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Abstract	
Creating	large-scale	public	datasets	of	human	motion	biomechanics	could	unlock	data-
driven	breakthroughs	in	our	understanding	of	human	motion,	neuromuscular	diseases,	
and	assistive	devices.	However,	the	manual	effort	currently	required	to	process	motion	
capture	data	and	quantify	the	kinematics	and	dynamics	of	movement	is	costly	and	limits	
the	collection	and	sharing	of	large-scale	biomechanical	datasets.	We	present	a	method,	
called	AddBiomechanics,	to	automate	and	standardize	the	quantiUication	of	human	
movement	dynamics	from	motion	capture	data.	We	use	linear	methods	followed	by	a	non-
convex	bilevel	optimization	to	scale	the	body	segments	of	a	musculoskeletal	model,	
register	the	locations	of	optical	markers	placed	on	an	experimental	subject	to	the	markers	
on	a	musculoskeletal	model,	and	compute	body	segment	kinematics	given	trajectories	of	
experimental	markers	during	a	motion.	We	then	apply	a	linear	method	followed	by	
another	non-convex	optimization	to	Uind	body	segment	masses	and	Uine	tune	kinematics	
to	minimize	residual	forces	given	corresponding	trajectories	of	ground	reaction	forces.	
The	optimization	approach	requires	approximately	3-5	minutes	to	determine	a	subject’s	
skeleton	dimensions	and	motion	kinematics,	and	less	than	30	minutes	of	computation	to	
also	determine	dynamically	consistent	skeleton	inertia	properties	and	Uine-tuned	
kinematics	and	kinetics,	compared	with	about	one	day	of	manual	work	for	a	human	
expert.	We	used	AddBiomechanics	to	automatically	reconstruct	joint	angle	and	torque	
trajectories	from	previously	published	multi-activity	datasets,	achieving	close	
correspondence	to	expert-calculated	values,	marker	root-mean-square	errors	less	than	2	
cm,	and	residual	force	magnitudes	smaller	than	2%	of	peak	external	force.	Finally,	we	
conUirmed	that	AddBiomechanics	accurately	reproduced	joint	kinematics	and	kinetics	
from	synthetic	walking	data	with	low	marker	error	and	residual	loads.	We	have	published	
the	algorithm	as	an	open	source	cloud	service	at	AddBiomechanics.org,	which	is	available	
at	no	cost	and	asks	that	users	agree	to	share	processed	and	de-identiUied	data	with	the	
community.	As	of	this	writing,	hundreds	of	researchers	have	used	the	prototype	tool	to	
process	and	share	about	ten	thousand	motion	Uiles	from	about	one	thousand	
experimental	subjects.	Reducing	the	barriers	to	processing	and	sharing	high-quality	
human	motion	biomechanics	data	will	enable	more	people	to	use	state-of-the-art	
biomechanical	analysis,	do	so	at	lower	cost,	and	share	larger	and	more	accurate	datasets.	

	 1	

Quantitative	analysis	of	human	movement	dynamics	is	a	powerful	tool	that	has	been	 2	
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widely	used	to	estimate	joint	loading	during	walking	and	running	e.g.	[1–9],	assess	 3	

muscle	function	during	gait	in	individuals	with	cerebral	palsy	e.g.	[10,11],	analyze	the	 4	

performance	of	assistive	devices	for	improving	human	movement	e.g.	[12–15],	quantify	 5	

changes	in	neuromuscular	control	due	to	Parkinson’s	disease	e.g.	[16,17],	and	even	 6	

generate	more	realistic	computer	graphics	e.g.	[18–20].	But	the	resource-intensive	 7	

nature	of	quantitative	movement	analysis	restricts	access	to	this	data	and	keeps	study	 8	

sample	sizes	small.	Without	automated	tools	to	process,	analyze,	and	harmonize	 9	

lab-based	human	movement	data,	the	biomechanics	Uield	has	been	hamstrung	in	its	 10	

ability	to	apply	modern,	data-hungry	machine	learning	approaches	to	create	accurate,	 11	

data-driven	models	to	predict,	prevent,	and	personalize	treatment	for	the	many	injuries	 12	

and	conditions	that	impair	movement.	 13	

Laboratory-based	motion	capture	is	the	current	benchmark	data	acquisition	 14	

technique	to	quantify	human	biomechanics	[21,22],	but	current	state-of-the-art	software	 15	

for	reconstructing	the	motion	and	kinetics	of	a	human	musculoskeletal	model	from	 16	

optical	marker	trajectories	and	ground	reaction	forces	requires	substantial	iterative	 17	

“guess-and-check”	reUinement,	which	increases	costs,	limits	scalability,	and	reduces	the	 18	

reproducibility	of	motion	capture	studies	[23–25].	A	typical	experiment	involves	placing	 19	

optical	markers	on	a	subject’s	body	segments	and	having	the	subject	perform	actions	in	 20	

a	laboratory	space	surrounded	by	specialized	cameras.	These	camera	systems	and	 21	

associated	software	are	able	to	reconstruct	the	three-dimensional	locations	of	the	optical	 22	

markers	in	the	lab,	and	given	the	marker	trajectories	over	time,	one	can	use	proprietary,	 23	

open,	or	custom	software	to	reconstruct	the	kinematics	of	the	subject’s	body	segments.	 24	

If	external	loads	recorded	simultaneously	from	ground	force	plates	an	inverse	dynamics	 25	

method	can	be	used	to	estimate	the	joint	torques	the	subject	used	to	generate	the	 26	

observed	motion.	 27	

Current	practices	for	model	scaling	and	inverse	kinematics	
28	

To	reconstruct	movement	kinematics	from	optical	motion	capture	data,	software	must	
29	

address	several	sources	of	noise,	ambiguity,	and	model	error.	Given	a	set	of	marker	 30	

trajectories	corresponding	to	a	motion	of	interest,	software	must	reconstruct	a	digital	 31	

twin	of	the	experimental	subject,	with	segment	dimensions	that	match	the	subject	as	 32	

closely	as	possible.	This	process	is	called	scaling,	and	a	variety	of	approaches	have	been	 33	

described	[23,26–33].	Finding	accurate	scaling	is	especially	important	when	using	 34	

motion	capture	data	to	create	muscle-driven	simulations	because	the	muscle-tendon	 35	

parameters	are	scaled	by	the	body	segment	dimensions	[34].	To	achieve	accurate	 36	

kinematic	results,	the	locations	of	the	markers	on	the	scaled	digital	twin	must	be	 37	

adjusted	to	account	for	variations	caused	by	human	error	in	attaching	the	markers	to	the	 38	

body	and	the	variations	in	the	dimensions	of	human	subjects	[24].	This	is	called	marker	 39	

registration.	Finally,	the	positions	and	orientations	of	the	body	segments	over	time	must	 40	

be	determined,	which	is	typically	done	using	an	optimization	process	called	inverse	 41	

kinematics	[35–39].	Inverse	kinematics	algorithms	generally	produce	more	accurate	 42	

results	when	the	solutions	are	constrained	by	an	underlying	skeletal	model	[13,24,40].	 43	

The	interdependence	between	scaling,	marker	registration,	and	inverse	kinematics	 44	

means	that	experts	must	follow	an	iterative	guess-and-check	procedure,	where	they	 45	

reUine	each	of	the	steps	several	times,	making	small	adjustments	to	each	value	until	a	 46	

desired	accuracy	is	achieved	[41,42].	For	example,	increasing	the	length	of	the	upper	 47	

arm	segment	in	a	subject’s	digital	twin	will	require	also	changing	the	marker	 48	

registrations	for	any	markers	on	the	forearm	and	the	hands,	because	otherwise	those	 49	

markers	would	move	as	a	result	of	the	longer	upper	arm.	A	longer	upper	arm	will	also,	 50	
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all	else	being	equal,	change	the	resulting	motion	found	by	inverse	kinematics.	While	 51	

there	are	best	practices	for	conducting	validation	at	each	step	[34],	the	process	typically	 52	

requires	extensive	and	subjective	input	from	an	expert.	 53	

Automating	the	scaling	and	registration	process	has	been	studied	before,	in	 54	

pioneering	work	by	Reinbolt	et.	al.	[43]	and	Charlton	et.	al.	[44].	These	authors	used	 55	

gradient-free	optimization	methods	to	automatically	estimate	body	segment	scales	and	 56	

marker	registrations	while	solving	gradient-based	inverse-kinematics	problems	 57	

repeatedly	in	an	inner-loop	to	evaluate	optimization	progress.	These	methods	require	 58	

large	amounts	of	compute	time	because	every	iterative	guess	the	outer	optimizer	makes	 59	

about	body	segment	scaling	and	marker	offsets	requires	solving	a	computationally	costly	 60	

inner	optimization	problem	(inverse	kinematics)	to	evaluate	the	quality	of	the	guess.	 61	

