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Abstract

We present a highly scalable self-training framework
for incrementally adapting vision-based end-to-end au-
tonomous driving policies in a semi-supervised manner, i.e.,
over a continual stream of incoming video data. To facili-
tate large-scale model training (e.g., open web or unlabeled
data), we do not assume access to ground-truth labels and
instead estimate pseudo-label policy targets for each video.
Our framework comprises three key components: knowl-
edge distillation, a sample purification module, and an ex-
ploration and knowledge retention mechanism. First, given
sequential image frames, we pseudo-label the data and es-
timate uncertainty using an ensemble of inverse dynamics
models. The uncertainty is used to select the most infor-
mative samples to add to an experience replay buffer. We
specifically select high-uncertainty pseudo-labels to facili-
tate the exploration and learning of new and diverse driv-
ing skills. However, in contrast to prior work in continual
learning that assumes ground-truth labeled samples, the un-
certain pseudo-labels can introduce significant noise. Thus,
we also pair the exploration with a label refinement mod-
ule, which makes use of consistency constraints to re-label
the noisy exploratory samples and effectively learn from
diverse data. Trained as a complete never-ending learn-
ing system, we demonstrate state-of-the-art performance on
training from domain-changing data as well as millions of
images from the open web.

1. Introduction

Despite unprecedented advancements in sensors and com-
pute since the nascent days of learning-based autonomous
driving, the manner in which driving decision policies are
trained today is still surprisingly narrow when compared
with human learning. In a similar fashion to the classical
ALVINN [54] over three decades ago, engineers and re-
searchers may first collect a large, clean dataset of demon-
strations and then utilize it to train, and subsequently de-
ploy, the policy model [7, 14, 19, 27-29, 31-33, 55]. How-
ever, shortly after deployment, reports of various failure
events, such as colliding with a jaywalker [49] or handling
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Figure 1. Never-Ending Learning to Drive. We present
oo-Driver, an agent that continually learns from unlabeled incom-
ing video data. For each video in the video stream, the agent
employs an ensemble of inverse dynamics models to infer way-
point pseudo-labels and their uncertainty (higher uncertainty is
depicted in red). Noisy pseudo-labels are automatically refined
through consistency-based re-labeling and confidence-based filter-
ing. Next, a driving policy student model is trained over incoming
and episodic memory replay data. The memory buffer is updated
to incorporate high-uncertainty samples. This maintains a diverse
set of samples to retain knowledge and prevent forgetting, despite
only viewing a given image once. Towards learning a general-
ized driving policy, our efficient framework enables highly scal-
able training, i.e., over millions of video frames from the web.

emergency vehicles [2], begin to emerge. Determined to
resolve such scenarios, additional data may be collected in
such uncertain situations, and the model is re-trained from
scratch. Yet, to their dismay, the next iteration exhibits ad-
ditional failures, e.g., uncertainty when encountering an un-
familiar object on the road (a puddle or a rock), or perhaps
a drastically different environment, and the cycle repeats.

In contrast to such isolated policies and fixed deployment
scenarios, to learn to drive safely humans integrate a contin-
ual process of acquiring, fine-tuning, and adapting knowl-
edge based on a never-ending stream of observations that
often span years and primarily comprises self-supervised
experience [16, 44, 47, 52, 63]. Human drivers continu-
ously build on what they’ve previously learned to handle
unseen scenarios and domains, from complex merging into
busy traffic and up to driving in intricate highways, tunnels,
and handling bad weathers. Indeed, the likelihood of fatal
crash rates for drivers is reduced by nearly a factor of three
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in the following decades since first receiving a driver’s li-
cence [23, 62]. This incremental learning process is per-
formed without retaining massive amounts of previously
observed experience but only via recalling the most relevant
and salient prior experiences and skills. How can we de-
velop incremental driving policy learning frameworks that
can be efficiently trained and continually adapted over mas-
sive amounts of diverse and self-supervised driving data?
Incremental policy learning is a realistic and practi-
cal learning paradigm. Yet, due to the complexity of in-
crementally accumulating knowledge in driving settings,
e.g., unlabeled and unconstrained on-road data with out-of-
distribution, non-stationary, and intricate scenes, prior work
tends to instead focus on simplified or isolated subcom-
ponents within the never-ending learning task, particularly
transfer learning and domain adaptation [43, 45, 58, 66, 70].
Such approaches cannot mitigate issues with generaliza-
tion, i.e., avoiding domain-specific overfitting and forget-
ting previous knowledge [20, 26, 64]. To improve gener-
alization, methods may further leverage an additional pre-
training stage using self-supervised strategies, e.g., from
unlabeled web data [4, 9, 12, 25, 41, 68, 74, 76]. Yet, these
do not scale to massive amounts of driving data available
on the web as they require storage of the entire dataset in
memory without performing exploration and experience se-
lection. Towards enabling more scalable driving policies,
our goal is to tackle the full continual self-supervised driv-
ing policy training. Our proposed framework enables train-
ing behavioral models from large amounts of unlabeled and
unconstrained real-world on-road data with frequent out-of-
distribution, non-stationary, and intricate scenes.

