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ABSTRACT

Utilizing task-invariant prior knowledge extracted from re-
lated tasks, meta-learning is a principled framework that
empowers learning a new task especially when data records
are limited. A fundamental challenge in meta-learning is
how to quickly “adapt” the extracted prior in order to train a
task-specific model within a few optimization steps. Existing
approaches deal with this challenge using a preconditioner
that enhances convergence of the per-task training process.
Though effective in representing locally a quadratic training
loss, these simple linear preconditioners can hardly capture
complex loss geometries. The present contribution addresses
this limitation by learning a nonlinear mirror map, which
induces a versatile distance metric to enable capturing and
optimizing a wide range of loss geometries, hence facilitating
the per-task training. Numerical tests on few-shot learning
datasets demonstrate the superior expressiveness and conver-
gence of the advocated approach.

Index Terms— Meta-learning, bilevel optimization, mir-
ror descent, loss geometries

1. INTRODUCTION

The success of deep learning relies heavily on large-scale
and high-dimensional models, which require extensive train-
ing using a large number of data. However, this “data-driven
learning” approach is not feasible in applications where data
are scarce due to costly data collection and labelling process.
Examples of such applications include drug discovery [1],
machine translation [2], and robot manipulation [3].

In contrast, meta-learning offers a powerful approach for
learning a task in data-limited setups. Specifically, meta-
learning extracts task-invariant prior information from a
collection of given tasks, that can subsequently aid learning
of a new, albeit related task. Although this new task may have
limited training data, the prior serves as a strong inductive
bias that effectively transfers knowledge to aid its learning.
In image classification for instance, a feature extractor learned
from a collection of given tasks can act as a common prior,
and thus benefit a variety of other image classification tasks.

This work was supported by NSF grants 2126052, 2128593, 2212318,
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Depending on how this “data-limited learning” is per-
formed, meta-learning algorithms can be categorized into
neural network (NN)- and optimization-based ones. In NN-
based ones, the per-task learning is viewed as an NN mapping
from its training data to task-specific model parameters [4, 5].
The prior information is encoded in the NN weights, which
are shared and optimized across tasks. With the universal-
ity of NNs in approximating complex mappings granted,
their black-box structure challenges their reliability and in-
terpretability. On the other hand, optimization-based meta-
learning alternatives interpret “data-limited learning” as a
cascade of a few optimization iterations (a.k.a. adaptation)
over the model parameters. The prior here is captured by
the shared hyperparameters of the iterative optimizer. A rep-
resentative of these alternatives is the model-agnostic meta-
learning (MAML) [6], which views the prior as a learnable
task-invariant initialization of the optimizer. By starting from
an informative initial point, the model parameters can rapidly
converge to local minima within a few gradient descent (GD)
steps. Building upon MAML, a series of variants have been
proposed to learn different priors [7, 8, 9].

While optimization-based meta-learning has been proven
effective numerically, recent studies suggest that its general-
ization and stability heavily rely on convergence of per-task
optimization [7, 9]. This motivates one to grow the number
of descent iterations. However, this can be infeasible as the
overall complexity of meta-learning scales linearly with the
number of GD steps [7]. Besides, using accelerated first-order
optimizers, such as Adam [10], introduces extra backpropa-
gation complexity when optimizing the prior. To improve the
per-task convergence without markedly adding to the com-
plexity, another line of research focuses on second-order opti-
mization using a learnable precondition matrix having simple
form [11, 12, 13, 14, 15, 16]. In fact, the precondition ma-
trix captures the local quadratic curvature of the training loss,
and linearly transforms the gradient based on this curvature.
To acquire more expressive preconditioners, recent advances
suggest replacing the linear matrix multiplication with a non-
linear NN transformation [17]. However, convergence of this
NN-manipulated GD is an uncharted territory.

The present work advocates learning a generic distance
metric induced by a strictly increasing nonlinear mirror map,
which enables efficient optimization over generic loss geome-
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tries. All in all, our contribution is three-fold.
i) Broadening linear preconditioners with guaranteed per-

task convergence.
ii) Blockwise inverse autoregressive flow (blockIAF) ensur-

ing monotonicity and scalability of the mirror map.
iii) Numerical tests showing superior performance and im-

proved convergence compared to linear preconditioners.

