2403.10454v1 [cs.RO] 15 Mar 2024

arxiv

Partially Observable Task and Motion Planning with
Uncertainty and Risk Awareness

Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka,
Joshua Tenenbaum, Tomas Lozano-Pérez, Leslie Pack Kaelbling

MIT Computer Science and Artificial Intelligence Laboratory

{curtisa, gmatheos, nishadg, vkm, tlp, lpk}@mit.edu.

Abstract—Integrated task and motion planning (TAMP) has
proven to be a valuable approach to generalizable long-horizon
robotic manipulation and navigation problems. However, the
typical TAMP problem formulation assumes full observability
and deterministic action effects. These assumptions limit the
ability of the planner to gather information and make decisions
that are risk-aware. We propose a strategy for TAMP with
Uncertainty and Risk Awareness (TAMPURA) that is capable of
efficiently solving long-horizon planning problems with initial-
state and action outcome uncertainty, including problems that
require information gathering and avoiding undesirable and
irreversible outcomes. Our planner reasons under uncertainty at
both the abstract task level and continuous controller level. Given
a set of closed-loop goal-conditioned controllers operating in the
primitive action space and a description of their preconditions
and potential capabilities, we learn a high-level abstraction
that can be solved efficiently and then refined to continuous
actions for execution. We demonstrate our approach on several
robotics problems where uncertainty is a crucial factor and show
that reasoning under uncertainty in these problems outperforms
previously proposed determinized planning, direct search, and
reinforcement learning strategies. Lastly, we demonstrate our
planner on two real-world robotics problems using recent ad-
vancements in probabilistic perception.

I. INTRODUCTION

In an open-world setting, a robot’s knowledge of the en-
vironment and its dynamics is inherently limited. If the robot
believes it has full knowledge of the state and dynamics of the
world, it may confidently take actions that have potentially
catastrophic effects, and it will never have a reason to seek
out information. For these reasons, it is crucial for the robot
to know what it does not know and to make decisions with an
awareness of risk and uncertainty.

Advances in techniques like behavior cloning (BC) [1, 2],
reinforcement learning (RL) [3, 4], and model-based con-
trol [5, 6] have made it possible to develop robotic con-
trollers for short time-horizon manipulation tasks in partially
observable or stochastic domains. In situations matching a
narrow training distribution (BC), with dense reward and
short horizons (RL), or conforming to modeling assumptions,
these controllers can be quite robust. However, these methods
typically do not generalize to solving arbitrary complex goals
over long time horizons.

Simultaneously, recent advances in Task and Motion Plan-
ning (TAMP) have illustrated the viability of using planners
to sequence such controllers to robustly achieve tasks over
longer time horizons in large open-world settings [7, 8, 9]. In

Fig. 1: Top: Robot with wrist mounted camera looking for a
banana. The robot plans to take information gathering actions
based on a posterior estimate of the banana’s pose shown in
blue. Bottom: Robot with one wrist mounted camera and one
external camera plans to complete a long-horizon manipulation
task while avoiding a human in the workspace.

TAMP, the key to tractable planning over long time horizons is
to sequence short-horizon controllers, exploiting a description
of the conditions in which each controller can be expected to
work, and of each controller’s effects. However, most TAMP
formulations assume that these symbolic descriptions perfectly
and deterministically characterize the effects of running the
controllers. In real robotics settings, stochasticity and partial
observability make it impossible to exactly predict the effects
of controllers. Furthermore, it is typically impossible to obtain
exact symbolic descriptions that fully capture the effects and
preconditions of each controller.

This paper shows how to extend TAMP to settings with par-
tial observability, uncertainty, and imperfect symbolic descrip-
tions of controllers. Our approach, TAMPURA, is to exploit a
coarse model of each controller’s preconditions and effects to
rapidly solve deterministic, symbolic planning problems that
guide the construction of a non-deterministic Markov Decision

Place all the fruits in a bowl Stack all the orange blocks

o

:

=

] *' - -

(a) Class uncertainty (b) Pose uncertainty

Find and pick up the die

(c) Partial observability

Shoot the puck to score Move all the yellow blocks

three points to the goal
OQ
[} ’ .
Q
@ Q@
Q3
®
=] e o
= °

(d) Physical uncertainty (e) SLAM uncertainty

Fig. 2: This figure illustrates five long-horizon planning tasks that TAMPURA is capable of solving. Each of them contains a
unique type of uncertainty including uncertainty in (a) classsification, (b) pose due to noisy sensors or (c) partial observability,
(d) physical properties such as friction or mass, and (e) localization/mapping due to odometry errors

Process (MDP) with only a small number of actions applicable
from each state (Figure 3). This smaller model captures the
key tradeoffs between utility, risk, and information-gathering
in the original planning problem. The resulting MDP is
sparse enough that high-quality uncertainty-aware solvers like
LAO* [10] can be applied. The guidance used to distill this
small MDP comes in the form of symbolic descriptions of the
preconditions, and the uncertain but possible effects, of each
controller. The MDP is constructed by learning the probability
distribution over these possible effects for each controller,
refining coarse and imperfect descriptions into transition dis-
tributions which can be used for uncertainty and risk-aware
planning. In this paper, we use controller descriptions provided
by engineers; in Section VIII, we comment on how future work
could enable such descriptions to be learned or generated with
large language models, following [11] or [12].

We demonstrate the applicability of TAMPURA in a wide
range of simulated problems (Figure 2), and show how it
can be applied to two real-world robotics tasks: searching
a cluttered environment to find objects, and operating safely
with an unpredictable human in the workspace (Figure 1).
We show that in tasks requiring risk sensitivity, information
gathering, and robustness to uncertainty, TAMPURA signifi-
cantly outperforms reinforcement learning, Monte Carlo tree
search, and determinized belief-space planners, even when
these algorithms are all given access to the same controllers.

II. RELATED WORK

Planning under environment uncertainty and partial ob-
servability is a longstanding problem with a diversity of
approaches. While exact methods are typically only suited
for small discrete problems, approximate methods [13, 14]
have shown that online planning with frequent replanning can
work well for many non-deterministic, partially observable
domains with large state and observation spaces. These meth-
ods directly search within a primitive action space and are
guided by reward feedback from the environment. However,
in the absence of dense reward feedback, the computational
complexity of these methods scales exponentially with the
planning horizon, action space, and observation space.

Task and motion planning refers to a family of methods
that solve long-horizon problems with sparse reward through
temporal abstraction, factored action models, and primitive
controller design [15, 16, 7]. While most TAMP solutions
assume deterministic transition dynamics and full observ-
ability, several approaches have extended the framework to
handle stochastic environments or partial observability. Some
TAMP solvers remove the assumption of deterministic en-
vironments [17, 18, 11]. While these approaches can find
contingent task and motion plans [17] or use probabilities
to find likely successful open-loop plans [11], they operate
in state space and assume prior information about transition
probabilities in the form of hardcoded probability values [17],
or demonstration data in the form of example plans [11]. In
contrast, our proposed approach learns belief-space transition
probabilities through exploration during planning.

Another family of TAMP solvers plan in belief space [19,
20, 21, 18], allowing them to plan to gather necessary infor-
mation, even in long-horizon contexts. Some approaches, such
as IBSP and BHPN do forward or backward search in the
continuous belief space, respectively [21, 20]. SSReplan [19]
embeds the belief into the high-level symbolic model. While
these approaches to TAMP in belief space have their tradeoffs,
all of them perform some form of determinization when
planning. Determinization allows the planner to only consider
one possible effect of an action, which inherently limits its
ability to be risk-aware, incorporate action cost metrics, and
perform well under large observational branching factors.

To our knowledge, there exists one other belief space TAMP
planner that does not determinize the transition dynamics
during planning [18]. However, this approach focuses on
contingent planning, where there are no probabilities asso-
ciated with nondeterministic outcomes. In our experiments,
we compare to many of these approaches to show the power
of stochastic belief-space planning with learned action effect
probabilities.

III. BACKGROUND

POMDPs. One way to formulate many sequential decision
problems involving uncertainty is as Partially Observable

(a) Deterministic Planning

(b) Model Learning

Controller 1

(c) Probabilistic Planning

Controller 2

0.1 0.1

[
(2]
2 > . w CY ()
% \ T~ Unif Q1 Q2 .| @3 (Q')_' @2 Qs
9 ;o ~ K Qs —> Qs — Qs
£ J A0 N\ bor
g : E Q4\‘ Qs\&(@s l\' Qs
pes - >) . A
thn‘ |] | | by \ /lt ﬁ v
£ S B 7 L Rl LAO*
g | by - P
s | Q7 Qs * Q9
2 v
g,
[—
B : ‘ ; T > > ¥
o | | x bT

— L !