Contribution: We introduce co-Driver, a novel framework
for continual self-supervised driving policy training. Our
efficient framework enables scalable training from large
amounts of unlabeled and unconstrained real-world on-road
data with frequent out-of-distribution, non-stationary, and
complex scenes (i.e., as opposed to commonly used sim-
plistic settings on MNIST or CIFAR [5, 6, 20, 26, 34, 36,
52]). Our effective approach interfaces four highly effi-
cient mechanisms. First, we formulate incremental policy
learning as knowledge distillation from an inverse dynamics
teacher model. A model ensemble produces epistemic un-
certainty estimates that are used to guide subsequent steps.
To leverage high-uncertainty but potentially noisy pseudo-
labels, we leverage temporal consistency-based re-labeling
and label filtering mechanisms. We then train a student
conditional imitation learning model [18], while leverag-
ing the epistemic uncertainty to maintain a diverse episodic
memory buffer with highly informative samples. When
integrated as a complete incremental learning system, our
method achieves state-of-the-art performance compared to
baseline algorithms in generalized, cross-dataset evaluation
settings. Our code is available at https://infdriver.github.io/.

2. Related Work

Learning to Drive: Many modern autonomous driving
systems [7, 14, 19, 28, 31-33, 55, 61, 73, 75] employ
an end-to-end framework, where a driving policy, either
a high-level plan or low-level control, is learned directly
from sensor input. However, these methods require a pro-
hibitive amount of labeled data and long interactions for
training [7]. Furthermore, while some works display su-
perior performance on closed-loop evaluations in simula-
tion [1, 33, 61], they may fail to generalize to complex
settings, multiple domains, or unseen environments in the
real world. To tackle scalability and adaptability, recent
works [12, 68, 74, 76, 78] utilize vast and abundant driv-
ing videos from YouTube to pre-train a visuomotor driv-
ing policy. Unlabeled and uncalibrated driving videos are
used to pseudo-label the actions [12, 74, 76] or to provide
feature representations catered to the driving policy [68].
Zhang et al. [74] proposes a semi-supervised driving policy
that learns to map monocular images directly to ego vehi-
cle waypoints in the BEV space. The approach utilizes an
unlabeled set of YouTube videos to repeatedly train the con-
ditional imitation learner [15, 18] and learns a generalized
policy. However, pseudo-labels are obtained via sampling
from the model, which can produce significant noise. More-
over, the approach does not infer ego-vehicle speed and tra-
jectory, thus discarding useful demonstration data. In con-
trast, we use a visual odometry teacher model to provide
pseudo-labels of speed and command. Critically, all afore-
mentioned methods leverage inefficient and repeated visi-
tation of the entire dataset which is stored in memory, and
are thus limited in scalability. Our method only requires
watching an image stream once.

Incremental Learning: As most studies leverage anno-
tated and simple classification datasets to analyze incremen-
tal learning, only a few have considered incremental learn-
ing on a noisy data stream. Kim et al. [36] studies a noisy la-
beled continual learning task, however, the method assumes
disjoint class scenarios where no class overlaps between
task streams, which is less practical in real-world applica-
tions. Bang et al. [6] proposes a framework for online blurry
continual learning on a contaminated data stream, leverag-
ing consistency regularization to label high-noise data. Al-
though consistency regularization can improve model gen-
eralization by enforcing the model to be consistent in its
prediction of augmented data, the effectiveness in han-
dling out-of-distribution (OOD) data is limited [59, 77].
Mirza et al. [46] leverages a domain-incremental learning
approach to drive. However, the method employs a ground-
truth dataset and thus cannot be learned at scale from on-
line resources. Furthermore, their method only consid-
ers weather conditions as a variable component in driving,
whereas in reality driving conditions can vary significantly,
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such as traffic rules, construction styles, and moving ob-
jects. Thus, simply training on a few weather conditions
from limited datasets cannot achieve a generalizable driv-
ing model. Our work employs driving videos from YouTube
as the data stream for domain-incremental learning, which
enables learning from vast amounts of data and diverse do-
mains.

