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Fig. 1: Planning to practice. To practice a skill, the robot needs to be in a state where the skill can be initiated. Here, the robot plans to
practice sweeping two toys into a bin from its initial state (left) in the Cleanup Playroom environment. This requires chaining up to 19 skills
(middle), some of which are omitted for brevity, before practicing (right). Some skill object parameters are also omitted.

Abstract—One promising approach towards effective robot
decision making in complex, long-horizon tasks is to sequence
together parameterized skills. We consider a setting where a robot
is initially equipped with (1) a library of parameterized skills, (2)
an Al planner for sequencing together the skills given a goal, and
(3) a very general prior distribution for selecting skill parameters.
Once deployed, the robot should rapidly and autonomously learn
to improve its performance by specializing its skill parameter
selection policy to the particular objects, goals, and constraints
in its environment. In this work, we focus on the active learning
problem of choosing which skills to practice to maximize expected
future task success. We propose that the robot should estimate
the competence of each skill, extrapolate the competence (asking:
“how much would the competence improve through practice?”),
and situate the skill in the task distribution through competence-
aware planning. This approach is implemented within a fully
autonomous system where the robot repeatedly plans, practices,
and learns without any environment resets. Through experiments
in simulation, we find that our approach learns effective pa-
rameter policies more sample-efficiently than several baselines.
Experiments in the real-world demonstrate our approach’s ability
to handle noise from perception and control and improve the
robot’s ability to solve two long-horizon mobile-manipulation
tasks after a few hours of autonomous practice. Project website:
http://ees.csail.mit.edu

I. INTRODUCTION

Given the recent progress in robot skill learning and design
[11, 22, 39, 61, 67], we are quickly approaching a future where
robots will arrive at their deployment sites equipped with a
library of general-purpose skills. Each robot will sequentially
compose these skills in different ways to accomplish long-
horizon tasks that will vary considerably between deployment
sites. As the robot gathers experience during deployment, it
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should get better over time. In particular, the robot should learn
to rapidly specialize its skills to the unique objects, goals, and
constraints that it repeatedly encounters during deployment.
In this work, we consider skills that are continuously
parameterized and we focus on parameter policy learning [1,
15, 20, 40, 45] as a mechanism for rapidly specializing skills.
For example, a “pick” skill may be parameterized by a relative
grasp and a “sweep” skill by a sweeping velocity (Figure 1).
Starting from general-purpose priors [7, 26, 48, 55], we want
the robot to quickly learn specialized policies for selecting
grasps, push velocities, and other skill parameters. Following
previous work [1, 33, 53], we consider parameterized skills
that are (extended) options [58]; each skill has an initiation
condition, a parameterized controller, a termination condition,
and a success condition. For example, a “place” skill can be
initiated when the robot is holding an object and facing a
surface; the skill terminates after the robot opens its gripper;
and the skill is successful if the object is subsequently stably
resting on the surface. Options are closely related to Al plan-
ning operators [33, 53] and we can leverage this relationship
to efficiently plan a sequence of skills to reach a goal [28].
We consider parameter policy learning in the context of
reset-free online learning [25, 38, 42, 59] where the robot
alternates between solving given tasks (fask time) and taking
actions of its choosing (free time). For example, a given
task might be to “clear objects off the table” (Figure 1).
We focus on free time and ask: how should the robot select
actions so that, after learning parameter policies from the
collected experience, the likelihood of solving given tasks in
the future is maximized? This is an embodied active learning
problem [16, 36, 42, 46], which is distinct from standard active
learning [50] in that the robot must reason sequentially. For
example, to collect one “sweep”” data point in our experiments,
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the robot needs to execute up to 19 skills in sequence to reach
a state where sweeping is possible (Figure 1). This setting
is also related to exploration in the reinforcement learning
literature [2, 8, 13, 29, 47]; we consider baselines from
that literature in experiments. Compared to end-to-end RL
though, our setting has significantly more structure, which we
can leverage to achieve much more sample-efficient learning,
especially over long-horizon tasks.

To learn parameter policies through embodied active learn-
ing, we consider planning to practice parameterized skills.
During free time, the robot repeatedly selects a skill, plans to a
state where that skill can be initiated, practices the skill (selects
continuous parameters to try), records the success condition
outcome, and then updates its parameter policy accordingly.
The central question is: how should the robot decide what
skills to practice? One approach would be to practice the skill
with the lowest competence [14, 57], that is, the skill that most
often fails to achieve its success condition. But that skill may
be impossible to improve or irrelevant to the given tasks.

We propose that the robot should instead practice the skill
whose predicted competence improvement would maximally
benefit the overall task distribution. Implementing this skill
selection strategy requires three steps: estimating current skill
competence; extrapolating the competence by predicting how
much it would hypothetically improve through practice; and
situating the competence in the task distribution by predicting
how overall task success rates would hypothetically improve.
We propose a Beta-Bernoulli time series model to estimate
and extrapolate skill competence and use cost-aware Al plan-
ning [28] to situate the competence in the task distribution.

In experiments, we evaluate the extent to which our Es-
timate, Extrapolate & Situate (EES) approach enables the
robot to make efficient use of its free time as measured by its
success rate during task time. In three simulated environments,
we compare to seven baselines and find that EES is consis-
tently the most sample-efficient. We also implement EES in
two real mobile manipulation environments using a Boston
Dynamics Spot robot with an arm (Figures 1, 2). In these
environments, the robot plans and practices autonomously
for several hours, coping with noise inherent to real-world
perception and control, and rapidly improves its ability to solve
long-horizon mobile-manipulation tasks.

II. PROBLEM SETTING

This paper proposes a method for active practicing in the
context of a robot system that has mechanisms for planning
and learning. In this section, we describe our problem setting,
including assumptions about the robot’s environment as well as
minimal specifications for its planning and learning modules.

A. Modelling the World

We assume that the robot and its environment are modelled
as a goal-based Markov Decision Process with object-oriented
states [17] and parameterized actions [1, 40]. States are fac-
tored into objects and their continuous features. For example,
consider the Ball-Ring environment shown in Figure 2. The

ball, ring, table, floor, and robot itself are objects,
and their features include, for example, gripper joint value
(for the robot) and xyz position (for other objects). Of course,
a real-world robot cannot perceive such features directly, so we
assume that the robot is equipped with a perception system that
can construct a fully-observed state x; € X from raw sensory
observations at each time step ¢ € Z*. This model does not
account for the perception noise that exists in the real world,
but in experiments, we find that our approach is reasonably
robust to that noise (Section IV).

The action space of the MDP is defined by a set of
parameterized skills that have continuous parameters. It is
often convenient to define object parameters as well, but for
the purpose of simplifying exposition, we will treat these
as part of the skill unless otherwise noted. For example, in
the Ball-Ring environment, Place (ball, table, o) is one
skill v € U, where o denotes a placeholder for a continuous
parameter, and Place (ring, floor, o) is another u’ € u.!
The continuous parameters for both skills are xy relative offsets
between the gripper and target surface (the height and gripper
orientation are fixed).

To define skills formally, we use an extension of the options
framework [58]. A parameterized skill © € U is given by
a tuple (1,0,u,8,J) where I : X — {0,1} characterizes
states where the skill can be initiated, ® C R™ is the
set of possible continuous parameters, u(x,d) is a low-level
controller that takes a state = and continuous parameters
6 € © as input, 5 : X — {0,1} is a termination condition,
and J : X — {0,1} is a success condition indicating
whether the skill has achieved its intended outcome in the
terminal state. A skill with parameters assigned is treated
as an atomic action. After an action a; € A is executed,
the environment advances according to an unknown transition
distribution z;y1 ~ P(- | ¢, a).

The robot is tasked with achieving particular goals. Each
goal is sampled from a task distribution g ~ P(- | z). For
example, in the Ball-Ring environment, the goal might be that
the ball is stably at rest on the table. We do not assume direct
access to the goal distribution; instead, the robot receives goals
from a human gradually during learning II-C. Formally, a goal
is a binary classifier over states g : X — {0,1} where 1
indicates that a state is within the goal set. We refer to a
combination of an initial state xy and goal g as a task. Solving
a task entails taking actions to reach a state z; where g(z;) = 1
from xy within a maximum time-step horizon Hey,;.

B. Planning to Solve Tasks

Given a task, the robot will plan to generate actions that
are likely to accomplish the goal from the initial state. Fol-
lowing previous work [1, 35, 52, 56], we decompose planning
into two levels: skill sequencing and continuous parameter
selection. Skill sequencing consists of generating a skele-
ton, e.g., (MoveTo (ball, o), Pick (ball, floor, o),

Note that in implementation, we implement object-parameterized skills as
discussed in Appendix Section F.



Algorithm 1: Planning and Execution

Fig. 2: Running example: Ball-Ring environment. The goal is to
put the ball on the table. The robot should learn that (1) the ball
cannot be placed directly because it will roll off the slanted table;
(2) the ring can only be placed on the left side because the right side
is smooth (shown in the top-right corner); (3) placing the ring on
the table and then placing the ball inside the ring is the best way to
accomplish the goal.

MoveTo (table, o), Place (ball, table, o)). Given a
skeleton, we select continuous parameters using parameter
policies 6 ~ m,(- | x). Since parameter selection is condi-
tioned on the state x, and since we are not assuming a known
transition distribution [52], we sample and execute each skill
greedily. If the skill terminates and does not meet its success
condition, we replan. See Algorithm 1 for a summary.

The robot will learn parameter policies through online
experience (Section II-C). We assume that each skill u is
accompanied by a parameter prior 7 to be used before any
parameter policies have been learned. For example, a pick
skill may have an associated grasp sampler that provides valid
grasps some percentage of the time. At first, the robot uses
the parameter priors to select parameters (7, = 7)), but as
the robot collects online experience, it will learn to improve
the parameter policies with respect to the environment and
task distribution. For example, the robot should learn grasp
samplers that are specialized to the objects in the environment
that need to be manipulated.

How can we generate skeletons to maximize the probability
that sampling will succeed? Towards answering this question,
we introduce the notion of skill competence.

Definition 1 (Skill Competence). The competence c, r of
a skill u with current parameter policy 7, is the expected
success E[J,(X¢t41) | Lu(Xy)], where I, characterizes the
skill u can be initiated from, X; is a random variable for the
state before skill execution, A; is a r.v. for the action generated
from 0 ~ Wu(‘ ‘ Xt), and Xt+1 ~ P( | Xt,At).

For example, if Pick (ball, floor, o) successfully
grasps the ball from the floor 80% of the time, the competence
would be 0.8. Note that competence is defined in terms of
the current parameter policy, and that the distribution of X,
is induced by the overall planning procedure and the task
distribution. In practice, skill competences are unknown and
must be estimated from data (Section III).

To establish a relationship between skill competence and

1 Input: Current state « and goal g.

2 Generate a skeleton (ug, ..., uy) to g from x.
3 Fori=0,...,n:

Sample 0 ~ 7, and execute wu;(6).
Perceive and update the current state x.

If J,,(x) # 1, repeat from line 2 (replan).

N

Algorithm 2: Online Learning Paradigm

1 Initialize parameter policies IT = {70 : u € U}.
2 Repeat:

3 If a human has given a goal g:

4 Plan and execute to g with Algorithm 1.

5  Else:

6 Select and execute actions of the robot’s choice.
7 Update II every m iterations.

full skeleton success, we introduce a strong assumption:

Assumption 1. Success J,,(Xiy1) is independent from the
state X; conditioned on the initiation condition I,,(X;) = 1.

In other words, the success rate of a skill is the same for all
states in its initiation set. This assumption has been previously
considered in different forms [1, 33], but it does not always
hold in practice. For example, the specific grasp of an object
may influence the success rate of placing. We can mitigate
this by replanning, but to fully remove the assumption, we
would need task and motion planning [24, 56] or automated
skill partitioning [1, 33], which we leave to future work.

We can now revisit the problem of generating a skeleton that
has the maximum likelihood of success. Given Assumption 1,
we want to find a skeleton (uq, ..., u,) with three properties:
(D) H?:o ¢; is maximal, where ¢y, . .., ¢, are the correspond-
ing competences for the skills in the skeleton; (2) the initiation
and success conditions for subsequent skills chain together
(see [33] for a formal definition); and (3) the goal is achieved.
Following previous work [1, 33, 52, 53], we take advantage of
the close relationship between (parameterized) options and Al
planning operators to generate skeletons that satisfy conditions
(2) and (3). Previous work has considered how to learn
these operators automatically; we manually specify them for
this work. To satisfy condition (1), we associate a cost of
—log(c) to the respective operator and use an off-the-shelf
Al planner [28] to find a minimal cost (maximum likelihood)
skeleton. See Appendix A for further details.

