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Abstract: In this paper, we investigate the localization properties of optical waves in disordered
systems with multifractal scattering potentials. In particular, we apply the localization landscape
theory to the classical Helmholtz operator and, without solving the associated eigenproblem, show
accurate predictions of localized eigenmodes for one- and two-dimensional multifractal structures.
Finally, we design and fabricate nanoperforated photonic membranes in silicon nitride (SiN) and
image directly their multifractal modes using leaky-mode spectroscopy in the visible spectral
range. The measured data demonstrate optical resonances with multiscale intensity fluctuations
in good qualitative agreement with numerical simulations. The proposed approach provides a
convenient strategy to design multifractal photonic membranes, enabling rapid exploration of
extended scattering structures with tailored disorder for enhanced light-matter interactions.
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1. Introduction

In the last two decades, the search for Anderson light localization [1] and the study of disorder-
induced phenomena for optical waves has stimulated the growing field of “disordered photonics”,
resulting in a wide range of applications to light generation and random lasing [2], solar energy
[3], imaging and spectroscopy [4,5], nonlinear and quantum photonics [6–8].

Structurally complex photonic structures with non-periodic refractive index variations on
the wavelength scale display a very rich physics driven by wave interference effects in the
multiple scattering regime with profound analogies to the transport of electrons in disordered
metallic alloys and semiconductors [9,10]. In particular, various mesoscopic phenomena known
for the electron transport in disordered materials, such as the weak localization of light [11],
universal conductance fluctuations [12], and Anderson localization have found their counterparts
in disordered optical materials as well [1,9]. As originally understood by Philip Anderson in the
context of metal-insulator transitions [1], the transport of quantum waves in strongly disordered
media can be completely inhibited by exponentially localized eigenmodes of the Schrödinger
equation [13]. Moreover, even much weaker disorder can significantly modify the traditional
Boltzmann transport picture due to recurrent scattering events that already occur in the so-called
weak localization regime [11]. Under these conditions, the diffusion constant is modified (i.e.,
renormalized) by interference phenomena giving rise to weakly-localized eigenmodes with a
slow amplitude decay and large intensity fluctuations [14].
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Recently, considerable progress has been made to understand the universal mechanisms of both
weak and strong (Anderson) localization and efficiently predict localized modes in disordered
structures based on the localization landscape theory [15–17]. This general mathematical
approach solves a Dirichlet problem defined by the uniform forcing of the system Hamiltonian
and has been successfully utilized to accurately pinpoint the spatial locations of localized modes
for any positive-definite disordered potential. Introducing the concept of an effective localization
potential [17], researchers have been able to deterministically identify and characterize the
eigenvalues and the subregions of a random medium that support localized eigenfunctions
without having to solve computationally prohibitive eigenproblems. However, these current
landscape-based methods are mostly focused on studying the localization of quantum waves
that solve the Schrödinger equation and the question naturally arises whether the mathematical
landscape theory can be extended to predict the general behavior of classical waves in complex
nanophotonic structures.

Recently, Anderson localization has been explored using the landscape theory in the context of
classical acoustic waves by performing a Webster transformation that converts the classical wave
equation into an effective Schrödinger equation with the same localization properties [18]. These
findings suggest a path to exploit the landscape analysis in the study of optical waves governed by
the scalar Helmholtz operator, potentially enabling the rapid design and prototyping of extended
photonic structures with arbitrary random potentials. In particular, this approach responds to the
growing need to investigate the general localization behavior of complex optical potentials with
tailored disorder beyond uncorrelated randomness.

In order to establish the potential of the localization landscape approach for the design of
large-scale photonic structures with correlated disorder, we address here the optical resonances
of multi-particle scattering systems with multifractal geometry. These types of random media
are described by a continuous distribution of local scaling exponents that characterizes their
distinctive fluctuation properties and have recently attracted a growing interest in various scientific
fields ranging from finance [19], optical scattering [20] and even contemporary arts [21]. They
add novel functionalities to the manipulation of optical fields in complex media [20] beyond
periodic [22] or uncorrelated disordered systems [7,9], with emerging applications to active
nano-devices and metamaterials [23].

In this article, we propose a general method to calculate the landscape function of classical
optical waves in multifractal structures based on the Helmholtz equation. First, we formulate
and solve an eigenproblem analogous to the Hamiltonian operator of the Schrödinger equation
and validate our results by considering the well-known problems of one-dimensional waveguide
structures. We then apply the developed approach to both one-dimensional (1D) and two-
dimensional (2D) multifractal systems. Next, we discuss the generation of the investigated
multifractal scattering structures and then we calculate the associated localization landscapes by
solving the Dirichlet problem for the classical optical potential. Based on the obtained Helmholtz
localization landscapes, we design and fabricate nanoperforated multifractal membranes in SiN
and investigate experimentally their optical resonances using leaky-mode imaging spectroscopy.