The	method	of	Reinbolt	et	al.	[43]	produces	the	best	results	using	a	particle-based	 62	

optimizer	for	their	outer	optimization	problem,	to	combat	the	non-convexity	of	the	 63	

problem,	but	this	comes	at	a	further	increase	in	computational	cost.	 64	

Given	the	interconnected	nature	of	body	segment	scaling,	marker	registration,	and	 65	

inverse	kinematics,	one	might	also	consider	posing	all	three	problems	as	a	single	 66	

optimization	problem.	However,	such	a	formulation	leads	to	a	nonconvex	optimization	 67	

in	which	a	global	solution	is	not	guaranteed	[45].	Instead,	we	can	only	guarantee	to	Uind	 68	

a	local	optimum	close	to	an	initial	guess,	so	providing	a	high	quality	initial	guess	is	 69	

crucial.	Andersen	et	al.	[46]	have	formulated	such	nonconvex	optimization	problems,	 70	

but	did	not	address	the	problem	of	reliably	Uinding	an	initial	guess	for	the	non-convex	 71	

optimization	problem	proposed.	 72	

Markerless	motion	capture	systems	based	on	video	recordings	have	recently	become	 73	

popular	since	they	do	not	require	expensive	motion	capture	equipment	[47].	While	these	 74	

approaches	do	not	track	optical	markers,	recent	work	has	focused	on	combining	 75	

markerless	motion	capture	techniques	(e.g.,	pose	detection)	with	scaled	musculoskeletal	 76	

models	to	incorporate	physiological	joint	constraints	[48,49].	These	approaches	still	rely	 77	

on	solving	an	inverse	kinematics	problem,	using	keypoints	from	pose	detection	 78	

algorithms,	rather	than	optical	markers.	Accurate	scaled	models	also	enable	deeper	 79	

biomechanical	analyses	with	markerless	motion	capture	techniques	to	estimate	kinetic	 80	

quantities,	like	joint	moments	and	muscle	forces	[49].	 81	

Creating	physically-consistent	simulations	
82	

Making	accurate	conclusions	about	the	kinetics	of	human	movement	requires	that	the	
83	

kinematics	and	mass	properties	of	a	musculoskeletal	model	are	“dynamically-consistent”	 84	

with	external	forces	(e.g.,	ground	reaction	forces).	Incorporating	experimental,	external	 85	

force	measurements	into	simulations	of	movement	can	lead	to	challenges	similar	to	those	 86	

presented	in	the	scaling	and	inverse	kinematics	problems.	When	inconsistencies	between	 87	

model	properties,	kinematics,	and	measured	external	forces	are	present,	an	inverse	 88	

dynamics	analysis	will	yield	physically	impossible	external	forces	and	moments	about	 89	

the	model’s	root	segment	(e.g.,	pelvis),	often	referred	to	as	residual	forces.	 90	

Biomechanics	researchers	aim	to	minimize	or	eliminate	residual	forces	and	moments	 91	

from	their	simulations;	in	practice,	it	is	usually	sufUicient	to	reduce	the	magnitude	of	the	 92	

residual	forces	below	recommended	thresholds	based	on	the	magnitude	of	the	 93	

experimental	ground	reaction	forces	and	center	of	mass	trajectory	[34].	 94	

Similar	to	model	scaling,	dynamic	consistency	is	usually	achieved	through	an	 95	

iterative	process	where	changes	in	model	kinematics	and	mass	parameters	are	made	to	 96	

reduce	residual	forces	and	moments.	OpenSim,	widely	used	simulation	software,	 97	
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provides	the	Residual	Reduction	Algorithm	(RRA)	tool,	which	adjusts	mass,	body	mass	 98	

center	locations,	and	joint	kinematics	to	minimize	residual	forces	and	moments	[41,50].	 99	

The	RRA	tool	uses	a	tracking	controller	to	adjust	joint	kinematics	while	penalizing	the	 100	

magnitude	of	residual	forces	and	moments.	Tracking	weights	for	each	joint	must	be	 101	

	
chosen	such	that	the	kinematic	changes	are	within	measurement	errors	while	still	 102	

minimizing	residual	forces.	Since	changes	in	residual	forces	are	dependent	on	changes	in	 103	

kinematics	and	mass	properties,	it	is	often	necessary	to	run	the	RRA	tool	iteratively	to	 104	

meet	recommended	residual	force	thresholds.	Sturdy	et	al.	[25]	used	the	RRA	tool	to	 105	

automate	the	reduction	of	residual	forces	by	optimizing	the	tracking	weights	with	 106	

random	hill	climbing.	This	approach	yielded	residuals	within	recommended	thresholds	 107	

from	Hicks	et	al.	[34],	but	required	a	pre-scaled	model,	joint	trajectories	from	inverse	 108	

kinematics,	and	up	to	2	hours	of	processing	time	per	subject	on	a	standard	desktop	 109	

machine.	 110	

Automating	motion	capture	data	processing	with	 111	
AddBiomechanics	 112	
Thus,	despite	recent	advances	in	biomechanics	simulation	methods,	reconstructing	

113	
human	movement	from	experiments	remains	a	challenging	and	time-consuming	task	for	 114	

researchers,	and	large-scale	datasets	are	lacking.	This	paper	introduces	an	automated	 115	

method	(Fig	1),	called	AddBiomechanics,	that	uses	a	combination	of	traditional	 116	

kinematic	solvers	and	modern	bilevel	optimization	to	estimate	high	quality	inverse	 117	

kinematics	and	dynamics	from	experimental	motion	capture	data	in	reasonable	 118	

computation	time.	We	Uirst	apply	a	sequence	of	optimizations	to	approximate	the	initial	 119	

values	for	each	of	the	body	segment	scales,	marker	registrations,	and	inverse	 120	

kinematics	[43,44];	thus,	no	user-provided	initial	guess	is	required.	Then,	rather	than	 121	

iteratively	repeat	those	optimization	problems	hundreds	of	times	as	in	previous	work,	 122	

we	apply	bilevel	optimization	techniques	to	simultaneously	optimize	body	scaling,	 123	

marker	registration,	and	inverse	kinematics.	Next,	we	Uind	a	least-squares	Uit	for	the	 124	

subject	mass	and	initial	center-of-mass	position	and	velocity	such	that	integrating	the	 125	

center-of-mass	accelerations	(which	are	the	measured	ground-reaction-forces	divided	by	 126	

subject	mass)	results	in	the	least-squares	closest	approximation	to	the	purely	kinematic	 127	

motion	we	found	in	the	previous	step.	Finally,	we	optimize	body	segment	masses	and	 128	

tune	the	body	scales,	marker	registrations,	and	model	kinematics	using	the	same	bilevel	 129	

approach	to	Uind	a	motion	that	is	still	consistent	with	the	experimental	marker	data	 130	

while	achieving	nearly	zero	residuals.	To	evaluate	the	algorithm,	we	computed	marker	 131	

RMS	errors	and	residual	forces	and	moments	for	a	set	of	common	movements	studied	in	 132	

the	biomechanics	Uield	including	walking,	running,	squatting,	and	sit-to-stand	motions,	 133	

and	compared	errors	to	results	computed	by	experts.	We	also	used	AddBiomechanics	to	 134	

estimate	joint	angles	and	moments	for	a	simulated	walking	motion	with	known	 135	

dynamics	and	zero	residuals.	Finally,	we	evaluated	the	computational	cost	of	computing	 136	

kinematics	and	kinetics	on	these	datasets.	 137	

AddBiomechanics	can	process	large	amounts	of	motion	capture	data	automatically.	 138	

To	facilitate	its	use,	we	have	released	the	software	as	an	open	source	cloud-based	service	 139	

available	at	AddBiomechanics.org,	where	over	300	researchers	from	dozens	of	 140	

institutions	have	begun	to	process	their	data	without	downloading	or	installing	any	 141	

software.	AddBiomechanics	outputs	OpenSim	project	Uiles	[41],	compatible	with	the	 142	

widely	used	open	source	biomechanics	package,	so	the	results	of	scaling	and	marker	 143	

registration	can	be	transferred	to	OpenSim	for	further	analysis.	Optimized	skeletons	 144	

https://addbiomechanics.org/
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can	also	be	exported	in	formats	compatible	with	MuJuCo	[51]	and	PyBullet	[52],	which	 145	

are	physics	simulators	commonly	used	in	reinforcement	learning	and	computer	graphics.	 146	

Methods	
147	

Given	a	musculoskeletal	model	and	experimental	data,	AddBiomechanics	solves	a	
148	

sequence	of	optimization	problems	to	compute	model	scaling,	inverse	kinematics,	and	 149	

	
Fig	1.	AddBiomechanics	automates	the	analyses	required	in	a	standard	motion	
capture	pipeline.	AddBiomechanics	integrates	into	the	standard	motion	capture	pipeline	
to	automate	the	process	of	model	scaling,	marker	registration,	inverse	kinematics,	and	
residual	reduction.	Once	experimental	marker	and	ground	reaction	force	data	have	been	
collected	and	uploaded	(steps	1-3),	AddBiomechanics	(step	4),	replaces	time-consuming	
and	error-prone	manual	steps	in	previous	workUlows.	Our	method	processes	input	
marker	and	force	data	through	several	steps	automatically.	First,	it	Uinds	the	functional	
joint	centers	from	the	data	(step	4.1),	and	then	it	uses	the	marker	data	and	those	joint	
centers	to	make	an	initial	guess	for	body	segment	scales	and	marker	registrations	(step	
4.2).	The	initial	guess	then	serves	as	the	starting	point	for	a	bilevel	optimization	problem	
that	matches	the	model	geometry	and	kinematics	to	the	experimental	marker	data	as	
closely	as	possible	(step	4.3).	Next,	the	model	trajectory	is	updated	by	Uitting	the	center	of	
mass	motion	to	the	ground	reaction	force	data	(step	4.4).	A	Uinal	optimization	adjusts	
body	segment	masses	and	joint	kinematics	to	maximize	consistency	between	the	model	
and	the	experimental	data	(step	4.5).	The	Uinal	output	is	a	musculoskeletal	model	scaled	
to	the	subject	with	registered	markers,	joint	angles,	and	joint	torques	over	time.	

inverse	dynamics,	where	the	solution	for	each	problem	is	the	initial	guess	for	the	 150	

subsequent	problem.	First,	the	model	scaling	and	inverse	kinematics	problems	are	 151	

solved	using	a	series	of	linear	and	bilevel	optimization	problems	to	Uind	a	solution	for	 152	

the	model	body	segment	scale	factors,	marker	registrations,	and	joint	kinematics.	If	 153	

ground	reaction	force	data	is	provided	by	the	user,	AddBiomechanics	then	estimates	 154	

center	of	mass	trajectory	and	overall	subject	mass	with	a	linear	optimization,	followed	 155	

by	a	non-convex	optimization	step	to	minimize	residual	forces	and	tune	the	original	 156	
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model	scaling	and	joint	kinematics	solution.	Each	of	these	steps	are	described	in	more	 157	

detail	in	the	sections	that	follow.	 158	

	
Input	model	and	experimental	data	 159	

Generic,	unscaled	musculoskeletal	model	 160	

Our	algorithm	can	scale	and	register	markers	on	arbitrary	skeletons	deUined	using	the	
161	

