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Abstract

Creating large-scale public datasets of human motion biomechanics could unlock data-
driven breakthroughs in our understanding of human motion, neuromuscular diseases,
and assistive devices. However, the manual effort currently required to process motion
capture data and quantify the kinematics and dynamics of movement is costly and limits
the collection and sharing of large-scale biomechanical datasets. We present a method,
called AddBiomechanics, to automate and standardize the quantification of human
movement dynamics from motion capture data. We use linear methods followed by a non-
convex bilevel optimization to scale the body segments of a musculoskeletal model,
register the locations of optical markers placed on an experimental subject to the markers
on a musculoskeletal model, and compute body segment kinematics given trajectories of
experimental markers during a motion. We then apply a linear method followed by
another non-convex optimization to find body segment masses and fine tune kinematics
to minimize residual forces given corresponding trajectories of ground reaction forces.
The optimization approach requires approximately 3-5 minutes to determine a subject’s
skeleton dimensions and motion kinematics, and less than 30 minutes of computation to
also determine dynamically consistent skeleton inertia properties and fine-tuned
kinematics and kinetics, compared with about one day of manual work for a human
expert. We used AddBiomechanics to automatically reconstruct joint angle and torque
trajectories from previously published multi-activity datasets, achieving close
correspondence to expert-calculated values, marker root-mean-square errors less than 2
cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we
confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics
from synthetic walking data with low marker error and residual loads. We have published
the algorithm as an open source cloud service at AddBiomechanics.org, which is available
at no cost and asks that users agree to share processed and de-identified data with the
community. As of this writing, hundreds of researchers have used the prototype tool to
process and share about ten thousand motion files from about one thousand
experimental subjects. Reducing the barriers to processing and sharing high-quality
human motion biomechanics data will enable more people to use state-of-the-art
biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.

Quantitative analysis of human movement dynamics is a powerful tool that has been
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widely used to estimate joint loading during walking and running e.g. [1-9], assess
muscle function during gait in individuals with cerebral palsy e.g. [10,11], analyze the
performance of assistive devices for improving human movement e.g. [12-15], quantify
changes in neuromuscular control due to Parkinson’s disease e.g. [16,17], and even
generate more realistic computer graphics e.g. [18-20]. But the resource-intensive
nature of quantitative movement analysis restricts access to this data and keeps study
sample sizes small. Without automated tools to process, analyze, and harmonize
lab-based human movement data, the biomechanics field has been hamstrung in its
ability to apply modern, data-hungry machine learning approaches to create accurate,
data-driven models to predict, prevent, and personalize treatment for the many injuries
and conditions that impair movement.

Laboratory-based motion capture is the current benchmark data acquisition
technique to quantify human biomechanics [21,22], but current state-of-the-art software
for reconstructing the motion and kinetics of a human musculoskeletal model from
optical marker trajectories and ground reaction forces requires substantial iterative
“guess-and-check” refinement, which increases costs, limits scalability, and reduces the
reproducibility of motion capture studies [23-25]. A typical experiment involves placing
optical markers on a subject’s body segments and having the subject perform actions in
a laboratory space surrounded by specialized cameras. These camera systems and
associated software are able to reconstruct the three-dimensional locations of the optical
markers in the lab, and given the marker trajectories over time, one can use proprietary,
open, or custom software to reconstruct the kinematics of the subject’s body segments.
If external loads recorded simultaneously from ground force plates an inverse dynamics
method can be used to estimate the joint torques the subject used to generate the
observed motion.

Current practices for model scaling and inverse kinematics

To reconstruct movement kinematics from optical motion capture data, software must

address several sources of noise, ambiguity, and model error. Given a set of marker
trajectories corresponding to a motion of interest, software must reconstruct a digital
twin of the experimental subject, with segment dimensions that match the subject as
closely as possible. This process is called scaling, and a variety of approaches have been
described [23,26-33]. Finding accurate scaling is especially important when using
motion capture data to create muscle-driven simulations because the muscle-tendon
parameters are scaled by the body segment dimensions [34]. To achieve accurate
kinematic results, the locations of the markers on the scaled digital twin must be
adjusted to account for variations caused by human error in attaching the markers to the
body and the variations in the dimensions of human subjects [24]. This is called marker
registration. Finally, the positions and orientations of the body segments over time must
be determined, which is typically done using an optimization process called inverse
kinematics [35-39]. Inverse kinematics algorithms generally produce more accurate
results when the solutions are constrained by an underlying skeletal model [13,24,40].
The interdependence between scaling, marker registration, and inverse kinematics
means that experts must follow an iterative guess-and-check procedure, where they
refine each of the steps several times, making small adjustments to each value until a
desired accuracy is achieved [41,42]. For example, increasing the length of the upper
arm segment in a subject’s digital twin will require also changing the marker
registrations for any markers on the forearm and the hands, because otherwise those
markers would move as a result of the longer upper arm. A longer upper arm will also,
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all else being equal, change the resulting motion found by inverse kinematics. While
there are best practices for conducting validation at each step [34], the process typically
requires extensive and subjective input from an expert.