2. Generation of multifractal scattering structures

In order to compute the landscape function and the eigenmodes of 1D multifractal potentials
we considered two canonical models of multifractal behavior: (i) the binominal multiplicative
cascade, which is based on multiplicative random processes [19,24] and (ii) the multifractal model
of asset returns (MMAR), originally developed for the analysis of financial markets [19,25].

A random multiplicative cascade model is constructed based on a probability field obtained by
first dividing an interval into two equal subintervals. Inside each subinterval, one assigns the
probabilities pi ∈ [0, 1] with i = 1, 2. This constitutes the first iteration of the process (n = 1). At
the iteration step n = 2, each of the two previous subintervals is further divided in two smaller
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ones, and the probabilities associated with each sub-division are multiplied in random order (i.e.,
after random reshuffling) with the ones of the previous iterations.

At the iteration n = 3, one performs a similar division into subintervals and to each of them
assigns the probabilities in random permutations from the previous iteration steps. This recurrent
multiplicative cascade distribution defines a multifractal probability field in the limit of a large
number of iterations [26]. The probability value attached to a square region is the product of the
pi’s of the square and of all its ancestors at previous generations. The distribution of cell values
strictly depends on the initial choice of the probability vector p that acts as a control parameter
for the resulting structures. The corresponding multiplicative random process is generally
non-Gaussian [20]. One-dimensional point patterns (i.e., point processes) with multifractal
scaling properties are induced by the probability fields described above by distributing N particles
on the specified line segment with probabilities that are proportional to the subinterval values.
We achieved this goal using the Monte Carlo rejection scheme and we generated multifractal
arrays with N = 1024 point scatterers positioned along a line segment of length L = 1024 µm.
To generate the arrays, we chose the initial probability array p = [0.4, 0.6].

The robustness of the proposed landscape method for the Helmholtz operator is supported by
additionally considering multifractal point patterns generated based on the MMAR model [19,25].
The MMAR is a continuous-time process X(t) that captures the heavy tails and long-memory
volatility persistence of asserts often exhibited by realistic financial data [19]. It is constructed by
compounding a Brownian motion B(t) with a random increasing function θ(t) according to:

X(t) ≡ ln P(t) − ln P(0) = B[θ(t)] (1)

where P(t) is the price of a financial asset at a specific time and θ(t), known as the trading time
function, is the cumulative distribution function (CDF) of a multifractal measure µ. In our
example we compound with respect to the binomial multiplicative cascade introduced before.

We computed the MMAR over a time series of length T = 1024, and assigned point scatterers
along the time series using the Monte Carlo rejection method, obtaining a multifractal optical
potential of a length N = 1024. Readers can find additional details on the MMAR methods in the
specialized literature [19,25].

3. Helmholtz localization landscape of one-dimensional multifractals

We now introduce the localization landscape approach for the Helmholtz operator in typical
one-dimensional multifractal (1D) systems. The approach discussed here for random multifractal
potentials can also be applied to deterministic scattering potentials with aperiodic order, which
have been extensively investigated in the literature for the engineering of complex optical devices
compatible with standard nanofabrication technology [6,27,28].

Our goal is to apply the localization landscape theory (LLT) to photonic problems governed by
the scalar Helmholtz equation in a scattering dielectric medium with arbitrary geometry. We
start from the Helmholtz equation in a non-homogeneous medium:[︁

∆ + k2
0ϵ(x)

]︁
ψ = 0 (2)

where k0 is the free-space wavenumber and ϵ(x) is the spatially varying permittivity of the
medium. We then define the variation from the background medium in terms of the optical
scattering potential Vs(x) as follows [6]:

k2 = k2
0ϵ(x) = k2

b − Vs(x) (3)

where k2
b = k2

0ϵb, and ϵb is the permittivity of the background medium (we use ϵb = 1). From the
expression above we have:

Vs(x) = k2
0 [ϵb − ϵ(x)] . (4)
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We can now formally express the Helmholtz equation as the equivalent Schrödinger equation:

[−∆ + Vs(x)]ψ = k2
0ϵbψ. (5)

However, the potential Vs(x) can become negative when the permittivity of the scattering
particles is larger than the one of the background (host medium). Therefore, in order to apply the
LLT we implement the following transformation:

Vs(x) → V ′(x) ≡ Vs(x) + k2
0 [ϵmax − ϵb] = k2

0 [ϵmax − ϵ(x)] . (6)

were ϵmax is the maximum value of the permittivity of the scattering medium. The shift introduced
above renders the potential non-negative, which enables the application of the LLT to general
optical wave problems without affecting their physical solutions. We now introduce the Helmholtz
landscape equation based on the Dirichlet solution of the equation:

Hu(x) = 1 (7)

where we defined the optical Hamiltonian H = −∆ + V ′(x). Equation (7) allows us to investigate
the localization landscape function u(x) that encodes fundamental information on the localized
eigenmodes [15–17].