OpenSim	model	format.	A	skeleton	is	composed	of	a	set	of	body	segments,	connected	 162	

by	joints.	The	scaling	of	each	link	is	concatenated	to	form	the	s vector,	and	the	degrees	 163	

of	freedom	of	each	joint	are	concatenated	to	form	the	q vector.	The	algorithm	supports	 164	

all	OpenSim	joint	types,	including	custom	joints.	Examples	of	skeletons	that	have	been	 165	

successfully	scaled	and	registered	in	our	experiments	include	widely	used	state-of-the-art	 166	

biomechanical	models	[53,54].	 167	

Motion	capture	marker	trajectories	
168	

The	output	of	a	commercial	motion	capture	system	is	a	series	of	frames,	often	at	
169	

100-200	Hz,	where	each	frame	contains	3D	coordinates	representing	the	trajectories	of	 170	

optical	motion	capture	markers	in	the	experimental	capture	volume	at	the	 171	

corresponding	moment	in	time.	Users	must	provide	these	marker	trajectories	for	each	 172	

experimental	movement	trial.	Each	3D	coordinate	must	be	“labeled”	with	a	tag	 173	

corresponding	to	an	experimental	marker	location	on	the	subject	(e.g.	“C7”	for	the	 174	

optical	marker	placed	on	the	C7	spinal	segment).	A	full	list	of	marker	tags,	and	their	 175	

location	on	a	given	musculoskeletal	model	is	known	as	the	“marker	set.”	We	provide	 176	

models	with	default	marker	sets,	but	users	may	upload	a	custom	model	with	a	marker	 177	

set	that	matches	the	experimental	marker	data	they	provide.	In	practice,	markers	are	 178	

almost	never	placed	exactly	at	their	ideal	locations,	and	these	small	deviations	in	 179	

experimental	marker	placement	must	be	accounted	for	during	the	marker	registration	 180	

step.	Not	every	marker	from	the	marker	set	is	observed	in	every	frame,	because	markers	 181	

may	be	occasionally	obstructed	during	a	motion	capture	experiment.	Our	algorithm	 182	

allows	for	markers	with	missing	frames	and	can	automatically	adjust	for	deviations	in	 183	

marker	placement	during	the	optimization.	 184	

Ground	reaction	forces	
185	

Ground	reaction	forces	are	recorded	from	force	plates	embedded	in	the	ground	and	are	
186	

typically	measured	at	higher	frame	rates	(e.g.,	1000-2000	Hz)	compared	to	marker	 187	

trajectory	measurements.	To	compute	dynamics	with	AddBiomechanics,	users	must	 188	

provide	the	3	forces,	3	torques,	and	center	of	pressure	locations	for	each	force	plate	as	a	 189	

C3D	Uile	or	tab-delimited	data	Uile.	We	assign	loads	from	each	force	plate	to	the	feet	in	 190	

the	model	based	on	when	the	feet	are	penetrating	the	ground	within	known	force	plate	 191	

geometries	and	when	the	ground	reaction	force	information	exceeds	a	non-zero	threshold.	 192	

We	assume	that	both	feet	are	never	simultaneously	in	contact	with	a	single	force	plate.	 193	

Model	scaling	and	inverse	kinematics	
194	

Model	optimization	to	minimize	marker	position	errors	 195	

Given	the	measured	marker	trajectories	from	a	motion	capture	system	with	length	
196	
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equal	to	the	number	of	time	points	T,	x¯1:T,	AddBiomechanics	formulates	a	nonconvex	 197	

optimization	that	solves	for	the	kinematic	pose	trajectories,	q1:T,	the	scaling	parameters	 198	

of	the	body	segments	of	the	musculoskeletal	model,	s,	and	the	locations	of	markers	 199	

attached	to	the	body	segments,	p.	The	objective	of	the	optimization	is	to	minimize	the	 200	

deviation	of	estimated	marker	positions	from	x¯1:T:	 201	
 T	 M	

(i)	

 ,
	 (1)	

q1:	

	

where	M	is	the	number	of	markers,	p(i)	∈	R3	denotes	the	position	of	the	i-th	marker	in	
202	

the	local	frame	of	the	body	segment	to	which	it	is	attached,	and	p ∈	R3×M	is	the	 203	

concatenated	local	positions	of	all	markers.	fFK(qt,s,p(i))	is	the	forward	kinematic	 204	

process	that	transforms	a	point	p(i)	in	a	skeleton	scaled	by	s and	in	the	pose	qt	from	 205	

the	local	coordinate	frame	of	the	assigned	body	segment	to	the	world	coordinate	frame.	 206	

Note	that	we	use	the	t	to	denote	the	time	index	(rather	than	a	value	in	seconds)	 207	

throughout	the	manuscript.	 208	

Eq	(1)	is	high-dimensional	and	nonconvex.	Consequently,	the	solution	of	such	an	 209	

optimization	is	highly	sensitive	to	the	initialization	of	the	decision	variables.	We	use	a	 210	

bilevel	maximum-a-posteriori	(MAP)	optimization	and	an	initialization	strategy	to	 211	

achieve	new	state-of-the-art	in	automatic	processing	of	biomechanical	motion	capture	 212	

data.	The	proposed	bilevel	MAP	optimization	simultaneously	considers	data	 213	

reconstruction	and	anthropometric	statistics	when	jointly	optimizing	all	decision	 214	

variables	in	Eq	(1).	To	overcome	the	sensitivity	to	the	initial	guess,	our	method	 215	

individually	initializes	each	type	of	variable	using	independent	sources	of	information.	 216	

SpeciUically,	we	use	kinematic	constraints	to	initialize	q1:T,	a	geometric	invariant	to	 217	

initialize	s,	and	real-world	measurement	to	initialize	p.	Once	the	variables	are	 218	

initialized	individually,	the	Uinal	bilevel	optimization	ensures	that	they	agree	with	one	 219	

another,	given	the	observed	data	and	model	priors.	More	details	about	each	of	these	 220	

steps	are	provided	in	the	sections	that	follow.	 221	

Bilevel	maximum-a-posteriori	(MAP)	optimization	
222	

Given	recorded	marker	positions	x¯t	at	time	index	t,	we	are	interested	in	reconstructing	
223	

the	scales	of	each	body	segment	in	the	musculoskeletal	model,	s,	the	local	positions	of	 224	

the	markers	p attached	to	their	assigned	body	segments,	as	well	as	the	joint	pose	qt.	 225	

This	problem	can	be	formulated	as	a	maximum	a-priori	(MAP)	optimization:	 226	
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 	 (2)	
The	Uirst	term,	Px¯(x¯t|qt,s,p),	is	a	conditional	probability	of	the	observed	data	given	 227	

the	estimated	parameters.	This	formulation	is	equivalent	to	the	standard	least-squares	 228	

inverse	kinematics	objective	term	if	we	assume	Gaussian	noise	in	our	marker	 229	

observations.	The	second	term,	Ps(s),	expresses	the	prior	of	skeleton	scaling,	encoded	 230	

as	a	multivariate	Gaussian	Uit	to	the	ANSUR	II	dataset	[55]	of	anthropometric	scalings.	 231	

If	the	height,	weight,	or	biological	sex	of	the	experimental	subject	is	known,	the	 232	

multivariate	Gaussian	skeleton	scaling	prior	is	conditioned	on	that	information	before	 233	

any	optimization.	The	third	term,	Pp(p|p¯),	is	a	zero-mean	Gaussian	distribution	that	 234	

regularizes	the	deviation	of	the	marker	locations	from	their	intended	locations	p¯	 235	

provided	by	the	experimenter,	encoding	that	markers	are	generally	placed	close	to	their	 236	

intended	locations,	even	if	they	do	not	perfectly	align.	Pp(p|p¯)	regularizes	markers	 237	

differently:	some	markers	are	placed	on	anatomical	landmarks,	and	therefore	are	 238	

unlikely	to	move	relative	to	the	landmark	from	subject	to	subject,	and	other	markers	 239	

are	placed	anywhere	on	a	body	segment	as	“tracking”	markers,	and	therefore	the	 240	

optimizer	should	be	allowed	wide	discretion	to	adjust	those	marker	locations.	The	sets	 241	

of	“anatomical”	and	“tracking”	markers	are	determined	from	the	musculoskeletal	model	 242	

provided	by	the	user.	For	best	performance,	users	should	place	at	least	one	anatomical	 243	

marker	on	each	body	segment	in	the	model.	The	fourth	term	is	a	prior	over	q,	but	we	 244	

assume	this	is	a	uniform	distribution	and	drop	it	hereafter.	 245	

This	is	a	bilevel	optimization	problem,	because	in	order	to	evaluate	the	quality	of	 246	

given	skeleton	scaling	s and	marker	locations	p,	we	need	to	optimize	over	the	possible	 247	

joint	positions	qt.	To	efUiciently	solve	the	bilevel	optimization	problem,	we	observe	that	 248	

at	the	optimal	values	of	qt	for	maxqt	Px¯(x¯t|qt,s,p)),	the	gradient	of	the	inner	 249	

optimization	problem	will	be	zero.	Using	this	observation,	we	reformulate	the	bilevel	 250	

optimization	problem	as	a	single-level	nonconvex	optimization	problem	with	nonconvex	 251	

constraints.	For	numerical	stability,	we	minimize	the	negative	log	of	the	above	objective	 252	

function:	

mins,p,qt	−ln(Px¯(x¯t|qt,s,p))	−	ln(Ps(s))	−	ln(Pp(p|p¯))	

253	

 subject	to	 	 (3)	
At	a	locally-optimal	point,	the	gradient	of	the	objective	term	with	respect	to	any	of	 254	

the	decision	variables	is	zero,	so	it	must	be	zero	with	respect	to	qt:	 255	

 	 (4)	
Thus,	at	a	locally-optimal	point	for	the	objective	function,	the	constraint	in	 256	

Equation	3	must	hold	regardless,	and	so	we	could	theoretically	omit	it	from	the	 257	

optimization	problem	without	loss	of	correctness.	However,	we	found	that	explicitly	 258	

including	the	constraint	allows	the	optimizer	to	converge	to	a	high-quality	solution	 259	

much	more	quickly.	See	S1	Appendix	for	a	more	detailed	analysis.	 260	

We	could	use	any	nonlinear	optimization	solver	to	solve	Eq	(3).	In	practice,	we	use	 261	