Automating the scaling and registration process has been studied before, in
pioneering work by Reinbolt et. al. [43] and Charlton et. al. [44]. These authors used
gradient-free optimization methods to automatically estimate body segment scales and
marker registrations while solving gradient-based inverse-kinematics problems
repeatedly in an inner-loop to evaluate optimization progress. These methods require
large amounts of compute time because every iterative guess the outer optimizer makes
about body segment scaling and marker offsets requires solving a computationally costly
inner optimization problem (inverse kinematics) to evaluate the quality of the guess.
The method of Reinbolt et al. [43] produces the best results using a particle-based
optimizer for their outer optimization problem, to combat the non-convexity of the
problem, but this comes at a further increase in computational cost.

Given the interconnected nature of body segment scaling, marker registration, and
inverse kinematics, one might also consider posing all three problems as a single
optimization problem. However, such a formulation leads to a nonconvex optimization
in which a global solution is not guaranteed [45]. Instead, we can only guarantee to find
a local optimum close to an initial guess, so providing a high quality initial guess is
crucial. Andersen et al. [46] have formulated such nonconvex optimization problems,
but did not address the problem of reliably finding an initial guess for the non-convex
optimization problem proposed.

Markerless motion capture systems based on video recordings have recently become
popular since they do not require expensive motion capture equipment [47]. While these
approaches do not track optical markers, recent work has focused on combining
markerless motion capture techniques (e.g., pose detection) with scaled musculoskeletal
models to incorporate physiological joint constraints [48,49]. These approaches still rely
on solving an inverse kinematics problem, using keypoints from pose detection
algorithms, rather than optical markers. Accurate scaled models also enable deeper
biomechanical analyses with markerless motion capture techniques to estimate kinetic
quantities, like joint moments and muscle forces [49].

Creating physically-consistent simulations

Making accurate conclusions about the kinetics of human movement requires that the

kinematics and mass properties of a musculoskeletal model are “dynamically-consistent”
with external forces (e.g., ground reaction forces). Incorporating experimental, external
force measurements into simulations of movement can lead to challenges similar to those
presented in the scaling and inverse kinematics problems. When inconsistencies between
model properties, kinematics, and measured external forces are present, an inverse
dynamics analysis will yield physically impossible external forces and moments about
the model’s root segment (e.g., pelvis), often referred to as residual forces.
Biomechanics researchers aim to minimize or eliminate residual forces and moments
from their simulations; in practice, it is usually sufficient to reduce the magnitude of the
residual forces below recommended thresholds based on the magnitude of the
experimental ground reaction forces and center of mass trajectory [34].

Similar to model scaling, dynamic consistency is usually achieved through an
iterative process where changes in model kinematics and mass parameters are made to
reduce residual forces and moments. OpenSim, widely used simulation software,
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provides the Residual Reduction Algorithm (RRA) tool, which adjusts mass, body mass
center locations, and joint kinematics to minimize residual forces and moments [41,50].
The RRA tool uses a tracking controller to adjust joint kinematics while penalizing the
magnitude of residual forces and moments. Tracking weights for each joint must be

chosen such that the kinematic changes are within measurement errors while still
minimizing residual forces. Since changes in residual forces are dependent on changes in
kinematics and mass properties, it is often necessary to run the RRA tool iteratively to
meet recommended residual force thresholds. Sturdy et al. [25] used the RRA tool to
automate the reduction of residual forces by optimizing the tracking weights with
random hill climbing. This approach yielded residuals within recommended thresholds
from Hicks et al. [34], but required a pre-scaled model, joint trajectories from inverse
kinematics, and up to 2 hours of processing time per subject on a standard desktop
machine.