C. Online Learning Paradigm

We want the robot to get better at solving tasks over time.
We consider a reset-free online learning [25, 38, 59] paradigm
where the robot is sometimes given a task to solve and
otherwise given free time during which it should autonomously
learn to improve. The key question is: what should the robot
do during free time to get better at solving tasks?

We assume that the skills themselves are fixed (e.g., for



Algorithm 3: Planning to Practice

Algorithm 4: Selecting a Skill to Practice

1 Input: Current parameter policies II.

2 Select a skill u € U to practice (see Algorithm 4).
3 Plan to I,, using Algorithm 1 with II.

4 Practice the skill v one time:

5 Sample parameters 6 from an explore policy ;.
6 Execute u(6) and record the transition.

7 Repeat from line 2 until free time expires.

1 For each u € U with current parameter policy

2 Estimate the current competence ¢, r.

3 Extrapolate: predict c, s, the competence after
practicing u and updating ,, to 7,.

4  Situate the competence in the task distribution,
computing Jskm(u) e Jtasks(H - {71'} @] {ﬂ'/}).

5 Return argmax,, Jyqn(u) for practice.

safety reasons), but the parameter policies can change. The
robot should therefore use its free time to improve its param-
eter policies, specializing the given parameter priors to the
particular objects, goals, and constraints in its environment.
This setup is summarized in Algorithm 2. Note that this setup
is fully autonomous; the environment is not reset. Our main
interest is Line 6: how should the robot choose actions to
gather data for improving its parameter policies?

III. PLANNING TO LEARN

We propose that the robot should spend its free time plan-
ning to practice skills. In particular, we commit to the meta-
strategy shown in Algorithm 3, where the robot repeatedly
selects a skill to practice, plans to satisfy that skill’s initiation
condition, samples parameters from an explore parameter
policy, executes the action, and records the result. In using
this meta-strategy, we make two assumptions.

Assumption 2. For x € X and u € U, there exists a sequence
of actions that reach I, from x with nonzero probability.

In other words, it is not possible to get permanently “stuck”
during online learning. This assumption can be weakened if
certain skills do not need to be practiced infinitely often.

Assumption 3. (Informal) Parameter priors have support over
good parameter choices.

For efficiency (and perhaps safety) purposes, we will not
permit the robot to sample arbitrarily from skill parameter
spaces; we therefore assume that the priors are sufficiently
broad to enable learning. Given these assumptions, we are left
with three decisions:

1) How should we decide what skills to practice?

2) What explore parameter policies 7" should we use?

3) How should we update the parameter policies?
In this work, we choose to focus on the first question and draw
on existing techniques to answer the second two. See Figure 3
for an overview of the full pipeline.

A. Selecting Skills to Practice

Given the relationship between competence and task suc-
cess, a natural answer to the first question would be to practice
the skill with the lowest current competence. However, there
there are two major issues with this “Fail Focus” strategy. First,
a low-competence skill may be impossible to improve. For
example, in the Ball-Ring environment, the Place (ball,

table, o) skill is bound to fail since the table is slanted
(as seen in Figure 2). Second, even if a low-competence skill
could be improved, the skill may be less critical for the task
distribution than others. In the worst case, Fail Focus may
cause the robot to spend all its free time attempting to improve
an impossible skill that is of no consequence to any given task.

A better skill selection strategy would be more directly tied
to our real objective: to efficiently and effectively solve the
tasks given to the robot. We consider a close proxy to this real
objective. Given parameter policies IT = {7, : u € U} and a
task (o, g), let Jusk (I, zg, g) be the probability that planning
succeeds without replanning. From Section II-B, we have that
Juask(IL, 2o, g) = H?:o ¢;, where ¢; is the competence of the
i skill in the skeleton generated for the task. Given a task
distribution (X, G), our overall objective is to learn parameter
policies that maximize:

Jlasks(H) £ E [Jtask(HmeG)]a (1)
Xo0,G
that is, the expected probability that planning succeeds without
replanning over the task distribution.

We propose to practice the skill whose predicted improve-
ment would maximally increase Jis(II). In other words, we
will practice the skill with the greatest expected improve-
ment to the overall distribution of human-given tasks. We
do this in three key steps (Algorithm 4). For each skill, we:
(1) Estimate the competence: compute the current competence
of the skill from data; (2) Extrapolate the competence: predict
how the competence of the skill would change if it were prac-
ticed once more and then its parameter policy was updated; (3)
Situate the competence: predict how the overall success rate on
the task distribution would change given the extrapolated skill
competence. This approach resolves the issues with Fail Focus:
by extrapolating, we avoid practicing impossible or plateaued
skills; and by situating, we avoid practicing irrelevant or
unimportant skills. We now describe these steps in detail.

1) Estimating Skill Competence: Our first task is to esti-
mate the current competence of a skill based on the transitions
that have been collected thus far. To estimate competence,
we propose a graphical model that explicates the relationship
between competence, transitions, and learning.

Recall that parameter policies are updated periodically (Al-
gorithm 2); we refer to each period with the same parameter
policy (i.e., before an update is made) as a learning cycle.
Thus, the robot’s free time is composed of a series of learning
cycles. Let \S; ;, be a binary random variable for the result of
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Fig. 3: Pipeline overview. (1) During free time, the robot repeatedly selects skills to practice. Here, Place (ring, table, o) is selected
because it maximizes Juin (Algorithm 4). (2) The robot plans to satisfy the initiation condition of the skill and then selects a continuous
parameter to practice (Algorithm 3). (3) The resulting success or failure of the skill is used to improve the parameter policy (Section III-C).

the success condition on the k' usage of the skill in learning
cycle .2 Note that different skills are selected for practice each
cycle, so the number of skill usages (maximum k values) varies
and can be zero. In practice, this number is low, so we cannot
reliably estimate the competence of a skill based on data from
the current cycle alone.

Let C; be a random variable for the skill’s competence
during learning cycle ¢ (before it has re-learned using the
data from that cycle). To estimate skill competence, we wish
to know P(Ck | Sl,la 51)2, ey S17n1,5271, ey Sky"k)’ that
is, the conditional distribution of competence now given all
observations up until now. We consider a Bayesian time series
model with a joint distribution that factorizes as follows:

P(Sl:nla ey Sk:nk, ey Cl:NCyCIC) = HPZ(C’L) HP(Sz,k | Cl)
i k

where P(S; i | C;) is the observation model and P;(C;) is a
cycle prior. For the observation model, we use a Bernoulli:

P(Si)k:1|CiZC)ZC.

For the cycle priors, we use Beta distributions, since the
Beta is the conjugate prior of the Bernoulli. Let us first con-
sider Py(Cp), the prior competence before any observations
have been made. We define one prior for all skills that has
high mean but large variance (in experiments, Beta(10, 1)),
reflecting our weakly held expectation that parameter priors
70 will be generally good. This also introduces a form of
optimism, which can be helpful for exploration [4, 41].

For subsequent cycle priors P;(C;), we assume that a skill’s
competence is some function of the size of the dataset used to
learn that skill’s parameter policy. Note that we are not posit-
ing a general relationship between data count and competence.
One skill may always have perfect competence; another may
always have zero competence; and a third may improve as data
increases. Let fy : Z>¢ — Beta(a, 3) be a competence model
where the input is the number of data used for learning, the
output is a Beta distribution over competence and ¢ indicates

2We have not yet defined the explore policy, but it is important here that
only “exploit” samples are used to estimate competence; see Section III-B.

that the function belongs to a hypothesis class F. The cycle
prior P;(C;) is given by fy(m;) where m; is the number of
data collected for the skill through cycle i. For example, in
Ball-Ring, a good competence model for the Place (ball,
table, o) skill would output a near-zero Beta for any input,
because no amount of data can improve the skill. On the other
hand, a competence model for Place (ring, table, o)
should output Beta distributions with increasing modes, since
that skill can improve with practice.

To estimate the current skill competence, we need to infer
C; for all ¢ and fit ¢ for f;. We considered two approaches:
a principled expectation-maximization (EM) approach, and a
much simpler sliding-window-based approach. In preliminary
experiments, we found the simpler approach to perform at least
as well as EM, and its behavior was much easier to interpret,
so we used it for our main experiments. See Appendix B.

2) Extrapolating Skill Competence: Given the competence
model f, fit during estimation, extrapolation is straightfor-
ward: we can simply evaluate f,(m + 1) to predict how
the skill competence would change if we collected one more
data point of practice, where m is the number of data seen
so far. Let ¢ denote the mode of f,(m + 1), i.e., the most
likely next competence. Here we assume that a skill’s com-
petence never gets worse with learning: V¢, if m’ > m, then
E[fs(m')] > E[fs(m)]. We can enforce this assumption by
choosing F appropriately. This assumption may not always
hold in practice, but for the purpose of extrapolation, it is
important that the agent be optimistic and not deliberately
avoid collecting additional data for a skill.

3) Situating Skill Competence: Our final step is to predict
the expected improvement to the overall task distribution given
the extrapolated competence. Let II' be the set of current
parameter policies II, but with the parameter policy m, for
the current skill under consideration u replaced with =,
a hypothetical policy that would result from practicing u
once more and re-learning. We wish to compute Jiks(I1')
(Equation 1), the expected probability that planning would
succeed (without replanning) over the task distribution.

To compute Jygs (I, 2o, g) for a given task z, g, we need



not know =/, itself, but only the competence of =, which
we have computed by extrapolating. To complete Jygss(I1),
we need to take an expectation over the task distribution. As
mentioned in Section II, we do not assume that the robot has
direct access to the task distribution; instead, we collect the
states and goals used to query the planner, including when
replanning is triggered (Algorithm 1) and use that empirical
task distribution to approximate Jyes(IT').

B. Explore Parameter Policies

After we have selected a skill to practice and planned to
satisfy its initiation condition, we must decide what parameters
to use (Algorithm 3). We can view this parameter selection
problem as a contextual bandit with infinite arms [6, 37]. Here,
the context is the current state x;, the actions are parameters
0, and the reward is 1 if the success condition passes and O
otherwise. To balance exploration and exploitation, we use an
epsilon-greedy policy:

7 =end + (1 — €)m,.

Other choices are possible; we use this simple approach to
maintain focus on the skill selection problem.

C. Learning to Improve Parameter Policies

To complete our approach for planning to practice param-
eterized skills, we must now determine how the collected
experience can be used to improve the parameter policies.
Recall that for each skill u, we are given a parameter prior
70 and we wish to learn an improved parameter policy 7.
Recall also that we have recorded transition data, which we can
partition by skill and label according to whether the J check
for that particular skill passed: D, = {((x¢,a¢), Ju(Tt+1)) :
a; uses skill u}. Given these data, many approaches are pos-
sible. Our approach is to learn an implicit (energy) function
E, : X x A —= R to define the parameter policy:

(0 | ) 7r3(9 | ) By (z,u(6)).

Specifically, we train small neural network classifiers to min-
imize binary cross entropy loss and then use the classifier
log probabilities for E,. In contrast to the explore policy,
the parameter policy 7, is meant to exploit, so we select
parameters via argmax, 7, (6 | ). In practice, we sample 100
candidates from the prior 72(6 | 2) and select the maximum.
For real-robot experiments, it is essential that parameter
policies can be learned from very little data. Beyond using
good parameter priors, we take two additional steps for data
efficiency. First, we share neural network weights between
parameter policies that have the same “parent” skill but
different object parameters (e.g., Place (ball, table, o)
and Place (ring, floor, o)). Second, we perform feature
engineering for learning by mapping the full state and action
to a low-dimensional vector that is input to E,,. After applying
these features to the data in D,,, we are left with a standard
binary classification dataset. See Appendix E for details of the
feature mapping as well as the training and use of E,,.

IV. EXPERIMENTS

Our experiments are designed to empirically answer the
following questions about our approach (EES):

Q1. To what extent does EES choose skills for practice
that lead to improvements in task distribution success rate,
especially compared to alternative approaches?