Episodic Memory: In contrast to transfer learning or do-
main adaptation, the central challenge in incremental learn-
ing to drive lies in minimizing model forgetting, i.e., re-
taining and developing knowledge while maintaining model
generalization [20, 36, 64]. In our work, we build on recent
advances in continual learning, particularly rehearsal-based
approaches which have shown SOTA performance. Re-
cently, replay buffer-based strategies, where selected train-
ing data is stored in a memory buffer and rehearsed, have
emerged as an effective state-of-the-art for continual learn-
ing [5, 6, 10]. Instead of random reservoir sampling [10],
we utilize an uncertainty-guided memory buffer, which
maintains information from the previous data to mitigate
forgetting. In contrast to prior works, we show that priori-
tizing high-uncertainty pseudo-labeled samples, once post-
processed and smoothed using temporal consistency, can
benefit incremental learning.

3. Method

We propose a novel framework that incrementally observes
a stream of unlabeled, non-stationary driving data and
learns a vision-based motion planning policy that can effi-
ciently accumulate generalized driving skills'. Our scalable
approach interfaces three highly efficient modules. First,
we formulate incremental policy self-training (Sec. 3.1) as
knowledge distillation from an inverse dynamics teacher
model (Sec. 3.2). The teacher model is used to pseudo-
label incoming image sequences and produce supervision
to a sensorimotor student model. Second, to leverage high-
uncertainty but potentially noisy pseudo-labels, we propose
to leverage temporal consistency-based re-labeling as well
as adaptive filtering mechanisms (Sec. 3.3). Finally, we pro-
pose to leverage epistemic uncertainty to guide and main-
tain an episodic memory buffer (Sec. 3.4). When integrated
as a complete incremental learning system, these modules
enable highly efficient and effective self-learning from di-
verse and informative pseudo-labeled samples. We describe
an outline of the framework in Algorithm 1.

3.1. Problem Settings

Preliminaries: We follow standard conditional imitation
learning [15, 17, 30] approaches to learn a regression func-

'In the context of continual learning to drive, we view driving within a
specific domain, data distribution, or handling unseen events and maneu-
vers as novel skills or tasks

Algorithm 1 Uncertainty-Guided Never-Ending Learning

Input:
U: incoming image collection
G: initial small ground-truth dataset
S: image dataset with pseudo-labels
B: replay buffer
f;})‘fn inverse dynamics models
plan. . . B
p . motion planning policy
«, (: learning rates
procedure INVERSE DYNAMICS(G, S, U, fii" )
Y — Y — - V[Liny] >trainonGUS
S = reservoir sampling (I/)
(§1, 01, 00) < T({Pi}i2l) > Eq. 4
122w =std ({37 30))
13: end procedure
14: procedure PLANNING PoLICY(U, B, f2*")

R A R ol

_ =
- e

15: U < confidence-based filter(Uf) > Eq. 8
16: ¥+ = sample relabeling(y, u+) > Eq. 6,7
17: 0«0 —p5-V[Lyan) > train on BUU
18: U < low-loss filter(U, L(y+, y1t)) >Eq. 9

19: B < buffer update (U, B, u;)
20: end procedure

tion fgla" : X — ), parameterized as a neural network with

weights 6, to map current observations x = (I,v,¢) € X,
comprised of image I € RW*H*3 speedv € R, and cat-
egorical high-level driving goal command ¢ € C [18], to
a desired future ego-vehicle location output ). Specifically,
we define )Y as a set of K sequential ego-relative world
coordinates in a top-down map view, y = {y*}X | with
y* € R2. In general, the waypoints prediction function,

y = f3*(Lv,c) (1)

can be optimized over demonstrations, i.e., via supervised
learning [15, 17, 28, 33, 54, 56, 57]. In contrast, we do not
assume a single fixed labeled dataset and instead use a con-
tinual collection of unlabeled images extracted from driv-
ing videos, {I;}72,, which cannot be repeatedly re-visited
in training. During training, to balance adapting to new ex-
periences while retaining old ones, we construct two sets
based on the image stream, I/, which contains the most re-
cent observed images, and 3, which is a long-term experi-
ence replay buffer constructed via uncertainty (Sec. 3.4).