Automating motion capture data processing with
AddBiomechanics
Thus, despite recent advances in biomechanics simulation methods, reconstructing

human movement from experiments remains a challenging and time-consuming task for
researchers, and large-scale datasets are lacking. This paper introduces an automated
method (Fig 1), called AddBiomechanics, that uses a combination of traditional
kinematic solvers and modern bilevel optimization to estimate high quality inverse
kinematics and dynamics from experimental motion capture data in reasonable
computation time. We first apply a sequence of optimizations to approximate the initial
values for each of the body segment scales, marker registrations, and inverse
kinematics [43,44]; thus, no user-provided initial guess is required. Then, rather than
iteratively repeat those optimization problems hundreds of times as in previous work,
we apply bilevel optimization techniques to simultaneously optimize body scaling,
marker registration, and inverse kinematics. Next, we find a least-squares fit for the
subject mass and initial center-of-mass position and velocity such that integrating the
center-of-mass accelerations (which are the measured ground-reaction-forces divided by
subject mass) results in the least-squares closest approximation to the purely kinematic
motion we found in the previous step. Finally, we optimize body segment masses and
tune the body scales, marker registrations, and model kinematics using the same bilevel
approach to find a motion that is still consistent with the experimental marker data
while achieving nearly zero residuals. To evaluate the algorithm, we computed marker
RMS errors and residual forces and moments for a set of common movements studied in
the biomechanics field including walking, running, squatting, and sit-to-stand motions,
and compared errors to results computed by experts. We also used AddBiomechanics to
estimate joint angles and moments for a simulated walking motion with known
dynamics and zero residuals. Finally, we evaluated the computational cost of computing
kinematics and kinetics on these datasets.

AddBiomechanics can process large amounts of motion capture data automatically.
To facilitate its use, we have released the software as an open source cloud-based service
available at AddBiomechanics.org, where over 300 researchers from dozens of
institutions have begun to process their data without downloading or installing any
software. AddBiomechanics outputs OpenSim project files [41], compatible with the
widely used open source biomechanics package, so the results of scaling and marker
registration can be transferred to OpenSim for further analysis. Optimized skeletons
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can also be exported in formats compatible with MuJuCo [51] and PyBullet [52], which
are physics simulators commonly used in reinforcement learning and computer graphics.

Methods

Given a musculoskeletal model and experimental data, AddBiomechanics solves a

sequence of optimization problems to compute model scaling, inverse kinematics, and
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centers and marker registrations kinematics to the marker data reaction forces consistency with inputs

Fig 1. AddBiomechanics automates the analyses required in a standard motion

capture pipeline. AddBiomechanics integrates into the standard motion capture pipeline

to automate the process of model scaling, marker registration, inverse kinematics, and
residual reduction. Once experimental marker and ground reaction force data have been
collected and uploaded (steps 1-3), AddBiomechanics (step 4), replaces time-consuming

and error-prone manual steps in previous workflows. Our method processes input

marker and force data through several steps automatically. First, it finds the functional
joint centers from the data (step 4.1), and then it uses the marker data and those joint
centers to make an initial guess for body segment scales and marker registrations (step
4.2). The initial guess then serves as the starting point for a bilevel optimization problem
that matches the model geometry and kinematics to the experimental marker data as

closely as possible (step 4.3). Next, the model trajectory is updated by fitting the center of

mass motion to the ground reaction force data (step 4.4). A final optimization adjusts
body segment masses and joint kinematics to maximize consistency between the model
and the experimental data (step 4.5). The final output is a musculoskeletal model scaled

to the subject with registered markers, joint angles, and joint torques over time.

inverse dynamics, where the solution for each problem is the initial guess for the
subsequent problem. First, the model scaling and inverse kinematics problems are
solved using a series of linear and bilevel optimization problems to find a solution fo
the model body segment scale factors, marker registrations, and joint kinematics. If
ground reaction force data is provided by the user, AddBiomechanics then estimates

r

center of mass trajectory and overall subject mass with a linear optimization, followed

by a non-convex optimization step to minimize residual forces and tune the original
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model scaling and joint kinematics solution. Each of these steps are described in more
detail in the sections that follow.

Input model and experimental data
Generic, unscaled musculoskeletal model

Our algorithm can scale and register markers on arbitrary skeletons defined using the

OpenSim model format. A skeleton is composed of a set of body segments, connected

by joints. The scaling of each link is concatenated to form the s vector, and the degrees

of freedom of each joint are concatenated to form the g vector. The algorithm supports

all OpenSim joint types, including custom joints. Examples of skeletons that have been
successfully scaled and registered in our experiments include widely used state-of-the-art
biomechanical models [53,54].