Q2. How sample efficient is EES compared to alternatives?

Q3. To what extent is EES aware of the task distribution?

Environments. We now provide high-level environment
descriptions with details in Appendix F. We use three sim-
ulated environments of varying complexity and two real-robot
analogs to simulated environments. For details on our real-
robot setup, see Appendix D. See also the supplementary
material for time-lapse videos of the real robot practicing skills
and learning over time.

o Light Switch (Simulated): A toy 1D grid environment. The
robot starts in the leftmost room (grid cell) and must switch
on a light in the rightmost room. The light is controlled by
a dial in the same room that must be precisely actuated.
The robot has skills to move left or right, turn the dial to
a sampled setting, and also try to “jump” from a particular
room all the way to the final room with the dial, though
this jump skill is impossible and always fails. We use a
grid size of 25 rooms in our main experiments.

e Ball-Ring (Simulated): A simulated version of the en-
vironment depicted in Figure 2. To add complexity, the
simulated version features multiple tables, some of which
are slanted and partially smooth (as shown in the figure)
and others that are standard flat surfaces. The relative
locations of the smooth patches vary between tables. The
robot does not initially know that placing the ball on a
slanted surface will fail, nor does it know that placing the
ring on the smooth part of a slanted table will fail with
high probability. The robot has skills for moving, picking,
and placing the ball and ring.

e Ball-Ring (Real): The real version of the previous envi-
ronment. See Figure 2 and the supplementary video.

e Cleanup Playroom (Simulated): A simulated version of
the environment depicted in Figure 1. The robot is tasked
with cleaning up a child’s playroom by putting two toys
into a bin. The toys start out atop a table that may be
blocked by a chair. There is also a brush on the floor. The
robot again has skills for moving, picking, and placing,
but also for grasping and dragging the chair, grasping and
dumping out the bin, and sweeping toys from the table into
the bin. The success of sweeping depends on the relative
positions of the toys and bin and the sweeping velocity.

e Cleanup Playroom (Real): The real version of the sim-
ulated Cleanup Playroom environment. See Figure 1 and
the supplementary video.

Approaches. We now briefly describe all of the approaches
that we evaluate. See Appendix E for details. The first five ap-
proaches are alternative instantiations of planning to practice
(Algorithm 3); the last three do not use that meta-strategy.
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# Steps  S1 S2 S3 S4 S5 Mean # Steps S1 S2 S3 S4 S5 Mean
0 00 00 00 00 0.0 0.0 0 0.0 067 033 067 1.0 053
120 00 033 00 067 0.0 0.2 120 0.67 1.0 1.0 1.0 1.0 093
240 1.0 067 1.0 067 0.67 0.8 240 1.0 1.0 0.67 1.0 1.0 093

TABLE I: Ball-Ring real-robot results. Steps are online transitions;
S1 = Seed 1. Entries are fractions of 3 evaluation tasks solved.

e Estimate, Extrapolate, Situate (EES): Our main approach.

e Fail Focus: Practices the skill with the lowest current
estimated competence.

e Competence Gradient: Inspired by [5, 13, 57], practices
the skill with the highest expected competence gain (i.e.,
difference between current and extrapolated competence).

e Skill Diversity: Practices the least-practiced skill.

e Task-Relevant: Practices a randomly selected skill among
those that have been previously included in some
maximum-likelihood task plan.

e Task Repeat: Samples a task from the empirical task
distribution and plans to the task goal. If the task goal
is already reached, plans instead to the task initial state.

e Random Skills: Repeatedly executes random skills se-
lected from those whose initiation conditions are satisfied
in the current state. Does not plan.

e MAPLE-Q: Uses hierarchical reinforcement learning to
learn to select both skills and parameters. Does not plan.
This approach is a modified version of MAPLE [45], which
was developed for a more difficult problem setting. Our
modifications are meant to give the approach access to
the same prior knowledge as the other approaches (e.g.,
explicit option definitions and parameter priors), but a
direct comparison remains challenging. See Appendix E
for further discussion and details.

Experimental Setup. For all simulated environments, we
run 10 random seeds of each approach. Task generation,
parameter prior sampling, tie-breaking during planning, and
stochastic environment transitions all vary between seeds.
Within each environment, the number of free periods, the
number of steps within each free period, and the evaluation

TABLE II: Cleanup Playroom real-robot results. See Table I
caption for details.

horizon H., is the same for all approaches (see Appendix F).
After every free period, each approach is evaluated on 10
randomly sampled “evaluation tasks” with held-out initial
states. All simulation experiments were conducted on a quad-
core Intel Xeon Platinum 8260 processor with a 192GB RAM
limit. For real-robot environments, we run our main approach
only (due to the intense time and resource requirements) and
use 5 random seeds. Each seed represents a fully independent
learning trial. We load model checkpoints after learning and
use 3 tasks to evaluate performance. For all experiments, our
key quantitative measure is the robot’s task success rate under
the evaluation horizon.

Results and Analysis. Figure 4 shows a plot of the
evaluation success rate of all approaches in all simulated
environments. EES is consistently the most sample efficient,
achieving higher success rates after fewer online transitions
than the baselines. This is particularly evident when the
number of online transitions is high enough for EES to practice
useful skills a sufficient number of times for a noticeable
improvement. Fail Focus falters not only because it focuses
on impossible skills, like jumping in Light Switch or placing
the ball on the table in Ball Ring, but also because it is not
sufficiently situated in the task distribution. For example, there
are no impossible skills in Cleanup Playroom, but EES still
outperforms Fail Focus. Competence Gradient is competitive
with Fail Focus but similarly lacks situatedness. The poor
performance of Skill Diversity, Task-Relevant, Task Repeat,
and Random Skills underscore the importance of directed
active practice in these long-horizon environments with many
possible skills. Like the Random Skills baseline, MAPLE-Q
fails to solve any evaluation tasks, which is not surprising



Goals Pick (brush) Drop(toy, bin) Sweep(...)
Both toys 217.1 0.0 110.2
One toy only 88.4 305.9 0.0

TABLE III: SKkills practiced with varying task distributions. The
entries are the total number of times EES chooses to practice a select
number of skills in the simulated Cleanup Playroom environment
(averaged over 10 seeds). See text for discussion.

given the highly limited number of online transitions that
we are considering; previous related work [45] learns from
multiple orders of magnitude more data. We verified that our
implementation does well in far simpler environments with far
more data; see Appendix E for further discussion.

Tables I and II show EES evaluation results for the real-
robot environments. Our approach is able to improve its
performance after 120 and 240 real-world skill-executions
respectively. Each seed took 1-3 hours of real robot time;
see the supplementary video. These results are especially
noteworthy given the complex skills (e.g. sweeping from the
table), relatively long-horizons necessary for both setting up
practice and for solving each task, and non-trivial noise in
perception and control, which lead to both false positives
and false negatives in the skill datasets (D, ) collected for
parameter policy learning.

Towards answering Q3 (to what extent is EES aware of
the task distribution?), we conducted an additional experiment
in the simulated Cleanup Playroom environment. Rather than
giving the robot the goal of putting both toys into the bin,
we instead gave the goal of putting one toy in the bin.
As shown in Table III, this task distribution change led to
a corresponding change in practicing behavior: rather than
practicing sweeping, the robot instead practiced dropping
the toy into the bin directly. This finding matches intuition:
sweeping is unnecessarily complicated when only one object
needs to be stowed (a pick-and-place strategy is better), but
worthwhile when two objects can be stowed with one sweep.

V. RELATED WORK
A. Exploration in Reinforcement Learning

The problem of sequentially selecting actions that lead to
efficient learning is central to exploration in reinforcement
learning [2, 8, 13, 29, 47]. One important difference between
our setting and RL is that we do not have a temporal
credit assignment problem: given skill success conditions and
Assumption 1, each parameter policy learning problem is self-
contained. Our skill selection problem is therefore related to
exploration in multi-armed bandits [9], but different still, since
selecting a skill to practice does not lead to a task reward,
but rather, to a data point that can be used to improve the
parameter policy for that skill. Note that the inner problem of
choosing parameters for a selected skill is a bandit problem
(with infinite arms) [10] as explained in Section III-B, but
our primary interest is the outer skill selection problem. Our
method for skill selection can also be viewed as a restricted
form of curriculum learning for RL [44].

Within the RL literature, the most related work to ours is
that of Stout and Barto [57], Baranes and Oudeyer [5] and
Colas et al. [13], who each consider a form of competence
progress to guide exploration. Compared to our approach,
these previous works estimate and extrapolate competence,
but they do not situate the competence in a task distribution.
Their motivation is different from ours—they assume that a
task distribution is not known and consider the problem of
deriving intrinsic motivation in the absence of goals [49]. The
Competence Gradient baseline in our experiments is inspired
by these works and confirms the importance of situating
competence in our setting.

Recent work by Vats et al. [60] considers a variation
of estimation, extrapolation, and situation in the context of
recovery learning, where additional skills are learned to sup-
plement a given set of imperfect parameterized skills. Instead
of asking which parameter policy to practice, they consider
which recovery skill to practice. They introduce a “value of
failures” objective that is similar to our Jigs objective. One
important difference is that they assume access to a simulator;
they therefore do not need to plan to practice.

B. Parameter Policy Learning in RL

The problem of learning skill parameter policies has also
been considered in the RL literature, for example, in Pa-
rameterized Action MDPs (PAMDPs) [15, 27, 40, 45]. In
addition to facing the challenge of temporal credit assignment,
these works typically do not assume a given method for
discrete skill sequencing and instead need to learn a high-
level “manager” policy in addition to the “worker” parameter
policies. Altogether, this represents a much harder problem
setting than ours, and the sample complexity of current
techniques remains prohibitively high for the kind of rapid
skill specialization we consider here (for example, see our
MAPLE-Q baseline [45]). Assuming that the environment can
be automatically reset is the norm in this literature, with some
notable exceptions [25, 38, 59]. Work by Ames et al. [1] is
a step toward bridging the RL setting and our setting; they
automatically derive Al planning operators from parameterized
option specifications. Exploration is not a central consideration
in these works (but see [3, 14]).

Recent work in RL also considers specializing (fine tuning)
skills through online learning [26, 64], starting from generic
(pre-trained) distributions. Other recent work by Fang et al.
[19] is another example of planning to practice. Their planning
uses a learned latent subgoal space, rather than options and
Al planners. They learn goal-conditioned policies that are
analogous to our parameter policies. Active learning at the
skill level is not a primary focus; their approach is similar to
our Task Repeat baseline (but with environment resets instead
of reset-free learning). Follow-up work [20] considers active
learning more centrally and proposes a method for generating
subgoals for online learning using a diversity-based metric.



C. Learning Samplers for Task and Motion Planning

In the context of the task and motion planning (TAMP)
literature [24], our parameter policies can be seen as samplers
for refining skeletons generated by task planning. TAMP ap-
proaches typically do not make Assumption 1 and instead sam-
ple parameters contingent on the entire skeleton (e.g., selecting
grasp parameters that enable future constrained placements).

Several works have considered learning samplers for
TAMP [12, 30]. Silver et al. [53] learn samplers from an offline
demonstration dataset. The details of our neural-network learn-
ing over object-centric states are most similar to theirs. Other
recent work has considered learning samplers with diffusion
models [43, 66]. Most relevant of these is the work by Mendez-
Mendez et al. [42], who consider diffusion-based sampler
learning for TAMP in an embodied lifelong setting. However,
in that work, the robot is not given free time; it remains in task
time throughout online learning. Additionally, the agent does
not have separate exploration and exploitation samplers, but
rather only an exploitation sampler. Wang et al. [62] consider
active sampler learning for TAMP with a focus on the inner
bandit problem of selecting parameters to practice for a given
skill. In principle, their parameter selection method could be
swapped in for our epsilon-greedy approach.

In the TAMP literature, the work by Noseworthy et al.
[46] is another instance of active learning. They learn to
predict whether a skeleton is feasible [18, 63, 65], i.e., whether
there exists continuous parameters that would achieve the
goal (typically in a deterministic setting). Future work could
combine active feasibility prediction with our active parameter
policy learning as a path toward removing Assumption 1 and
scaling to more geometrically complex environments.