2. PROBLEM SETUP

To enable “data-limited learning” of a new task, meta-
learning forms task-invariant priors using a collection of
given tasks indexed by t = 1, . . . , T . Each task comprises
a dataset Dt := {(xn

t , y
n
t )}

Nt
n=1 consisting of Nt data-label

pairs, which are split into a training subset Dtrn
t , and a disjoint

validation subset Dval
t . The new task, indexed by ⋆, contains a

training subset Dtrn
⋆ , and a set of test data {xn

⋆}
Ntst

⋆
n=1 for which

the corresponding labels {yn⋆ }
Ntst

⋆
n=1 are to be predicted. The

key premise of meta-learning is that all the aforementioned
tasks share related model structures or data distributions.
Thus, one can postulate a large model shared across all tasks,
along with distinct model parameters ϕt ∈ Rd per individual
task. But since the cardinality N trn

t := |Dtrn
t | can be much

smaller than d, learning a task by directly optimizing ϕt

over Dtrn
t is impractical. Fortunately, since T is considerably

large, a task-invariant prior can be learned using {Dval
t }Tt=1

to render per-task learning well posed.
Letting θ ∈ Rd′

denote the vector parameter of the prior,
the meta-learning objective can be formulated as a bilevel op-
timization problem. The lower-level trains each task-specific
model by optimizing ϕt using Dtrn

t and θ from the upper-
level. The upper-level adjusts θ by evaluating the optimized
ϕt on the validation sets {Dval

t }Tt=1. The two levels depend
on each other and yield the following nested objective

min
θ

T∑
t=1

L(ϕ∗
t (θ);Dval

t ) (1a)

s.t. ϕ∗
t (θ) = argmin

ϕt

L(ϕt;Dtrn
t ) +R(ϕt;θ), ∀t (1b)

where L is the loss function capturing each task-specific
model fit, and R is the regularizer accounting for the task-
invariant prior. From the Bayesian viewpoint, L and R repre-
sent the negative log-likelihood (nll), − log p(ytrn

t |ϕt;X
trn
t ),

and the negative log-prior (nlp) − log p(ϕt;θ), where Xtrn
t :=

[x1
t , . . . ,x

Ntrn
t

t ] and ytrn
t := [y1t , . . . , y

Ntrn
t

t ]⊤ (⊤ denotes
transpose). Bayes’ rule then implies ϕ∗

t = argmin− log p(ϕt|
ytrn
t ; Xtrn

t ,θ) is the maximum a posteriori (MAP) estimator.
Reaching the global optimum ϕ∗

t is generally infeasible
because the task-specific model is nonlinear. Hence, a prudent
remedy is to rely on an approximate solver ϕ̂t ≈ ϕ∗

t obtained
by a tractable optimizer. For instance, MAML replaces (1b)
with a K-step GD minimizing the nll:

ϕ
(k)
t (θ) = ϕ

(k−1)
t (θ)− α∇L(ϕ(k−1)

t (θ);Dtrn
t ), ∀t (2)

where k = 1, . . . ,K indexes iterations; initialization ϕ
(0)
t =

ϕ(0) = θ; approximate solver ϕ̂t(θ) = ϕ
(K)
t (θ); and α de-

notes the step size. Although R(ϕt;θ) = 0 in MAML, it has
been shown that the GD solver satisfies [18]

ϕ̂t(θ) ≈ ϕ∗
t (θ) = argmin

ϕt

L(ϕt;Dtrn
t ) +

1

2
∥ϕt − θ∥2Λt

, ∀t

where the precision matrix Λt is determined by ∇2L(θ;Dtrn
t ),

α, and K. This indicates that MAML’s optimization strat-
egy (2) is approximately tantamount to an implicit Gaus-
sian prior probability density function (pdf) p(ϕt;θ) =
N (θ,Λ−1

t ), with the task-invariant initialization serving
as the mean vector. Alongside implicit priors, their explicit
counterparts have also been investigated with various prior
pdfs [7, 9].