In order to numerically calculate the landscape function, we discretize the 1D potential function
by considering the tight-binding problem of a single particle restricted to move along a discrete
chain with first-neighbor hopping rate t, on-site optical scattering potentials Vi, and we denote
by ui the landscape function value at site i. Using the central difference formula [16], we can
approximate Eq. (7) in the following form:

−t
[ui+1 + ui−1 − 2ui]

δ2 +

(︃
Vi − 2t

δ2

)︃
ui = 1 (8)

where δ is the discretization step of the coordinate x-axis. To ensure that the spectrum of
the possible eigenenergies is positive everywhere, the optical scattering potential term should
satisfy the additional condition that Vi − 2t/δ2 ≥ 0 [16]. Note that since the potential V ′ is a
bounded non-negative function, one can also define the so-called "effective potential" W = 1/u.
The profiles of the effective potential W are often more regular than the optical potential and
display clear structures of walls and wells that serve to identify the regions of localization
of the eigenmodes. A rigorous connection has been made between the exponential decay of
eigenfunctions and the effective potential W [17]:∫

Ω

eh(x)ψ2dx ≤ C
∫
Ω

ψ2dx (9)

where C is a constant, and h(x) is defined as the Agmon’s distance [29] from x to a subset S of
W defined as S = {x ∈ Ω | W(x) ≤ λ + δ} for any δ>0, where λ is the eigenvalue. This enables
the accurate prediction of the geometrical supports of the localized eigenfunctions, which are
centered at the locations of "wells" (i.e., local minima) of W and are bounded by the heights of
the "walls" proportional to the eigenvalues [17].

In order to demonstrate the predictive power of the Helmholtz landscape introduced above, we
consider first the simple case of a three-layer asymmetric waveguide structure with a dielectric
permittivity in the core region ϵc = ϵmax = 12.25 and with cladding permittivities ϵ1 = 1.00 and
ϵ2 = 2.10. We use a wavelength λ = 1.55 µm and display the tight-binding optical potential from
Eq. (4) and Eq. (8) in Fig. 1(a). In addition, we considered a system of two coupled dielectric
waveguides with the optical potential shown in Fig. 1(b). These are canonical eigenproblems
in photonics whose solutions can easily be obtained with traditional methods [30]. Here,
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by computing the eigensolutions of the corresponding Schrödinger Eq. (5), we plot the first
three optical modes of the two investigated systems in Figs. 1(c,d), respectively. The dashed
lines indicate the corresponding Helmholtz landscapes obtained by solving Eq. (7). In all the
calculations we set the hopping rate to be t = 1, without loss of generality. The results plotted in
Fig. 1 indicate that the Helmholtz landscape accurately predicts the localization regions of the
optical modes computed from the tight-binding solution of the equivalent Schrödinger problem.

We can now formally express the Helmholtz equation as the equivalent Schrödinger equation:135
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(a) (b)

(c) (d)

Fig. 1. Tight-binding optical potential of (a) asymmetric slab waveguide and (b)
coupled slab waveguides system. (c,d) Spatial profiles of the lowest three optical modes
from the solution of Eq. 5 along with the calculated landscape function 𝑢 (doted lines)
computed from Eq. 7.

In order to numerically calculate the landscape function, we discretize the 1D potential function146

by considering the tight-binding problem of a single particle restricted to move along a discrete147

chain with first-neighbor hopping rate 𝑡, on-site optical scattering potentials 𝑉𝑖 , and we denote148

by 𝑢𝑖 the landscape function value at site 𝑖. Using the central difference formula [16], we can149

approximate Eq. 7 in the following form:150

−𝑡 [𝑢𝑖+1 + 𝑢𝑖−1 − 2𝑢𝑖]
𝛿2 +

(
𝑉𝑖 − 2𝑡

𝛿2

)
𝑢𝑖 = 1 (8)

where 𝛿 is the discretization step of the coordinate 𝑥-axis. To ensure that the spectrum of151

the possible eigenenergies is positive everywhere, the optical scattering potential term should152

Fig. 1. Tight-binding optical potential of (a) asymmetric slab waveguide and (b) coupled
slab waveguides system. (c,d) Spatial profiles of the lowest three optical modes from the
solution of Eq. (5) along with the calculated landscape function u (doted lines) computed
from Eq. (7).

We then apply the developed approach to the more challenging cases of fractal and multifractal
optical potentials that take piecewise constant values equal to ϵr and 1 based on whether a particle
is present at a given point of the chain or is missing. The multifractal potentials generated by 1D
multiplicative cascade method and by the MMAR method are shown in Fig. 2(a,b), respectively.
We selected the permittivity of the scattering medium to be ϵr = 10.5 [31], and the incident
wavelength λ is chosen to satisfy d1/λ = 0.4 where d1 is the average inter-particle separation
along the chain. The selected d1/λ is typical for the formation of bandgaps in photonic crystal
structures [22].