Bayes Optimistic SDAC

Fig. 3: Uncertainty and Risk Aware Task and Motion Planning. (a) The robot’s continuous space of probabilistic beliefs about
world state is partitioned into a discrete abstract belief space, here with 9 states. TAMPURA considers a set of operators,
each containing a low-level robot controller, and a description of the possible effects of executing the controller. Determinized
planning computes possible sequences of controllers to reach the goal. These plans do not factor in uncertainty or risk and
would be unsafe or inefficient to execute in the real world. (b) The determinized plans are executed in a mental simulation.
The distribution of effects is recorded, to learn an MDP on the space of abstract belief states visited in these executions.
By iterating between determinized planning and plan simulation (Sec. V-C), TAMPURA learns a sparse MDP related to the
original decision problem. (c) The robot calculates an uncertainty and risk aware plan in the sparse MDP, and executes it.

Markov Decision Processes (POMDPs). A POMDP is a tuple
M = (§,0,AT,Z,rby7y). S,0, and A are the state,
observation, and action spaces. The state transition and obser-
vation probabilities are T (si41 | s¢,a¢) and Z(o; | s¢), and
by is a probability distribution on S giving the distribution of
possible initial states. The reward function is (s, at, St+1),
and v is a discount factor quantifying the trade-off between
immediate and future rewards.

Belief-State MDPs. From any POMDP, one can derive the
continuous belief-space MDP M, = (B, A, Ty, 1, bo, v) [22].
The state space of this MDP is B, the space of probability
distributions over S, or belief states. The initial belief state
is bg € B, describing the robot’s belief before any actions
have been taken or any observations have been received. The
reward 7, is derived from r; 7 is unchanged. The transition
distribution Ty (b1 | b, a¢) is the probability that after being
in belief state b; and taking action a;, the robot will receive
an observation causing it to update its belief to by 1.

Belief updates and probabilistic inference. As TAMPURA
plans in a belief-space MDP, it must keep track of the
robot’s current belief state. This requires access to a function
BeliefUpdate(b,a,0) which updates belief b € B about
the world state, in light of having taken action a and received
observation o. However, computing the belief updates exactly
is intractable in many problems. Fortunately, in cases where
exact belief updates cannot be computed, it can suffice to
compute approximate belief states using approximate Bayesian
inference methods like particle filtering, or more generally,
sequential Monte Carlo [23, 24]. Further, recent advances in

probabilistic programming [25, 26, 27, 28] and its application
to 3D perception [29, 30, 31] have made it practical to generate
belief distributions over latent states describing the poses of
3D objects, their contact relationships, and to update these
beliefs in light of new RGB-Depth images of a 3D scene. In
our real-world robotic experiments, probabilistic perception is
performed using Bayes3D [29].

The Belief-State Controller MDP. When the action space
A represents primitive controls to the robot such as joint
torques or end-effector velocity commands, the time horizons
to perform meaningful tasks can be enormous, rendering
planning intractable. To mitigate this, we introduce the concept
of a belief-space controller, which takes the current belief as
input instead of the state and executes in closed-loop fashion
over extended time horizons. For example, in our 2D SLAM
task modeling a mobile robot moving with pose uncertainty,
our “move to point X controller has access not only to a
point estimate of the robot’s pose, but to a full distribution
over possible robot poses. The controller selects actions that
would not result in collisions under any possible poses in the
support of this distribution, sometimes ruling out unsafe low-
level actions that would seem safe and more efficient given
only the most likely pose of the robot. Learning belief-state
controllers (rather than engineering them, as we did in this
paper), is an important direction for future work.

Given a set of learned or designed belief-space con-
trollers, the primitive belief-space MDP can be lifted to a
temporally abstracted belief-space controller MDP M, =
(B,C,Te, e, e)- The action space of this MDP is the space of

controllers, and the transition model T.(bs41 | b, c) gives the
probability that if controller ¢ € C is executed beginning in
state b, after it finishes executing, the belief state will be by 1.
This paper considers the problem of planning in this belief-
state controller MDP, to enable a robot to determine which
low-level controllers to execute at each moment.

In this paper, we focus on planning problems with objectives
modeled as goals in belief space (e.g., the goal may be to
believe that with high probability the world is in a desired set
of states.) Specifically, we consider the case where the reward
is a binary function stating whether each belief state is a goal
state: r. : B — {0, 1}. We also model episodes as terminating
at the first moment a goal belief state is achieved. This restricts
the controller-level MDP under consideration to a belief-space
stochastic shortest paths problem (BSSP).

IV. PLANNING WITH AN ABSTRACT BELIEF-STATE MDP

Direct search in M, is intractable in many problems due to
the large branching factors in the action space and continuous
belief outcomes. To make the problem tractable, TAMPURA
applies a series of reductions to M., ultimately producing a
sparse abstract MDP M that can be solved efficiently with a
probabilistic planner (Figure 3).

The reduction from M, to M, is performed in several
steps. First, we perform belief-state abstraction, lifting from
an MDP on B to an abstract MDP on B, which is a partition
of B that groups operationally similar beliefs (Section IV-B).

Second, we leverage symbolic information describing the
preconditions and possible but uncertain effects of each con-
troller ¢ € C (Section IV-C) to construct a determinized short-
est path problem on the abstract belief space. Determinized
planning in abstract belief space with controller descriptions
is now tractable, but the resulting plans are not risk-aware
due to determinization. In addition, the resulting plans may be
overly optimistic because they are untethered from geometric
and physical constraints. For example, picking an object may
fail because the object is unreachable, but this is not initially
expressed in the preconditions of a picking controller as it is a
complex function of an object pose and robot kinematics not
fully expressible in lifted symbolic form.

Third, we approximately learn the transition model 7 on B,
using the efficient determinized planner to focus exploration on
the task-relevant parts of the abstract belief space (Section V).
The subset Bgpase < B of abstract belief states focused
on in model learning forms the state space of the sparse
abstract MDP; its transition model is the learned transition
probabilities, T, approximating the true 7. This sparse MDP
distills key tradeoffs about risk, information-gathering, and
outcome uncertainty from the original problem. It can be
solved with an SSP solver such as LAO¥*, resulting in a
risk and uncertainty aware policy in the abstract belief-state
MDP. The first action recommended by this policy is the next
controller to execute on the robot. The full TAMPURA robot
control loop is given in Algorithm 1.

Algorithm 1 TAMPURA Control Loop

Require: Planning problem: (7., O, 7., by)

Require: Model-learning hyperparameters: (I, K, J, «, 3)
1. s« (0,0) > Initialize state used by model learning.
2: Byparses T+« 0,0 > Initialize result of model learning.
3: while =G (by) do

4 if abs(by) ¢ Biparse then

5 args « (o, 8,1, K, J, by, G,0, s)

6: s, 7A', Bgparse ¢ Model-Learning(args)

7 > Solve the MDP with 7 and r, over Biparse

8 7+ LAO-Star(Bapuse, Ts7e)

9: > Get controller recommended by policy 7 in by.
10: ¢ < m(abs(bp))

11: (0,d) < Execute(c)

12: by < BeliefUpdate(by,0,d)

A. Belief state propositions

To apply TAMPURA in a controller-level MDP M., an
abstract belief space must be defined through the specification
of a set Wy of belief state propositions. Each ¢, € Up is a
boolean function v, : B — {0,1} of the robot’s belief. As
described in [20], belief propositions can be used to describe
comparative relationships (e.g. “the most likely category of
object o is category c”), statements about the probable values
of object properties (“the probability object o’s position is
within ¢ of & is greater than 1 — €”), and other statements
about the distribution over a value (e.g. “there exists some
position & such that object o is within § of & with probability
greater than 1 — €”

B. The abstract belief-state MDP

Given a particular belief b € B, evaluation under the
proposition set results in an abstract belief

abs(b) = {wb = lﬁb(b) Ty € \IJB}

which is a dictionary from each proposition to its value
in belief b. The abstract belief space is then defined as
B := {abs(b) : b € B}. Under a particular condition on this
set of propositions (Appendix F) which we assume to hold
in this paper ', we can derive from M, an abstract belief-
space MDP M. := (B,C, T, 7., bo, 7). The state space of this
MDP is the discrete abstract belief space B, rather than the
uncountably infinite belief space 5; transition probabilities on
B are given by 7. The initial state is by := abs(by). This
MDP with the previously mentioned restrictions on reward
and planning horizon is an abstract BSSP.

C. Operators with uncertain effects

These belief-space propositions give us a language to de-
scribe the preconditions and possible effects of executing
a controller. We call such descriptions operators op € Q.
Each operator is a tuple (Pre,Eff,UEff,UCond,c). Here,
Pre C Wp is the set of belief propositions that must hold for

ITAMPURA can be run when this condition does not hold and we expect
its performance to degrade gracefully in this case. See Appendix F for details.

a controller ¢ € C to be executed, Eff C Uy is the set of
effects that are guaranteed to hold after ¢ has been executed,
UEff C Up is the set of belief propositions that have an
unknown value after the completion of ¢, and UCond C Up
represents the set of propositions upon which the probability
distribution over the UEff may depend. (That is, given an
assignment to the propositions in UCond, there should be a
fixed distribution on UEf f, though this distribution need not
be known a priori.)