Motion capture marker trajectories

The output of a commercial motion capture system is a series of frames, often at

100-200 Hz, where each frame contains 3D coordinates representing the trajectories of
optical motion capture markers in the experimental capture volume at the
corresponding moment in time. Users must provide these marker trajectories for each
experimental movement trial. Each 3D coordinate must be “labeled” with a tag
corresponding to an experimental marker location on the subject (e.g. “C7” for the
optical marker placed on the C7 spinal segment). A full list of marker tags, and their
location on a given musculoskeletal model is known as the “marker set.” We provide
models with default marker sets, but users may upload a custom model with a marker
set that matches the experimental marker data they provide. In practice, markers are
almost never placed exactly at their ideal locations, and these small deviations in
experimental marker placement must be accounted for during the marker registration
step. Not every marker from the marker set is observed in every frame, because markers
may be occasionally obstructed during a motion capture experiment. Our algorithm
allows for markers with missing frames and can automatically adjust for deviations in
marker placement during the optimization.

Ground reaction forces

Ground reaction forces are recorded from force plates embedded in the ground and are

typically measured at higher frame rates (e.g., 1000-2000 Hz) compared to marker
trajectory measurements. To compute dynamics with AddBiomechanics, users must
provide the 3 forces, 3 torques, and center of pressure locations for each force plate as a
C3D file or tab-delimited data file. We assign loads from each force plate to the feet in
the model based on when the feet are penetrating the ground within known force plate

geometries and when the ground reaction force information exceeds a non-zero threshold.

We assume that both feet are never simultaneously in contact with a single force plate.
Model scaling and inverse kinematics

Model optimization to minimize marker position errors

Given the measured marker trajectories from a motion capture system with length
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equal to the number of time points T, x"1.7, AddBiomechanics formulates a nonconvex

optimization that solves for the kinematic pose trajectories, g1.1, the scaling parameters

of the body segments of the musculoskeletal model, s, and the locations of markers

attached to the body segments, p. The objective of the optimization is to minimize the

deviation of estimated marker positions from x™1.7:

T M
mlE ZZ ||fFK(qt7 Sap(Z)) - jt ||
(1) T,8,P =1 i—1
qi:
where M is the number of markers, p() € R3 denotes the position of the i-th marker in
the local frame of the body segment to which it is attached, and p € R3*Mis the
concatenated local positions of all markers. frx(qss,p?) is the forward kinematic
process that transforms a point p(din a skeleton scaled by s and in the pose g:from

the local coordinate frame of the assigned body segment to the world coordinate frame.

Note that we use the t to denote the time index (rather than a value in seconds)
throughout the manuscript.
Eq (1) is high-dimensional and nonconvex. Consequently, the solution of such an

optimization is highly sensitive to the initialization of the decision variables. We use a

bilevel maximum-a-posteriori (MAP) optimization and an initialization strategy to

achieve new state-of-the-art in automatic processing of biomechanical motion capture

data. The proposed bilevel MAP optimization simultaneously considers data
reconstruction and anthropometric statistics when jointly optimizing all decision
variables in Eq (1). To overcome the sensitivity to the initial guess, our method

individually initializes each type of variable using independent sources of information.

Specifically, we use kinematic constraints to initialize g1.7, a geometric invariant to
initialize s, and real-world measurement to initialize p. Once the variables are
initialized individually, the final bilevel optimization ensures that they agree with on
another, given the observed data and model priors. More details about each of these
steps are provided in the sections that follow.

Bilevel maximume-a-posteriori (MAP) optimization

e

Given recorded marker positions xrat time index ¢, we are interested in reconstructing

the scales of each body segment in the musculoskeletal model, s, the local positions of

the markers p attached to their assigned body segments, as well as the joint pose g:.

This problem can be formulated as a maximum a-priori (MAP) optimization:
U]
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max <max Py(Z¢lqy, 5,p) - Ps(s) - P(plp) - Pq(Q)>
s.p a: (2)
The first term, Px(x7t|gss,p), is a conditional probability of the observed data given

the estimated parameters. This formulation is equivalent to the standard least-squares
inverse kinematics objective term if we assume Gaussian noise in our marker
observations. The second term, Ps(s), expresses the prior of skeleton scaling, encoded
as a multivariate Gaussian fit to the ANSUR II dataset [55] of anthropometric scalings.