The landscape functions u(x) calculated by Eq. (7) are plotted in Fig. 2(c,d). To demonstrate
the accuracy of the localized mode predictions from the obtained landscape function, we directly
calculated the eigenmodes from Eq. (5) of both structures and plotted some representative
modes in Fig. 3(a,b). Particular care has been taken to ensure that the calculated eigenvectors
correspond to the eigenvalue of Eq. (5), determined by the free-space background medium,
which are narrowly distributed around k2

0 (within a 5% dispersion value). We observed the
coexistence of both localized modes with exponential decay in space and modes with large
intensity fluctuations and reduced localization behavior as well. Moreover, in Figs. 3(c,d) we
compared the localized mode positions predicted by the peaks of the landscape function xpred and
the actual positions xactual of the modes obtained numerically, selecting a wide range of modes
that are spatially distributed along the entire line segment. Our data demonstrate almost perfect
correlation between the predicted and the actual positions of the localized modes based on the
computed landscape of the Helmholtz operator.
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Ω
𝑒ℎ (𝑥 )𝜓2d𝑥 ≤ 𝐶

∫
Ω
𝜓2d𝑥 (9)
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the accurate prediction of the geometrical supports of the localized eigenfunctions, which are161

centered at the locations of "wells" (i.e., local minima) of 𝑊 and are bounded by the heights of162

the "walls" proportional to the eigenvalues [17].
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Fig. 2. Constructed multifractal potential by (a) the 1D multiplicative cascade method
and (b) the MMAR method. Also shown in (c) and (d) are square root of landscape
functions, normalized to their maxima corresponding to (a) and (b), calculated for
𝑑1/𝜆 = 0.4. First five modes of each potential are overlayed on top of the landscape
function, normalized to their maximal intensities, respectively.
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Fig. 2. Constructed multifractal potential by (a) the 1D multiplicative cascade method and
(b) the MMAR method. Also shown in (c) and (d) are square root of landscape functions,
normalized to their maxima corresponding to (a) and (b), calculated for d1/λ = 0.4. First
five modes of each potential are overlayed on top of the landscape function, normalized to
their maximal intensities, respectively.
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(b)(a)

Fig. 3. Correlation between the predicted and computed locations of the localized
eigenmodes of 1D multifractal structures generated by (a) the multiplicative cascade
method and (b) the MMAR method. The geometrical supports of the eigenmodes are
predicted by the landscape function as explained in the text.
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Fig. 3. Correlation between the predicted and computed locations of the localized eigen-
modes of 1D multifractal structures generated by (a) the multiplicative cascade method and
(b) the MMAR method. The geometrical supports of the eigenmodes are predicted by the
landscape function as explained in the text.
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4. Helmholtz localization landscape of two-dimensional multifractals

We now apply the Helmholtz landscape approach to more challenging 2D multifractal systems
generated by the multiplicative cascade method as in Ref. [20]. Therefore, we consider the
natural generalization of Eq. (2):

Hψ(r) = k2
0ϵbψ(r). (10)

where the 2D Hamiltonian operator is defined as H = −∆ + V ′(r). The associated localization
landscape function u(r) is obtained by solving the Dirichlet problem:

Hu(r) = 1. (11)

where, similarly to the 1D case, V ′(r) ≥ 0 everywhere in r = (x, y).
The considered 2D scattering arrays are obtained from multiplicative cascade processes

with initial probability vectors that correspond to monofractal (i.e., single-scaling fractals) and
multifractal structures. In particular, we considered the case of an initial probability vector
p = [1, 1, 1, 0] that produces a monofractal pattern and p = [1, 0.75, 0.5, 0.25] that results
is a strongly inhomogeneous multifractal pattern [20]. The point patterns corresponding to
the generated probability random fields and obtained via Monte Carlo rejection are shown in
Figs. 4(a,b). Considering the typical dimensions of devices based on nanophotonic membranes,
we restrict the multifractal structures within a spatial domain Ω of 100× 100 µm2, corresponding
to N = 15000 scattering particles. The considered potentials are proportional to piecewise
permittivity spatial distribution and obtained by dividing Ω into 256 × 256 unit sub-squares,
and we considered a binary potential with value ϵr to each occupied position representing the
dielectric scatterers and otherwise with value 1 which represents the air.

The landscape functions are calculated by solving Eq. (11). We wish to setup the Laplacian
operator with homogeneous Dirichlet boundary conditions on an open bounded domain Ω ∈ R2

with boundary ∂Ω. We discretize using finite elements with linear basis functions. Given
a bounded, symmetric bilinear form [48] a(u, v) that is coercive on H1