For both implicit and explicit priors, numerical stud-
ies [11, 13] and theoretical analyses [7, 9] demonstrate that
the gradient error for optimizing θ in (1a) relies on the con-
vergence accuracy of ϕ̂t relative to a stationary point. In ad-
dition, employing a large K or complicated optimizers could
prohibitively escalate the overall complexity for solving (1).
As a consequence, attention has been directed towards pre-
conditioned GD (PGD) solvers, as in the update

ϕ
(k)
t (θ) = ϕ

(k−1)
t (θ)− αP(θP )∇L(ϕ(k−1)

t (θ);Dtrn
t ) (3)

where θP parametrizes P ∈ Rd×d, and the prior parameter
is augmented as θ := [ϕ(0)⊤,θ⊤

P ]
⊤. To ensure (3) incurs

affordable complexity after preconditioning, P must have
a simple enough structure so that P(θP )∇L(ϕ(k−1)

t ;Dtrn
t )

incurs computational complexity O(d). Examples of such
structures include diagonal [11, 12], block-diagonal [13,
14], and NN-based [15] matrices. A more generic pre-
conditioner can be formed by replacing the linear trans-
formation P(θP )∇L(ϕ(k−1)

t ;Dtrn
t ) with a nonlinear NN

f(∇L(ϕ(k−1)
t ;Dtrn

t );θP ) [17], but unfortunately conver-
gence of this alternative iterate may not be guaranteed.

Essentially, GD conducts a pre-step greedy search with a
quadratic loss approximation. To see this, let lin(L(ϕt), ϕ̄t)
:= L(ϕ̄t;Dtrn

t ) + (ϕt − ϕ̄t)
⊤∇L(ϕ̄t;Dtrn

t ). Using this lin-
earization of L at ϕ̄t ∈ Rd, the GD update reduces to (cf. (2))

ϕ
(k)
t = argmin

ϕt

lin(L(ϕt),ϕ
(k−1)
t )+

1

2α
∥ϕt−ϕ

(k−1)
t ∥22 (4)

where dependencies on θ are dropped hereafter for notational
brevity. The term 1

2α∥ϕt − ϕ
(k−1)
t ∥22 implies the isotropic

approximation ∇2L(ϕ(k−1)
t ;Dtrn

t ) ≈ 1
αId, while (3) refines

the approximation as a more informative matrix 1
αP

−1 (if in-
vertible). This quadratic local approximation is particularly
effective when K is large and α is small, which gradually
ameliorates ϕ(k)

t to a stationary point. In meta-learning how-
ever, the standard setup relies on a small K (e.g., 1 or 5) and a
sufficiently large α, so that the model can quickly adapt to the
task with low complexity. This tradeoff highlights the need
for learning more expressive loss geometries.
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3. LOSS GEOMETRIES USING MIRROR DESCENT

Instead of quadratic approximations of the local loss induced
by certain norms (e.g., ∥ · ∥2 and ∥ · ∥P−1 ), our fresh idea is a
data-driven distance metric that captures a broader spectrum
of loss geometries. This is accomplished by learning the so-
termed “mirror map,” which will be introduced first. All the
proofs are delegated to the Appendix.

3.1. Modeling the loss geometry using the mirror map

To generalize the (P)GD, we will replace the ℓ2-norm in (4)
with a generic metric Dh to arrive at

ϕ
(k)
t = argmin

ϕt

lin(L(ϕt),ϕ
(k−1)
t )+

1

α
Dh(ϕt,ϕ

(k−1)
t ) (5)

where Dh(ϕt,ϕ
(k−1)
t ) := h(ϕt)− lin(h(ϕt),ϕ

(k−1)
t ) is the

Bregman divergence, and the associated distance-generating
function h : Rd 7→ R is strongly convex to ensure the ex-
istence and uniqueness of the minimizer. As a result, ∇h is
strictly increasing, and thus invertible1. Then, applying the
optimality condition leads to the mirror descent (MD) update

ϕ
(k)
t = (∇h)−1

(
∇h(ϕ

(k−1)
t )− α∇L(ϕ(k−1)

t ;Dtrn
t )

)
. (6)

The invertible ∇h, dubbed mirror map, connects ϕt in the pri-
mal space to ∇L in the dual space under the endowed metric
Dh. As a special case, when choosing h(·) = 1

2∥·∥
2
2, it is easy

to verify that (6) boils down to (2) due to the self-duality of the
ℓ2-norm. Likewise, (3) can be obtained with h(·) = 1

2∥·∥
2
P−1 ,

where ∇h reduces to a linear mapping. Function h reflects
our prior knowledge about the geometry of L. In particular,
letting h(·) = L(·;Dtrn

t ) (even when L is not strong convex)
in (5) gives ϕ(k)

t = argminϕt
L(ϕt;Dtrn

t ), which is precisely
the original nll minimization solved in (2) and (3). Thus, an
ideal choice of h would yield h ≈ L (up to a constant) within
a sufficiently large region around ϕ

(k−1)
t .