As a result of this additional structure, from any given ab-
stract belief space b € B, only a small number of operators can
be applied, as most operators will not have their preconditions
satisfied. Additionally, planners can exploit the knowledge that
after applying an operator from state b, the only reachable new
states are those which modify b by turning on the propositions
in Eff, and possibly turning on some propositions in UEff.
Such factorizations crucial for efficient long-horizon planning,
as they result in search trees with sparse branching factors.

D. Operator schemata

In our implementation, the set of operators and the set of
controllers are generated from a set of operator schemata. Each
operator schema describes an operation which can be applied
for any collection of entities with a given type signature, for
any assignment to a collection of continuous parameters the
controller needs as input. @ is the set of grounded, concrete
operators generated from an assignment of objects and con-
tinuous parameters to an operator schema. In Section V-C, we
explain how progressive widening can be used to gradually
expand the operator set O by adding instances of controllers
bound to new continuous parameters.

We introduce an extension to PDDL for specifying schemata
for controllers with uncertain effects. An example operator
schema written in this PDDL extension is shown below.
(:action pick

:parameters (2?0 - object ?g - grasp)
:precondition (and (BVPose ?0) (BHandFree))
:effects (and — (BVPose ?0))

:uconds (and (BClass 7?0 @glass))
:ueffects (maybe (Broken ?o0) (BGrasp ?o0 ?9g)))

For any entity o with type(o) = object, and any contin-
uous parameter g with type type(g) = grasp, this operator
schema yields a concrete operator pick, , € Q. As specified
in the :precondition, this operator can only be applied
from beliefs where the pose of o is known (BVPose ?0)
and the robot’s hand is believed to be free (BHandFree).
As specified in : ef fects, after running this, it is guaranteed
that there will not exist any pose p on the table s.t. the robot
believes o is at p with high probability. The :ueffects field
specifies two possible but not guaranteed effects. The overall
effect of this operator can be described as a probability dis-
tribution on the four possible joint outcomes. The :uconds
field specifies that this probability distribution will be different
when o is believed to be glass than when it is not. Such a
difference in outcome distributions may lead the planner to
inspect the class of an object before attempting to grasp it. Our

semantics are similar to those in PPDDL [32] and FOND [33],
but are agnostic to the exact outcome probabilities and ways
in which the conditions affect those probabilities.

V. LEARNING THE SPARSE ABSTRACT MDP

While the operator schemata are helpful for guiding plan-
ning, they lack outcomes probabilities that are crucial for
finding a kinematically and geometrically valid plan that is
safe and efficient. 2 For any controller ¢ and any abstract
belief state b, it is possible to learn the outcome distribu-
tion 7(- | b,c) by simulating executions of ¢ from belief
states consistent with b. However, obtaining estimates of these
probabilities is computationally expensive as it can involve
geometric calculations, perceptual queries, and simulations.
Naive strategies like learning transition probabilities for (b, c)
pairs sampled at random is highly inefficient (Figure 4, panel
2). Our solution is to leverage the symbolic structure and
specified goal to determine which outcome distributions to
learn for more efficient online model learning.

A. Solution-guided model learning

A seemingly natural strategy for goal-directed model learn-
ing is to first initialize 7 so that 7 (- | b, c) is uniform on the
set of symbolically possible abstract belief states b,.; specified
in the UEffs of the operator corresponding to controller c.
After solving the abstract belief state MDP derived from the
partially learned 7 to obtain a policy 7, we could simulate
7, producing a sequence of (bs,cy,bsy1) transitions. The
transitions could be used to update the transition probabilities
and construct a more accurate MDP in a process of iterative
improvement. The problem with this approach is that using the
maximum likelihood estimate of the transition probabilities to
guide exploration can converge to local optima, due to under-
exploring actions for which the initial experience pool is poor.
Workarounds like e-greedy exploration can alleviate this, but
are inefficient in problems with large action spaces as they
explore the locally feasible action space rather than focusing
on task-relevant actions (Figure 4, panel 5). For example, in a
setting where the robot must pick up a particular object, local
exploration would experiment with picking unrelated objects.

B. Bayes optimistic model learning

Ideally, we would like our exploration strategy to be op-
timistic in the face of model uncertainty. One standard way
of implementing optimism in a planning framework is with
all-outcomes determinization [34], wherein the planner is
allowed to select the desired outcome of an action. This is
done by augmenting the MDP action space with the possible
action outcomes, resulting in a deterministic transition function
Tao : Bx (Ax B) — B.

This optimism leads to bad policies when useful outcomes
occur with low probability. To avoid this, cost weights J can

2Transition probabilities can capture geometric and kinematic constraints
that hard symbolic constraints do not rule out. For instance, a controller
pick, 4 may have (BGrasp 2o ?g) in its UEEfs, even for a grasp g
which is kinematically infeasible. This infeasibility will be captured once the
transition probabilities are learned: the outcome has probability 0.

Algorithm 2 TAMPURA Model Learning

Require: Parameters for Bayesian model learning prior: «, 3
Require: Parameters controlling runtime: I, K, S
Require: Planning problem: (by, G, Q)
Require: State from past iterations of model learning: s
1: if s = () then
2: N,D « Init({},default = 0)
3 Py + Init({abs(bg) : [bo]}, default = [])
4: else
5 (N,D,Pg) <+ s
6: for:=1,...,1 do > Main model learning loop.
7
8
9

(7%)K_, « Determinized-Planner(by, K, 0, N, D,)
7* « [(b, 0p, ') € concat(ry,...,7;) : Pglb] # 0]
: \I_}pre <+ [[b[¥)] : ¥ € op.UCond] : (b, op, b') € T¥]

10: e < [[V'[Y)] : ¢ € op.UEEES] : (b, 0p, V) € 7%

11: ¢ < [op.c: (b,op, V') € T¥]

122§« [Dla]: & € zip(Upee, &, Terr)])

13: f_‘<— IN[Wpre,c] =51 (Upre, ¢, 8) € zip(\I/Bre, é 8)]

14: H«+ [H(a+s,B8+f):(s,f)€zip(s, f)]

15: for j=1,...,5do > Controller simulation loop.

—

16: (b1, 0p, by) < pop(7*, argmax(H))

17: by ~ UDif(PB[Z_)l])

18: by < Simulate(by, op.c)

19: Pglabs(bs)] < Append(Pglabs(bs)], ba)
20: Wpre < [b1[1] : 9 € op.UCond]

21: Uest < [t(b2) : ¢ € op.UEEL]

22: N[Upe, 0p] ¢ N[¥pre, 0p] + 1

23: D[V pre, 0p, Yett] < D[Vpre, 0p, Yegt] + 1

24: 7/;, Bsparse — Complle(D7 N? ©)
25: return (N, D, Pg), 727 Biparse

be added to the actions such that selecting outcomes with
low probability is penalized. An optimal policy under the all-
outcomes determinized model is an optimal open loop plan
when cost weights are set to be —log(p) where p is the true
outcome probability [20]. We make use of both of these strate-
gies by initially collecting deterministic plans from a fully
optimistic transition model, simulating the optimistic plans to
gather transition data, and increasing the costs of outcomes as
we gain certainty about the true transition dynamics.

We model partial knowledge about each outcome probabil-
ity T(byy1 | by, c;) using a Beta(a, 3) distribution. (For our
prior we use o = 1, 8 = 1.) Given simulations of ¢; from be,
the updated posterior is Beta(a + s, 5 + f), where s is the
number of “successful” simulations which led to Btﬂ and f
is the number of other “failed” simulations.

To model optimism in the face of uncertainty, we set
outcome costs in all-outcomes determinized search according
to an upper confidence bound of the estimated probabilities.
Since outcome probabilities are drawn from a Beta distribu-
tion, we use a Bayesian-UCB [35] criterion where the upper
bound is defined by the v quantile of the posterior beta
distribution. This quantile decreases with respect to the total
number of samples across all sampled outcomes. As in any
UCB, the rate of this decrease is a hyperparameter, but a

common choice is ¥ = 1/i because it leads to sublinear growth
in risk and asymptotic optimality under Bernoulli distributed
rewards. At the 4th iteration of model learning, the Bayesian-
UCB criterion corresponds to using all-outcomes costs

1

J(Bt’ct’i)t"‘l) = log [FB‘_etla(oc-i-s,ﬂ-i-f)(l - ;)] (D

Here, F'~ ! is the inverse CDF of the Beta posterior. This ap-
proach to model learning explores in the space of symbolically
feasible goal directed policies, which is significantly more
efficient than random action selection in problems with large
action spaces and long horizons. Our experiments show that
this approach to model learning outperforms e-greedy even in
a domain with a relatively small action space (See Figure 4).