0(Ω), we want to find
u ∈ H1

0(Ω) such that u satisfies

a(u, v) = 0,∀v ∈ H1
0(Ω),

where H1
0(Ω) ⊂ L2(Ω), denotes the subspace of functions with square integrable derivatives

that vanish on the boundary. This problem is known to have a unique solution u∗ [32]. For
the numerical comparisons in this work we consider domains that are the image of a square
under a diffeomorphism, i.e., a smooth mapping from the reference domain S := [0, 1]2 to the
physical domain Ω. Quadrilateral finite element meshes and tensorized nodal basis function
based on Legende-Gauss-Lobotto (LGL) points are used. We use isoparametric elements
to approximate the geometry of Ω, i.e., on each element the geometry diffeomorphism is
approximated using the same basis functions as the finite element approximation. The Jacobians
for this transformation are computed at every quadrature point, and Gauss quadrature is used to
numerically approximate integrals. We restrict our comparisons to uniformly refined conforming
meshes and our implementation, written in Matlab, is publicly available [33]. It does not support
distributed memory parallelism, and is restricted to conforming meshes that can be mapped to a
square (in 2D) or a cube (in 3D). While, in practice, matrix assembly for high-order discretizations
is discouraged, we use sparse assembled operators in this prototype implementation. In order to
obtain more accurate results, we oversampled the domain Ω where 2 × 2 elements per constant
piece of the optical potential. We need to emphasize that the optical potentials just refers to the
coordinates of scatterers and do not take into account the radii of each scatterer. That is to say we
treat the scattering medium to be a point distribution, which is not the case for the fabricated
nanohole membranes. However, such approximation does not affect the accuracy of the capability



Research Article Vol. 14, No. 4 / 1 Apr 2024 / Optical Materials Express 1015

(a)

(c) (d)

(b)

𝑢 𝑢

Fig. 4. 2D geometries of the scattering structures corresponding to (a) the monofractal
and (b) the multifractal potential with 𝑁 = 15000 particles. (c,d) Calculated landscape
function 𝑢 of the potentials shown in panels (a) and (b). The spectral parameters used
in the calculations are 𝑑1/𝜆 = 0.55 and 𝑑1/𝜆 = 0.62, respectively.
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spectral parameter 𝑑1/𝜆 used in the simulations overlaps with the one of the fabricated structures252
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The landscape function 𝑢(r) of both monofractal and multifractal structures are plotted in254
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Fig. 4. 2D geometries of the scattering structures corresponding to (a) the monofractal
and (b) the multifractal potential with N = 15000 particles. (c,d) Calculated landscape
function u of the potentials shown in panels (a) and (b). The spectral parameters used in the
calculations are d1/λ = 0.55 and d1/λ = 0.62, respectively.

of the method to predict eigenmodes because the fabricated nanoholes have very small radii
comparing to the multiscale nature of the scatterer separation. The multifractal potential term
is added to the discrete Laplacian operator to obtain the discrete Helmholtz operator H. Our
numerical simulations were performed using the Boston University’s Shared Computing Cluster
(SCC) [34].

In our simulations, we selected the material permittivity to be ϵr = 4, corresponding to the
value for the silicon nitride (SiN) material used in the fabrication of our devices. We chose
d1/λ = 0.55 and d1/λ = 0.62 to compute the landscape and the eigenmodes of monofractal
and multifractal systems respectively. The selected d1/λ lies in the typical range for a photonic
crystal structure where bandgaps are likely to form [22,31] and optical modes with high-quality
factors appear at the band-edges [31,35,36]. We emphasize that the range of the considered
spectral parameter d1/λ used in the simulations overlaps with the one of the fabricated structures
that will be investigated in the experimental section of this paper.

The landscape function u(r) of both monofractal and multifractal structures are plotted in
Figs. 4(c,d). One can see that the landscape of the monofractal potential features intense maxima
localized within small groups of locally-symmetric clusters of adjacent scattering particles
distributed across the structure with spatial distributions that closely resemble its fractal support.
These are the regions in which the localization landscape predicts the existence of highly confined
resonant modes localized by proximity effects occurring among closely coupled particles. This
is the typical behavior observed in small fractal aggregates of dipolar particles [37]. On the other
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hand, the landscape of the multifractal potential displays localization regions that are more broadly
distributed across the support of the structure. This is consistent with the non-homogeneous
multiscale nature of multifractal systems [20]. In Figs. 5(a-h) and 6(a-h), we display the calculated
eigenmodes at the wavelengths specified in each panel. As for the 1D simulations, particular care
has been taken to ensure that the eigenvectors correspond to eigenvalues narrowly distributed
around k2

0 (within a 3% dispersion value). Moreover, in order to facilitate comparisons with the
experimental measurements in which multiple modes are simultaneously excited by an external
source, we also plotted in Figs. 5(i) and 6(i) a linear combination of the modes that independently
contribute to the overall intensity distribution at λ = 720 nm and λ = 750 nm, respectively.
As predicted by the localization landscape, we obtain strongly localized modes within small
particle clusters for the monofractal structure, which are typical of self-similar arrays where
they have been successfully exploited to dramatically increase the cross sections of nonlinear
and Raman processes [37]. However, the situation is quite different in the multifractal structure,
where high-intensity localized modes appear to spread across a more extended region of the
geometrical support, reflecting its larger degree of spatial non-uniformity compared to the ones
of monofractals. This is evident by looking at the mode superposition in Fig. 6(i) in which