Different from past works that rely on a simple prese-
lected h to model loss geometries, we here acquire a data-
driven h by learning a strictly increasing ∇h that best fits the
given tasks. Interestingly, (6) can be reformulated to yield an
update of the dual vector zt := ∇h(ϕt) as

z
(k)
t = z

(k−1)
t − α∇L

(
(∇h)−1(z

(k−1)
t );Dtrn

t

)
(7)

with z
(0)
t = ∇h(ϕ(0)) and ϕ̂t = (∇h)−1(z

(K)
t ). Hence,

it suffices to learn a strictly increasing (∇h)−1 and a task-
invariant dual initialization z(0) := ∇h(ϕ(0)), thus removing
the need for directly calculating ∇h.

3.2. Learning the inverse mirror map via blockIAF

Inspired by this observation, a prudent option is to model
(∇h)−1 as an inverse autoregressive flow (IAF) [19]. The

1When ∇h is discontinuous but h is proper, the inverse (∇h)−1 is de-
fined as ∇h∗(z) := argmaxϕ ϕ⊤z−h(ϕ), where h∗(z) := supϕ ϕ⊤z−
h(ϕ) is the Fenchel conjugate of h.

notable benefit of IAF lies in its efficient parallelization
of forward computation, that makes it considerably faster
than computing its inverse. However, directly applying the
dimension-wise IAF to the high-dimensional zt ∈ Rd will
incur prohibitively high complexity of Ω(d2). For this reason,
we introduce a novel blockIAF model that effectively reduces
complexity by performing block-wise (nonlinear) autoregres-
sion on a low-dimensional space encoding zt. To this end, let
{Bi}Bi=1 be a partition of the index set {1, . . . , d}, and [zt]Bi

denote the subvector of zt restricted to the block Bi. The
blockIAF model transforms zt to ϕt through

[ϕt]Bi = [zt]Bi ⊙ σ(αi) + µi (8a)

[α⊤
i ,µ

⊤
i ]

⊤ = di
(
{ej([zt]Bj )}i−1

j=1

)
, i = 1, . . . , B (8b)

where nonlinearity σ is positive and upper bounded (e.g., lo-
gistic function), σ(αi),µi ∈ R|Bi| are the scale and shift of
[zi]Bi

, ei and di denote learnable encoder and decoder for the
i-th block, and ⊙ is the Hadamard (element-wise) product.
In our implementation, {ei}B−1

i=1 and {di}Bi=1 are multilayer
perceptrons (MLPs) with ReLU activations. To further re-
duce complexity, all linear layers in MLPs are implemented
by tensor mode product [13]. This technique is equivalent to
a low-rank Kronecker approximation to MLPs’ weight matri-
ces. This lowers the per-step MD complexity to O(d).

The following theorem characterizes two important prop-
erties of the proposed blockIAF model.

Theorem 1. Let g : Rd 7→ Rd be the blockIAF model (8).
For any partition {Bi}Bi=1, g is strictly increasing, that is

(zt − z′t)
⊤(g(zt)− g(z′t)) > 0, ∀zt ̸= z′t. (9)

Moreover, there exists a constant C > 0 such that

∇(g−1)(ϕt) ⪰ C. (10)

Theorem 1 asserts that with (∇h)−1 = g, one ensures the
desired strict monotonicity, and strong convexity of the in-
duced h (by noting that ∇2h = ∇(g−1)). As a result, the per-
task optimization (7) enjoys the standard convergence guar-
antee of MD. Although the convergence rate of MD is in the
same order as GD, it outperforms GD markedly in the con-
stant factor when d is large [20], and relies on more relaxed
assumptions [21].

The meta-learning objective (1) is solved using alternating
optimization. With θg denoting the blockIAF parameters, let
θ := [z(0)⊤,θ⊤

g ]
⊤ be the prior parameter vector. In the (r)-th

iteration of (1a), the optimizer has access to θ(r−1) provided
by its last iteration, and a batch of randomly sampled tasks
T (r) ⊂ {1, . . . , T}. The optimizer first solves ϕ̂t(θ

(r−1)) for
each t ∈ T (r) leveraging the K-step MD (7). Then, θ(r−1) is
updated using mini-batch stochastic GD with step size β:

θ(r) = θ(r−1)−β
T

|T (r)|
∑

t∈T (r)

∇θ(r−1)L(ϕ̂t(θ
(r−1));Dval

t ).