VI. LIMITATIONS AND FUTURE WORK

In this work, we proposed Estimate, Extrapolate & Situate
(EES) as a method for planning to practice parameterized
skills. We found that simulated and real robots using EES
are able to rapidly and continually improve their parameter
policies with respect to human-given task distributions. Our
real-robot results are particularly noteworthy as instances of
reset-free online learning in challenging, long-horizon mobile
manipulation environments.

There are several limitations of the present work and of
EES as a general method. For the sake of rapidly learning
on a real robot, we started with a considerable amount
of prior knowledge: known object (feature) detectors, fully-
specified parameterized skills (and operators for planning),
low-dimensional feature selectors for parameter policy train-
ing, and good parameter priors. Previous work has considered
learning each of these components (e.g., [53, 55]), but
doing so may require significantly more data than what we
considered here. We also made Assumptions 1-3, which are
strong, and while we need not satisfy them completely to attain
good performance, they remain worthy of further scrutiny. Our
approach also implicitly assumes the overall task distribution is
stationary, which may not hold in many complex and dynamic
real-world environments. Our relatively naive treatment of

noise and our assumption of full observability are also clearly
limiting. Furthermore, our commitment to planning to practice
(Algorithm 3) is perhaps overly myopic: better strategies might
anticipate that practicing one skill enables quickly practicing
another, reasoning over sequences of practice attempts. Finally,
this work presupposes that robots should be practicing and
learning during deployment. The extent to which this is true
depends greatly on the nature of the deployment and the
constraints under which the robot is allowed to practice.

One future direction that could address multiple limita-
tions simultaneously would be to give the agent access to a
simulator. A significant challenge with doing this is that the
precise models of all the objects the robot might encounter
during deployment are not available ahead of time, and thus
the robot must acquire aspects of these online. However,
even if the acquired simulation were a coarse approximation
of the real world, the robot could nonetheless use it to
bootstrap real-world practice time. The same simulation could
be used for reasoning about potentially irreversible actions
before executing them in the real world, and for integrated
task and motion planning (TAMP) [24] towards removing
Assumption 1. Leveraging TAMP would also be a step toward
more principled planning in stochastic [51] and partially-
observable environments [23].

ACKNOWLEDGMENTS

We gratefully acknowledge support from NSF grant
2214177; from AFOSR grant FA9550-22-1-0249; from ONR
MURI grant N00014-22-1-2740; from ARO grant W911NF-
23-1-0034 and from the MIT Quest for Intelligence. Nishanth,
Tom, and Willie are supported by NSF GRFP fellowships.
We thank Will Shen for feedback and suggestions on an early
paper draft, as well as invaluable help with creating the accom-
panying website. We also thank Russell Mendonca for helpful
early discussions, especially with respect to the MAPLE-Q
baseline. We are grateful for helpful discussion, brainstorming,
and support from Stefanie Tellex, Ashay Athalye, Tushar
Kusnur, Jiuguang Wang, Gustavo Goretkin, Andrew Messing,
Joe St. Germain and others at the AI Institute. We thank
Hannah Blumberg for invaluable early help with prototyping
one of our robot domains, as well as helpful comments on an
early draft of this paper. We also thank Chris Agia, Shivam
Vats, and Peter Stone for helpful comments on an earlier
version of the paper. We gratefully acknowledge the MIT
SuperCloud and Lincoln Laboratory Supercomputing Center
for providing HPC resources that have contributed to the
simulation results reported within this paper. Finally, we wish
to thank our three Spot robots, Moana, Donner, and Kepler,
for being so reliable throughout the extensive prototyping
and experimentation required for this paper. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of our sponsors.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

Barrett Ames, Allison Thackston, and George Konidaris.
Learning symbolic representations for planning with pa-
rameterized skills. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 1EEE,
2018. URL https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=8594313.

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke
van Hoof, and Doina Precup. A survey of explo-
ration methods in reinforcement learning. arXiv preprint
arXiv:2109.00157,2021. URL https://arxiv.org/pdf/2109.
00157.pdf.

Garrett Andersen and George Konidaris. Active explo-
ration for learning symbolic representations. Advances
in Neural Information Processing Systems (NeurIPS),
2017. URL https://dl.acm.org/doi/pdf/10.5555/3295222.
3295254.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research (JMLR), 2002. URL https://www.jmlr.org/
papers/volume3/auer02a/auer02a.pdf.

Adrien Baranes and Pierre-Yves Oudeyer.  Active
learning of inverse models with intrinsically moti-
vated goal exploration in robots. Robotics and Au-
tonomous Systems, 2013. URL http://www.pyoudeyer.
com/ActiveGoalExploration-RAS-2013.pdf.

Donald A. Berry and Bert Fristedt. Bandit problems.
sequential allocation of experiments.  Monographs
on Statistics and Applied Probability., 1987. URL
https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.
4710290105.

Ondrej Biza, Dian Wang, Robert Platt, Jan-Willem van de
Meent, and Lawson LS Wong. Action priors for large
action spaces in robotics. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
2021. URL https://arxiv.org/pdf/2101.04178.pdf.
Nicolas Bougie and Ryutaro Ichise. Skill-based curiosity
for intrinsically motivated reinforcement learning. Ma-
chine Learning, 109, 2020. URL https:/link.springer.
com/content/pdf/10.1007/s10994-019-05845-8.pdf.
Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure
exploration in multi-armed bandits problems. In Algo-
rithmic Learning Theory: 20th International Conference
(ALT). Springer, 2009. URL http://sbubeck.com/ALT09_
BMS.pdf.

Alexandra Carpentier and Michal Valko. Simple regret
for infinitely many armed bandits. In International
Conference on Machine Learning (ICML), 2015. URL
http://proceedings.mlr.press/v37/carpentierl5.pdf.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion. In Robotics: Science and Systems (RSS), 2023.
URL https://diffusion-policy.cs.columbia.edu/diffusion_
policy_2023.pdf.

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta,
Siddharth Srivastava, Edward Groshev, Christopher Lin,
and Pieter Abbeel. Guided search for task and mo-
tion plans using learned heuristics. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
2016. URL https://people.eecs.berkeley.edu/~pabbeel/
papers/2016-ICRA-tamp-learning.pdf.

Cédric Colas, Pierre Fournier, Mohamed Chetouani,
Olivier Sigaud, and Pierre-Yves Oudeyer. Curious:
intrinsically motivated modular multi-goal reinforcement
learning. In International Conference on Machine Learn-
ing (ICML), 2019. URL https://proceedings.mlr.press/
v97/colas19a/colas19a.pdf.

Bruno Da Silva, George Konidaris, and Andrew Barto.
Active learning of parameterized skills. In International
Conference on Machine Learning (ICML), 2014. URL
https://proceedings.mlr.press/v32/silval4.html.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhut-
dinov. Accelerating robotic reinforcement learn-
ing via parameterized action primitives.  Advances
in Neural Information Processing Systems (NeurlPS),
2021. URL https://proceedings.neurips.cc/paper/2021/
file/b6846b0186a035fcc76b1b1d26fd42fa-Paper.pdf.
Christian Daniel, Malte Viering, Jan Metz, Oliver Kroe-
mer, and Jan Peters. Active reward learning. In Robotics:
Science and Systems (RSS), 2014. URL https://www.
roboticsproceedings.org/rss10/p31.pdf.

Carlos Diuk, Andre Cohen, and Michael L Littman.
An object-oriented representation for efficient reinforce-
ment learning. In International Conference on Machine
Learning (ICML), 2008. URL https://carlosdiuk.github.
io/papers/OORL.pdf.

Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep
visual reasoning: Learning to predict action sequences for
task and motion planning from an initial scene image.
In Robotics: Science and Systems (RSS), 2020. URL
https://www.roboticsproceedings.org/rss16/p003.pdf.
Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine.
Planning to practice: Efficient online fine-tuning by com-
posing goals in latent space. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2022. URL https://arxiv.org/pdf/2205.08129.pdf.

Kuan Fang, Toki Migimatsu, Ajay Mandlekar, Li Fei-Fei,
and Jeannette Bohg. Active task randomization: Learning
robust skills via unsupervised generation of diverse and
feasible tasks. In 2023 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2023.
URL https://arxiv.org/pdf/2211.06134.pdf.

Maria Fox and Derek Long. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR), 2003. URL
https://arxiv.org/pdf/1106.4561.pdf.

Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mo-
bile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. In arXiv,
2024. URL https://mobile-aloha.github.io/resources/


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8594313
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8594313
https://arxiv.org/pdf/2109.00157.pdf
https://arxiv.org/pdf/2109.00157.pdf
https://dl.acm.org/doi/pdf/10.5555/3295222.3295254
https://dl.acm.org/doi/pdf/10.5555/3295222.3295254
https://www.jmlr.org/papers/volume3/auer02a/auer02a.pdf
https://www.jmlr.org/papers/volume3/auer02a/auer02a.pdf
http://www.pyoudeyer.com/ActiveGoalExploration-RAS-2013.pdf
http://www.pyoudeyer.com/ActiveGoalExploration-RAS-2013.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.4710290105
https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.4710290105
https://arxiv.org/pdf/2101.04178.pdf
https://link.springer.com/content/pdf/10.1007/s10994-019-05845-8.pdf
https://link.springer.com/content/pdf/10.1007/s10994-019-05845-8.pdf
http://sbubeck.com/ALT09_BMS.pdf
http://sbubeck.com/ALT09_BMS.pdf
http://proceedings.mlr.press/v37/carpentier15.pdf
https://diffusion-policy.cs.columbia.edu/diffusion_policy_2023.pdf
https://diffusion-policy.cs.columbia.edu/diffusion_policy_2023.pdf
https://people.eecs.berkeley.edu/~pabbeel/papers/2016-ICRA-tamp-learning.pdf
https://people.eecs.berkeley.edu/~pabbeel/papers/2016-ICRA-tamp-learning.pdf
https://proceedings.mlr.press/v97/colas19a/colas19a.pdf
https://proceedings.mlr.press/v97/colas19a/colas19a.pdf
https://proceedings.mlr.press/v32/silva14.html
https://proceedings.neurips.cc/paper/2021/file/b6846b0186a035fcc76b1b1d26fd42fa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/b6846b0186a035fcc76b1b1d26fd42fa-Paper.pdf
https://www.roboticsproceedings.org/rss10/p31.pdf
https://www.roboticsproceedings.org/rss10/p31.pdf
https://carlosdiuk.github.io/papers/OORL.pdf
https://carlosdiuk.github.io/papers/OORL.pdf
https://www.roboticsproceedings.org/rss16/p003.pdf
https://arxiv.org/pdf/2205.08129.pdf
https://arxiv.org/pdf/2211.06134.pdf
https://arxiv.org/pdf/1106.4561.pdf
https://mobile-aloha.github.io/resources/mobile-aloha.pdf

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

mobile-aloha.pdf.

Caelan Reed Garrett, Chris Paxton, Tomas Lozano-Pérez,
Leslie Pack Kaelbling, and Dieter Fox. Online replanning
in belief space for partially observable task and motion
problems. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 5678-5684.
IEEE, 2020. URL https://arxiv.org/pdf/1911.04577.pdf.
Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,
Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and
Tomds Lozano-Pérez. Integrated task and motion plan-
ning. Annual review of control, robotics, and autonomous
systems, 2021. URL https://www.annualreviews.org/doi/
pdf/10.1146/annurev-control-091420-084139.

Abhishek Gupta, Justin Yu, Tony Z Zhao, Vikash Kumar,
Aaron Rovinsky, Kelvin Xu, Thomas Devlin, and Sergey
Levine. Reset-free reinforcement learning via multi-
task learning: Learning dexterous manipulation behaviors
without human intervention. In IEEE International
Conference on Robotics and Automation (ICRA), 2021.
URL https://arxiv.org/pdf/2104.11203.pdf.

Abhishek Gupta, Corey Lynch, Brandon Kinman, Gar-
rett Peake, Sergey Levine, and Karol Hausman. Boot-
strapped autonomous practicing via multi-task reinforce-
ment learning. In IEEE International Conference on

Robotics and Automation (ICRA), 2023. URL https:
/farxiv.org/pdf/2203.15755.pdf.
Matthew Hausknecht and Peter Stone. Deep rein-

forcement learning in parameterized action space. In
International Conference on Learning Representations
(ICLR), 2016. URL https://www.cs.utexas.edu/users/
pstone/Papers/bib2html-links/ICLR 16-hausknecht.pdf.
Malte Helmert. The fast downward planning sys-
tem. Journal of Artificial Intelligence Research (JAIR),
2006. URL https://www.jair.org/index.php/jair/article/
view/10457/25068.