IPOPT	[56],	which	is	a	high-quality	and	open	source	solver.	However,	due	to	our	 262	

problem’s	non-convexity,	a	good	initial	guess	for	the	decision	variables	is	needed	to	 263	

produce	reasonable	results.	 264	

∂	
∂	 	t	

ln(	P	̄ 	x	(	̄ 		t	|	 	t	,	 	,	 	))+	
∂	
∂	 	t	

ln(	P	s	(	 	))	

|	 z	{	 }	=0	

+	 ∂	
∂	 	t	

ln(	P	p	(	 	|	̄ 		))	

|	 {	z	 }	=0	

=0	
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Initializing	the	kinematic	decision	variables	
265	

Prior	to	solving	the	optimization	problem	in	Eq	(3),	we	need	to	get	“close-enough”	
266	

initial	guesses	for	the	decision	variables.	We	do	this	through	a	sequence	of	optimization	 267	

problems	as	described	in	the	steps	below.	We	obtain	initial	guesses	for	the	joint	angles,	 268	

qt,	body	segment	scales,	s,	and	marker	offsets,	p,	individually	based	on	independent	 269	

sources	of	information	such	that	the	cascading	errors	can	be	mitigated.	 270	

1.	Initialize	p using	the	marker	locations	measured	by	the	experimenter	or	deUined	
271	

by	the	existing	marker	set.	 272	
2.	Initialize	s by	analytically	computing	the	functional	joint	centers	and	axes	using	

273	
the	method	described	in	[57],	reUine	those	values	using	a	non-convex	sphere-Uitting	 274	

problem,	and	scale	s to	match	the	joint	axes	along	with	the	measured	markers.	 275	
3.	Initialize	qt	by	solving	inverse	kinematics	with	a	skeleton	scaled	to	s and	with	

276	
marker	locations	p.	 277	

Step	1	is	trivial	and	Step	3	is	a	simpliUied	Eq	(1)	with	s being	given	from	Step	2	and	 278	
p given	from	Step	1,	minq .	Solving	this	inverse	 279	
kinematics	problem	efUiciently	has	been	an	area	of	research	for	decades	[58–60]	and	can	 280	

be	done	efUiciently	and	reliably.	 281	

The	most	involved	step	in	our	initialization	process	is	Step	2,	initializing	the	body	 282	

segment	scales	s.	We	begin	by	analytically	computing	a	set	of	functional	joint	centers	 283	

and	axes	from	the	measured	marker	trajectories	using	the	least-squares	method	given	 284	

in	[57].	The	least-squares	method	is	deterministic,	but	can	be	slightly	less	than	optimal	 285	

in	the	presence	of	soft-tissue	artifacts,	so	we	further	reUine	joint	center	estimates	with	a	 286	

non-convex	problem,	initialized	with	the	answers	we	get	from	[57].	Let	the	subset	of	 287	

markers	attached	to	the	two	body	segments	connected	by	the	joint	be	M.	We	can	 288	

estimate	the	joint	position	c in	the	world	frame	over	time	by	
 T	 |M|	

289	
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 ,
	 (5)	

c	

where	ri	is	the	estimated	distance	between	the	i-th	marker	 	and	the	joint	center	ct	 290	
for	all	t.	ri	is	constant	over	time.	For	each	marker,	Eq	(5)	Uits	a	moving	sphere	centered	 291	

at	ct	with	the	radius	ri,	to	match	the	measured	positions	of	the	marker	over	time.	 292	

The	sphere-Uitting	approach	to	Uinding	functional	joint	centers	can	yield	ambiguities	 293	

when	marker	motion	adjacent	to	a	joint	is	primarily	conUined	to	the	sagittal	plane,	as	 294	

commonly	happens	in	locomotion.	In	such	cases,	we	could	move	our	joint	center	 295	

perpendicular	to	the	sagittal	plane,	and	still	have	an	equally	good	solution	for	 296	

sphere-Uitting.	As	a	result,	sphere-Uitting	might	incorrectly	scale	the	skeleton	to	match	 297	

erroneous	joint	positions.	For	example,	we	might	incorrectly	scale	the	hip	width	while	 298	

still	matching	all	the	measured	marker	motion	for	the	thighs	and	the	pelvis.	 299	

To	address	these	ambiguities,	we	formulate	another	optimization	problem	to	 300	

simultaneously	Uind	the	joint	axis	and	the	joint	center,	building	on	Eq	(5).	This	problem	 301	

is	similar	in	spirit	to	the	axis-of-rotation	problem	described	in	[61],	but	can	be	 302	

implemented	without	any	matrix	factorizations.	The	goal	of	the	axis	Uit	problem	is	to	 303	

identify	not	only	a	joint	center	c,	but	also	the	direction	of	axis	a at	each	frame.	We	also	 304	

estimate	a	Uixed	distance	from	the	center	for	each	marker,	parameterized	by	a	distance	 305	

ui	along	the	axis	a and	a	distance	vi	perpendicular	to	the	axis	a.	The	result	of	a	successful	
axis	Uit	is	that	we	capture	a	line	at	each	frame,	where	the	functional	joint	center	could	lie	
anywhere	on	that	line:	

min	
c1:T,a1:T,u,v	

T	 |M|	

XX	 T	 (i)	−	ct)||−ui)2	+	(||(x¯(ti)	−	ct)	−	aatT	(x¯(ti)	−	ct)||−vi)2	
(||aat	(x¯t	

t=1	i=1	| 	 {z	 }|
	 {z	 }	

 parallel	to	a perpendicular	to	a	
subject	to	 ∀t||at||	=	1.	 (6)	

For	each	marker	 	in	the	set	M,	we	decompose	 	to	two	vectors:	the	 309 

parallel	vector	which	is	the	projection	of	 	on	at,	and	the	remaining	orthogonal
	 310	
vector.	Eq	(6)	encourages	that	both	the	projected	vector	and	the	orthogonal	vector	 311	

maintain	constant	length	over	time	for	every	marker	in	M.	 312	

We	run	both	sphere	Uitting	and	axis	Uitting	at	each	joint.	Because	the	axis	Uit	is	a	 313	

strictly	more	demanding	problem,	if	it	succeeds,	then	the	axis	is	passed	on	as	a	 314	

constraint	for	subsequent	problems.	If	axis	Uitting	fails,	then	it	must	be	because	there	is	 315	

out-of-plane	marker	motion,	which	means	that	the	sphere	Uit	is	not	ambiguous,	so	then	 316	

the	exact	joint	center	is	passed	along	to	subsequent	problems.	 317	

Once	we	determine	the	joint	center	and/or	the	joint	axis,	we	formulate	another	 318	

optimization	to	initialize	the	scaling	parameters	s:	
 M	 N	

minX∥fFK(qt,s,p(i))	−	x¯(ti)∥	+	X∥fFK(qt,s,0(j))	−	(c(tj)	+	αat(j))∥,	 (7)	s,α	
 i=1	 j=1	

319	

where	the	zero	vector	0(j)	indicates	the	local	coordinate	of	the	joint	j,	and	N	is	the	
320	

number	of	joints.	The	Uirst	term	Uits	the	skeleton	to	the	measured	marker	positions,	 321	
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while	the	second	term	encourages	the	joints	to	lie	on	the	estimated	joint	axes	solved	by	 322	

Eq	(6),	at	a	distance	controlled	by	the	scalar	decision	variable	α.	If	the	joint	axis	does	 323	

not	exist	for	the	joint	j,	we	set	aj	to	zero	and	remove	α	from	the	optimization.	 324	

After	initializing	the	decision	variables,	we	Uind	a	solution	by	minimizing	Eq	(3).	 325	

The	body	scales,	s,	and	marker	registrations,	p,	are	returned	to	the	user	as	an	 326	

optimized	version	of	the	OpenSim	model	the	user	submitted	to	the	tool.	The	joint	angle	 327	

trajectories,	qt,	obtained	from	inverse	kinematics	solution	for	each	trial	are	exported	 328	

using	OpenSim’s	MOT	Uile	format.	 329	

Inverse	dynamics	
330	

Model	optimization	to	achieve	physical	consistency	 331	

After	Uinding	a	set	of	marker	registrations	and	body	scales	that	achieve	a	good	inverse	
332	

kinematics	Uit	to	the	marker	trajectories,	we	can	then	solve	another	optimization	 333	

problem	to	Uind	body	segement	masses	and	updated	joint	kinematics	that	minimize	the	 334	

set	of	residual	forces	and	torques	applied	to	the	pelvis.	Similar	to	the	model	scaling	and	 335	

inverse	kinematics	optimization,	this	problem	is	non-convex,	so	we	Uirst	need	to	create	a	 336	

good	initial	guess	for	the	model	and	mass	parameters	and	update	the	kinematic	 337	

trajectory	so	that	it	is	physically	consistent	with	the	observed	ground	reaction	force	 338	

data.	To	achieve	this,	we	solve	a	series	of	linear	equations	to	Uit	the	system’s	center	of	 339	

mass	trajectory	to	our	results	from	the	marker	Uitting	step	while	prescribing	the	 340	

observed	ground	reaction	forces.	We	begin	with	the	solution	q1:T	obtained	from	the	 341	

previous	model	scaling	and	inverse	kinematics	process.	To	avoid	large	acceleration	 342	

artifacts	in	the	dynamic	Uitting	problems,	we	smooth	the	solution	q1:T	by	minimizing	 343	

the	jerk	of	the	joint	angle	trajectories	over	time	(S1	Appendix).	 344	

Center	of	mass	trajectory	Mitting	
345	

The	trajectory	of	the	center	of	mass	of	the	system	is	dictated	by	the	ground	reaction	
346	

forces	acting	on	the	model	and	can	be	deUined	by	the	differential	equation:	

f	

347	

 z¨	 g (8)	
where	z¨	∈	R3	is	center	of	mass	acceleration,	f is	the	ground	reaction	force	vector,	m	is	 348	

the	system	mass,	and	g is	gravitational	acceleration.	 349	

Since	the	ground	reaction	forces	are	known	from	experimental	data,	the	center	of	 350	

mass	acceleration	is	just	a	linear	function	of	inverse	mass	of	the	model.	We	deUine	a	new	 351	

variable ,	and	note	that	the	center	of	mass	trajectory	is	a	linear	function	of	µ.	If	 352	
the	initial	state	(the	state	at	index	t	=	1)	of	the	center	of	mass	acceleration,	(z1,z˙1),	is	 353	

known,	the	entire	trajectory	zt	is	determined.	We	aim	to	Uind	a	best	Uit	of	this	 354	

trajectory	to	the	trajectory	that	we	obtained	from	the	marker-Uitting	optimization,	zˆt.	 355	