If the height, weight, or biological sex of the experimental subject is known, the
multivariate Gaussian skeleton scaling prior is conditioned on that information before
any optimization. The third term, Py(p|p7), is a zero-mean Gaussian distribution that
regularizes the deviation of the marker locations from their intended locations p~
provided by the experimenter, encoding that markers are generally placed close to their
intended locations, even if they do not perfectly align. Py(p|p”) regularizes markers
differently: some markers are placed on anatomical landmarks, and therefore are
unlikely to move relative to the landmark from subject to subject, and other markers
are placed anywhere on a body segment as “tracking” markers, and therefore the
optimizer should be allowed wide discretion to adjust those marker locations. The sets
of “anatomical” and “tracking” markers are determined from the musculoskeletal model
provided by the user. For best performance, users should place at least one anatomical
marker on each body segment in the model. The fourth term is a prior over g, but we
assume this is a uniform distribution and drop it hereafter.

This is a bilevel optimization problem, because in order to evaluate the quality of
given skeleton scaling s and marker locations p, we need to optimize over the possible
joint positions g To efficiently solve the bilevel optimization problem, we observe that
at the optimal values of g:for max, Px(x7t|qss,p)), the gradient of the inner
optimization problem will be zero. Using this observation, we reformulate the bilevel
optimization problem as a single-level nonconvex optimization problem with nonconvex
constraints. For numerical stability, we minimize the negative log of the above objective
function:

mins,p.qr—ln(Px’(X'tIqt,S,Pg)) = In(Ps(s)) = In(Pp(p|p7))
subject to 9q¢ In(Ps(2lqr. 5,p)) =0 (3)
At a locally-optimal point, the gradient of the objective term with respect to any of
the decision variables is zero, so it must be zero with respect to g::

o (P (Felae, s, P o n(Ps(s)) + o In(Py(plp)) =0
| gy | {y 1 (4)
Thus, at a locally-optimal point for the objective function, the constraint in
Equation 3 must hold regardless, and so we could theoretically omit it from the
optimization problem without loss of correctness. However, we found that explicitly
including the constraint allows the optimizer to converge to a high-quality solution
much more quickly. See S1 Appendix for a more detailed analysis.

We could use any nonlinear optimization solver to solve Eq (3). In practice, we use
IPOPT [56], which is a high-quality and open source solver. However, due to our
problem'’s non-convexity, a good initial guess for the decision variables is needed to
produce reasonable results.
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and axes from the measured marker trajectories using the least-squares method given
in [57]. The least-squares method is deterministic, but can be slightly less than optimal
in the presence of soft-tissue artifacts, so we further refine joint center estimates with a
non-convex problem, initialized with the answers we get from [57]. Let the subset of
markers attached to the two body segments connected by the joint be M. We can
estimate the joint position c in the world frame over time by

T M|
Initializing the kinematic decision variables

Prior to solving the optimization problem in Eq (3), we need to get “close-enough”

initial guesses for the decision variables. We do this through a sequence of optimization
problems as described in the steps below. We obtain initial guesses for the joint angles,
gy, body segment scales, s, and marker offsets, p, individually based on independent
sources of information such that the cascading errors can be mitigated.

1. Initialize p using the marker locations measured by the experimenter or defined
by the existing marker set.
2. Initialize s by analytically computing the functional joint centers and axes using

the method described in [57], refine those values using a non-convex sphere-fitting
problem, and scale s to match the joint axes along with the measured markers.

3. Initialize g:by solving inverse kinematics with a skeleton scaled to s and with

marker locations p.
Step 1 is trivial and Step 3 is a simplified Eq (1) with s being given from Step 2 and

p given from Step 1, min,: Zfi I frx(qe,s,pP) — jﬁt) I, Solving this inverse
kinematics problem efficiently has been an area of research for decades [58-60] and can
be done efficiently and reliably.

The most involved step in our initialization process is Step 2, initializing the body
segment scales s. We begin by analytically computing a set of functional joint centers
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minTZZ(H:EEi) — ]| = r;)? ,

(5) Y i==a

where riis the estimated distance between the i-th marker igl) and the joint center c:
for all t. riis constant over time. For each marker, Eq (5) fits a moving sphere centered
at c:with the radius r;, to match the measured positions of the marker over time.

The sphere-fitting approach to finding functional joint centers can yield ambiguities
when marker motion adjacent to a joint is primarily confined to the sagittal plane, as
commonly happens in locomotion. In such cases, we could move our joint center
perpendicular to the sagittal plane, and still have an equally good solution for
sphere-fitting. As a result, sphere-fitting might incorrectly scale the skeleton to match
erroneous joint positions. For example, we might incorrectly scale the hip width while
still matching all the measured marker motion for the thighs and the pelvis.