Michael Kearns and Satinder Singh. Near-optimal rein-
forcement learning in polynomial time. Machine learn-
ing, 2002. URL https://www.cis.upenn.edu/~mkearns/
papers/KearnsSinghE3.pdf.

Beomjoon Kim, Leslie Pack Kaelbling, and Tomads
Lozano-Pérez. Guiding search in continuous state-action
spaces by learning an action sampler from off-target
search experience. In Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI), 2018. URL https:
/lojs.aaai.org/index.php/ AAAl/article/view/12106/11965.
Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2014. URL https://arxiv.org/
abs/1412.6980.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen
Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023. URL https://arxiv.org/pdf/2304.
02643.pdf.

George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Pérez. From skills to symbols: Learning sym-

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

bolic representations for abstract high-level planning.
Journal of Artificial Intelligence Research, 2018. URL
https://jair.org/index.php/jair/article/view/11175/26380.
Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom
Silver, Tomés Lozano-Pérez, and Leslie Pack Kaelbling.
Learning efficient abstract planning models that choose
what to predict. In Conference on Robot Learning
(CoRL), 2023. URL https://openreview.net/pdf?id=_
gZLyRGGuo.

Nishanth Kumar, Willie McClinton, Kathryn Le, , and
Tom Silver. Bilevel planning for robots: An illus-
trated introduction, 2023. URL https://lis.csail.mit.edu/
bilevel-planning-for-robots-an-illustrated-introduction.
Amber Li and Tom Silver. Embodied active learning of
relational state abstractions for bilevel planning. In Con-
ference on Lifelong Learning Agents (CoLLAs), 2023.
URL https://arxiv.org/pdf/2303.04912.pdf.

Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. A contextual-bandit approach to personalized
news article recommendation. In International Confer-
ence on World Wide Web, 2010. URL https://arxiv.org/
pdf/1003.0146.pdf.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mor-
datch. Reset-free lifelong learning with skill-space plan-
ning. In International Conference on Learning Represen-
tations (ICLR), 2021. URL https://openreview.net/pdf?
id=HIGSa_3kOx3.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Eureka:
Human-level reward design via coding large language
models. arXiv preprint arXiv:2310.12931, 2023. URL
https://arxiv.org/pdf/2310.12931.pdf.

Warwick Masson, Pravesh Ranchod, and George
Konidaris. Reinforcement learning with parameterized
actions. In AAAI Conference on Artificial Intelligence
(AAAI), 2016. URL https://ojs.aaai.org/index.php/AAAI/
article/view/10226/10085.

Benedict C May, Nathan Korda, Anthony Lee, and
David S Leslie.  Optimistic bayesian sampling in
contextual-bandit problems. Journal of Machine Learn-
ing Research (JMLR), 2012. URL https://www.jmlr.org/
papers/volume13/may12a/may12a.pdf.

Jorge Mendez-Mendez, Leslie Pack Kaelbling, and
Tomds Lozano-Pérez. Embodied lifelong learning for
task and motion planning. In Conference on Robot
Learning (CoRL), 2023. URL https://openreview.net/pdf?
id=ZFjgflb_5c.

Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen,
and Danfei Xu. Generative skill chaining: Long-horizon
skill planning with diffusion models. In Conference on
Robot Learning, 2023. URL https://openreview.net/pdf?
id=HtJE9ly5dT.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko
Sinapov, Matthew E Taylor, and Peter Stone. Cur-
riculum learning for reinforcement learning domains: A


https://mobile-aloha.github.io/resources/mobile-aloha.pdf
https://arxiv.org/pdf/1911.04577.pdf
https://www.annualreviews.org/doi/pdf/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/doi/pdf/10.1146/annurev-control-091420-084139
https://arxiv.org/pdf/2104.11203.pdf
https://arxiv.org/pdf/2203.15755.pdf
https://arxiv.org/pdf/2203.15755.pdf
https://www.cs.utexas.edu/users/pstone/Papers/bib2html-links/ICLR16-hausknecht.pdf
https://www.cs.utexas.edu/users/pstone/Papers/bib2html-links/ICLR16-hausknecht.pdf
https://www.jair.org/index.php/jair/article/view/10457/25068
https://www.jair.org/index.php/jair/article/view/10457/25068
https://www.cis.upenn.edu/~mkearns/papers/KearnsSinghE3.pdf
https://www.cis.upenn.edu/~mkearns/papers/KearnsSinghE3.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/12106/11965
https://ojs.aaai.org/index.php/AAAI/article/view/12106/11965
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/pdf/2304.02643.pdf
https://arxiv.org/pdf/2304.02643.pdf
https://jair.org/index.php/jair/article/view/11175/26380
https://openreview.net/pdf?id=_gZLyRGGuo
https://openreview.net/pdf?id=_gZLyRGGuo
https://lis.csail.mit.edu/bilevel-planning-for-robots-an-illustrated-introduction
https://lis.csail.mit.edu/bilevel-planning-for-robots-an-illustrated-introduction
https://arxiv.org/pdf/2303.04912.pdf
https://arxiv.org/pdf/1003.0146.pdf
https://arxiv.org/pdf/1003.0146.pdf
https://openreview.net/pdf?id=HIGSa_3kOx3
https://openreview.net/pdf?id=HIGSa_3kOx3
https://arxiv.org/pdf/2310.12931.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10226/10085
https://ojs.aaai.org/index.php/AAAI/article/view/10226/10085
https://www.jmlr.org/papers/volume13/may12a/may12a.pdf
https://www.jmlr.org/papers/volume13/may12a/may12a.pdf
https://openreview.net/pdf?id=ZFjgfJb_5c
https://openreview.net/pdf?id=ZFjgfJb_5c
https://openreview.net/pdf?id=HtJE9ly5dT
https://openreview.net/pdf?id=HtJE9ly5dT

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

framework and survey. Journal of Machine Learning
Research, 21(181):1-50, 2020. URL https://jmlr.org/
papers/volume21/20-212/20-212.pdf.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Aug-
menting reinforcement learning with behavior primitives
for diverse manipulation tasks. In IEEE International
Conference on Robotics and Automation (ICRA), 2022.
URL https://arxiv.org/pdf/2110.03655.pdf.

Michael Noseworthy, Isaiah Brand, Caris Moses, Sebas-
tian Castro, Leslie Kaelbling, Tomds Lozano-Pérez, and
Nicholas Roy. Active learning of abstract plan feasibility.
In Robotics: Science and Systems (RSS), 2021. URL
https://www.roboticsproceedings.org/rss17/p043.pdf.
Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta.
Self-supervised exploration via disagreement. In In-
ternational Conference on Machine Learning (ICML),
2019. URL http://proceedings.mlr.press/v97/pathak19a/
pathak19a.pdf.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accel-
erating reinforcement learning with learned skill priors.
In Conference on Robot Learning (CoRL), 2021. URL
https://arxiv.org/pdf/2010.11944.pdf.

Vieri Giuliano Santucci, Pierre-Yves Oudeyer, An-
drew Barto, and Gianluca Baldassarre. Intrinsically
motivated open-ended learning in autonomous robots,
2020. URL https://www.frontiersin.org/articles/10.3389/
fnbot.2019.00115/full.

Burr Settles. From theories to queries: Active learning
in practice. In Active learning and experimental design
workshop in conjunction with AISTATS 2010, 2011. URL
https://proceedings.mlr.press/v16/settles1 1a.html.

Naman Shah, Deepak Kala Vasudevan, Kislay Kumar,
Pranav Kamojjhala, and Siddharth Srivastava. Anytime
integrated task and motion policies for stochastic en-
vironments. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 9285-9291.
IEEE, 2020. URL https://aair-lab.github.io/Projects/
STAMP/skkks_icra2020_full.pdf.

Tom Silver, Rohan Chitnis, Joshua Tenenbaum,
Leslie Pack Kaelbling, and Tomds Lozano-Pérez.
Learning symbolic operators for task and motion
planning. In [EEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021. URL
https://arxiv.org/pdf/2103.00589.pdf.

Tom Silver, Ashay Athalye, Joshua B. Tenenbaum,
Tomads Lozano-Pérez, and Leslie Pack Kaelbling. Learn-
ing neuro-symbolic skills for bilevel planning. In 6th
Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=0laJRUo5UXy.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie
McClinton, Tomds Lozano-Pérez, Leslie Kaelbling, and
Joshua B Tenenbaum. Predicate invention for bilevel
planning. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2023. URL https://ojs.aaai.
org/index.php/AAAl/article/view/26429/26201.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu,

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

Nicholas Rhinehart, and Sergey Levine. Parrot: Data-
driven behavioral priors for reinforcement learning. In
International Conference on Learning Representations
(ICLR), 2021. URL https://openreview.net/forum?id=
Ysuv-WOFeKR.

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Ro-
han Chitnis, Stuart Russell, and Pieter Abbeel. Com-
bined task and motion planning through an extensible
planner-independent interface layer. In IEEE interna-
tional conference on robotics and automation (ICRA),
2014. URL https://people.eecs.berkeley.edu/~russell/
papers/icral4-planrob.pdf.

Andrew Stout and Andrew G Barto.
progress intrinsic motivation. In IEEE 9th
International ~ Conference on  Development and
Learning (ICDL), 2010. URL https://citeseerx.
ist.psu.edu/document?repid=rep 1 &type=pdf&doi=
1€9521d28184a344c077edat780c1205b3e90139.
Richard S Sutton, Doina Precup, and Satinder Singh.
Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial
intelligence, 1999. URL https://www.sciencedirect.
com/science/article/pii/S0004370299000521/pdf?md5=
780c0bdb220bb0fa2d0721720296922c&pid=1-s2.
0-S000437029900052 1-main.pdf.

Sebastian Thrun. A lifelong learning perspective for
mobile robot control. In IEEE International Con-
ference on Intelligent Robots and Systems (IROS),
1995. URL https://www.ri.cmu.edu/pub_files/publ/
thrun_sebastian_1995_3/thrun_sebastian_1995_3.pdf.
Shivam Vats, Maxim Likhachev, and Oliver Kroemer.
Efficient recovery learning using model predictive meta-
reasoning. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 7258-7264.
IEEE, 2023. URL https://www.ri.cmu.edu/app/uploads/
2023/03/submission_camera_ready.pdf.

Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu.
Lotus: Continual imitation learning for robot manipula-
tion through unsupervised skill discovery. arXiv preprint
arXiv:2311.02058, 2023. URL https://arxiv.org/pdf/2311.
02058.pdf.

Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling,
and Tomds Lozano-Pérez. Learning compositional mod-
els of robot skills for task and motion planning. The
International Journal of Robotics Research IJRR), 2021.
URL https://arxiv.org/pdf/2006.06444.pdf.

Andrew M Wells, Neil T Dantam, Anshumali Shri-
vastava, and Lydia E Kavraki. Learning feasibil-
ity for task and motion planning in tabletop environ-
ments. IEEE Robotics and Automation Letters (RAL),
2019. URL https://europepmc.org/backend/ptpmcrender.
fcgi?accid=PMC6491048&blobtype=pdf.