We	deUine	a	vector	ζ that	contains	the	three	unknown	quantities:	 356	

 	 (9)	
We	can	deUine	a	linear	system	with	matrix	A ∈	R3T×7	and	offset	b ∈	R3T	that	maps	 357	

the	vector	ζ onto	Z ∈	R3T,	a	vector	of	concatenated	center	of	mass	position	vectors	 358	

over	time:	 359	
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 Aζ 	 (10)	

Given	the	observed	trajectory	of	center	of	mass	motion	from	the	marker	Uitting	step,	 360	

Zˆ	,	it	is	possible	to	Uind	a	least-squares	best	estimate	for	the	unknowns,	ζˆ,	using	the	
361	

pseudo-inverse	of	A:	

 ζˆ	=	A†(Zˆ	−	b)	 (11)	

362	

To	derive	A,	Uirst,	we	deUine	a	semi-explicit	Euler	integration	scheme	to	solve	for	the	
363	

center	of	mass	trajectory:	 364	

z˙	
(12)	

zt+1	=	zt	+	z˙t+1∆t	 	

where	∆t	is	the	integration	time	step	in	seconds.	
365	

We	can	then	construct	A and	b using	this	integration	scheme	to	relate	the	unknowns	 366	

ζ to	the	center	of	mass	positions,	Z:	 367	

 I 0	 0	 	
 I ∆tI ∆2t(f1)	 	
 2∆tI ∆2t(f2	+	2f1)	 	
 A 	 b(13)	

 ...	 ...	 	
	
	

 T∆tI ∆2t	PTt=1(T	−	t)ft	
Here,	the	Uirst	two	columnar	blocks	of	A represent	the	contributions	from	z1	and	z˙1	 368	
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to	the	trajectory	Z,	where	I and	0	are	the	3×3	identity	and	zero	matrices,	respectively.	 369	

The	third	columnar	block	of	A represents	the	contribution	from	the	inverse	mass	µ	and	 370	

is	a	single	column	containing	terms	corresponding	to	the	time	integration	of	the	ground	 371	

reaction	forces.	Similarly,	the	vector	b contains	terms	corresponding	to	the	time	 372	

integration	of	gravitational	acceleration.	 373	

By	solving	Eq	(11),	we	obtain	a	least-squares	best	Uit	of	the	initial	conditions	and	 374	

mass	of	the	system,	ζˆ,	and	can	use	this	solution	to	obtain	a	new	trajectory	for	the	
375	

center	of	mass	that	is	physically	consistent	with	the	observed	ground	reaction	force	 376	

data,	Z =	Aζˆ+	b.	We	can	recover	total	mass	as .	Finally,	we	modify	the	 377	

position	of	the	pelvis	over	time	while	keeping	the	remaining	joint	angles	Uixed	to	update	 378	

the	model’s	center	of	mass	trajectory	to	match	Z.	This	step	serves	as	an	initialization	 379	

for	the	Uinal	problem	described	later,	which	will	further	reUine	the	joint	angle	 380	

trajectories	while	optimizing	the	mass	properties	of	the	model.	 381	

Angular	dynamics	Mitting	
382	

Fitting	the	center	of	mass	trajectory	provides	better	physical	consistency	with	the	linear	
383	

ground	reaction	forces	applied	to	the	system,	but	the	trajectory	may	still	be	 384	

inconsistent	with	the	moments	these	forces	produce	about	the	center	of	mass	of	the	 385	

system.	Given	our	solution	to	the	linear	center	of	mass	Uitting	problem,	ζˆ,	we	can	
386	

expand	our	approach	to	also	address	physical	inconsistencies	in	the	angular	dynamics.	 387	
3	

We	use	θt	∈	R to	denote	the	rotational	generalized	coordinates	of	the	root	segment	 388	

(e.g.,	the	pelvis)	at	time	t,	which	are	a	subset	of	the	coordinates	in	qt.	First,	we	assume	 389	

that	changing	θt	does	not	change	the	mass	matrix	or	the	Coriolis	forces	for	the	skeleton	 390	

at	time	t.	This	is	not	true	in	general,	but	since	we	aim	to	make	small	adjustments	to	θt	 391	

from	the	inverse	kinematics	solution,	we	Uind	this	in	practice	to	be	a	reasonable	 392	

approximation	when	creating	an	initial	guess	for	the	skeleton’s	root	trajectory.	We	can	 393	

then	construct	a	new	linear	map	that	relates	the	initial	conditions	of	the	root	segment	 394	

to	the	trajectory,	Ξ	∈	R6T,	which	includes	both	the	pelvis	coordinate	rotations,	 395	

Θ	∈	R3T,	and	center	of	mass	positions,	Z ∈	R3T:	

z1 	z	

	2 	

396	
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 Aξ˜	 	 (14)	
The	vector	ξ contains	the	initial	conditions	of	the	center	of	mass	trajectory	and	the	 397	

initial	pelvis	rotational	coordinate	values,	θ1	and	speeds,	θ˙1:	

z1 	

398	

z˙	

 
	 (15)	

 A˜	 	 )	 (∂	 I 0	 	 (16)	
	

 )	 (	 I ∆tI 	
	

 )	 (	 I 2∆tI 	

 ...	 ...	 	

 )	 (I T∆tI	

Note	that	the	upper	left	and	lower	right	quadrants	of	A˜	are	identical	to	the	block	
405	

matrices	we	constructed	in	A,	since	we	use	the	same	semi-explicit	integration	scheme	 406	

for	both	zt	and	θt	as	deUined	in	Eq	(12).	The	center	of	mass	trajectory	zt	does	not	 407	

The	initial	values	of	z1	and	z˙1	are	chosen	based	on	our	previous	solution	to	the	 399	

center	of	mass	trajectory	Uitting	problem.	Note	that	unlike	in	the	previous	linear	Uitting	 400	

problem,	we	now	hold	the	skeleton	mass	Uixed,	so	no	inverse	mass	term	appears	in	ξ,	and	 401	

what	used	to	be	the	third	columnar	block	in	A in	Equation	13	is	now	instead	part	of	the	 402	

constant	term	and	appears	in	b˜.	See	S1	Appendix	for	details	on	how	b˜	is	constructed.	 403	

As	before,	we	construct	A˜	to	map	the	initial	conditions	ξ onto	the	trajectory	Ξ:	

 	I 0	 0	 0	 	
	tI 0	0	 	I ∆	

 	I 2∆tI 0	 0	 	
	

 	......	 ...	 	
	

 	 	
 I T∆tI 0	 0	

404	
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depend	on	θ1	or	θ˙1,	so	the	upper	right	quadrant	contains	all	zeros.	
408	

 To	compute	the	terms	 	and	 	in	the	lower	left	quadrant	of	A˜,	we	Uirst	note	 409	
that	the	center	of	pressure	locations	are	Uixed	based	on	the	ground	reaction	force	data.	 410	

Therefore,	if	we	change	the	location	of	the	center	of	mass	by	some	Uinite	value	∆zt,	the	 411	

moment	applied	by	the	ground	reaction	force	about	the	pelvis	changes	by	 412	

∆τt	=	∆zt	×	ft.	This	means	that	the	acceleration	of	the	pelvis	rotational	coordinates	 413	

changes	by	∆θ¨t	=	Mt−1(∆zt	×	ft),	where	Mt	is	the	generalized	mass	matrix	for	our	
414	

skeleton	in	conUiguration	qt	found	by	the	inverse	kinematics	and	scaling	steps.	This	can	 415	

be	rewritten	as	a	linear	expression	between	∆zt	and	∆θ¨t	using	the	skew-symmetric	
416	

matrix	[ft]:	

 ∆θ¨t	=	−Mt−1[ft]∆zt,	 (17)	

417	

where	−Mt−1[ft]	is	a	constant	matrix	in	R3×3.	
418	

Note	that	Eq	(17)	is	true	for	the	initial	time	step	even	without	our	simplifying	 419	

approximations	(that	changing	θt	does	not	effect	mass	matrix	Mt	or	Coriolis	forces).	 420	

These	approximations	are	only	necessary	when	we	begin	to	integrate	this	expression	 421	

forward	in	time,	since	changes	in	θt	will	change	the	mass	matrix,	Mt,	and	the	linear	 422	

offsets	from	the	equations	of	motion	(e.g.,	the	Coriolis	forces)	contained	in	b˜,	which	
423	

would	render	the	problem	non-linear.	 424	

 We	can	now	compute	 	and	 	by	multiplying	together	known	terms	based	on	 425	
the	chain	rule:	 426	

 	 (18)	

 	 (19)	
Where	the	partials	are	given	by:	 427	

 I  I  I
 (20)	

In	Eq	(19),	the	Uirst	two	terms	are	the	same	as	Eq	(18),	and	the	third	term	is	the	 428	

change	in	center	of	mass	position	due	to	the	change	in	z˙1.	Both	 	and	 	can	be	 429	
obtained	directly	from	A.	 430	

The	vector	b˜	includes	terms	for	the	time	integration	of	gravitational	acceleration,	the	
431	

acceleration	due	to	the	applied	ground	reaction	forces,	and	the	Coriolis	terms	of	the	 432	

equations	of	motion	of	the	skeleton.	In	general,	the	Coriolis	terms	depend	on	θt,	but	 433	

based	on	our	simplifying	assumption	to	keep	the	problem	linear,	we	simply	use	the	 434	

initial	guess	for	θt	to	compute	the	terms	in	b˜.	Refer	to	S1	Appendix	for	more	details	on	
435	

the	construction	of	b˜.	
436	

We	can	then	Uind	a	least-squares	best	Uit	for	the	unknown	initial	conditions,	ξˆ,	given	
437	

the	observed	trajectories	of	the	center	of	mass	position	and	pelvis	rotation	coordinates,	 438	
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Ξˆ,	using	the	pseudo-inverse	of	A˜:	