Note that although we use determinization to attain opti-
mism in model learning, we perform full probabilistic planning
on the learned model, making the resulting policy risk-aware.

C. The TAMPURA model-learning algorithm

In this section, we describe the details of the TAMPURA
model learning algorithm outlined in Algorithm 2.

For each task-relevant operator op € O, model learning
must learn a probability table which induces a distribution
over joint assignments to the propositions in op.UEffs,
given any joint assignment to the propositions in op.UConds.
Algorithm 2 writes ¥, to denote assignments to an operator’s
UConds and W for assignments to UEf £s. This probability
table is a compressed representation of 7 : for any symbolically
feasible transition (b, cs,bs11), the value of T (byyq | by, ct)
only depends on b; and b, through their assignments to the
propositions in UConds and UEffs respectively.

In the first model learning iteration, Algorithm 2 initializes
a count map N where N[V, c| is the number of times
model learning has simulated controller ¢ from a belief state
b consistent with UCond assignment W,.. It also initializes
map D where D[W ., ¢, Ueg] is the number of simulations in
which the belief state which arose after simulating ¢ induced
assignment W to the UEff propositions for the operator
corresponding to c. The algorithm also initializes an abstract
to concrete belief map Pp. (Lines 1-5.) Inside of a model
learning loop, the algorithm performs Bayes optimistic deter-
minized planning using the Fast Downward planner with state-
dependent action costs (SDAC [36]) derived from the partially
learned model according Equation 1. The resulting plans take
the form of a sequence of triples (b, op, b1 1) specifying that
controller op.c executed in abstract belief state b; transitions
to byy1 (Line 7). These triples are filtered to those where the
abstract belief has known corresponding concrete beliefs in Pg
(Line 8). A subset of the remaining triples are then chosen for
simulated outcome sampling; each chosen triple (by, op, bs) is
selected if the Beta distribution describing partial knowledge
about T (by | by, op.c) has maximal entropy H among the
available options (Line 14). After simulating op.c from some
belief state b; consistent with by, and producing concrete belief
state by, the algorithm computes the ¥, corresponding to by
and the Wy corresponding to by, and updates the counts in

Random Exploration

MDP Guided e =0

Bayesian Opt. (Ours) Normalized Reward

T 10y = 10 AN AN~
/ 08 ./ 0.8
° / Veaund
Vi 0.6 . W 0.6 oo v
 evom— o
A 0.4 /JJ/V R
/ 4 0.4 AT
AL ppar s
0.2 W{N:NJ\PWWW
0.2 o
0.0