Haoyu Xiong, Russell Mendonca, Kenneth Shaw,
and Deepak Pathak. Adaptive mobile manipu-
lation for articulated objects in the open world.
arXiv preprint arXiv:2401.14403, 2024. URL https:

Competence


https://jmlr.org/papers/volume21/20-212/20-212.pdf
https://jmlr.org/papers/volume21/20-212/20-212.pdf
https://arxiv.org/pdf/2110.03655.pdf
https://www.roboticsproceedings.org/rss17/p043.pdf
http://proceedings.mlr.press/v97/pathak19a/pathak19a.pdf
http://proceedings.mlr.press/v97/pathak19a/pathak19a.pdf
https://arxiv.org/pdf/2010.11944.pdf
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00115/full
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00115/full
https://proceedings.mlr.press/v16/settles11a.html
https://aair-lab.github.io/Projects/STAMP/skkks_icra2020_full.pdf
https://aair-lab.github.io/Projects/STAMP/skkks_icra2020_full.pdf
https://arxiv.org/pdf/2103.00589.pdf
https://openreview.net/forum?id=OIaJRUo5UXy
https://ojs.aaai.org/index.php/AAAI/article/view/26429/26201
https://ojs.aaai.org/index.php/AAAI/article/view/26429/26201
https://openreview.net/forum?id=Ysuv-WOFeKR
https://openreview.net/forum?id=Ysuv-WOFeKR
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://people.eecs.berkeley.edu/~russell/papers/icra14-planrob.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e9521d28184a344c077edaf780c1205b3e90139
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e9521d28184a344c077edaf780c1205b3e90139
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e9521d28184a344c077edaf780c1205b3e90139
https://www.sciencedirect.com/science/article/pii/S0004370299000521/pdf?md5=780c0bdb220bb0fa2d0721720296922c&pid=1-s2.0-S0004370299000521-main.pdf
https://www.sciencedirect.com/science/article/pii/S0004370299000521/pdf?md5=780c0bdb220bb0fa2d0721720296922c&pid=1-s2.0-S0004370299000521-main.pdf
https://www.sciencedirect.com/science/article/pii/S0004370299000521/pdf?md5=780c0bdb220bb0fa2d0721720296922c&pid=1-s2.0-S0004370299000521-main.pdf
https://www.sciencedirect.com/science/article/pii/S0004370299000521/pdf?md5=780c0bdb220bb0fa2d0721720296922c&pid=1-s2.0-S0004370299000521-main.pdf
https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1995_3/thrun_sebastian_1995_3.pdf
https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1995_3/thrun_sebastian_1995_3.pdf
https://www.ri.cmu.edu/app/uploads/2023/03/submission_camera_ready.pdf
https://www.ri.cmu.edu/app/uploads/2023/03/submission_camera_ready.pdf
https://arxiv.org/pdf/2311.02058.pdf
https://arxiv.org/pdf/2311.02058.pdf
https://arxiv.org/pdf/2006.06444.pdf
https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6491048&blobtype=pdf
https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6491048&blobtype=pdf
https://open-world-mobilemanip.github.io/paper.pdf

[65]

[66]

[67]

[68]

/lopen-world-mobilemanip.github.io/paper.pdf.

Lei Xu, Tianyu Ren, Georgia Chalvatzaki, and Jan
Peters. Accelerating integrated task and motion plan-
ning with neural feasibility checking. arXiv preprint
arXiv:2203.10568, 2022. URL https://arxiv.org/pdf/2203.
10568.pdf.

Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wau,
Joshua B. Tenenbaum, Tomas Lozano-Pérez, and
Leslie Pack Kaelbling. Compositional Diffusion-Based
Continuous Constraint Solvers. In Conference on Robot
Learning (CoRL), 2023. URL https://arxiv.org/pdf/2309.
00966.pdf.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. In Robotics: Science and Systems
(RSS), 2023. URL https://arxiv.org/pdf/2304.13705.pdf.
Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp
Krihenbiihl, and Ishan Misra. Detecting twenty-thousand
classes using image-level supervision. In European Con-
ference on Computer Vision, pages 350-368. Springer,
2022. URL https://github.com/facebookresearch/Detic.


https://open-world-mobilemanip.github.io/paper.pdf
https://arxiv.org/pdf/2203.10568.pdf
https://arxiv.org/pdf/2203.10568.pdf
https://arxiv.org/pdf/2309.00966.pdf
https://arxiv.org/pdf/2309.00966.pdf
https://arxiv.org/pdf/2304.13705.pdf
https://github.com/facebookresearch/Detic

APPENDIX
A. Al Planning Details

In this section, we provide additional details about Al
planning to supplement the overview given in Section II-B.
We refer the reader to other references [28] for a formal
treatment of the planning techniques we use in this work
and give a brief overview of the salient points here. First,
we assume access to a set of predicates and a function
abstract that maps states to sets of ground predicates.
For example, On and HandEmpty are two predicates in
the Ball-Ring environment, and abstract(z;) could be
{On (ball, floor),HandEmpty (robot), ...}. We
additionally assume that each goal g is associated with a set
of ground predicates, e.g., {On (ball, table) }, which is a
subset of abstract(z;) if and only if g(z;) = 1.

Next, for each parameterized skill, we assume access
to a PDDL [21] planning operator with predicate-based
preconditions and effects. For example, the operator for
Place (ball, table, o) is:

Place (ball table)
:precondition (and
(Holding ball)
(Reachable table))
ceffect (and
(On ball table)
(HandEmpty)
(not (Holding ball)))

Note the absence of continuous parameters. The oper-
ator preconditions characterize the initiation condition of
the skill. For example, for the skill above, I(z) = 1
if {Holding(ball),Reachable (table)} C s where
s = abstract(z). Similarly, the effects characterize the
success condition of the skill. Continuing the example,
J(z') = 1 if {On(ball,table),HandEmpty ()} C ¢
and {On (ball,table),Holding(ball)} ¢ s where
s’ = abstract(a’). Previous work [34, 52, 54] has learned
operators and predicates; we manually specify them here.

Given an initial state x and a goal g, we construct a PDDL
planning problem with initial state abstract(xzg) and use
a PDDL planner [28] to efficiently generate a sequence of
planning operators (a skeleton) that chain together to reach the
goal. To incorporate skill competences, we associate a cost of
—log (c) to a skill with competence ¢ and find a minimum-
cost (maximum-likelihood) skeleton. In experiments, we use
LM-Cut (alias seg-opt—1lmcut in Fast Downward) for
minimum-cost planning. We use a planning timeout of 10
seconds. In experiments, this timeout was never triggered.

As explained in Section II-B, once a skeleton is obtained, we
greedily select continuous parameters using parameter policies
and execute the resulting action. Re-planning is triggered when
the success condition (as defined by the operator effects) fails.
During evaluation, the robot continues planning and executing
until a maximum number of actions H,,, is reached (see
Appendix F).

B. Competence Models

We now provide details on the competence estimation and
extrapolation methods described in Section III-A. Recall that
each skill’s competence is estimated and extrapolated inde-
pendently. In the main paper, we presented a graphical model
relating the competence, success condition observations, and
learning cycles of a skill; that model is summarized Figure 5.

D Competence prior
[ tm)
B oo

D Observation model

k: skill terminated

k: skill terminated

k: skill terminated

Fig. 5: Skill competence graphical model.

As described in the main text, the model components include:
« The observation model P(J(X; ;) =1|C; =c¢)=c.
o The initial cycle prior Py(Cp); we use Beta(10, 1).
o The other cycle priors P;(C;) = f4(m;) where m; is the
number of data collected for the skill through cycle ¢ and
fo is a learned function that outputs Beta distributions.

We now discuss fy : Z>9 — Beta(a, 3), the competence
model, in detail. As mentioned, we considered two approaches
for learning competence models: one based on expectation-
maximization and another based on a simple sliding window.
After preliminary analysis, we opted to use the latter in our
main experiments, but we describe both here for reference.

Approach 1: Expectation-Maximization. The model in Fig-
ure 5 is a latent variable model, so EM is a natural choice.
The E step is straightforward: since we have a collection of
Beta-Bernoulli distributions, there is a closed-form solution to
infer MAP competences given fixed competence models. The
M step—fitting the competence models given the most recent
MAP competences—is more involved.

To start, we need to find a model class F with the property
that any model in the class is non-decreasing in terms of the
modes of the Beta distributions output by the model. (Recall
that this property is desirable because we do not want the robot
to ever predict that practicing a skill will cause that skill to get
worse; that skill would never be practiced.) We use two ideas
to satisfy this property. First, rather than having our model
output the Beta distribution parameters (o and () directly, we
output the mode and variance and then use those to derive the
parameters. Second, for predicting the mode, we pick a model
class that is non-decreasing (and bounded between 0 and 1). In
our preliminary experiments, we used the exponential function

fo(m) = o + (61 — ¢o)(1 — exp (—pam))
Where ¢ = [¢07¢17¢2]7 0 S ¢O S 17¢0 S (bl S 19 and



¢2 > 0. Note that f,(0) = ¢o, lim,, 00 fs(m) = @1, and ¢
controls the rate of increase.

To fit the model, we minimize a loss function L(¢) =
> Ls(é;) where ¢; is the MAP competence for cycle ¢ and
¢4 :0,1] — R is the negative log likelihood under f,. Many
techniques are possible to find ¢* = argmin,, L(¢), especially
since ¢ is only three-dimensional. In preliminary experiments,
we used scipy.optimize. The results of five iterations
of EM on illustrative examples are shown in Figure 6. The
performance is good in these examples, but EM is less stable
in more realistic cases, which motivates the next method.

Approach 2: Simple Sliding Window. For the experiments
in the main paper, we use a much simpler competence model
that looks at the recent history of changes in competence
and optimistically predicts that the best previous increase
in competence between learning cycles will be repeated on
subsequent cycles. Concretely, fs(m+ 1) outputs a Beta with
mode &, +MaXy, —w<i,j<m (¢ — ¢;), with clipping to enforce
fo(m+1) <1, where w = 2 is the window size. (The variance
of the Beta distribution is not used during extrapolation.) This
approach is quite naive, especially considering that the number
of data in each learning cycle is not directly taken into account.
Nonetheless, the approach worked well in experiments.

C. Learning Parameter Policy Details

Recall from Section III-C that we learn an energy function
E, : X x A — Ry for each skill given a dataset of skill
executions (including continuous parameters ¢) and success
or failure of the J, check: D, = {((zt,at), Ju(xts1))
a; uses skill u}. We do this by training a two-layer Multi-
Layer Perceptron (MLP) with hidden layers of size 32,32
with Binary Cross Entropy (BCE) loss. We use the Adam [31]
optimizer with a learning rate of 10~2 for 10000 iterations, or
until 5000 iterations have passed without any loss change.

As mentioned in the main text, we (1) share weights
between skills with the same “parent” and (2) we construct a
low-dimensional feature space to facilitate rapid learning. To
accomplish (1), we include object IDs in the low-level features
and train one neural network per parent. For example, for
Place, we include features like [0, 1] and [0, 2] to distinguish
Place (ball, table, o) fromPlace (ball, floor, o)),
where 0 is the ID for ball, etc. For the rest of the features
(2), we default to including the complete set of features for
all objects that are included in the skill object parameters.
For certain skills that we know to be important for our
experiments, we design the feature spaces more carefully:

¢ In Ball-Ring, for Place (ring, table, o), we include
(1) the table size; (2) the x position of the rough patch; (3)
the y position of the rough patch; (4) the size of the rough
patch; (5) the x position of the table; (6) the y position
of the table; and (7) the 2D continuous skill parameters
themselves, which represent a relative placement on the
table.

o In Cleanup Playroom, for all Sweep skills, we include
the x and y positions of the object being swept, the x
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Fig. 6: Fitting competence models with EM. For the competence
models, solid lines are modes are dashed lines are variances.

and y position of the bin, and the 1D continuous skill
parameter, which represents a sweeping velocity.
¢ For all Drop skills in Cleanup Playroom, we use the 2D
parameters alone, which represent a xy position for the
gripper relative to the container before the gripper opens.
o For all Pick skills in the simulated version of Cleanup
Playroom, we use the 2D continuous skill parameters



alone, which represent a pixel in a canonical view of the
object being picked. See Appendix F for further context.

D. Real Robot System Implementation Details

In this section, we provide system details for our real-
robot experiments. Recall that our model of the world (Sec-
tion II-A) comprises object-centric states and parameterized
actions. To actualize this model, we need a perception system
that constructs object-centric states from sensors and skills
that can be executed on the robot. All real-robot experiments
use the Boston Dynamics Spot robot with an arm; see https:
//bostondynamics.com/products/spot/ for specifications.

1) Real-Robot Perception System: Our perception system
has three major components: (1) localization, (2) object de-
tection; and (3) lost object search.

Localization. To implement all our movement skills in a
consistent manner that persists between runs, we assume the
robot has access to a pre-defined map of its environment. We
construct this map by leveraging the Simultaneous Localiza-
tion and Mapping (SLAM) stack that is part of the Boston Dy-
namics Spot SDK (see https://dev.bostondynamics.com/docs/
concepts/autonomy/graphnav_map_structure). This currently
requires placing a number of fiducials around the environment.
Given a pre-defined map (which defines a coordinate system
centered at the point where the map recording was begun),
we implement a localize () method that gives us the
current location of the robot within the map. We leverage
this functionality not only for movement (discussed in the
skills subsection below), but also to compute the positions
of objects we see in the world, since they are detected relative
to the robot’s cameras (discussed in the object detection
subsection below). The position of the robot itself is also
added to the object-centric state. Within the map, we also
define the boundaries of all “allowed” regions where the
robot can navigate to (disallowed regions include obstacles not
captured during mapping such as clear glass walls, etc.). When
navigating, we only allow the robot to move to a position that
is within the convex hull of points that define the periphery of
an allowed region. Additionally, if we detect an object to not
be inside an allowed region, we automatically consider that
detection invalid and throw it away.