A summary of the algorithm can be found in the Appendix.
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Table 1: Comparison of meta-learning algorithms with different loss geometry models on the 5-class miniImageNet dataset.
Maximum and mean accuracies within its 95% confidence interval are in bold. (No model ensembling for a fair comparison.)

Method Lower-level optimizer Loss geometry model 5-class accuracies
1-shot 5-shot

MAML [6] GD identity matrix 48.70± 1.84% 63.11± 0.92%
MetaSGD [11] PGD diag. matrix 50.47± 1.87% 64.03± 0.94%
MT-net [14] PGD block diag. matrix 51.70± 1.84% −
WarpGrad [15] PGD NN-based low-rank matrix 52.3± 0.8% 68.4± 0.6%
MetaCurvature [13] PGD block diag. & Kron. (low-rank) matrix 54.23± 0.88% 67.99± 0.73%
MetaKFO [17] NN-transformed GD NN-based gradient transformation − 64.9%
ECML [16] PGD Gauss-Newton approximation 48.94± 0.80% 65.26± 0.67%
This paper’s method MD blockIAF-based mirror map 56.10± 1.43% 69.59± 0.71%

(a) L(ϕ(k)
⋆ ;Dtrn

⋆ ) versus k (b) ∥∇L(ϕ(k)
⋆ ;Dtrn

⋆ )∥2 versus k

Fig. 1: Convergence comparison on randomly sampled new tasks.

4. NUMERICAL TESTS

Here we compare the empirical performance of optimization-
based meta-learning using different lower-level optimizers,
on the standard few-shot classification dataset miniIma-
geNet [22], where “shots” signify the per-class training data
for each t. The task-specific model is a standard 4-layer
convolutional NN (CNN) [22, 6]. Each layer comprises a
3× 3 convolution of 64 channels, batch normalization, ReLU
activation, and 2 × 2 max pooling module. After the con-
volutional layers, a linear regressor with softmax activation
is appended to perform classification. Subset Bi is formed
by the weight indices of the i-th CNN layer. The autore-
gression in (8b) implies that “how to optimize weights of the
i-th layer” depends on “how weights of previous layers have
been optimized.” This choice enables blockIAF to model the
optimization dependency of high-level features (e.g., textures
and patterns) on low-level ones (e.g., colors and edges). Test
setups and hyperparameters can be found in the Appendix.

Table 1 lists various loss geometry models, where clas-
sification accuracy on new tasks is the figure of merit. For
fairness, MAML is the backbone of all methods. By utilizing
a more versatile loss geometry model, our approach outper-
forms the state-of-the-art ones by a large margin.

To further gauge the performance gain achieved by
our novel approach, Fig. 1 visualizes the convergence of

L(ϕ(k)
⋆ ;Dtrn

⋆ ) averaged on 1, 000 random new tasks. The
proposed method results in faster convergence to a lower
and more stable nll compared with all three competitors.
Moreover, Fig. 1a reveals that both the proposed method
and MetaCurvature improve the initialization compared to
MAML and MetaSGD. This confirms that convergence and
generalization of (1a) relies on the convergence accuracy of
ϕ̂t [7, 9]. Fig. 1b further illustrates that although the ini-
tial gradients of different methods have comparable norms
∥∇L(ϕ(0)

⋆ ;Dtrn
⋆ )∥2, our method can make better use of the

gradient, leading to a rapid reduction of the nll as well as its
gradient norm at k = 1. This improved gradient utilization
highlights our method’s superior modeling of loss geometries.

5. CONCLUSIONS AND OUTLOOK

Versatile loss geometry models can accelerate the lower-level
convergence in meta-learning. A novel BlockIAF model is
introduced to learn the inverse mirror map (∇h)−1 induced
by a strongly convex h. The resultant algorithm generalizes
preconditioning-based meta-learning, captures versatile loss
geometries, and improves lower-level convergence. Effec-
tiveness of the novel approach was validated on a standard
few-shot dataset. Future research includes bi-level conver-
gence guarantees for the proposed method, and development
of more expressive yet scalable inverse mirror maps.
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