 ξˆ=	A˜†(Ξˆ	−	b˜)	 (21)	

439	

We	use	the	solution	ξˆ	to	reconstruct	a	physically-consistent	trajectory	for	the	pelvis	 440	
coordinate	rotations	and	center	of	mass	positions,	Ξ	=	A˜ξˆ+	b˜.	To	make	the	problem	 441	
linear,	we	have	assumed	that	our	solution	for	the	pelvis	coordinate	rotations,	Θ,	does	 442	

not	change	the	mass	matrix	or	Coriolis	terms,	but	since	this	is	not	true	in	general,	the	 443	

solution	to	Eq	(21)	will	change	the	terms	in	A˜	and	b˜.	Therefore,	to	Uind	a	satisfactory	
444	

initial	guess	for	the	skeleton’s	root	trajectory,	we	form	and	solve	the	system	deUined	by	 445	

A˜	and	b˜	iteratively	until	Ξ	converges.	In	practice,	we	Uind	that	convergence	typically	
446	

takes	less	than	30	iterations	with	each	iteration	taking	less	than	a	second	on	a	low-end	 447	

server.	 448	

Once	the	solution	Ξˆ	has	met	our	convergence	criteria,	we	have	found	a	trajectory	for	
449	

the	center	of	mass	translation	and	the	pelvis	coordinate	rotations	that	is	physically	 450	

consistent	with	the	measured	ground	reaction	force	data.	Finally,	we	include	additional	 451	

terms	to	account	for	errors	in	force	plate	locations	and	orientations	and	to	eliminate	 452	

drift	in	very	long	trials;	the	details	of	these	terms	can	be	found	in	S1	Appendix.	 453	

Final	optimization	to	tune	marker	@itting	results	and	minimize	 454	
residual	loads	 455	
After	Uitting	the	center	of	mass	trajectory	and	pelvis	coordinate	rotations	to	achieve	

456	
physical	consistency	with	the	ground	reaction	force	data,	we	run	a	Uinal	optimization	to	 457	

tune	skeleton	segment	masses,	marker	offsets,	segment	scale	factors,	and	joint	 458	

coordinates	to	minimize	the	residual	forces	at	the	pelvis,	ftres,	while	still	retaining	a	 459	

good	kinematic	Uit	to	the	marker	data.	We	achieve	this	by	taking	the	marker	Uitting	 460	

problem	described	in	Eq	(2)	and	adding	the	segment	masses	to	the	decision	variables	 461	

and	a	loss	term	to	penalize	the	residual	forces:	 462	
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(22)	
s,	

We	optimize	this	problem	in	the	same	way	as	the	marker	Uitting	problem,	where	we	 463	

minimize	the	negative	log	of	the	objective	in	Eq	(22).	Note	that	we	do	not	use	a	bilevel	 464	

problem	formulation	here,	since	we	now	allow	the	solution	to	deviate	slightly	from	a	 465	

valid	inverse	kinematics	solution	in	order	to	achieve	dynamic	consistency.	Therefore,	we	 466	

no	longer	explicitly	constrain	that	the	gradient	of	the	inverse	kinematics	loss	term	with	 467	

respect	to	the	joint	coordinates	be	zero.	 468	

Open	source	implementation	
469	

To	facilitate	adoption,	we	provide	the	algorithm	as	an	open-source,	cloud-based	tool	
470	

that	allows	researchers	to	automate	scaling,	marker	registration,	inverse	kinematics,	 471	

residual	reduction,	and	inverse	dynamics	for	their	motion	capture	data	without	 472	

downloading	or	installing	any	software,	available	at	AddBiomechanics.org.	Users	can	 473	

drag	and	drop	Uiles	for	automated	processing,	and	then	visualize	on	the	web	or	 474	

download	results	for	analysis	in	OpenSim	(Figure	2).	C3D	or	TRC	marker	Uiles	are	 475	

supported,	and	C3D	or	MOT	Uiles	for	ground	reaction	forces.	The	cloud	tool	also	allows	 476	

researchers	to	automatically	generate	comparisons	of	their	own	hand-scaled	data	versus	 477	

the	output	of	the	automated	system.	 478	

Evaluation	
479	

To	evaluate	our	algorithm,	we	Uirst	compared	AddBiomechanics	to	expert-computed	
480	

values	for	a	dataset	published	by	Hamner	et	al.	(2013)	with	ten	subjects	running	at	2.0,	 481	

3.0,	4.0,	and	5.0	m	s-1	[62]	(40	total	trials),	as	well	as	a	multi-activity	dataset	[49]	that	 482	

included	sit-to-stand,	squatting,	jumping,	and	walking	motions	(104	total	trials).	We	 483	

https://addbiomechanics.org/
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Fig	2.	The	web	interface	for	AddBiomechanics.	The	web	interface	allows	users	to	drag	
and	drop	data	 Uiles	 for	 individual	experimental	 trials	and	 the	subject	data	 is	processed	
automatically	in	the	cloud.	

compared	root	mean	squared	errors	between	experimental	and	model	markers	and	 484	

computed	residual	forces	and	moments	for	both	the	expert-	and	 485	

AddBiomechanics-determined	values.	We	also	qualitatively	compared	joint	angles	and	 486	

joint	torques.	We	used	the	model,	marker	set,	and	raw	experimental	data	(markers	and	 487	

ground	reaction	forces)	from	the	original	study	as	inputs	to	AddBiomechanics	and	 488	

compared	to	the	published	results	computed	by	the	study	investigators.	 489	

Quantitative	comparison	of	the	solved	joint	angles	and	moments	with	ground	truth	 490	

values	is	another	critical	test	of	our	method.	However,	ground	truth	joint	angles	and	 491	

moments	cannot	be	directly	measured	from	experiments.	We	thus	used	a	 492	

three-dimensional	dynamic	simulation	of	walking	created	using	trajectory	 493	

optimization	[63],	where	joint	angles	and	moments	are	known	and	residual	forces	and	 494	

moments	are	also	known	to	be	zero,	to	generate	a	synthetic	dataset.	We	used	 495	

synthesized	marker	trajectories,	along	with	the	computed	ground	reaction	forces	and	 496	
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centers	of	pressure	from	the	simulation,	as	inputs	to	AddBiomechanics.	Additional	 497	

inputs	included	the	original	generic,	unscaled	model	and	an	unregistered	version	of	the	 498	

appropriate	marker	set.	We	then	used	AddBiomechanics	to	optimize	and	compared	the	 499	

recovered	motion	to	the	known	joint	angles	and	moments.	 500	

Results	
501	

Human	expert	versus	automated	processing:	running	dataset	 502	

The	average	marker	RMSE	achieved	by	AddBiomechanics	for	the	running	dataset	was	
503	

1.5	cm,	which	is	signiUicantly	smaller	than	the	4.3	cm	marker	RMSE	(p	<	0.005,	paired	 504	

t-test)	in	the	originally	published	results	from	[62]	obtained	after	using	OpenSim’s	 505	

Residual	Reduction	Algorithm	(Fig	3,	left)	to	modify	the	running	kinematics	to	reduce	 506	

residual	loads.	In	addition,	the	maximum	marker	error	produced	by	AddBiomechanics	 507	

(3.8	cm)	was	smaller	than	the	maximum	marker	error	in	the	expert-processed	results	 508	

(7.5	cm).	AddBiomechanics	produced	a	small	but	signiUicant	reduction	in	average	RMS	 509	

residual	force	magnitude	(p	<	0.05,	paired	t-test)	compared	to	the	original	study	(Fig	3,	 510	

right).	In	addition,	AddBiomechanics	was	able	to	signiUicantly	reduce	residual	torque	 511	

magnitudes	(p	<	0.005,	paired	t-test)	such	that	they	were	below	the	threshold	 512	

recommended	by	Hicks	et	al.	[34],	which	was	not	achieved	in	the	original	study.	Finally,	 513	

the	lower-limb	joint	angle	and	joint	torque	trajectories	from	the	automated	approach	 514	

were	qualitatively	similar	to	the	trajectories	from	the	original	study	(Fig	4).	 515	

AddBiomechanics	produced	similar	results	in	both	the	stance	and	Ulight	phases	of	 516	

running	across	all	subjects.	 517	

The	manual	data	processing	by	the	expert	in	the	original	publication	was	labor	 518	

intensive:	each	participant	took	several	days	for	the	expert	to	create	a	 519	

dynamically-consistent	scaled	model	and	compute	joint	angles	and	torques.	Average	 520	

computation	time	for	a	participant	processed	with	AddBiomechanics	was	less	than	30	 521	

minutes	on	a	desktop	machine,	with	3-5	minutes	spent	on	scaling	and	inverse	 522	

kinematics,	and	the	remainder	on	dynamic	consistency.	 523	

Human	expert	versus	automatic	processing:	multi-activity	dataset	
524	

AddBiomechanics	produced	similar	marker	errors	(RMS:	1.6	cm,	max:	3.9	cm)	when	
525	

processing	the	multi-activity	dataset	compared	to	manual	processing	by	experts	(RMS:	 526	

1.7	cm,	max:	3.7	cm;	Fig	5,	left).	The	original	study	published	by	Uhlrich	et	al.	[49]	did	 527	

not	perform	a	residual	reduction	step	before	computing	joint	moments.	However,	 528	