Object Detection. The Spot robot collects RGBD images
from six perspectives: one in the hand, two on the front, one
on each side, and one on the back. We collect all six images
at each time step and then run object detection in each image.

To detect objects in an RGBD image, we use a combination
of Detic [68] and Segment Anything (SAM) [32]. See Figure 7
for a summary. Detic uses CLIP embeddings to identify object
bounding boxes in RGB images given natural language class
names (“prompts”). We experimented with a number of objects
and prompts to find a combination that would work reliably
in our setting, and even so, significant noise remains. See
Table IV for the final set of prompts used. For each bounding
box returned by Detic, we run SAM inside the bounding box
to get a mask for the object. The center of the bounding box
gives the zy position of the object in the camera frame. We

then compute the median depth value in the mask to get a
z value, and transform the full xzyz position into the world
frame using the known camera intrinsics and robot pose from
localization. The rotation of the object is not detected. Known
object features (such as object size, whether it is movable,
etc.) are added to the zyz position features. Static objects (e.g.,
tables) are added to the state automatically, rather than visually
detected, for simplicity. As a method for object detection, this
overall approach has a number of limitations (see “failure
modes” below). However, one advantage is that it is fast—
about 0.25 seconds overall—which is important since we are
running it at every time step between skill executions.

When the same object is detected in multiple cameras at
the same time step, we use the detection with the highest
confidence score returned by Detic. Object detections are
aggregated over time: whenever an object is detected, the
previous detection is overwritten. More sophisticated state es-
timation strategies are possible. To initialize object detections
at the very beginning of online learning, the robot navigates
to a fixed home pose, raises its arm to get a top-down view,
and rotates in place, collecting images and detecting objects
until all known objects have been seen.

Lost Object Search. We assume that all objects can be found
in the initial scene by the simple rotate-in-place procedure
described above, and that objects are not removed from the
scene while the robot is running. Even so, objects can become
lost, and it is important for both learning and planning that
the robot can find them. A principled approach for object
search under partial observability is outside the scope of this
paper. Instead, we use the following domain-specific logic.
First, when a pick skill is executed, if the robot’s gripper is
subsequently open beyond a threshold value, then we assume
that the target object was successfully grasped and we update
a corresponding held feature in the object-centric state. Then,
if a place or drop skill is executed, and if the held object can
be subsequently seen, the held feature is updated accordingly.
If a pick skill is executed and the gripper is subsequently
closed, or if a place/drop skill is executed and the object
is not subsequently seen, the object is declared lost. When
an object is lost, the robot executes a special find objects
procedure. This procedure starts by executing a series of fixed
move-and-look actions and then begins to randomly sample
move-and-look actions until the lost object is seen. In rare
cases where more than 10 move-and-look actions are executed
and the object is still not found, we manually take control
of the robot and point it to look at the lost object. The find
objects procedure is executed externally from the approach;
the transitions collected are not used for learning.

2) Real-Robot Skills: We implement skills for the Spot
robot on top of the Boston Dynamics SDK (https://dev.
bostondynamics.com/). All skills are listed in Appendix F
and implementations are given in the code accompanying the
paper. (see http://ees.csail.mit.edu). We discuss two types of
skills here—move and pick—and refer to the code for others.

Move skills. The Spot SDK provides functionality for mov-
ing the robot base to a relative SE(2) pose. Collisions are
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RGBD

(On-Robot Cameras)

Detic
(Zhou et al.2022)

(Kirillov et al. 2023)

SAM Object-Centric State

(MDP State Space)

Brush

id type X y z
brush movable 7.44 5.25 0.32

id type X y z
cartoy | movable 6.85 5.31 0.31

id type X y z
bin container | 6.52 5.40 0.33

id type X y z
balltoy | movable 5.44 5.61 121

id type X y z
chair movable 5.39 4.98 0.55

Fig. 7: Overview of perception pipeline. We take RGBD images from Spot’s cameras and then use Detic [68] and SAM [32] to construct

an object-centric state. See text for details.

Environment Object Prompt

small white ball /
ping-pong ball /
snowball /
cotton ball /
white button

Ball-Ring ball

yellow hoop toy /

Ball-Ring yellow donut

ring

white plastic container with black handles /
white plastic tray with black handles /
white plastic bowl /
white storage bin with black handles

Cleanup Playroom bin

small orange basketball /

Cleanup Playroom small orange

ball toy

small white ambulance toy /
car_(automobile) toy /
egg

Cleanup Playroom car toy

black coffee table /

Cleanup Playroom bench

platform

Cleanup Playroom chair chair

scrubbing brush /
hammer /
mop /
giant white toothbrush

Cleanup Playroom brush

TABLE IV: Detic prompts. The backslashes are included in the
prompt; each row entry represents a single prompt.

anticipated and a certain amount of local navigation around
obstacles is handled automatically. Because of this, and be-
cause our environments are relatively free of obstacles, we
do not require full-fledged motion planning. However, we do
need to sample collision-free target positions to implement the

parameterized move skills. For example, the parameter prior
for MoveTo skills samples a distance and an angle relative to
a target object; only collision-free poses should be sampled.
We perform conservative collision checking in SE(2) using the
known robot and object dimensions.

Pick skills. The Spot SDK provides functionality for grasp-
ing at a pixel in the hand camera image. Rotation constraints
on the gripper can also be enforced. By default, our Pick
skills select a random pixel in the target object mask returned
by Detic/SAM, with no rotation constraints enforced. How-
ever, for certain objects, we implement specific grasp pixel
selection logic. In principle, such logic could be learned, but
doing so would require learning over images, which we do
not consider in this work. Note that we do learn nontrivial
parameter policies for grasping in the simulation experiments;
see Appendix F. As an example of object-specific grasp selec-
tion, for the brush in Cleanup Playroom, we do the following:
(1) Detect the largest connected component of blue pixels in
the image (i.e., the center of the brush handle); (2) Choose
the center pixel of that connected component for grasping; (3)
Find the head of the brush with respect to the center of the
pixel and set the rotation constraint so that the head is to the
right of the gripper. The logic for other objects is typically less
involved; see the accompanying code (http://ees.csail.mit.edu).

3) Real-Robot Limitations and Failure Modes: Computer
vision, robot skill policies, and robot hardware are all con-
tinuing to improve, and the methods proposed in this paper
will continue to be applicable as they do. However, the stack
we implemented has several limitations. In this section, we
mention a few of those limitations and note how we worked
around them for the purpose of running our experiments.

Selecting objects for Cleanup Playroom. We selected the
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ball and car toys used in the Cleanup Playroom environment
after considering multiple constraints. The objects need to
be small enough for the robot to grasp, large enough that
a successful grasp can be distinguished from a fully-closed
gripper, light enough for the robot to lift and sweep, heavy
enough that they won’t always bounce out of the bin when
swept, and visually distinct enough that Detic can reliably find
them (on the table, on the floor, in the bin, etc.).

Selecting (short) tables and bins. The tables and bins used
in both real-robot environments are notably low to the ground.
This is because the robot needs to see objects on top of
the tables and inside the bins. In earlier versions of our
environments, we included “look from above” actions at the
end of certain skills, like placing objects on tables, by moving
the robot’s hand high up and looking down. But this is not
possible in the Cleanup Playroom environment, where the
robot is holding the brush after sweeping into the bin. Another
workaround would be to place cameras or other sensors in the
external environment, but we were committed to working with
Spot’s on-board sensors alone.

3D printed parts and adding wheels to drag objects. The
blue component on the brush in Cleanup Playroom is a part
that we 3D printed and added on. Without that part, the robot
was not able to consistently grasp the brush from the floor
and prepare to sweep without the brush slipping in-hand.
The grey ‘blocker’ pieces at the bottom left of the table in
our Ball-Ring environment are 3D printed parts intended to
prevent the ring from sliding off the left side of the table
despite being correctly placed there. Additionally, the platform
and chair in the Cleanup Playroom environment could not be
reliably dragged without attaching specific ball-bearing wheels
to their legs. These were specifically selected and attached to
the objects with 3D printed parts.

Object detection failures. With Detic, we regularly en-
counter false positives (objects detected where they shouldn’t
be) and false negatives (objects not detected at all). We
deal with this by prompt hacking (Table IV) and discarding
detections with confidences below a threshold (0.4). Even
when objects are detected correctly, there is another issue
stemming from the fact that we do not assume known object
models and we are not doing true pose detection. Since we
use bounding box centers to define the xy position of the
object in the camera frame, and since our views of the objects
are constantly changing, the object’s reference frame is also
constantly changing. Surprisingly, this is often not an issue; the
skills we use in this work are largely robust to these variations.
But occasional failures can occur. For example, suppose that
the robot sees only the top of an object and assigns a z position
in the world frame that has the object floating above the floor.
The classifier for On (obj, floor) would subsequently
misfire, leading to initiation condition failures in skills like
Pick (obj, floor). In future work, we hope to integrate
full-fledged pose detection into our system, but note the need
for low latency and high accuracy.

E. Approach Details

In this section, we give implementation details for each of
the approaches used in the paper. The following details are
shared for all approaches. We alternate between task time, free
time, and learning. During task time, the approaches pursue
the given task goal until it is either achieved, or until Hyy
steps have been taken. These task horizons are Hey, = 27 (the
number of grid cells plus 2) for Light-Switch, 8 for Ball-Ring
(Simulated), 10 for Cleanup Playroom (Simulated), 15 for
Ball-Ring (Real), and 12 for Cleanup Playroom (Real). Free
time then lasts until a maximum number of steps is reached:
150 for Light Switch, 100 for Ball-Ring (Simulated), 125 for
Cleanup Playroom (Simulated), 20 for Ball-Ring (Real), and
50 for Cleanup Playroom (Real). For the epsilon-greedy policy
in skill practicing, we use € = 0.5. Learning details are given
in the main paper.

1) Planning-to-Practice Approaches: There are five ap-
proaches that plan to practice: EES (Ours), Fail Focus, Com-
petence Gradient, Skill Diversity, and Task-Relevant. These
approaches are identical except in their criteria for choosing
a skill to practice. EES and Task-Relevant call the planner
internally; EES uses the planner for the ‘“situate” step, and
Task-Relevant uses the planner to determine which skills are
relevant to previously seen tasks. Re-invoking the planner on
all previously seen tasks at each practice decision can be slow,
S0 we use two optimizations. First, we use only the 10 most
recently seen tasks. Second, we cache the last plan output for
each task and rerun the planner only once out of every 100
calls. Note that plans cannot be cached for all time because
the changing skill competences may change the maximum-
likelihood plans. More sophisticated caching strategies that use
the competence changes themselves are possible.

2) MAPLE-Q: MAPLE [45] requires three trained net-
works: (1) a rask policy network, (2) a parameter policy
network, and (3) a Q-network (Q, (z, u, #)). Here, x is an input
state, a is a parameterized skill, and 6 is a set of continuous
parameters to be input to a ground skill. The task network is
intended to select a skill u and the parameter policy network is
intended to select a continuous parameter vector 6 conditioned
on the ground skill v and the state x (similar to our skill
parameter policies). Together, these networks serve as an actor
that outputs a ground parameterized skill that can be executed
in the environment. The Q-network Q,(z,u,0) serves as a
critic that outputs Q-values given a state and skill.

Given our setting and main approach (EES), there are two
significant reasons why comparing against MAPLE directly is
unfair. Firstly, our approach can leverage symbolic operators
(specifically their preconditions) to discern states in which
particular skills are applicable, whereas the task policy in
MAPLE must learn this. And secondly, our approach has
access to parameter priors for each skill that can be used to
produce policy parameters 6, whereas the parameter policy
network in MAPLE does not.