Incremental Self-Training: To train the ego-vehicle future
trajectory prediction model, prior methods typically rely on
high-quality datasets with expert labels [17, 27, 28, 30, 31].
However, in practice, this requirement can severely restrict
the availability and diversity of the training data. Obtain-
ing accurate waypoint labels in the real world involves
a complex multi-step and multi-sensor optimization with
GPS (which is unreliable in dense urban areas), LiDAR,
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and HD map data [11]. Thus, instead of the widely stud-
ied supervised incremental learning setup over streaming
labeled observations [5, 20, 52, 60], we pursue a more real-
istic and generalized setting over streaming unlabeled data
from the web. In the following, we discuss our framework
for effectively making use of such data while also retain-
ing knowledge throughout the incremental training process.
We emphasize that this setting enables leveraging diverse
and unconstrained sources of observations, i.e., either when
adapting the driving model over incoming frame-by-frame
driving data [44] or for efficient learning from arbitrarily
large amounts of data, e.g., from the web [68, 76]. Both
use cases will be further studied as an instantiation of our
general framework in Sec. 4.

3.2. Inverse Dynamics Teacher

We propose to estimate underlying decisions made by
drivers in data. This enables us to leverage the unlabeled
data to directly train a decision-making policy, unlike pre-
training-based strategies that cannot leverage the demon-
stration data to learn decision-making [68, 74].

Two-Model Pseudo-Labeling Approach: We ease the dif-
ficult incremental learning from images task by formulat-
ing self-training as an interplay between two-models, where
ego-vehicle waypoints, speed and command are first in-
ferred from the images collection extracted from driving
videos using inverse dynamics model fi/‘,‘jn, and subse-
quently used as supervision for training the planning the
policy function f5".

We estimate the ego-motion between two consecutive
images by training an inverse dynamics model fl"})‘:’n [4,
12, 76] and compute the ego-vehicle waypoints, speed and
command from a sequence of ego-motion predictions. Our
model estimates pose p = [R|t] where R € SO(3) and
t € R? are the rotation and translation of an image pair. Be-
sides regressing on pose p, we leverage a probabilistic loss,
used to estimate prediction confidence and detect poor pre-
dictions. We use the matrix Fisher distribution to model the
rotation distribution on SO(3) [72]. The probability density
function of the matrix Fisher distribution is:

Pmys(R|®) = %@) exp (tr(®'R)) (2)
where ® € R3*3 is the parameter of matrix Fisher distribu-
tion and F'(®) is the normalizing constant. The advantage
of introducing the probabilistic loss is that the entropy of the
estimated matrix Fisher distribution is a good measurement
of prediction confidence, as we will discuss in 3.3. Thus,
the loss of the inverse dynamics teacher is:

Liny = |p = Bl3~log(pms (R|D)) )

where p and ® are the predicted pose and parameter of ma-
trix Fisher distribution, respectively.

We train f$v in a semi-supervised manner. During
training, we maintain a small subset of data with ground-
truth G (e.g., nuScenes-Boston [11]) and a large image
set with pseudo-labels S. The model iteratively trains on
GUS, pseudo-labels incoming image collection, and selects
pseudo-labeled samples into S using reservoir sampling.

Due to the challenging unconstrained and out-of-
distribution (OOD) data in our settings such as arbitrary
camera settings and unseen environments, we propose to
learn an ensemble of models and aggregate predictions from
each model to improve accuracy [3, 38, 39, 50, 71]. Ensem-
bling models effectively estimates well-calibrated epistemic
uncertainty [35], facilitating the selection of the most infor-
mative samples for inclusion in episodic memory in Sec 3.4.

Robust Ensemble of Inverse Dynamics Models: We se-
lect a learning-based end-to-end regression model as our
inverse dynamics model with extensive data augmentation
[37, 65] to generalize across various camera settings (model
details can be found in supplementary). We incrementally
train an ensemble of M = 5 inverse dynamics models each
regressing ego-vehicle motion and integrated to compute:

(Fe,00,60) = T({DiiEM 4)

where p; = & S0, o (L;,1;41) are the averaged
estimated ego-motion from the ensemble models, and
Vi = {¥*}E |, 0, and ¢, are the future waypoints, speed,
and command estimations. Details of transformation 7 in
Eq. 4 and length of the poses sequence h can be found in
supplementary. The parameters of the ensemble models are
denoted as {1, }_,. To ensure model diversity, we find
the simple different random initialization to work best, com-
pared to more complex diversity-encouraging methods [51].
In addition, we store and employ pre-aggregated predictions
as training targets for continually updating each model.