To address these ambiguities, we formulate another optimization problem to
simultaneously find the joint axis and the joint center, building on Eq (5). This problem
is similar in spirit to the axis-of-rotation problem described in [61], but can be
implemented without any matrix factorizations. The goal of the axis fit problem is to
identify not only a joint center ¢, but also the direction of axis a at each frame. We also
estimate a fixed distance from the center for each marker, parameterized by a distance
uialong the axis a and a distance viperpendicular to the axis a. The result of a successful
axis fit is that we capture a line at each frame, where the functional joint center could lie
anywhere on that line:

T M|
XX T 0 — c)||-ui)2 + (|| (X" ) = ct) = aaer (X (&) = ce)||-Vi)2
min (llaae(xe
CL.T,a1T,UV
t=1i=1 | — {z H
{z }
parallel to a perpendicular to a
subject to Ve|lae]| = 1. (6)

— (i), — (%)
For each marker €: " in the set M, we decompose €+~ — €t to two vectors: the 309

o _— () o
parallel vector which is the projection of £ © — €t on at, and the remaining orthogonal
310

vector. Eq (6) encourages that both the projected vector and the orthogonal vector
maintain constant length over time for every marker in M.

We run both sphere fitting and axis fitting at each joint. Because the axis fit is a
strictly more demanding problem, if it succeeds, then the axis is passed on as a
constraint for subsequent problems. If axis fitting fails, then it must be because there is
out-of-plane marker motion, which means that the sphere fit is not ambiguous, so then
the exact joint center is passed along to subsequent problems.

Once we determine the joint center and/or the joint axis, we formulate another
optimization to initialize the scaling parameters s:

M N
minXIlfrx(qss,pm) — X @l + XfFr(gss,0(0)) — (cw) + aac))ll, (7) sa
i=1 j=1
where the zero vector 00) indicates the local coordinate of the joint j, and N is the

number of joints. The first term fits the skeleton to the measured marker positions,
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while the second term encourages the joints to lie on the estimated joint axes solved by
Eq (6), at a distance controlled by the scalar decision variable a. If the joint axis does
not exist for the joint j, we set g;to zero and remove « from the optimization.

After initializing the decision variables, we find a solution by minimizing Eq (3).
The body scales, s, and marker registrations, p, are returned to the user as an
optimized version of the OpenSim model the user submitted to the tool. The joint angle
trajectories, g¢, obtained from inverse kinematics solution for each trial are exported
using OpenSim’s MOT file format.

Inverse dynamics

Model optimization to achieve physical consistency

After finding a set of marker registrations and body scales that achieve a good inverse

kinematics fit to the marker trajectories, we can then solve another optimization
problem to find body segement masses and updated joint kinematics that minimize the
set of residual forces and torques applied to the pelvis. Similar to the model scaling and
inverse kinematics optimization, this problem is non-convex, so we first need to create a
good initial guess for the model and mass parameters and update the kinematic
trajectory so that it is physically consistent with the observed ground reaction force
data. To achieve this, we solve a series of linear equations to fit the system’s center of
mass trajectory to our results from the marker fitting step while prescribing the
observed ground reaction forces. We begin with the solution gi.robtained from the
previous model scaling and inverse kinematics process. To avoid large acceleration
artifacts in the dynamic fitting problems, we smooth the solution g1.rby minimizing
the jerk of the joint angle trajectories over time (S1 Appendix).

Center of mass trajectory fitting

The trajectory of the center of mass of the system is dictated by the ground reaction

forces acting on the model and can be defined by the differential equation:

f

ZZ m g (8
where z° € R3is center of mass acceleration, f is the ground reaction force vector, m is
the system mass, and g is gravitational acceleration.

Since the ground reaction forces are known from experimental data, the center of
mass acceleration is just a linear function of inverse mass of the model. We define a new
variable/ = %z,, and note that the center of mass trajectory is a linear function of u. If
the initial state (the state at index t = 1) of the center of mass acceleration, (z1,2'1), is
known, the entire trajectory z:is determined. We aim to find a best fit of this
trajectory to the trajectory that we obtained from the marker-fitting optimization, 2"

We define a vector ¢ that contains the three unknown quantities:

Z1
¢=|%|€eR’
K 9)
We can define a linear system with matrix A € R37<7 and offset b € R37 that maps
the vector { onto Z € R37, a vector of concatenated center of mass position vectors
over time:
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Z1
Z2
+b=Z=| | eR¥

A7 =T (10)

. 1
41 = 2t + —Fr
m

Given the observed trajectory of center of mass motion from the marker fitting step,

Z ,itis possible to find a least-squares best estimate for the unknowns, ¢, using the
pseudo-inverse of A:

{ =A1(Z -b) (11)
To derive A, first, we define a semi-explicit Euler integration scheme to solve for the

center of mass trajectory:

(12)

Zt+1 = 2t + Z't+10A¢

where A:is the integration time step in seconds.