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Τ𝜓𝑛 max 𝜓𝑛

𝜆 = 720 nm

𝜆 = 520 nm 𝜆 = 560 nm 𝜆 = 590 nm

𝜆 = 600 nm 𝜆 = 640 nm 𝜆 = 660 nm

𝜆 = 720 nm𝜆 = 700 nm

Fig. 5. (a-h) Eigenmodes whose spectral parameters vary in the range 0.55 < 𝑑1/𝜆 <

0.8. (i) Superposition of eigenmodes corresponding to a narrow range (within a 3%
dispersion value) of eigenvalues around 𝑘2

0. The wavelengths 𝜆 at which the modes are
computed are indicated in each panel.
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value) of eigenvalues around 𝑘2

0. The wavelengths 𝜆 at which the modes are computed
are indicated in each panel.
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Fig. 6. (a-i) Eigenmodes whose spectral parameters vary in the range 0.6<d1/λ<0.78. (i)
Superposition of eigenmodes corresponding to a narrow range (within a 3% dispersion
value) of eigenvalues around k2

0. The wavelengths λ at which the modes are computed are
indicated in each panel.

the amplitude peaks cover a larger fraction of the structure. In the next sections, we discuss
the fabrication and characterization of dielectric membrane structures designed based on the
localization landscape theory and we demonstrate experimentally the formation of characteristic
fractal modes in qualitative agreement with the landscape predictions.

5. Fabrication and characterization of multifractal photonic membranes

5.1. Silicon nitride thin film growth and optical characterization

In this section we discuss the optical characterization of highly transparent silicon nitride thin
films grown by reactive magnetron sputtering. Silicon nitride has become a well established
material platform for integrated Si photonics where devices such as ultralow-loss waveguides [38],
high-Q resonators, and integrated structures for telecommunications, sensing, and metrology
have been demonstrated [39]. In this work, silicon nitride thin films were grown atop of silicon
and fused silica substrates via reactive RF magnetron sputtering using a Denton Discovery 18
sputtering system with a base pressure of 2× 10−7 Torr and a substrate temperature held at 300◦C.
We used a 99.99% purity 3-in silicon target and sputtered the thin films in a 2:1 argon-nitrogen
environment at 2.5 mTorr deposition pressure and 200 W of RF power resulting in a deposition
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rate of ≈ 5 nm/min. All substrates were washed in a hot piranha solution and plasma ashed in an
oxygen environment prior to deposition. We characterize the optical constants of the fabricated
SiN thin films from the ultra-violet (UV) to the near infrared (NIR) via broadband variable
angle spectroscopic ellipsometry (VASE) and normal incidence transmission measurements. In
spectroscopic ellipsometry, a parameterized oscillator model is introduced to capture the relevant
aspects of a materials optical dispersion as a function of wavelength. The oscillator model is then
used to interpret the measured data and extract the optical constants of materials via accurate
fitting procedures [40]. VASE measurements at three angles (65◦,70◦,75◦) were performed
on SiN thin films grown atop of silicon substrates along with normal incidence transmission
measurements of the same films grown atop of fused silica substrates. Figure 7 summarizes our
work on characterizing the optical properties of the fabricated SiN thin films. Panels (a-b) show
the measured and fitted ellipsometric parameters Ψ and ∆ corresponding to the magnitude and
phase of the ratio of the complex s- and p-polarized Fresnel reflection coefficients, respectively,
at each angle along with each respective fit. The complex Fresnel reflection coefficients are
related to the complex refractive index and thickness of the material through parameterized
oscillator models. In particular, we employ a single parameterized Tauc-Lorentz (TL) oscillator
model which has been used to extract the optical constants of amorphous materials in excellent
agreement with experimental measurements [41]. We find that this modeling method gives
nearly ideal agreement with our measurements over the entire UV-VIS-NIR region investigated
with a mean square error (MSE) of less than 10. In Fig. 7(c) we report the extracted optical
constants of the fabricated 350 nm thick SiN thin film as a function of wavelength. Furthermore,
we performed normal incidence transmission measurements on the SiN thin films grown atop of
fused silica substrates and independently test our TL model by plotting the expected transmission.
We report our measurements and fit in Fig. 7(d) finding the TL model is in excellent agreement
with measurement over the entire wavelength range investigated. The transmission spectra, along
with the extracted optical constants of the fabricated material, demonstrates exceptionally high
transparency with an almost constant refractive index of 2. Consistent with literature, we attribute
these optical properties to the high RF power and substrate temperature during deposition [42].
In the next section we discuss the fabrication of nanohole perforated membranes with multifractal
geometries.