Incremental Adaptation via Self-Distillation: Despite
ensembling models, we observe significant noise in the
sequential ego-motion predictions, resulting in inaccurate
estimation of waypoints, particularly on challenging but
highly informative samples such as bad weather and abrupt
turns. We alleviate this issue through temporal consistency-
based re-labeling and adaptive filtering mechanisms. We
incrementally self-train the ensemble models over incom-
ing data [40, 69, 74]. Moreover, we compute the disagree-
ment u; = std ({y7"}27_,) as epistemic uncertainty among
the ensemble models [3, 38]. Next, we select highly un-
certain samples according to the estimated epistemic uncer-
tainty and employ a temporal consistency-based re-labeling
method to refine the pseudo labels. Additionally, an adap-
tive filtering mechanism is applied to eliminate high-noise
samples in Sec. 3.3. We also use epistemic uncertainty
to construct an informative episodic memory and reduce
model forgetting in Sec. 3.4.

15091



3.3. Motion Planning Policy Student

Given pseudo-labels (X,y) from the inverse dynamics
model in Eq. 4, we incrementally update the student model
P over a collection of unlabeled data U and a replay
buffer B via a behavior cloning objective using an L1
loss [15]. The loss functions on current video ¢/ and buffer
B are defined as Ly = Ezg)cull1(3, f5(%))] and
Ls = EggenlLi(F, 5 (X))] respectively. We define
the weighted optimization objective as

1 1
Eplan - ;»CZ/{ + (]- - ﬁ)‘CB (5)

where n is the number of image collections the model has
seen so far. We note that the model does not revisit / in sub-
sequent iterations. We set up weight in £,;,,, based on the
number of image collections the model has been trained. In-
tuitively, as the buffer grows more diverse and informative,
we aim to shift the model’s focus increasingly toward the
buffer. We find this to improve knowledge retention.

Sample Re-Labeling: Since our waypoints pseudo-label
¥+ is generated from the average prediction from the inverse
dynamics teacher, it is possible that some waypoints trajec-
tories 3, = {y"} £, are less accurate, i.e., due to the noise
in the ego-motion predictions or disagreement among the
inverse dynamics models. We observe that incorporating
temporal information can improve the pseudo-label quality
of the waypoints. For highly uncertain samples, we pro-
pose to set a time window with size [ and leverage those
adjacent waypoints in the window to re-estimate the way-
point ¥*. To detect samples for re-labeling, we use the
two-component Gaussian Mixture model (GMM) to fit the
uncertainties of all samples in the video. Given sample X,
and its uncertainty uy, its low uncertainty probability is the
posterior probability pgmm (g|u:) where g is the Gaussian
component with a smaller mean, i.e., smaller uncertainty.
We split I/ into a high uncertainty set A/ and a low uncer-
tainty set C:

C = {(f{tvyt) S u :pgmm(g‘ut) Z 6(,}

6
N = {(e.51) €U pgmm(glur) < ea} O

For the high uncertainty samples (%, y¢) € N, we propose
to apply temporal consistency smoothing to further purify
each waypoint y* € y,;:

/2 L /2 L
_ i—1 Y T2 1Y
B SETIRD v 0

where we denote y* as the purified waypoint, y* , and y¥
as adjacent waypoints preceding and succeeding y*.

Noisy Sample Filter Mechanism: Unlike existing cu-
rated datasets, YouTube videos contain different kinds of

noise from numerous sources, such as severe light varia-
tion, distortion, edits, etc. Such noisy images do not pro-
vide useful information and can confuse the model dur-
ing training. Noise can either originate from the image
(e.g., image is deprecated and unrelated to the driving task)
or from the waypoints pseudo-labels that deviate signifi-
cantly from the actual trajectories. We propose an adap-
tive filtering mechanism that contains a confidence-based
filter to remove samples with potentially deprecated images
and a low-loss-based filter to remove samples with poten-
tially deprecated pseudo labels. For the confidence-based
filter, we compute the entropy of the matrix Fisher distribu-
tion of each image pair (I;—1,I;) € U as: h(I;—1,1;) =
H(pmy(Re| [ (T;-1,1;))). Then, we model the entropy
distribution in ¢/ as a normal distribution with mean m and
standard deviation o. We extract and remove the noisy sam-
ples D based on the three-sigma rule:

D={T_1,L) €U :h(T1,L,) >m+3%0} (8

Although the confidence-based filter can effectively re-
move those potentially deprecated images, it is unable to
detect the quality of waypoints pseudo labels. Thus, we
introduce the low-loss-based filter. The low-loss trick is
commonly used to detect noisy labels [6, 42]. Once the
student model completes training on the incoming data U/,
before selecting samples into the buffer, we apply the low-
loss-based filter to detect and remove deprecated pseudo la-
bels by computing the loss for each sample using the trained
student model. Then we fit a GMM to the loss distribution
over all samples and remove the set D of samples with dep-
recated pseudo labels:

D = {(ﬁuf’t) S u pgmm(g‘ﬂ(ytayt» < Eb} (9)

3.4. Uncertainty-Guided Episodic Memory

The central challenge in incremental learning to drive lies
in minimizing model forgetting, i.e., retaining and de-
veloping knowledge while maintaining model generaliza-
tion [20, 36, 64]. Our never-ending agent training process
leverages episodic memory; a long-term memory buffer of
previous experiences that is rehearsed during every model
update.

High-Uncertainty Experience Exemplars: Well-
calibrated epistemic uncertainty is widely employed to
select informative samples in Active Learning [8, 21, 48].
We adopt the same idea in constructing the informative and
diverse replay buffer. Given an experience replay buffer B
with fixed size B and an incoming image collection I/, at
every iteration we sort 3 U U/ by uncertainty and select the
highest-uncertainty samples to produce an updated buffer
of maximum uncertainty. This process can be interpreted
as a form of self-supervised exploration [53], where the
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model selects the most challenging and novel experiences
to retain. Due to our introduced temporal-consistency re-
labeling and adaptive filtering mechanisms, we demonstrate
that this uncertainty-seeking strategy results in a simple yet
highly effective buffer construction method, automatically
accounting for noise and informativeness. We find it to
outperform a range of prior sampling methods, e.g., based
on random or reservoir sampling.

Implementation Details: Our student model is trained us-
ing a batch size of 96 and a learning rate of 0.001. The
teacher model is trained using a batch size of 16 and a learn-
ing rate of 0.0005. Throughout most of the experiments, G
contains 108,971 images from nuScenes-Boston. The size
of S is set as 500,000. f;ETVn incrementally trains on ten mil-
lion of YouTube images (extracted from videos at 10Hz)
from various weather conditions and driving scenarios. The
time window size in temporal consistency-based re-labeling
is set as six. Each label contains K = 5 sequential ego-
relative world coordinates, and the interval between each
waypoint is 0.5 second. Additional implementation details
can be found in our supplementary.

4. Experiments

We perform cross-dataset analysis of oo-Driver to evaluate
for diverse driving behaviors, generalization, and knowl-
edge retention.

Datasets: To incrementally learn driving behaviors on-
line, we create a YouTube dataset containing hundreds of
hours of driving videos with ten million extracted frames.
The YouTube dataset includes various weather conditions
(sunny, rainy, snowy, foggy, night) and different driving
scenarios from all over the world. We expect our oo-
Driver to incrementally learn and remember driving skills
under different weather conditions and driving scenarios.
Moreover, we use three standard datasets, KITTI [24],
nuScenes [11], and Argoverse2 [67], for generalization ex-
periments. KITTI has 11 driving sequences with ground-
truth. nuScenes has 15 hours of driving data from four lo-
cations: Boston-Seaport, Singapore-OneNorth, Singapore-
Queenstown, and Singapore-HollandVillage. nuScenes
driving scenes includes many dynamic objects and vari-
ous weather conditions. Argoverse2 contains 1,000 driving
scenes from six different US cities: Austin, Detroit, Miami,
Pittsburgh, Palo Alto, and Washington, DC.

Experimental Setup: We conduct experiments on incre-
mental learning across cities to test the performance of
our incremental learning framework. We continuously train
on KITTI, nuScenes, and Argoverse2 which are sorted by
cities. The sequence of cities is Karlsruhe, One-north,
Queenstown, Holland Village, Pittsburgh, Austin, Detroit,
Palo Alto, Miami, and Washington, DC. There are around
430,000 images over the ten cities. During the training of

the inverse dynamics model, the model trains on nuScenes-
Boston in a supervised manner and incrementally trains
across ten cities in a semi-supervised manner. For each
city’s dataset, we split 90% as a training set and 10% as
an evaluation set. We set buffer sizes as 3,000, 6,000, and
9,000 to study incremental learning performance under lim-
ited buffer sizes.