0.00 0.25 0.50 0.75 1.00
p

MDP Guided £ =0.9
MDP Guided € =0.99

ﬁﬁﬁﬁﬁﬁ T E=E 1.0 2] 10
IR ER:EERE o8 ”» | ..
1T EEE EERE
~~~~~~ tit] it 0.6 0.6
trt -—=1t1t1 =11 <©~04 04—’"
PEEERERNE : :
=il dil KRN 0.2 02{ /
SN EEEE /
Pttt == = =11 007" 0.0
t 1 t

t

—— MDP Oracle MDP Guided € =1.0
---- WAO Oracle —— Bayes Opt. (Ours)

0.00 0.25 0.50 0.75 1.00

—— MDP Guided € =0.5

0.00 0.25 0.50 0.75 1.00
p p

0.0
00 02 04 06 08 L0
Num Trajectories 14

—— MDP Guided e=0.1 —— MDP Guided £=0.0

MDP Guided € =0.75 —— MDP Guided £ =0.25 —— MDP Guided £ =0.01

Fig. 4: Comparisons of model-learning strategies. The grid shows an example environment. Red intensity corresponds to pgeqth;
the optimal policy given pgeqtpn is indicated with arrows. Scatter plots compare the estimated to true transition probabilities,
for transitions used by the optimal solution. The graph on the right illustrates the reward from plans using the models learned
by the different methods. It plots normalized reward as a function of the number of training trajectories for the our method as
well as the MDP-guided method with a variety of values of epsilon. Our method quickly reaches near optimal performance,
surpassing the weighted all-outcomes determinized solution under ground truth outcome probabilities.

N and D (Lines 18-23). At the end of model learning, N
and D are compiled into a transition model 7 on the subset
Bsparse © B of abstract belief states reachable from by by
applying sequences of operators explored in model learning
(Line 24). See Appendix A for details.

D. Continuous parameters & UCond learning

Per Section IV-D, operators and controllers are often derived
by binding operator schemata to assignments of continuous
parameters such as grasps or pushing force vectors. The full
TAMPURA algorithm extends Algorithm 2 by using progres-
sive widening to gradually expand the operator set O with
controllers that have access to more continuous parameters.
See Appendix B for details. The full TAMPURA algorithm
also allows controllers to return new UConds to be added to
each operator, e.g. when the controller fails in simulation due
to the robot colliding with an object not currently referenced
in the UConds. See Appendix C for details.

VI. SIMULATED EXPERIMENTS & ANALYSIS

We applied TAMPURA to five simulated and two real-world
robotics problems, illustrated in Figure 2 and Figure 6. In
our simulated experiments, we compared the performance of
TAMPURA across this range of tasks to Monte Carlo tree
search and reinforcement learning baselines, as well as to
task and motion planning algorithms without efficient model-
learning and without uncertainty-aware planning (Table I).
This section provides a brief overview of the simulated en-
vironments and baselines, with more details in Appendix D
and E. All simulated robot experiments are performed in the
pybullet physics simulation [37]. Grasps are sampled using
the mesh-based EMA grasp sampler proposed in [7], inverse
kinematics and motion planning are performed with tools from
the pybullet planning library [38].

A. Tasks

The CLASS UNCERTAINTY (A) task requires a robot to
place all objects of a certain class in a bowl, despite noisy
classifications (as occur when using detectors like MaskR-
CNN [39]). The POSE UNCERTAINTY (B) task requires the
robot to stack objects with local pose uncertainty, as arises
when using standard pose estimation techniques from RGB-
Depth video. The PARTIAL OBSERVABILITY (C) task requires
the robot to find and pick up a hidden object in the scene.
The PHYSICAL UNCERTAINTY (D) requires the robot to hit
a puck with unknown friction parameters to a goal region.
The SLAM UNCERTAINTY (E-M) task is a 2D version of
a mobile manipulation task, in which a robot must bring
yellow blocks in the environment to a goal region, with
ego-pose uncertainty increasing over time, except when the
robot visits a blue localization beacon (similarly to mobile
robots using AR tags to localize). Manipulation-free SLAM
variant (E-MF) just requires the agent to move to a goal
region without interacting with blocks; this only requires 1-
2 controller executions and was used to verify correctness
of the baselines’ implementations. This suite of tasks tests
the planner’s competence in a range of scenarios, including
planning with risk awareness, planning to gather information,
learning about the success probabilities of object grasps.

B. Baselines

In our simulated experiments (Table I), we first compare
TAMPURA to reinforcement learning via deep Q networks
(DQN), and to Monte Carlo tree search (MCTS), illustrating
that on the long time horizon tasks TAMPURA can tackle,
these methods often fail to find plans which achieve any reward
at all. Because our approach relies on closed-loop belief-
space controllers, we are unable to fairly compare to point-
based POMDP solvers that plan in the state space [13, 14].
Instead we elect to compare to a variant of these planners that
performs the MCTS in belief space [40, 41]. We also compare



Model Learning Decision Making A B C D E-MF E-M

Bayes Optimistic =~ LAO* 0.87£0.01 0.66£0.07 0.63+£0.07 052+0.11 0.95+0.00 0.81+0.02
Bayes Optimistic =~ MLO 0.66 £0.09 0.65+0.07 0.27+0.10 0.29£0.10 095+0.00 0.41£0.09
Bayes Optimistic =~ WAO 0.78+0.06 0.70£0.07 0.32+0.10 0.24£0.09 095+0.00 0.56=+0.08
e-greedy LAO* 0.69£0.08 0.58+0.07 045+£0.10 042+0.10 093+0.00 0.74 +0.06
None LAO* 0.00+0.00 0.13£0.04 0.20+£0.09 0.34£0.09 0.95+0.00 0.00=£0.00
MCTS MCTS 0.00£0.00 0.00£0.00 0.04£0.05 0.24+£0.09 092+0.01 0.03+£0.03
DQN DQN 0.00+0.00 0.00£0.00 0.00+0.00 047 £0.09 0.55+0.10 0.00=£0.00

TABLE I: Average and standard error of discounted return (y = 0.98) for various model learning and decision-making strategies
on the tasks in Figure 2. Our TAMPURA algorithm is in the top row. We bold all scores within a 75% confidence interval
(N=20) of the top performing approach for each task. Solution times for each method and environment are reported in the
Appendix; all solvers were given comparable CPU time (20-200 seconds, depending on the task).

Fig. 5: TAMPURA moving cubes into a bowl without hitting a human in the workspace. Top row: images of robot execution.
Bottom row: the robot’s belief about object poses and the probabilistic occupancy grid describing the human in the workspace.

TAMPURA to TAMPURA ablations which also utilize sym-
bolic guidance to construct a sparse abstract MDP, but vary
the procedures used for model-learning and decision-making.
TAMPURA uses the proposed Bayes optimistic model learn-
ing strategy, and the LAO* [10] probabilistic planner to solve
the resulting BSSP problem. We compare to other decision-
making strategies commonly used in belief-space TAMP such
as weighted all outcomes (WAO) [19] and maximum like-
lihood observation (MLO) determinizations [20, 21]. Addi-
tionally, we compare to different model learning strategies
including epsilon-greedy exploration around the optimal MDP
solution and contingent planning [18], which corresponds
to performing no model learning and positing an effective
uniform distribution over possible observations.

Our experiments show that Bayes optimistic model learn-
ing with full probabilistic decision making is best of these
methods across this set of tasks. While determinized plan-
ning in belief space is sufficient for some domains like
Pose Uncertainty where most failures can be recov-
ered from and the observational branching factor is binary,
it performs poorly in domains with irreversible outcomes
and higher observational branching factors. Our experiments
verify that relative to Bayesian Optimistic model learning,
e-greedy frequently falls into local minima that it struggles
to escape through random exploration in the action space.
We observed that contingent planning frequently proposes
actions that are geometrically or kinematically implausible,
or inefficient because it does not consider the probabilities
associated with different belief-space outcomes. For example,

in the Partial Observability domain, we saw the
robot look behind and pick up objects with equal probability
rather than prioritizing large occluders. Finally, MCTS and
DQN performed poorly in most domains because they do
not use high-level symbolic planning to guide their search.
Without dense reward feedback, direct search in the action
space is not sample efficient. The exception to this (other than
SLAM-MF, used to verify our implementations’ correctness) is
Physical Uncertainty, where the time horizon is short,
with optimal plans only requiring 1-4 controller executions.

VII. REAL-WORLD IMPLEMENTATION

We implemented TAMPURA on a Franka robot arm to
solve two tasks involving partial observability and safety
with human interaction. Our robot experiments use Realsense
D415 RGB-D cameras with known intrinsics and extrinsics.
We use Bayes3D perception framework for probabilistic pose
inference [29]. In our experiments we used objects with
known mesh object models, but Bayes3D also supports few-
shot online learning of object models. See the supplementary
material for videos of successful completions under various
initializations of these tasks.

A. Searching for Objects in Clutter

This task is the real-world counterpart to the Partial
Observability simulated experiment. In this task, the
robot is equipped with a single RGBD camera mounted
to the gripper, and must find and pick up a small cube
hidden in the environment. This requires looking around the



environment, and potentially moving other objects out of the
way to make room to see and grasp the cube. Using Bayes3D’s
capacity to not only estimate poses of visible objects, but
represent full posterior distributions over the latent scene given
RGBD images, TAMPURA can characterize the probability
that an unseen object is hidden behind each visible object.
We experimented with various object sets and arrangements,
and observed qualitatively sensible plans. For instance, TAM-
PURA moved larger objects with a larger probability of hiding
the cube before moving smaller objects aside. The primary
failure modes were (1) failure in perception (due, we believe,
to improperly calibrated hard-coded camera poses), and (2)
issues with tension in the unmodelled cord connected to the
camera. Planning sometimes failed due to insufficient grasp
and camera perspective sampling, which could be resolved by
increasing maximum number of samples.

B. Safety in Human-Robot Interaction

In this task, several cubes and a bowl are placed on a
table. The robot’s task is to move these cubes into the bowl
without colliding with a human’s hand moving around in the