We can then construct A and b using this integration scheme to relate the unknowns
{ to the center of mass positions, Z:

2 0 0 @
_ ’ I af} Ad Ax(f)B  _ —A2%(g + 29)
\‘ 20d A2e(f2 + 2f1) :
1 e b(13) |- apyl, (- t)g
TA: A2t Pre=1(T - t)f:
Here, the first two columnar blocks of A represent the contributions from z: and z'1
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to the trajectory Z, where / and 0 are the 3x3 identity and zero matrices, respectively.
The third columnar block of A represents the contribution from the inverse mass u and
is a single column containing terms corresponding to the time integration of the ground
reaction forces. Similarly, the vector b contains terms corresponding to the time
integration of gravitational acceleration.

By solving Eq (11), we obtain a least-squares best fit of the initial conditions and

mass of the system, {, and can use this solution to obtain a new trajectory for the
center of mass that is physically consistent with the observed ground reaction force

~ _1
data, Z = A7 + b. We can recover total mass as’* ~ . Finally, we modify the

We use 9 € R to denote the rotational generalized coordinates of the root segment
(e.g., the pelvis) at time ¢, which are a subset of the coordinates in g First, we assume
that changing U:does not change the mass matrix or the Coriolis forces for the skeleton
at time t. This is not true in general, but since we aim to make small adjustments to J:
from the inverse kinematics solution, we find this in practice to be a reasonable
approximation when creating an initial guess for the skeleton’s root trajectory. We can
then construct a new linear map that relates the initial conditions of the root segment
to the trajectory, E € RéT, which includes both the pelvis coordinate rotations,
0 € R37, and center of mass positions, Z € R3T:

Rz10 z

2
position of the pelvis over time while keeping the remaining joint angles fixed to update
the model’s center of mass trajectory to match Z. This step serves as an initialization
for the final problem described later, which will further refine the joint angle
trajectories while optimizing the mass properties of the model.

Angular dynamics fitting

Fitting the center of mass trajectory provides better physical consistency with the linear
ground reaction forces applied to the system, but the trajectory may still be

inconsistent with the moments these forces produce about the center of mass of the
system. Given our solution to the linear center of mass fitting problem, ¢, we can

expand our approach to also address physical inconsistencies in the angular dynamics.
3
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+tb=E= [Z] = |57 eROT
6,

0,

A€ 167 | (14)

The vector £ contains the initial conditions of the center of mass trajectory and the 7

. 398
initial pelvis rotational coordinate values, $1 and speeds, ¢ 1:

Rlz10
g=1"er? 7

(15)

The initial values of z1 and z'1 are chosen based on our previous solution to the 3%

center of mass trajectory fitting problem. Note that unlike in the previous linear fitting
problem, we now hold the skeleton mass fixed, so no inverse mass term appears in ¢, and
what used to be the third columnar block in A in Equation 13 is now instead part of the

400
401
402

constant term and appears in b . See S1 Appendix for details on how b is constructed. w08

~ 404
As before, we construct A to map the initial conditions ¢ onto the trajectory E:

e, 0 0 0l
md00@/ A
o afl 204 0 \Yalel
)~ | (52
08y) | (%2
o) | 9
o8a) | (5
:
o0y | (5
I TAd 0 0
A ) I 0 BEE (16)
) ( / Al B
) Y ule
) ( TAd

405

Note that the upper left and lower right quadrants of A are identical to the block

matrices we constructed in A, since we use the same semi-explicit integration scheme e

for both z;and 8:as defined in Eq (12). The center of mass trajectory z:does not o
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depend on 91 or 19.1, so the upper right quadrant contains all zeros.

20 20 ~
To compute the terms 0z and 921 in the lower left quadrant of A , we first note

that the center of pressure locations are fixed based on the ground reaction force data.
Therefore, if we change the location of the center of mass by some finite value Az, the
moment applied by the ground reaction force about the pelvis changes by

Ate= Azt x fr. This means that the acceleration of the pelvis rotational coordinates

changes by AD o= Mi1(Aze % ft), where M:is the generalized mass matrix for our
skeleton in configuration g:found by the inverse kinematics and scaling steps. This can

be rewritten as a linear expression between Az:and A9 (using the skew-symmetric
matrix [ft]:

A® ¢ = -M1[f]Az, (17)
where -M¢1[f] is a constant matrix in R3<3.