Moreover, we conduct experiments on incremental
learning on open web data to test the generalization abil-
ity of our driving policy. We collect around 10 million im-
ages from driving videos. During the training of the inverse
dynamics model, the model trains on nuScenes-Boston in
a supervised manner and incrementally trains on the stream
of image collections in a semi-supervised manner. Different
from the experiment setup above, we are unable to generate
an evaluation set from YouTube images due to the lack of
ground-truth labels. We aim to construct a large and diverse
evaluation set that has never been seen during training to ef-
fectively validate the generalization ability of our co-Driver.
We propose an evaluation set by mixing KITTI, nuScenes,
and Argoverse2. However, considering the redundancy is-
sue in the large dataset, samples in tough and rare scenarios
might be neglected if we evaluate each sample in the eval-
uation set and average the loss. Thus, during evaluation,
we partition the evaluation set into three subsets according
to the steering command. Within each subset, we further
categorize the data based on velocity. Our model is tested
on each of these subsets, and the sample loss within each
subset is averaged. Subsequently, the final average loss is
computed based on a balanced loss. In addition to exten-
sive open-loop evaluation, we incorporate additional exper-
iments in the supplementary, including closed-loop evalua-
tion in CARLA [22].

Baselines: We compare our method with the three clos-
est incremental learning baselines, Dark Experience Replay
(DER) [10], Rainbow Memory (RM) [5], and PuriDivER
[6]. DER proposes a general continual learning method
with blurry task boundaries and domain shifts. RM pro-
poses a memory management method based on uncertainty
and data augmentation. PuriDivER studies continual learn-
ing on noisy data and proposes a relabeling method to purify
the noisy samples.

Metrics: We evaluate our incremental learning framework
on three widely used metrics in the literature [13]. How-
ever, since we are solving a regression problem, we make
corresponding revisions to standard classification metrics.
Average Loss (L): Lj, measures the average performance
on each image collection after learning on the k-th image
collection. We denote I, ; as the average displacement error
(ADE) that is evaluated on the hold-out evaluation set of the
7-th image collection where ;7 < k after the model trained
on the k-th image collection. We define the average ADE
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Table 1. Evaluating Incremental Learning Over Cities. L_(]), F_1(1), I-1(1) denote Average Loss, Forgetting and Intransigence
after the model incrementally trains on the last city. | indicates metrics that are the lower the better, 1 indicates the higher the better. B
stands for buffer size. Subscript (—1) denotes the metrics of the last image collection.

B = 3,000 B = 6,000 B = 9,000
Methods L, F I, L, Fy I, L, F I,

DER [10] 0.76 0.14 038 0.82 -0.19 048 0.77 0.12 -0.38
Rainbow [5] 1.29 043 075 0.87 031 038 0.75 0.18 -0.36
PuriDivER [6] 0.85 20.16 0.41 0.84 0.11 0.59 0.72 -0.08 0.34
co-Driver (Ours)  0.66 -0.07 -0.35 0.61 -0.04 -0.28 0.60 -0.03 -0.30

Table 2. Evaluating Incremental Learning on Open Web Data.
L_1(]), F-1(1), ADE_; ({) are the revised Average Loss, For-
getting and ADE on the evaluation set after the model continuously
trains on 10 million YouTube images.

Methods L—l F_ 1 ADE_1
DER [10] 1.24 -0.02 1.18
Rainbow [5] 1.33 -0.05 1.24
PuriDivER [6] 1.25 -0.04 1.18
oo-Driver (Ours) 1.17 -0.02 1.13
after learning on the k-th image collection as:
L
Ly =+ ;lk,j (10)

Forgetting (F'): Forgetting a specific image collection is
defined by the difference between the peak level of the im-
age collection knowledge acquired during past learning and
the present understanding that the model holds about the
image collection. We define the forgetting of the j-th im-
age collection after the model continuously learns k& image
collections as fF = minye(; . x—1} lij — I, Vj < k. The
average forgetting of previous image collections after learn-
ing the k-th image collection is defined as

E

-1
1
Fo=——=> fF

1 11
1

<.
Il

Intransigence (I): Intransigence measures the difficulty
for the model to learn on new image collection as below:

I =1, — lpk (12)
where [} is the loss if we performed supervised learning on
all the samples the model has seen so far, i.e., with unlimited
buffer size.

However, experiments of incremental learning on open
web data do not provide a hold-out evaluation set with

ground-truth for each image collection. Instead, we con-
struct a single evaluation set by mixing KITTI, nuScenes,
and Argoverse2. Thus, we provide revised Average Loss
L;, and Forgetting F}, to measure the incremental learning
performance. We denote [}, as the ADE that is measured on
the evaluation set after the model is trained on the k-th im-
age collection, where ADE is computed as described in the
experimental setup. The Average Loss is the average ADE
over image collections: Ly = %Zlf I;. Here, we define
the forgetting after the model continuously learns £ image
collections as F, = minjeqr, g1yl — I, Vj < k.