5.2. Multifractal photonic membrane fabrication

We fabricate multifractal nanohole arrays within the 350 nm thick SiN thin film via electron
beam lithography (EBL) and anisotropic reactive ion etching (RIE). A sketch of the process flow
is shown in Fig. 8(a). First a negative tone resist is spun atop of the grown material to achieve a
thickness of ≈100 nm followed by soft bake. A thin, conductive coating is then spun atop of the
resist to dissipate charging during the EBL process. Nano-hole patterns are then written onto the
photoresist via EBL using a 30kV source (Zeiss Supra40VP). To develop the patterns, the sample
is rinsed with DI water to remove the protective conductive coating and then submerged in a 4:1
ratio of developer and DI water for 55-60 seconds and blow dried with N2 gas. A brief plasma
ashing step in a pure oxygen environment is performed in order to remove residual resist left over
from the development stage. This step is crucial in achieving reliable liftoff. A 20 nm chromium
mask is then evaporated onto the sample (Step 3) and submerged in acetone for lift-off. A dry
etch of the exposed nano-holes is performed using anisotropic reactive ion etching and finally a
wet chromium etch is performed to reveal the final nano-hole structure. Representative scanning
electron microscope (SEM) images of a multifractal sample are shown in Fig. 8(b) along with
dark-field optical images of all multifractal structures fabricated are shown in Figs. 8(c-f). All
patterns were written onto a square 100 µm2 area with each hole having the desired radius of 100
nm as confirmed by SEM imaging. In order to facilitate the comparison of the measured and



Research Article Vol. 14, No. 4 / 1 Apr 2024 / Optical Materials Express 1019

400 600 800 1000 1200 1400 1600

Wavelength (nm)

0

20

40

60

80

 (
°)

75
°

65
°

70
°

400 600 800 1000 1200 1400 1600

Wavelength (nm)

0

50

100

150

200

 (
°)

(a) (b)

400 600 800 1000 1200 1400 1600

Wavelength (nm)

1

1.2

1.4

1.6

1.8

2

2.2

n

0

1

2

3

4

5

10
-3

(c)

400 600 800 1000 1200 1400 1600

Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

T

(d)

Fig. 7. Optical properties of fabricated 350nm thick SiN thin films. Ellipsometric
parameters (a) Ψ and (b) Δ as measured (dashed) and fit (solid) at three angles
(65◦,70◦,75◦) of the deposited SiN thin films. (c) Refractive index (blue) and extinction
coefficients (red) obtained from ellipsometric fitting parameters. (d) Transmission
spectra at normal incidence measured (red) and fit (blue-dashed). Error bars of the
measurement are represented by the red shading.
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Fig. 7. Optical properties of fabricated 350nm thick SiN thin films. Ellipsometric parameters
(a) Ψ and (b) ∆ as measured (dashed) and fit (solid) at three angles (65◦,70◦,75◦) of the
deposited SiN thin films. (c) Refractive index (blue) and extinction coefficients (red) obtained
from ellipsometric fitting parameters. (d) Transmission spectra at normal incidence measured
(red) and fit (blue-dashed). Error bars of the measurement are represented by the red shading.

simulated optical modes across the investigated spectral range, both monofractal and multifractal
membranes were fabricated with d1/λ = 0.62 at the operation wavelength λ = 700 nm.

5.3. Experimental characterization of multifractal resonances

In order to demonstrate the excitation of polarization-resolved multifractal modes of the fabricated
samples, we utilize a leaky mode imaging setup [43]. Our experimental setup uses a broadband
COMPACT K super-continuum laser source filtered by a monochromator (Oriel Cornerstone
260) to achieve a spectral linewidth of 2 nm. The filtered light is then TE polarized using a
linear polarizer, collimated and focused onto the edge of the sample by an objective lens. The
out of plane scattered radiation is collected by a high NA objective (50x) and an image of the
modes is focused onto a camera (Thorlabs CS126MU) using a tube lens. We first measured
the leaky modes of the fabricated monofractal structure as a function of wavelength from 450
nm-750 nm. In Fig. 9 we show representative images of the spatial distributions of the optical
modes of the monofractal structure excited using TE-polarized light at different wavelengths. We
observe clearly distinct spatial distributions of the modes when excited at different wavelengths.
Moreover, all mode patterns from these data feature spatial localization within small clusters of
particles with highly fluctuating intensity profiles that are qualitatively similar to the numerical
predictions from the landscape theory. This characteristic modal clustering behavior around
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Fig. 8. (a) Fabrication process flow via EBL and anisotropic RIE. (b) Representative
SEM image of the fabricated multifractal pattern. The inset is a close up view of
the same sample. The scale bars in the SEM image and inset are 4 𝜇𝑚 and 600
nm respectively. (c-f) Dark field scattering images of monofractal and multifractal
structures. Each array consists of ≈15,000 points written over a 100 𝜇𝑚2 area. The
initial probability vector used to generate each pattern is reported above each image.
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predictions from the landscape theory. This characteristic modal clustering behavior around357

smaller regions of space of the monofractal geometry is also manifested by the calculated modes358

in Figure 5 and is expected for self-similar structures in which scattering resonances are driven by359

coupling effects within locally-symmetric clusters distributed at multiple length scales [37, 44].360

As a comparison, we also investigated the optical resonances of the multifractal structure361

generated with the probability vector 𝑝 = [1, 0.75, 0.5, 0.25] and a spectral parameter identified362

using the landscape theory, enabling a direct experimental comparison of the leaky-mode363

Fig. 8. (a) Fabrication process flow via EBL and anisotropic RIE. (b) Representative SEM
image of the fabricated multifractal pattern. The inset is a close up view of the same sample.
The scale bars in the SEM image and inset are 4 µm and 600 nm respectively. (c-f) Dark
field scattering images of monofractal and multifractal structures. Each array consists of
≈15,000 points written over a 100 µm2 area. The initial probability vector used to generate
each pattern is reported above each image.

smaller regions of space of the monofractal geometry is also manifested by the calculated modes
in Fig. 5 and is expected for self-similar structures in which scattering resonances are driven by
coupling effects within locally-symmetric clusters distributed at multiple length scales [37,44].