workspace. The robot’s belief states consist of a posterior
over static object poses returned by Bayes3D, and a prob-
abilistic 3D occupancy grid representing knowledge about
dynamic elements in the scene (namely, the human). We
update the occupancy belief probabilities over time as follows.
Let P(t,z,y, z) be the probability that the voxel at coordinates
(z,y,z) was occupied at time t. The updated probability
P(t+ At,z,y, z) at time ¢t + At is given by

P(t+ At 2y, 2) = P(t,z,y, 2) x (@A) )

where v is the decay rate constant, C' is the decay coefficient,
and At is the time step. At each time ¢, the current frame
of RGBD video was processed to obtain a point cloud, and
each voxel occupied by a point had its occupancy probability
reset to 1. A visualization of this grid can be seen in Figure 1.
Given the current probabilistic occupancy grid, generated from
point cloud data from RGB-Depth cameras, we approximate a
motion planning path with gripper interpolation and calculate
collision probabilities by integrating grid cell occupancy prob-
abilities along the trajectory. For details, see Appendix E2. The
resulting planner is able to make high-level decisions about
safety and human avoidance. The supplemental video contains
examples of the planner picking objects in an order that has
the lowest probability of collision and waiting for the human
to clear from the workspace before reaching for objects.

VIII. DISCUSSION

We presented the first task and motion planner capable of
efficiently reasoning about probability at both the task and
motion planning levels without planning under a determinized
model of the inherently stochastic belief space dynamics.
We demonstrated that resulting planner produces efficient
risk and uncertainty aware plans across a range of real and
simulated robotic tasks. Our approach enables long-horizon
robot planning without precise descriptions of the effects of

low-level controllers. While this paper primarily studies plan-
ning under user-provided belief-space controllers, controller
descriptions, probabilistic environment models, and belief up-
dating functionality, we believe extending this framework to
handle learned controllers and abstractions, as well learned
or partially learned probabilistic models and belief-updating
procedures, is an important direction for future research.

REFERENCES

[1] Angelos Filos, Panagiotis Tigas, Rowan McAllister,
Nicholas Rhinehart, Sergey Levine, and Yarin Gal. Can
autonomous vehicles identify, recover from, and adapt to
distribution shifts? CoRR, abs/2006.14911, 2020. URL
https://arxiv.org/abs/2006.14911.

[2] Daniel S. Brown, Scott Niekum, and Marek Petrik.
Bayesian robust optimization for imitation learning.
CoRR, abs/2007.12315, 2020. URL https://arxiv.org/abs/
2007.12315.

[3] Annie Xie, Shagun Sodhani, Chelsea Finn, Joelle Pineau,
and Amy Zhang. Robust policy learning over multiple
uncertainty sets, 2022.

[4] Jingda Wu, Zhiyu Huang, and Chen Lv. Uncertainty-
aware model-based reinforcement learning with appli-
cation to autonomous driving. CoRR, abs/2106.12194,
2021. URL https://arxiv.org/abs/2106.12194.

[5] Tao Pang, H. J. Terry Suh, Lujie Yang, and Russ Tedrake.
Global planning for contact-rich manipulation via local
smoothing of quasi-dynamic contact models, 2023.

[6] Florian Wirnshofer, Philipp S. Schmitt, Georg von
Wichert, and Wolfram Burgard. Controlling contact-
rich manipulation under partial observability. In
Robotics: Science and Systems, 2020. URL https://api.
semanticscholar.org/CorpusID:220069704.

[7] Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling,
Tomés Lozano-Pérez, and Caelan Reed Garrett. Long-
horizon manipulation of unknown objects via task and
motion planning with estimated affordances. CoRR,
abs/2108.04145, 2021. URL https://arxiv.org/abs/2108.
04145.

[8] Nishanth Kumar, Willie McClinton, Rohan Chitnis, Tom
Silver, Tomés Lozano-Pérez, and Leslie Pack Kaelbling.
Learning efficient abstract planning models that choose
what to predict, 2023.

[9] Zhutian Yang, Caelan Reed Garrett, Tomds Lozano-

Pérez, Leslie Kaelbling, and Dieter Fox. Sequence-based

plan feasibility prediction for efficient task and motion

planning, 2023.

Eric A. Hansen and Shlomo Zilberstein. Lao*: A

heuristic search algorithm that finds solutions with

loops. Artificial Intelligence, 129(1):35-62, 2001. ISSN

0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)

00106-0. URL https://www.sciencedirect.com/science/

article/pii/S0004370201001060.

Tom Silver, Rohan Chitnis, Joshua B. Tenenbaum,

Leslie Pack Kaelbling, and Tomas Lozano-Pérez. Learn-

ing symbolic operators for task and motion planning.


https://arxiv.org/abs/2006.14911
https://arxiv.org/abs/2007.12315
https://arxiv.org/abs/2007.12315
https://arxiv.org/abs/2106.12194
https://api.semanticscholar.org/CorpusID:220069704
https://api.semanticscholar.org/CorpusID:220069704
https://arxiv.org/abs/2108.04145
https://arxiv.org/abs/2108.04145
https://www.sciencedirect.com/science/article/pii/S0004370201001060
https://www.sciencedirect.com/science/article/pii/S0004370201001060

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

CoRR, abs/2103.00589, 2021. URL https://arxiv.org/abs/
2103.00589.

Lionel Wong, Gabriel Grand, Alexander K. Lew, Noah D.
Goodman, Vikash K. Mansinghka, Jacob Andreas, and
Joshua B. Tenenbaum. From word models to world mod-
els: Translating from natural language to the probabilistic
language of thought, 2023.

David Silver and Joel Veness. Monte-Carlo planning in
large POMDPs. In J. Lafferty, C. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems, volume 23.
Curran Associates, Inc., 2010.

Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee.
DESPOT: online POMDP planning with regularization.
CoRR, abs/1609.03250, 2016. URL http://arxiv.org/abs/
1609.03250.

Caelan Reed Garrett, Rohan Chitnis, Rachel M. Hol-
laday, Beomjoon Kim, Tom Silver, Leslie Pack Kael-
bling, and Tomds Lozano-Pérez. Integrated task and
motion planning. CoRR, abs/2010.01083, 2020. URL
https://arxiv.org/abs/2010.01083.

Caelan Reed Garrett, Tomds Lozano-Pérez, and
Leslie Pack Kaelbling. Stripstream: Integrating symbolic
planners and blackbox samplers. CoRR, abs/1802.08705,
2018. URL http://arxiv.org/abs/1802.08705.

Naman Shah and Siddharth Srivastava. Anytime in-
tegrated task and motion policies for stochastic envi-
ronments. CoRR, abs/1904.13006, 2019. URL http:
/larxiv.org/abs/1904.13006.

Aliakbar Akbari, Mohammed Diab, and Jan Rosell. Con-
tingent task and motion planning under uncertainty for
human-robot interactions. Applied Sciences, 10(5), 2020.
ISSN 2076-3417. doi: 10.3390/app10051665. URL
https://www.mdpi.com/2076-3417/10/5/1665.

Caelan Reed Garrett, Chris Paxton, Tomas Lozano-Pérez,
Leslie Pack Kaelbling, and Dieter Fox. Online replanning
in belief space for partially observable task and motion
problems. CoRR, abs/1911.04577, 2019. URL http://
arxiv.org/abs/1911.04577.

Leslie Kaelbling and Tomas Lozano-Perez. Integrated
task and motion planning in belief space. The Interna-
tional Journal of Robotics Research, 32:1194-1227, 08
2013. doi: 10.1177/0278364913484072.

Dylan Hadfield-Menell, Edward Groshev, Rohan Chitnis,
and Pieter Abbeel. Modular task and motion planning in
belief space. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4991—
4998, 2015. doi: 10.1109/IROS.2015.7354079.

Edward Sondik. The optimal control of partially observ-
able markov process over the infinite horizon: Discounted
costs. Operations Research, 26:282-304, 04 1978. doi:
10.1287/opre.26.2.282.

Nicolas Chopin, Omiros Papaspiliopoulos, et al. An intro-
duction to sequential Monte Carlo, volume 4. Springer,
2020.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox.

[29]

[31]

[32]

[34]

Probabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents). The MIT Press, 2005. ISBN
0262201623.

Marco F Cusumano-Towner, Feras A Saad, Alexander K
Lew, and Vikash K Mansinghka. Gen: a general-purpose
probabilistic programming system with programmable
inference. In Proceedings of the 40th acm sigplan
conference on programming language design and imple-
mentation, pages 221-236, 2019.

Alexander K Lew, Matin Ghavamizadeh, Martin C Ri-
nard, and Vikash K Mansinghka. Probabilistic program-
ming with stochastic probabilities. Proceedings of the
ACM on Programming Languages, 7(PLDI):1708-1732,
2023.

Alexander K Lew, George Matheos, Tan Zhi-Xuan,
Matin Ghavamizadeh, Nishad Gothoskar, Stuart Russell,
and Vikash K Mansinghka. Smcp3: Sequential monte
carlo with probabilistic program proposals. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 7061-7088. PMLR, 2023.

Marco Cusumano-Towner, Alexander K Lew, and
Vikash K Mansinghka. Automating involutive mcmc us-
ing probabilistic and differentiable programming. arXiv
preprint arXiv:2007.09871, 2020.

Nishad Gothoskar, Matin Ghavami, Eric Li, Aidan Cur-
tis, Michael Noseworthy, Karen Chung, Brian Patton,
William T. Freeman, Joshua B. Tenenbaum, Mirko
Klukas, and Vikash K. Mansinghka. Bayes3d: fast
learning and inference in structured generative models
of 3d objects and scenes, 2023.

Nishad Gothoskar, Marco Cusumano-Towner, Ben Zin-
berg, Matin Ghavamizadeh, Falk Pollok, Austin Garrett,
Josh Tenenbaum, Dan Gutfreund, and Vikash Mans-
inghka. 3dp3: 3d scene perception via probabilistic pro-
gramming. Advances in Neural Information Processing
Systems, 34:9600-9612, 2021.

Guangyao Zhou, Nishad Gothoskar, Lirui Wang,
Joshua B Tenenbaum, Dan Gutfreund, Miguel Lazaro-
Gredilla, Dileep George, and Vikash K Mansinghka.
3d neural embedding likelihood: Probabilistic inverse
graphics for robust 6d pose estimation. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 21625-21636, 2023.

Hakan L. S. Younes and Michael L. Littman. Ppddl
1 . 0 : An extension to pddl for expressing planning
domains with probabilistic effects. 2004. URL https:
//api.semanticscholar.org/CorpusID:2767666.

A. Cimatti, M. Pistore, M. Roveri, and P. Traverso.
Weak, strong, and strong cyclic planning via
symbolic model checking. Artificial Intelligence,

147(1):35-84, 2003. ISSN  0004-3702. doi:
https://doi.org/10.1016/S0004-3702(02)00374-0.

URL https://www.sciencedirect.com/science/article/
pii/S0004370202003740. Planning with Uncertainty and
Incomplete Information.

Sung Wook Yoon, Alan Fern, and Robert Givan. Ff-


https://arxiv.org/abs/2103.00589
https://arxiv.org/abs/2103.00589
http://arxiv.org/abs/1609.03250
http://arxiv.org/abs/1609.03250
https://arxiv.org/abs/2010.01083
http://arxiv.org/abs/1802.08705
http://arxiv.org/abs/1904.13006
http://arxiv.org/abs/1904.13006
https://www.mdpi.com/2076-3417/10/5/1665