AddBiomechanics	automatically	produced	an	inverse	dynamics	solution	that	met	the	 529	

recommendations	of	Hicks	et	al.	[34]	(Fig	5,	right)	and	signiUicantly	reduced	both	 530	

residual	forces	and	moments	(p	<	0.005,	paired	t-test).	In	addition,	the	lower-limb	joint	 531	

angle	and	joint	torque	trajectories	from	the	automated	approach	were	qualitatively	 532	

similar	to	the	trajectories	from	the	original	study	(Fig	6).	 533	

Manual	expert	scaling	for	the	multi-activity	dataset	was	also	labor	intensive,	taking	 534	

roughly	one	working	day	per	subject,	not	including	additional	time	to	perform	inverse	 535	

kinematics	and	inverse	dynamics	for	each	of	the	movement	trials.	AddBiomechanics	 536	

required	less	than	one	hour	on	a	desktop	machine	to	automatically	perform	scaling,	 537	

inverse	kinematics,	and	inverse	dynamics	for	each	subject	with	no	input	from	the	user.	 538	

Scaling	and	inverse	kinematics	was	completed	in	under	10	minutes,	with	the	remaining	 539	

time	being	consumed	by	dynamics	processing.	 540	
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Fig	3.	Human	expert	versus	automated	processing:	running	dataset.	The	
root-mean-square	marker	errors	(left)	and	residual	forces	and	torques	(right)	from	the	
original	published	study	from	Hamner	et	al.	[62]	(gray)	compared	to	the	results	obtained	
using	AddBiomechanics	(blue).	The	results	from	Hamner	et	al.	[62]	were	obtained	using	
OpenSim’s	scaling,	inverse	kinematics,	and	inverse	dynamics	tools,	and	residual	loads	
were	minimized	using	OpenSim’s	Residual	Reduction	Algorithm	(RRA).	The	residual	
forces	are	normalized	to	a	percent	of	the	peak	ground	reaction	force,	and	the	residual	
torques	are	normalized	to	a	percent	of	the	peak	ground	reaction	force	times	the	average	
center	of	mass	height.	The	solid	bars	show	the	average	per-trial	RMS	error,	averaged	over	
the	10	subjects	in	the	evaluation.	The	error	bars	show	the	standard	deviation	of	RMSE	
across	the	subjects.	The	dashed	horizontal	lines	represent	residual	force	and	torque	
magnitude	thresholds	recommended	by	Hicks	et	al.	[34].	Asterisks	indicate	statistical	
differences	based	on	pairwise	t-tests.	

Synthetic	walking	data	results	 541	

We	found	that	AddBiomechanics	was	able	to	recover	the	ground	truth	joint	angles	and	
542	

joint	torques	from	the	synthetic	walking	marker	data	to	an	average	of	1.6	deg	RMSE	 543	

and	0.15%	body	weight	times	height	(computed	over	all	joints	in	a	trial	together).	The	 544	

marker	errors	and	residual	loads	achieved	by	AddBiomechanics	for	the	synthetic	data	 545	

were	small	(0.63	cm	and	0.01%	normalized	load,	respectively;	Table	1).	 546	

Discussion	
547	

Our	bilevel	optimization	algorithm	to	Uind	body	segment	scales,	marker	offsets,	and	
548	

joint	angle	and	torque	trajectories	found	dynamically-consistent	trajectories	for	the	 549	

multi-activity	dataset	while	achieving	marker	reconstruction	errors	similar	to	the	 550	

originally	published	expert-processed	data.	In	addition,	AddBiomechanics	was	able	to	 551	

automatically	reproduce	lower-limb	joint	angles	and	torques	from	the	running	dataset	 552	
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Fig	4.	Running	data:	joint	angles	and	torques.	Joint	angles	(left)	and	joint	torques	(right)	
from	the	original	published	study	from	Hamner	et	al.	[62]	(gray)	compared	to	the	results	
obtained	using	AddBiomechanics	(blue)	for	the	2.0	and	5.0	m	s-1	running	trials.	The	solid	
lines	represent	joint	angles	and	torques	averaged	over	the	10	subjects	in	the	evaluation;	
the	shaded	bands	represent	the	standard	deviation	across	subjects.	

Table	1.	Synthetic	walking	data	results.	
Quantity	 Average	RMSE†	 Units	
	

0.15	±	0.01	×	
	

0.01	±	0.01	 ‡	

Residual	
Torque	

0.01	±	0.01	 %	
normalized	
torque‡	

†	The	average	RMSE	results	are	presented	as	mean	±	standard	deviation	across	subjects.	‡	
The	residual	forces	are	normalized	to	a	percent	of	the	peak	ground	reaction	force,	and	the	
residual	torques	are	normalized	to	a	percent	of	the	peak	ground	reaction	force	times	the	
average	center	of	mass	height.	
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while	achieving	similar	residual	loads	and	signiUicantly	reducing	marker	error.	Finally,	553 
AddBiomechanics	reproduced	the	joint	angles	and	torques	from	the	synthetic	walking	554	

	
Fig	5.	Human	expert	versus	automatic	processing:	multi-activity	dataset.	The	root-
mean-square	marker	errors	(left)	and	residual	forces	and	torques	(right)	from	the	original	
published	study	from	Uhlrich	et	al.	[49]	(gray)	compared	to	the	results	obtained	using	
AddBiomechanics	(blue).	The	results	from	Uhlrich	et	al.	[49]	were	obtained	using	
OpenSim’s	scaling,	inverse	kinematics,	and	inverse	dynamics	tools,	but	no	residual	
reduction	step	was	performed.	The	residual	forces	are	normalized	to	a	percent	of	the	peak	
ground	reaction	force,	and	the	residual	torques	are	normalized	to	a	percent	of	the	peak	
ground	reaction	force	times	the	average	center	of	mass	height.	The	solid	bars	show	the	
average	of	per-trial	RMS	error,	averaged	over	the	10	subjects	in	the	evaluation.	The	error	
bars	show	the	standard	deviation	of	RMSE	across	the	subjects.	The	dashed	horizontal	
lines	represent	residual	force	and	torque	magnitude	thresholds	recommended	by	Hicks	et	
al.	[34].	Asterisks	indicate	statistical	differences	based	on	pairwise	t-tests.	

dataset	with	high	accuracy	while	achieving	very	low	marker	error	and	residual	forces.	 555	

The	sequential	approach	we	used	to	create	initial	guesses	for	solving	the	model	scaling,	 556	

inverse	kinematics,	and	inverse	dynamics	optimizations	problems	made	our	method	fast	 557	

and	robust,	requiring	no	expert	intervention.	 558	

In	addition	to	being	computationally	efUicient,	our	method	improves	upon	previous	 559	

automated	model	optimization	methods.	For	comparison,	the	method	in	[24]	assumed	 560	

that	all	the	body	segment	scalings	were	known	to	the	algorithm	and	only	attempted	to	 561	

Uind	the	marker	offsets	and	the	joint	angles,	and	resulted	in	1.21	degree	joint	angle	 562	

RMSE.	Our	method	must	also	recover	segment	scaling	information	from	the	data	but	 563	

achieves	similar	results:	processing	the	synthetic	walking	data	led	to	a	joint	angle	 564	

RMSE	of	1.6	degrees.	The	marker	error	results	from	our	approach	are	also	consistent	 565	

with	previous	automated	scaling	approaches,	which	all	outperform	human	experts	when	 566	

Uitting	a	model	to	the	same	data	[24,43,44,64–66].	However,	previous	approaches	 567	
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required	large	amounts	of	compute	time,	were	limited	to	one	speciUic	skeleton,	or	only	 568	

addressed	part	of	the	body	segment	scaling	and	marker	registration	problem.	In	 569	

	
Fig	6.	Multi-activty	data:	joint	angles	and	torques.	Joint	angles	(left)	and	joint	torques	
(right)	from	the	original	published	study	from	Uhlrich	et	al.	[49]	(gray)	compared	to	the	
results	obtained	using	AddBiomechanics	(blue)	for	drop	jump	and	squatting	activities.	The	
solid	 lines	 represent	 joint	 angles	 and	 torques	 averaged	 over	 the	 10	 subjects	 in	 the	
evaluation;	the	shaded	bands	represent	the	standard	deviation	across	subjects.	

addition,	our	method	found	inverse	dynamics	solutions	with	normalized	residual	forces	 570	

and	torques	similar	to	the	results	from	the	automated	RRA	optimization	algorithm	 571	

proposed	by	Sturdy	et	al.	[25].	Our	approach	found	scaling,	inverse	kinematics,	and	 572	

inverse	dynamics	solutions	for	multiple	trials	in	less	than	30	minutes,	whereas	the	 573	

approach	by	Sturdy	et	al.	[25]	can	take	up	to	two	hours	to	Uind	dynamics	for	a	single	 574	

trial,	and	requires	scaling	be	known	in	advance.	 575	

Our	optimization	approach	has	some	limitations	that	should	be	considered	when	 576	

processing	experimental	movement	data	with	AddBiomechanics.	First,	there	is	some	 577	

fundamental	ambiguity	in	reconstructing	the	full	kinematic	and	anthropometric	 578	

information	(body	segment	scales,	marker	offset	registrations,	and	body	positions)	from	 579	

only	marker	location	data.	For	example,	the	pelvis	can	be	tilted	slightly	forward,	with	 580	

the	markers	at	the	front	of	the	pelvis	shifted	upward,	and	if	the	angles	of	the	hips	and	 581	

spine	are	appropriately	adjusted	then	the	markers	will	still	closely	match	the	target	 582	

data.	If	this	effect	is	observed	in	practice,	AddBiomechanics	users	can	leverage	the	fact	 583	

that	the	optimizer	will	prioritize	solutions	that	move	the	anatomical	markers	as	little	as	 584	
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possible,	and	adjust	the	marker	starting	locations	on	the	bones	to	more	closely	match	 585	

	
the	experimental	placement.	Second,	the	optimizer	applies	a	statistical	prior	to	body	 586	

segment	scales	to	bring	them	more	in-line	with	population	statistics	as	represented	by	 587	

the	ANSUR	II	anthropometric	dataset	[55].	If	the	optimizer	can	Uind	a	way	to	Uit	the	 588	

marker	data	with	a	skeleton	that	is	more	likely	to	exist	in	the	ANSUR	II	population	 589	

(such	as	by	tilting	the	pelvis	forward	2	degrees),	it	will	choose	that	one,	even	if	the	 590	