We seek to remedy these by giving MAPLE access to
our symbolic operators and parameter priors, and doing away
with the task and policy networks. Specifically, given a state



x, we use our operators to determine which skills can be
executed from this state. For each of these skills, we sample ng
number of continuous parameter vectors from our parameter
prior. We then pass ny tuples of (x,u,6) per applicable skill
through the Q-network and choose the maximum. Intuitively,
the Q-network must not only implicitly learn good parameter
policies, but also how to sequence together skills given a goal
(i.e., learning how to plan).

More concretely, we train a Q-network that takes as input a
vector consisting of 4 smaller vectors concatenated together:
(1) a continuous vector of the features of all objects in the
current state (i.e., state ), (2) a one-hot vector corresponding
to the skill to be invoked from the current state, (3) a vector
of the continuous parameters ¢ to be passed to the skill
(potentially padded with zeros), (4) a one-hot vector corre-
sponding to the current goal being solved (for environments
with multiple possible goals). Given this input, the Q-network
predicts a Q-value. Similar to our other approaches, we train
the network with a batch size of 64 using the Adam optimizer
for 10000 iterations, with early stopping after 5000 iterations
of no change in the loss. We use epsilon-greedy exploration
during free-time, with epsilon set to 0.5, and at test time,
we sample 100 6 vectors from the parameter prior of each
skill applicable in the current state and run the skill with the
maximum Q-value from these.

F. Environment Details

In this section, we detail the environments used in our
experiments. Note that all skills listed below have discrete
object parameters (indicated by the ‘?”) as well as continuous
parameters 6 (shown within []). Thus, the total number of
skills is much larger than shown here, since these skills need
to be ground with the various objects in the environment. For
specific implementation details beyond what is presented here,
please see the accompanying code (http://ees.csail.mit.edu).

e Light Switch (Simulated): The main challenge in this

environment is for the robot to specialize its parameter
prior for the ToggleLight skill.

e Predicates: RobotInCell (?robot,
?cell), LightInCell (?1light, ?cell),
LightOn (?1light), Adjacent (?celll,
?2cell?2)

e Skills:

e MoveTo (?robot, ?celll, ?cell2):
Moves the robot between ?celll and ?cell2
provided the robot is currently in 2celll and
?cell2 is adjacent to it.

e ToggleLight (?robot, ?light,
[dlight]): Spins the light dial if the robot is
currently in the same cell as the light. If the ‘level’
feature of the light plus the d1ight continuous
parameter value yields the target value for the
light (which is a feature of the light), then the light
will turn on. The parameter prior for dlight is
simply a uniform distribution over [0, 27].

e JumpTolLight (?robot, 7?celll,

?cell2, ?cell3, ?2light): Tries to
have the agent ‘jump’ directly from 2celll to
?cell3 given cells 1, 2, and 3 are adjacent.
However, this skill is impossible and never
achieves its purported effect.

e Goal(s): Achieve LightOn(?light) given the

robot starts in the first cell.

e Ball-Ring (Simulated): Note that there is only one robot,
one ball and one ring, but 5 different tables, some of
which are slanted and others which are not. The main
challenges in this environment are for the robot to learn
that the competence of the Place (ball, table) skill
is very low for a slanted table and cannot be improved
(thus requiring it to switch its strategy for accomplishing
the goal), and for it to specialize the parameter prior for
the Place (ring, table) skill to place the ring on the
high-friction part of the table so it doesn’t slide down.

e Predicates: On (?0bj, ?surface),
Reachable (?robot, ?0bj), Inside(?0bj,
?container)

e Skills:

e Pick (?robot, ?obj, [x, y]):Picksupan
object if the robot is reachable to it and the robot’s
hand is currently empty. The pick will only succeed
if the [x, y] params fall somewhere on the object’s
surface. The parameter prior is designed to be
perfect, leading to 100% success at this action.

e PlaceOnTop (?robot, ?20obj, ?surface,
[x, y]): If the robot is holding ?2obj and
reachable to ?surface, this skill will place the
ball at the [x, y] parameters indicated. Note that it
is not possible to make the ball stay on any table
(it will always bounce/roll off). The parameter
prior is a uniform distribution over all locations
on ?surface.

e PlaceInside (?robot, ?20bij,
?container, [x, y]): Similar to the
above PlaceOnTop skill, but instead attempts to
place ?obj inside ?container. The parameter
prior is uniform over the inside surface of
?container, which yields success 100% of the
time when called from an applicable state.

e NavigateTo (?robot, ?0obj, [x, yl):
Moves the robot to the [x, y] parameters indicated,
unless they are in collision with some object. The
parameter prior is a uniform circle around ?obj
such that the radius of the circle is the maximum
distance at which the robot will be reachable to
the object.

e Goal(s): Achieve On (ball, tablel) for a partic-
ular tablel that happens to be slanted, which means
the only way to succeed is to place the ring on the table,
and then place the ball in the ring. The ball always
starts out atop one of the tables, while the ring is on
the floor. Table positions are randomized around the
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room.

e Real-World Domains and Cleanup Playroom (Simulated):
These environments all share a common set of predicates
and skills. We list these first, followed by the skills and
goals specific to each particular environment.

e Predicates: NotEqual (?0bj0, ?2obijl),
OnTop (?0bj0, 20bijl), Above (?0b7j0,
?0bjl), Inside (?0bj0, 2o0bjl),
FitsInsideXY (?0bj0, 20bjl),

HandEmpty (?robot), Holding (?robot,
?20b3j0), InHandView (?robot,
?20b3j0), Reachable (?robot,
?20b7j0), Blocking (?0obj0, Z?obijl),

IsPlaceable (?0bj0), IsSweeper (?20bj0),
HasFlatTopSurface (?0bj0),
PlatformInFrontOfSurface (?platform,
?surface), SurfaceTooHigh (?surface),
SurfaceNotTooHigh (?surface),
RobotOnPlatform (?robot)

o Skills:

e MoveToReachObject (?robot, ?0bjo0,
[dist, angle]): Moves the robot to a position
that is dist meters away and angle radians
from the center location of 20b 30 and is oriented
such that it is facing the center of the object.
The parameter prior is a uniform distribution over
distances between 0.1 and 0.8 meters, and angles
between 0 and 27 radians.

e MoveToViewObject (?robot, ?20bjo0,
?surface, [dist, angle]): Same as the
MoveToReachObject, except that it also moves
the robot’s hand such that it is gazing directly
at 2obj0. The parameter prior is also set to
be uniform in distances between 1.1 and 1.3m
(further away than MoveToReachObject) so
the hand camera gets a clear view of the whole
object.

e PickObjectFromTop (?robot, ?0bjo0,
?surface, [px, py, dX, 9y, dz,
gw]): If 20b 70 is not too-high up for the robot
to reach, this skill tries to pick it up by grasping at
the pixel location [px, py] in the image taken from
the hand camera prior to grasping and with the
arm oriented according to the quaternion [gx,
qy, gz, gw]. For most objects, the parameter
prior is uniform over all pixels in the object
mask, and there is no constraint places on the
quaternion (allowing the skill to grasp the object
in whatever orientation it chooses). For some
objects, such as the chair, the parameter prior is a
much narrower distribution (e.g. for the chair, px,
py are constrained to be a point at the top of the
chair back, and the quaternion is constrained to do
a top down grasp).

e PlaceObject (?robot, ?20bjo0,

?surface, [dx, dy, dz]): If the robot

Fig. 8: Visualization of grasping constraints for Simulated
Cleanup Playroom environment. The top-down profile of the brush
object is shown in pink, while the allowed region for grasping is
shown in blue. If the robot attempts to grasp the object outside the
allowed region, the grasp will fail.

is currently holding an object, moves the hand
to [dx, dy, dz] from the object’s top-most
center point and opens the gripper. This generally
leads to a very high success rate for placing
objects.

e PickAndDumpContainer (?robot,
?container, ?surface, ?o0bj, [px,
Py, 9x, qy, 49z, dwl): Similar to
the PickObjectFromTop, but picks up
?container that contains ?o0bj0, and then
tries to dump ?20bjO so it falls onto the floor
before putting ?container back where it was
picked from.

e Real-World Ball-Ring: The main challenges of this envi-
ronment are identical to the simulated variant. Given that
this is implemented with real perception and control, there
is also non-trivial noise to be dealt with. Note that all skills
used here are listed in the above entry.

e Goal: Achieve BallOnTable (?ball, tablel)
where tablel is the slanted table in the room. Unlike
the simulated version, there is only one table, and it is
slanted, with about 40% of the left side covered with a
high-friction material such that the ring will stay there
if placed, and the remainder left smooth so that the
ring will slide down immediately.

e Cleanup Playroom (Simulated): The main challenges in
this environment are specializing the parameter prior to
correctly learn to grasp the brush (and other objects)
in their allowed regions (see Figure 8), and learning to
specialize the parameter prior for the velocity to use to
sweep objects successfully from various positions atop a
table into a bucket.

o Skills (in addition to those in the entry on ‘Real-World
Domains and Cleanup Playroom (Simulated)®):
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Fig. 9: Ablation Experiment Results. Percentage of evaluation tasks solved vs. number of online transitions collected for our EES approach
in simulated environments under two ablations. The “No Feature Eng.” baseline ablates all implemented feature engineering (note that there
was no feature engineering for the original Light Switch environment results). The “No Weight Sharing” baseline ablates neural network
weight sharing. Solid lines represent means and shading represents standard error across 10 seeds.

e DragToUnblockObject (?robot,
?blocker, ?blocked, [dx, dy,
dyaw] ) : if the robot is grasping ?blocked and
?blocked is also being blocked by ?blocked,
then this skill will move ?blocker to unblock
?blocked. This is accomplished by moving
the robot by dx, dy in the x and y directions
respectively before rotating by dyaw. The
parameter prior is set to simply always rotate by
a specific amount, since this is often enough to
unblock objects in our environment.

e DragToBlockObject (?robot,

?blocker, ?blocked, [dx, dy,
dyaw]): Does the exact opposite of the
DragToUnblockObject skill provided
the robot starts out having already grasped
?blocker.

e SweepIntoContainer (?robot,
?sweeper, ?0bj, 7?surface,
?container, [velocity]): If the robot is

holding ?sweeper, is reachable to ?surface),
?container is ready for sweeping, and ?obj
is atop ?surface, then uses ?sweeper to
try to push ?targetl and ?target2 into
?container. The sweeping motion is performed
with velocity corresponding to the velocity
parameter. The parameter prior is a uniform
distribution over a range of velocities the robot
arm is capable of moving at.

e Goal(s): Achieve ObjectInsideContainer for
two different objects that begin atop the sole table
in the environment. We also experimented with only
having the goal mention one object, which drastically
changes the maximum likelihood task plan.

e Real-World Cleanup Playroom: The main difference be-
tween this environment and its simulated counterpart is that
the parameter priors already provide a very high success
rate for grasping the brush and other objects (since learning
a grasp sampler in the real world is prohibitively sample
inefficient). The main challenge is thus learning to special-

ize the parameter prior for sweeping real objects from the
table into the bucket. Given that this is implemented with
real perception and control, there is also non-trivial noise
to be dealt with.
e Skills (in addition to those from the simulated variant
of this environment):

e DragPlatformInFrontOfSurface (?robot,
?platform, ?surface): If the robot is
initially grasping ?platform, drags it such that
it is positioned in front of ?surface so that the
robot can stand atop it to pick up an object atop
?surface (which is too high for the robot to
ordinarily pick objects from).

e Goal: Achieve ObjectInsideContainer for two
different objects that begin atop the sole table in the
environment.

G. Additional Experiments

In order to investigate the impact of feature engineering
(Appendix Section C) and weight sharing among parameter
policy networks (Section III-C) on our approach, we ran addi-
tional experiments ablating each of these choices respectively.
The results are displayed in Figure 9.

As can be seen from Figure 9, weight sharing has a
negligible impact on performance in the simple Light-Switch
environment. In the more-complex Ball-Ring environment,
both weight sharing and feature engineering have a significant
impact. Our approach reaches only about 50% success rate
without each of these as compared to the 100% success rate
it achieves in the same number of steps with both of these
implemented. Finally, in the challenging ‘Cleanup Playroom’
environment, we find that both weight sharing and feature
engineering are critical to our approach’s performance. With-
out either of these, our approach is not able to meaningfully
improve success rate on test tasks even after 2000 steps.
These findings suggest that feature engineering and weight
sharing become increasingly critical to good performance as
the complexity of the task under consideration increases.
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