http://arxiv.org/abs/1911.04577
http://arxiv.org/abs/1911.04577
https://api.semanticscholar.org/CorpusID:2767666
https://api.semanticscholar.org/CorpusID:2767666
https://www.sciencedirect.com/science/article/pii/S0004370202003740
https://www.sciencedirect.com/science/article/pii/S0004370202003740

replan: A baseline for probabilistic planning. In In-

ternational Conference on Automated Planning and

Scheduling, 2007. URL https://api.semanticscholar.org/

CorpusID:15013602.

Emilie Kaufmann, Olivier Cappe, and Aurelien Garivier.

On bayesian upper confidence bounds for bandit prob-

lems. In Neil D. Lawrence and Mark Girolami, editors,

Proceedings of the Fifteenth International Conference on

Artificial Intelligence and Statistics, volume 22 of Pro-

ceedings of Machine Learning Research, pages 592—-600,

La Palma, Canary Islands, 21-23 Apr 2012. PMLR. URL

https://proceedings.mlr.press/v22/kaufmann12.html.

David Speck. Symbolic Search for Optimal Planning

with Expressive Extensions. PhD thesis, University of

Freiburg, 2022.

[37] Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016-2021.

[38] Caelan Reed Garrett. PyBullet Planning. https://pypi.org/
project/pybullet-planning/, 2018.

[39] Kaiming He, Georgia Gkioxari, Piotr Doll4r, and Ross B.

Girshick. Mask R-CNN. CoRR, abs/1703.06870, 2017.

URL http://arxiv.org/abs/1703.06870.

Zachary Sunberg and Mykel J. Kochenderfer. POM-

CPOW: an online algorithm for pomdps with contin-

uous state, action, and observation spaces. CORR,

abs/1709.06196, 2017. URL http://arxiv.org/abs/1709.

06196.

Aidan Curtis, Leslie Kaelbling, and Siddarth Jain. Task-

directed exploration in continuous pomdps for robotic

manipulation of articulated objects, 2022.

Albert Wu, Thomas Lew, Kiril Solovey, Edward Schmer-

ling, and Marco Pavone. Robust-rrt: Probabilistically-

complete motion planning for uncertain nonlinear sys-

tems, 2022.

Aidan Curtis, Tom Silver, Joshua B. Tenenbaum, Tomas

Lozano-Pérez, and Leslie Pack Kaelbling. Discovering

state and action abstractions for generalized task and

motion planning. CoRR, abs/2109.11082, 2021. URL
https://arxiv.org/abs/2109.11082.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie

McClinton, Tomas Lozano-Pérez, Leslie Kaelbling, and

Joshua B. Tenenbaum. Predicate invention for bilevel

planning.  Proceedings of the AAAI Conference on

Artificial Intelligence, 37(10):12120-12129, Jun. 2023.

doi: 10.1609/aaai.v37i10.26429. URL https://ojs.aaai.

org/index.php/AAAl/article/view/26429.

[35]

[36]

[40]

[41]

[42]

[43]

[44]

APPENDIX

A. Compiling simulation outcome counts into the sparse ab-
stract MDP

Line 24 of Algorithm 2 compiles the dictionaries N and D
storing simulation counts into a learned transition distribution
7 on a subset Byparse € B of the set of all abstract beliefs.
These components, Bqpare and 7", define an MDP (which we
refer to throughout as the “sparse MDP”) that is passed into
the L AO=x probabilistic planner in Algorithm 1, for uncertainty
and risk aware planning. We now elaborate on how Bparse and
T are constructed.

The set Bgparse consists of all abstract belief states reachable
from the current belief state by, by applying the guaranteed
effects (Ef £s) of operators visited during model learning, and
applying assignments of uncertain effects (UE£fs) present in
at least one simulation from model learning. The key set of D
consists of values of the form (Wp, ¢, Werr), where Wy is an
assignment to the UCond set of the operator corresponding
to controller ¢, and Weg is an assignment to its UEffs. D
thereby stores the set of all operators which were simulated
during model learning (as each controller ¢ corresponds to
a particular operator), and all UEff assignments produced in
model learning simulations.

The transition probabilities T are as follows. Consider
any operator op € O, any abstract belief state b, and any
assignment W.s to op.UEffs. Let b’ is the abstract belief
state obtained by beginning in b and applying each effect in
op.Effs, as well as each effect in op.UEf fs marked as true
in Werr. Let Wy denote the assignment to op.UConds in b.
Then the transition probability is the fraction of simulations
of op.c run in model learning from W,. that resulted in
assignment Wg:

D[\ijr& op.c, \I’eff]
N[¥pre, 0p.c]

T | b,0p.c) =

For (b,op,b’) where the resulting pair (Wpre, 0p) Was
explore during model learning, but never produced UEffs
matching b/, 7( | b,op.c) := 0. In the case that the pair
(Wpre, op) was never explored during model learning, we do
not even add an entry for (b,op,d’) to the data structure
representing 7. The fact that 7~ does not contain any entries
beginning with (b, op) represents to the probabilistic planner
that in belief state b, operator op cannot be appliex and should
not even be considered (as it was never visited during model
learning in an abstract belief state with UConds matching
b). This is important to performant planning by LAO*, as
it ensures that there are only a relatively small number of
operators applicable from each abstract belief space b. It is in
this sense that the MDP given to LAO* is sparse; we believe
this sparsity plays a key role in the tractability of solving the
MDP given to LAO*.

In many cases, the set Bgparse can be constructed explicitly
by initializing Bsparse the set {by} just containing the initial
abstract belief state, and then iteratively adding all abstract
belief states that would result from applications of explored


https://api.semanticscholar.org/CorpusID:15013602
https://api.semanticscholar.org/CorpusID:15013602
https://proceedings.mlr.press/v22/kaufmann12.html
http://pybullet.org
https://pypi.org/project/pybullet-planning/
https://pypi.org/project/pybullet-planning/
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1709.06196
http://arxiv.org/abs/1709.06196
https://arxiv.org/abs/2109.11082
https://ojs.aaai.org/index.php/AAAI/article/view/26429
https://ojs.aaai.org/index.php/AAAI/article/view/26429

Fig. 6: TAMPURA searching a workspace to find and pick up a cube, looking around and moving objects to find it. Top:
images of robot execution. Bottom: the robot’s belief about the location of the target object over time. Each blue point in the
robot’s belief visualization is the centroid of a possible object location in the posterior returned by Bayes3D. Since the object
models are known, the robot knows that the target object could be under the green cup or yellow cups with low probability.
Because the yellow cup is too large to be grasped, the robot looks under the green cup after ruling out other possible locations.

operators to the states currently in Bgparee. (In fact, we imple-
mented this and used it to produce the results in Figure 4.
These results value iteration rather than LAO* to solve the
sparse MDP, to ensure the comparison targeted the quality
of the learned transition model without effects related to the
interaction with an approximate MDP solver like LAO*. Value
iteration requires explicit representation of the MDP state
space Bgparse.) However, the full TAMPURA implementation
never explicitly constructs Bgpare. Instead, it gives LAO* the
sparse MDP in the form of data structures which, for any
b e Bgparse> can list the operators which can be applied in
b, and the distribution over possible outcome abstract belief
states b’ induced by applying each operator.

It is the sparsity of the action branching factor that makes
the sparse MDP tractable solve, not the small size of the
state space. (Indeed, Byparse can be large enough we found
it desirable not to have to construct it explicitly.) The ability
to learn a transition model on a relatively large set of abstract
belief states, but also produce efficient probabilistic plans in
the resluting MDP due to its action sparsity, is a key feature
of TAMPURA’s approach. (One benefit of having Bparse cover
more states is that it decreases the frequency of replanning.)
The ability to learn a transition model on all of Bypqrse derives
from learning probability tables from (UConds,op) pairs
to distributions over UEffs, rather than directly learning
transition probabilities from each pair (b, op) to a distribution
on resulting abstract belief states. (Each UCond and UEff
assignment is consistent with many abstract belief states, so
this learning representation is much more efficient.)

B. Progressive widening

As mentioned in IV-D, operators and controllers are often
derived by binding operator schemata to assignments of con-
tinuous parameters such as grasps or pushing force vectors.
As presented thus far, the set O of ground operators is
finite, e.g. due to only considering concrete operators arising
from use of a finite set of possible continuous parameters.

In the full TAMPURA algorithm, we progressively widen
the ground operator set O, adding in new operator instances
corresponding to applications of controller schemata bound to
new continuous parameters drawn from a stream of possible
parameter values. Because this effectively increases the state
and action space of the abstract MDP, care must be taken to
expand this set gradually such that the expansion of the MDP
does not outpace the optimistic exploration. To achieve this,
we use a progressive widening criteria typically used in hybrid
discrete-continuous search problems [40]. Our full TAMPURA
implementation incorporates progressive widening by adding a
line before Line 7 in Algorithm 2 to occasionally add elements
to O.

Such widening increases continuous action input samples
based on the number of times a ground operator has been
visited, maintaining the following relationship during model
learning for each controller simulation from belief b:

0
k- ZN[\I/pre, op]® = |{op’ € O : blop'.Prel}|.
op

where o < 1 and coefficient k are hyperparameters. In words,
the branching factor of a lifted operator expands sublinearly
with the number time the lifted operator has been sampled.

C. Learning UConds from controller feedback.

There are many cases where it is not obvious ahead of time
what belief state propositions ¢y € Wy effect the outcome
distribution of a controller, making it difficult to construct
an appropriate UCond set until simulations are run and it
becomes evident what aspects of the environment are relevant
to the controller outcome. For instance, simulators often know
when a controller failed due to the robot colliding with a
particular object, and can indicate that a proposition describing
the position of this object ought to be added to the UCond
set. Our full TAMPURA implementation allows controller
