ (£;;0, K:)p(Hlisn[£:)m) [T 25
N ([fi]m/;ﬂf:?,,ﬂg),)d[fi]\m whereby the exact likelihood
p(Him|[fi]m) is used. This is accomplished by moment
matching. The approximants {m;, A;} are finally obtained

based on T;; see [9] for a more elaborate description.
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