“true”	underlying	skeleton	was	slightly	different.	The	data	in	ANSUR	II	is	large	and	 591	

detailed,	but	was	collected	from	active-duty	military	personnel,	and	so	is	not	reUlective	 592	

of	many	patient	populations.	A	broader	anthropometric	dataset	could	help	address	this	 593	

limitation.	Finally,	AddBiomechanics	may	not	always	Uind	an	inverse	dynamics	solution	 594	

with	sufUiciently	low	residual	forces	and	torques	due	to	inconsistencies	between	the	 595	

marker	and	ground	reaction	force	data	that	cannot	be	accounted	for	with	a	rigid	body	 596	

model.	 597	

By	creating	and	sharing	this	tool,	we	aim	to	make	quantitative	biomechanics	results	 598	

more	accessible,	including	to	clinicians	and	researchers	who	do	not	possess	the	technical	 599	

expertise	or	time	traditionally	required	to	achieve	high-quality	results.	Our	method	goes	 600	

from	labeled	marker	trajectories	to	a	scaled,	registered,	and	physically-consistent	 601	

musculoskeletal	model	and	corresponding	human	motion	in	less	than	30	minutes	on	a	 602	

low-end	server.	We	also	provide	a	web	version	at	AddBiomechanics.org	which	features	a	 603	

drag-and-drop	interface	to	automatically	process	human	movement	data	in	the	cloud.	 604	

In	exchange	for	sharing	the	resulting	anonymized	motion	data	with	the	scientiUic	 605	

community	under	a	creative	commons	license,	we	make	AddBiomechanics	freely	 606	

available	for	researchers.	As	of	this	writing,	over	300	researchers	have	used	the	 607	

prototype	tool	to	process	and	share	more	than	14,000	motion	Uiles	from	almost	1,200	 608	

experimental	subjects.	We	hope	AddBiomechanics	will	increase	the	quality,	consistency,	 609	

and	availability	of	biomechanical	data	analyses	and	lead	to	the	creation	of	a	large-scale	 610	

public	dataset	of	accurately	modeled	human	motion	biomechanics.	 611	

Data	availability	statement	
612	

All	data	and	code	used	for	running	experiments,	model	Uitting,	and	our	cloud	
613	

application	is	available	on	a	GitHub	repository	at	 614	

https://github.com/keenon/AddBiomechanics	and	we	have	archived	our	code	on	 615	

Zenodo	(DOI:	10.5281/zenodo.6981568).	The	data	and	code	used	to	generate	the	results	 616	

can	be	found	at	https://github.com/stanfordnmbl/addbiomechanics-paper.	 617	
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Supporting	information	
S1	Appendix	
Joint	acceleration	smoothing	

Prior	to	Uinding	inverse	dynamics	solutions	with	AddBiomechanics,	we	Uirst	perform	a	
simple	optimization	to	smooth	the	inverse	kinematics	solution	we	found	by	minimizing	
the	jerk	in	the	joint	angle	trajectories.	This	step	is	necessary	to	prevent	large	acceleration	
artifacts	that	appear	as	a	result	of	small	differences	in	joint	angles	between	adjacent	time	
steps	from	inverse	kinematics.	This	optimization	computes	a	new	set	of	joint	angles,	qˆt,	
and	includes	a	regularization	term	controlled	by	the	weighting	parameter,	σ,	which	
prevents	large	deviations	from	the	original	inverse	kinematics	solution,	qt.	
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regularization	
qˆt	jerk	

In	our	implementation,	the	joint	jerks	 qˆ	are	computed	using	Uinite	differences.	

Constructing	the	b˜	vector	for	angular	dynamics	Mitting	

The	vector	b˜	∈	R6T	represents	the	current	COM	trajectory	through	space	(Uirst	half,	3T	

entries),	and	the	current	root	(e.g.,	pelvis)	angular	trajectory	(second	half,	3T	entries),	at	
the	initial	conditions	ζ.	

 b˜	 	 (24)	
To	compute	zt,	note	that	we	are	holding	the	mass	of	the	subject	constant	during	this	

optimization	step	(m),	so	we	can	simply	integrate	the	effects	of	known	external	forces	
(gravity,	GRFs)	on	the	known	mass	of	the	subject	over	time.	

 g (25)	

 	 (26)	

To	compute	θt,	we	linearly	integrate	the	“residual	free	angular	acceleration”	over	time.	
We	deUine	the	“residual	free	angular	acceleration”	with	joint	state	qt,q˙t,q¨t	to	be	the	

necessary	root	angular	acceleration	θ¨t	such	that	no	angular	residual	force	is	present.	By	

convention	θ¨t	is	always	the	Uirst	three	entries	of	q¨t,	which	we	write	q¨t,[1:3].	

We	can	compute	θ¨t	given	qt,q˙t,q¨t	by	Uirst	solving	for	joint	torques	τt	using	inverse	
dynamics.	Then,	set	the	Uirst	three	entries	of	τt	to	0,	and	solve	forward	dynamics	using	
qt,q˙t,τt.	The	Uirst	three	entries	of	the	resulting	q¨t	are	the	“residual	free	angular	

acceleration”	θ¨t.	

Given	the	“residual	free	angular	acceleration”	θ¨t,	we	can	compute	θt	by	linearly	
integrating	the	“residual	free	angular	acceleration”	over	time:	

t	

 θt	=	θ1	+	X(t	−	i)∆2tθ¨i	 (27)	
i=1	
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Accounting	for	force	plate	registration	errors	

The	location	of	experimental	force	plates	are	often	registered	incorrectly	in	the	motion	
capture	volume,	which	leads	to	solutions	with	center	of	mass	trajectories	offset	slightly	
from	the	experimental	marker	data.	To	align	our	solution	with	the	observed	experimental	
data,	we	shift	both	the	location	of	the	force	plates	and	the	marker	trajectories	by	the	offset	
between	the	center	of	mass	trajectory	we	Uind	and	the	experimentally	estimated	center	of	
mass	trajectory,	which	typically	is	only	a	fraction	of	a	centimeter.	

It	is	also	common	to	have	ground	reaction	force	data	recorded	from	force	plates	that	
are	very	slightly	(e.g.,	less	than	0.5	degrees)	off	of	perfectly	vertical.	This	makes	Uinding	a	
physically-consistent	solution	challenging,	because	if	we	assume	that	the	force	plates	are	
perfectly	vertical	in	our	optimization	problem,	the	total	ground	reaction	force	vector	will	
be	very	slightly	off	of	perfectly	vertical	in	the	ground	reference	frame.	This	can	lead	to	a	
substantial	horizontal	acceleration	bias	on	very	long	trajectories,	since	the	horizontal	
ground	reaction	forces	will	not	be	exactly	anti-parallel	to	gravity.	

Since	the	force	plate	rotation	errors	are	typically	very	small,	we	can	preserve	the	
linearity	of	our	system	by	using	a	Uirst-order	Taylor	expansion	to	approximate	the	rotation	
of	measured	forces	by	very	small	angles.	In	our	implementation,	we	append	a	rotational	
correction	term	αi	∈	R3	to	ζ for	each	force	plate	i,	where	n	is	the	number	of	force	plates.	

z1	 	

z˙1	 	

 	µ	 	 7+3n	

 ζ =	 α1 	∈	R (28)	

	...	

	αn	

For	each	αi,	we	append	to	A a	3T	×	3	columnar	block:	

 	 0	 	

 	 ∆2t[f1i]	 	
	

 Aαi	=	 	∆2t([f2i]	+	2[f1i])	 	 (29)	

 	 ...	 	

∆2t	PTt=1(T	−	t)[fti]	

where	fti	is	the	ground	reaction	force	vector	associated	with	force	plate	i.	The	[.]	operator	
makes	a	skew-symmetric	matrix	out	of	a	vector	in	R3,	so	that	a ×	b =	[a]b.	

Finally,	we	regularize	to	angles	αi	to	discourage	large	force	plate	rotations.	With	this	
extension	to	our	linear	Uitting	problem,	we	can	recover	force	plate	rotations	to	a	very	
small	fraction	of	a	degree.	
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Quantifying	the	impact	of	using	the	bilevel	constraint	in	kinematics	Mitting	

We	ran	an	ablation	study	to	quantify	the	impact	of	the	formulating	our	kinematics	Uitting	
problem	as	a	bilevel	optimization	problem.	Here,	we	compare	two	conditions:	optimizing	
a	bilevel	objective	and	optimizing	a	simple	monolevel	objective.	The	objective	for	the	
bilevel	optimization	problem	(stated	previously	in	Eq	(2))	is	as	follows:	

 	 (30)	

To	convert	the	bilevel	objective	to	a	monolevel	objective,	we	move	joint	angle	
optimization,	maxqt,	to	the	outer	objective	along	with	the	body	scale	and	marker	
registration	optimization:	

 	 (31)	

We	Uind	that	using	a	bilevel	approach	leads	to	much	faster	convergence,	and	we	can	get	
lower	marker	RMSE	at	the	cost	of	slightly	lower	anthropometric	prior	probability.	The	
bilevel	optimizer	takes	slightly	more	wall-clock	time	per	iteration,	but	because	it	is	able	to	
reach	high	quality	marker	RMSE	in	many	fewer	iterations,	it	is	able	to	save	wall-clock	time	
overall.	We	ran	both	optimization	functions	for	several	different	Uixed	numbers	of	
iterations	on	a	single	walking	trial	on	a	commodity	server;	these	results	are	summarized	
in	Table	A1.	

Table	A1.	Monolevel	versus	bilevel	optimization.	
	 	 Monolevel	 	 	 Bilevel	 	

Iterations	 Time	(s)	 RMSE	(m)	 Anthro†	 Time	(s)	 RMSE	(m)	 Anthro†	

100	 6.817	 0.0166	 26.6	 10.6	 0.0150	 25.9	
300	 21.693	 0.0203	 26.8	 31.9	 0.0150	 26.6	
500	 35.7	 0.0153	 26.9	 52.6	 0.0146	 26.9	
1000	 70.3	 0.0157	 27.5	 104	 0.0144	 27.4	
2000	 178	 0.0157	 27.5	 233	 0.014523	 27.5	

†	This	is	the	probability	density	function	value	for	a	multivariate	gaussian	derived	from	
the	ANSUR	II	dataset	[55]	of	human	anthropometrics.	