,,,,,

4.1. Results

Incremental Learning Performance: Table | presents the
results of incremental learning on image collections sorted
by cities with varying buffer sizes: 3,000, 6,000, and 9,000.
L_q1,F_q1,1_4 represents the evaluations after the model
trains on the last image collection. Our oo-Driver out-
performs other baselines across all metrics and exhibits a
significant advantage on the Average Loss and Forgetting
measures compared to other baseline models, especially on
buffer sizes 3,000 and 6,000. This indicates that our filter
mechanism and temporal consistency re-labeling method
can effectively remove and refine noisy samples. Addition-
ally, it demonstrates that our uncertainty-based buffer sam-
pling method can select more informative samples into the
buffer. Thus, our buffer is enriched with more informative
samples and less misleading labels. It enhances the model’s
ability to retain previously acquired knowledge without hin-
dering the model from learning new incoming knowledge.

Generalization Performance: To further demonstrate the
generalization ability of oco-Driver, we conduct open web
experiments that continuously train on the YouTube dataset.
It is important to note that all samples within the evalua-
tion set are entirely unseen to oo-Driver before evaluation.
Table 2 presents the revised Average Loss, Forgetting, and
ADE measured on the evaluation set after the model com-
pletes the final training phase. oo-Driver obtains the best
result on Forgetting, which indicates that the model’s final

15094



o
©
o
®

I
ES

14

1.0

<4
o

0.6

Average Displacement Error (m)
-
=)

o
o

0.2

1 2 3 4 5 6 7 8 9 10 1 2 3 4

Sequence of Cities

5

Sequence of Cities

=4— DER
Rainbow
== PuriDivER
1.4 == co-Driver

0.6

0.2

6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Sequence of Cities
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Figure 3. Open Web Learning Experiment. We plot ADE mea-
sured after the model has seen 2, 4, 6, 8, and 10 million images.

performance on the evaluation set essentially matches the
model’s best performance. The lowest Average Loss and
ADE demonstrate that the model exhibits best generaliza-
tion capabilities among the analyzed models.

Training Trends: Fig. 2 shows the ADE scores on each
city’s hold-out evaluation set. Performance is measured af-
ter the model has completed training on the last city’s image
collection. According to the figure, we demonstrate that af-
ter incrementally training over ten cities, our co-Driver con-
sistently outperforms other baseline models in each city un-
der all buffer settings. Moreover, Fig. 3 displays the trend of
ADE score as oo-Driver incrementally trained on YouTube
data. We plot the trend by selecting the ADE scores mea-
sured after the model has seen 2, 4, 6, 8, and 10 million
images. There is a significant gap between our method and
other baselines. ADE curves from RM and DER fluctuate
drastically over time. We believe this is because selecting
samples with an interval in RM may avoid adding a few du-
plicate samples to the buffer, but does not ensure the sample
diversity and potentially selects numerous non-informative

(e.g., low epistemic uncertainty) samples into the buffer.
The reservoir sampling strategy in DER ensures that each
sample has an equal probability of being selected in the
buffer. While simple, this approach may result in a less
informative buffer. Conversely, our epistemic uncertainty-
based buffer selection strategy effectively maintains an in-
formative buffer and our temporal consistency re-labeling
method and filtering mechanisms are capable of effectively
purifying and eliminating noisy samples. Further ablations
can be found in the supplementary.

5. Conclusion

We introduce a never-ending learning-to-drive framework
that can leverage unlabeled data streams to learn a robust
and generalized driving policy. oo-Driver utilizes an in-
verse dynamics teacher model to provide pseudo-labels for
the driving policy student to learn. Combined with our
uncertainty-guided sampling model, relabeling, and filter-
ing mechanisms, our incremental learning framework can
successfully learn from continuous driving data from the
web and generalize to different scenarios from unseen im-
ages. So far, oo-Driver has been watching hundreds of
videos and has yet to plateau. At the time of submission, it
has visited more than 10,000 miles (estimated based on the
inverse dynamics model). Our proposed approach is self-
trained and does not require prohibitive supervision, e.g., la-
bels for perception tasks. In the future, towards accessible,
open-source, and large-scale navigation models, we plan to
further analyze the role of co-Driver with larger model ar-
chitectures and additional video data. In the process, we
hope to uncover and address unique limitations in never-
ending learning to drive at an extreme scale.
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