simulation (Alg. 2, Line 18) to additionally return a set of
propositions UCond+ which TAMPURA immediately adds



to the UCond set of the operator being simulated. This
modification does not increase the ability of TAMPURA to
find correct plans in the limit of infinite computation (as one
could conservatively start with overly large UCond sets), but
can greatly increase the algorithm’s efficiency.

D. Extended Task Descriptions

1) CLASS UNCERTAINTY: This task considers a robot arm
mounted to a table with a set of 2 to 10 objects placed in front
of it, with at least one bowl in the scene. The robot must place
all objects of a certain class within the bowl without dropping
any objects. We add classification noise to ground truth labels
to mimic the confidence scores typically returned by object
detection networks like MaskRCNN [39]. Object grasps have
an unknown probability of success, which can be determined
through simulations during planning. The agent can become
more certain about an object category by inspecting the object
more closely with a wrist mounted camera. A reasonable
strategy is to closely inspect objects that are likely members
of the target class and stably grasp and place them in the
bowl. The planner has access to the following controllers:
Pick (?o0 ?g ?r), Drop(?0 ?g ?r), Inspect(?0),
for objects o, grasps g, and regions on the table r.

2) POSE UNCERTAINTY: This task consists of 3 cubes
placed on the surface of a table and a hook object with
known pose. The cubes have small Gaussian pose uncertainty
in the initial belief, similar to what may arise when using
standard pose estimation techniques on noisy RGBD images.
The goal is to stack the cubes with no wrist-mounted camera.
A reasonable strategy is to use the hook to bring the objects
into reach or reduce the pose uncertainty by aligning the object
into the corner of the hook such that grasping and stack-
ing success probability is higher. The planner has access to
controllers Pick (?0, ?g), Place(?0, ?g, ?p, 2r),
Stack (?0l1, ?g, ?202), and Pull (201, 2g, 202),
for an physical objects 0,071,092, grasps g, regions on the
table 7, and 3D pose p. (Pull pulls one object using another
object.)

3) PARTIAL OBSERVABILITY. This task, the agent has 2
to 10 objects placed in front of it with exactly one die hidden
somewhere in the scene such that it is not directly visible. The
goal is to be holding the die without dropping any objects.
The robot must look around the scene for the object, and may
need to manipulate non-target objects under certain kinematic,
geometric, or visibility constraints. The planner has access to
Pick (?0, ?g),Place(?0, ?g),Look (2?0, ?2qg),and
Move (?q) controllers for this task.

4) PHYSICAL UNCERTAINTY: This task consists of a sin-
gle puck placed on a shuffleboard in front of the robot. The
puck has a friction value drawn from a uniform distribution.
The goal is to push the puck to a target region on the
shuffleboard. The robot can attempt pushing the puck directly
to the goal, but uncertainty in the puck friction leads to a low
success rate. A more successful strategy is to push the puck
around locally while maintaining reach to gather information
about its friction before attempting to push to the target. The

planner has access to a PushTo (?0, ?r) controller that
pushes object o to a target region r and PushDir (?0, ?2d)
controller that pushes object o with fixed velocity in a target
direction d, both of which are implemented as velocity control
in Cartesian end-effector space.

5) SLAM UNCERTAINTY:. The task is a 2D version of a
mobile manipulation task, where the robot must gather yellow
blocks and bring them to a green region. The number, location,
and shape of the objects and obstacles is randomly initialized
along with the starting location of the robot. The initial state
is fully known, but the robot becomes more uncertain in its
position over time due to action noise. The robot can localize
itself at beacons similar to the way many real-world base
robots use AR tags for localization. To verify that all baselines
were implemented correctly, we also consider a manipulation-
free variant of this task (SLAM-MF) requiring only 1 or 2
controller executions for success. The goal is to enter the
target region without colliding with obstacles; blocks need not
be moved. The planner has access to MoveRegion (?r),
MoveLook (?r) (which moves to region r and then local-
izes itself by looking at a beacon0, MovePick (?r, ?20),
MovePlace (?r, ?20),and MoveCorner (?r, 2c) con-
trollers. All moving controllers use a belief-space motion
planner [42] except for MoveCorner (?r, ?c) , which
simply navigates to a particular the corner of a workspace.

E. Experimental Details

All experiments were run on a single Intel Xeon Gold 6248
processor with 9 GB of memory. We report planning times
for each algorithm and environment combination in table II.
It is important to note that we did not optimize for planning
time, and all of these algorithms run in an anytime fashion,
meaning that planning can be terminated earlier with lower
success rates. Full experiment, environment, controller, and
stream specifications will be released on a public repository 3.

We now provide several more details about the two tasks
we performed using TAMPURA on the real robot.

1) Object finding: The robot has access to a number of
controllers that it could use to find and hold a small cube. A
Pick (?0, ?g) controller will grasp an object o with grasp
g, if the variance of the object pose is below some threshold. A
Place (?0, ?g) controller places an object o held at grasp
g assuming the probability of collision of that placement is
below some threshold. Lastly, a Look (?q) controller moves
the robot arm to a particular joint configuration ¢ and captures
an RGBD image.

2) HRI: The collision probability for each trajectory seg-
ment used in the motion model is determined as follows:

T ng

Prottision = 1 — H H(1 — P(t,2,v:,2)) 3)

t=14i=1

Here, T represents the total number of time steps in the
trajectory, n; is the number of cells encountered at time step

3https://github.com/tampura/tampura



Model Learning Decision Making Task A Task B Task C Task D Task E-MF  Task E-M
Bayes Optimistic =~ LAO* 284+26 21+13 57438 23+ 7 31+11 129 £ 55
Bayes Optimistic =~ MLO 54+3 38+20 49+43 30+£41 35+£24 90 +£ 56
Bayes Optimistic =~ WAO 33+£24 29+£20 87432 46+41 34+15 100 £ 52
e-greedy LAO* 3+0 40+£34 72438 27+15 35+17 110 £ 40
None LAO* - - - - - -
MCTS MCTS 294+29 60+10 54451 167 169 + 13 207 + 28
DQN DQN 17+ 4 12£3 83+£34 T72+£29 28+4 84+4

TABLE II: Average and standard deviation of per-step planning times averaged over trials and steps within each trial.

t, and (x;,y;, z;) are the coordinates of the i-th cell at time ¢
along the trajectory.

The robot has access to
Place(?0, ?g) and Wait ()
o and grasps g.

Pick (20, ?29),
controllers, for objects

FE. Stationarity of the abstract belief state MDP

The condition needed for 7 to be well defined is that the that
there exists a stationary probability kernel P(b;b) describing
the probability that the agent is in belief state b, given that
the abstracted version of its belief state is b. In this paper,
we assume the abstractions resulting from the user-provided
operators are stationary in this sense. Verifying this soundness
property and learning sound abstractions, as is sometimes done
in fully observable TAMP [43, 11, 44], is a valuable direction
for future work.

We now formally define the stationarity condition needed
for P(b;b), and hence T, to be well defined. Let

By = {b € B : abs(b) = b}

For each operator ¢, let T(V' | b, ¢) denote the probability
distribution on the belief state resulting from running the
controller in ¢ beginning from belief b.

For any ¢t € N and any sequence of operators ci,...,c,
consider the probability distribution P(b | c1,...,c;) over the
robot’s belief state after applying the sequence of controllers
Cly...,Ct:

Pbler,...oe)= Y > >

bi_1EBbi_2€B bieB
T bi—1,¢e)T (be—1 | br—a,ce-1) ... T (b1 | bo,c1) (4)

We will define P(b | b,c1,...,c;) to denote the conditional
probability of being in belief state b after applying operator
sequence ¢y, ..., ¢, given that the abstract belief state corre-

SPOIldi]lg to b is b. For each b ¢ Bb’ ; (b | b, Cly... 7Ct) = 0,
and for b c Bl’,
}(bl 7C],...,Ct)' ( |017 7Ct) ()

T s, P e, )

The abstract belief-state MDP is well defined so long as
there exists some probability kernel P(b;b) from B to B such
that for all £ € N and all operator sequences cq, . . .

P(B|b,cl,...

y Cts

,ct) = P(b;b) (©6)

That is, given an abstract belief state b, the distribution over the
concrete belief state corresponding to this is independent of
the time elapsed in the environment and the controllers which
have been executed so far.

Discussion. We anticipate that in most applications of TAM-
PURA, the user-provided abstractions will be imperfect, and
this stationarity property will not hold exactly. That is, the
distribution P(b | b,c1,...,c;) will vary in cy,...,c;. The
TAMPURA algorithm can still be run in such cases, as
TAMPURA never computes P(b;b) exactly, but instead ap-
proximates this by constructing a table of all (b,b) pairs
encountered in simulations it has run. In the case where P(b; b)
is not well defined, but there exists a bound on the divergence
between any pair of distributions P(b | b,ci,...,¢;) and
P | bc),...,cl), we expect that TAMPURA can be
understood as approximately solving an abstract belief state
MDP whose transition function is built from any kernel P (b;b)
with bounded divergence from all the P(b | b,cy,...,c).
We leave formal analysis of TAMPURA under boundedly
nonstationary abstractions to future work.



	Introduction
	Related Work
	Background
	Planning with an abstract belief-state MDP
	Belief state propositions
	The abstract belief-state MDP
	Operators with uncertain effects
	Operator schemata

	Learning the Sparse Abstract MDP
	Solution-guided model learning
	Bayes optimistic model learning
	The TAMPURA model-learning algorithm
	Continuous parameters & UCond learning

	Simulated Experiments & Analysis
	Tasks
	Baselines

	Real-world Implementation
	Searching for Objects in Clutter
	Safety in Human-Robot Interaction

	Discussion
	Appendix
	Compiling simulation outcome counts into the sparse abstract MDP
	Progressive widening
	Learning UConds from controller feedback.
	Extended Task Descriptions
	Class Uncertainty
	Pose Uncertainty
	Partial Observability
	Physical Uncertainty
	SLAM Uncertainty

	Experimental Details
	Object finding
	HRI

	Stationarity of the abstract belief state MDP