As a comparison, we also investigated the optical resonances of the multifractal structure
generated with the probability vector p = [1, 0.75, 0.5, 0.25] and a spectral parameter identified
using the landscape theory, enabling a direct experimental comparison of the leaky-mode
structures of fractals and multifractal systems at minimal computational cost. As shown in
Fig. 10, the observed mode patterns of the multifractal structure display highly fluctuating spatial
profiles distributed across the entire geometrical support, in qualitative agreement with the
simulation results shown in Fig. 6. Moreover, due to the spatially non-homogeneous nature of the
investigated multifractal structure, the measured modes display no evident trend in the degree of
their spatial localization when varying the wavelength, which is indicative of a broader spectrum
of localized resonances compared to monofractals [20]. We emphasize that, since the Helmholtz
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Fig. 9. Representative leaky mode measurements of a monofractal nanohole array
fabricated in SiN at various excitation wavelengths. The excitation wavelength is
indicated by 𝜆 in each panel. The corresponding spectral parameter varies in the range
0.55 < 𝑑1/𝜆 < 0.8.
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Fig. 9. Representative leaky mode measurements of a monofractal nanohole array fabricated
in SiN at various excitation wavelengths. The excitation wavelength is indicated by λ in each
panel. The corresponding spectral parameter varies in the range 0.55<d1/λ<0.8.

landscape method introduced here relies on scalar fields and point-like particles, it can only
offer basic insights into the general nature of the localized modes. Specifically, these insights
relate to the ability to pinpoint exactly the localization regions of the modes and predict global
properties such as the localization/delocalization behavior of the resonant states. Therefore, it
is unreasonable to expect a quantitative agreement with the experimental data at this stage. In
particular, the model developed here does not capture the effects of the finite-size of the scattering
particles, which may introduce local (small-scale) modifications to the overall mode structures
compared to the ones measured on the fabricated samples. However, our work shows that the
landscape approach is still valuable in providing predictive insights at low computational cost in
large-scale scattering structures (N = 15000 particles) with complex potentials that are often
beyond the reach of fully numerical, grid-based techniques such as the finite element method.
Thus, we consider the proposed approach as a viable tool for the efficient first-order design
of complex photonics structures. Future work will focus on the quantitative analysis of the
spectral measures of the investigated multifractal optical systems, including their density of states
fluctuations [17], and the statistical distribution of intensity maxima of eigenvectors that unveil
long-range multifractal correlations beyond the traditional Anderson model [45–47].
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Fig. 10. Representative leaky mode measurements, at various wavelengths, of a
multifractal nanohole array fabricated in SiN generated with an initial probability vector
of p = [1, 0.75,0.5,0.25]. The excitation wavelength is indicated by 𝜆 in each panel.
The corresponding spectral parameter varies in the range 0.6 < 𝑑1/𝜆 < 0.78.
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Fig. 10. Representative leaky mode measurements, at various wavelengths, of a multifractal
nanohole array fabricated in SiN generated with an initial probability vector of p = [1,
0.75,0.5,0.25]. The excitation wavelength is indicated by λ in each panel. The corresponding
spectral parameter varies in the range 0.6<d1/λ<0.78.

6. Conclusion

In this paper, we proposed a method to efficiently design extended photonic structures with
multifractal geometries and investigate the fundamental properties of the fractal eigenmodes of
1D and 2D Helmholtz operators with multifractal scattering potentials. In particular, we explored
two canonical multifractal systems generated from the multiplicative cascade and the MMAR
methods. Without solving the associated eigenproblems, we calculated the landscape functions
and accurately predicted the locations of the supported eigenmodes. Finally, based on the
information obtained from the localization landscapes, we designed and fabricated multifractal
photonic membranes in highly transparent SiN materials and directly imaged, using leaky-mode
spectroscopy, their optical modes across the visible spectral range. The general predictions
from the localization landscape of the Helmholtz operator were found to be in good qualitative
agreement with the experimental data, establishing the localization landscape theory as a viable
tool for the rapid exploration and benchmarking of scattering resonances in complex photonic
structures with tailored multifractal disorder for nanophotonics and metamaterials applications.
Finally, our results unveil the distinctive localization behavior of the scattering resonances
supported by extended fractal and multifractal photonic membranes.
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