Note that Eq (17) is true for the initial time step even without our simplifying
approximations (that changing 9:does not effect mass matrix M:or Coriolis forces).
These approximations are only necessary when we begin to integrate this expression
forward in time, since changes in $:will change the mass matrix, My, and the linear

offsets from the equations of motion (e.g.,, the Coriolis forces) contained in b , which

would render the problem non-linear.
20 20
We can now compute 921 and 9z by multiplying together known terms based on

the chain rule:

89t o : 89,5 897 821‘
G2y = 2 0, 9 01 a8)

90, zt: 96, 90; 9z,

821 i1 01- 0zi (‘3z1 (19)
Where the partials are given by:
90: __ ; 2 56, — zZi _ Ozi __ (7
3_01 - (t - Z)(At) / ggz = 7M2 1[f7] 321 = gz.l = (Z — 1)At7 /

(20)
In Eq (19), the first two terms are the same as Eq (18), and the third term is the
0z; 9z
change in center of mass position due to the change in z'1. Both =1 and 921 can be
obtained directly from A.

The vector b includes terms for the time integration of gravitational acceleration, the

acceleration due to the applied ground reaction forces, and the Coriolis terms of the
equations of motion of the skeleton. In general, the Coriolis terms depend on 9, but
based on our simplifying assumption to keep the problem linear, we simply use the

initial guess for 9:to compute the terms in b . Refer to S1 Appendix for more details on
the construction of b .

We can then find a least-squares best fit for the unknown initial conditions, £, given
the observed trajectories of the center of mass position and pelvis rotation coordinates,
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N

Z , using the pseudo-inverse of A :

E=ATE -b) (21)
We use the solution EA to reconstruct a physically-consistent trajectory for the pelvis

coordinate rotations and center of mass positions, £ = A £ + b . To make the problem

linear, we have assumed that our solution for the pelvis coordinate rotations, ®, does
not change the mass matrix or Coriolis terms, but since this is not true in general, the

solution to Eq (21) will change the terms in A andb . Therefore, to find a satisfactory
initial guess for the skeleton’s root trajectory, we form and solve the system defined by

A and b iteratively until E converges. In practice, we find that convergence typically

takes less than 30 iterations with each iteration taking less than a second on a low-end
server.

Once the solution E has met our convergence criteria, we have found a trajectory for
the center of mass translation and the pelvis coordinate rotations that is physically
consistent with the measured ground reaction force data. Finally, we include additional
terms to account for errors in force plate locations and orientations and to eliminate
drift in very long trials; the details of these terms can be found in S1 Appendix.

Final optimization to tune marker fitting results and minimize
residual loads

After fitting the center of mass trajectory and pelvis coordinate rotations to achieve
physical consistency with the ground reaction force data, we run a final optimization to
tune skeleton segment masses, marker offsets, segment scale factors, and joint
coordinates to minimize the residual forces at the pelvis, fies, while still retaining a
good kinematic fit to the marker data. We achieve this by taking the marker fitting
problem described in Eq (2) and adding the segment masses to the decision variables
and a loss term to penalize the residual forces:
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= — res 22
max (R,,<mt|qt,s,p>~Ps(s>-Pp<p|p>-Pf<t |qt7s,p,m>) (22)

P;qt,m S

We optimize this problem in the same way as the marker fitting problem, where we
minimize the negative log of the objective in Eq (22). Note that we do not use a bilevel
problem formulation here, since we now allow the solution to deviate slightly from a
valid inverse kinematics solution in order to achieve dynamic consistency. Therefore, we
no longer explicitly constrain that the gradient of the inverse kinematics loss term with

respect to the joint coordinates be zero.
Open source implementation

To facilitate adoption, we provide the algorithm as an open-source, cloud-based tool

that allows researchers to automate scaling, marker registration, inverse kinematics,
residual reduction, and inverse dynamics for their motion capture data without
downloading or installing any software, available at AddBiomechanics.org. Users can
drag and drop files for automated processing, and then visualize on the web or
download results for analysis in OpenSim (Figure 2). C3D or TRC marKker files are
supported, and C3D or MOT files for ground reaction forces. The cloud tool also allows
researchers to automatically generate comparisons of their own hand-scaled data versus
the output of the automated system.

Evaluation

To evaluate our algorithm, we first compared AddBiomechanics to expert-computed

values for a dataset published by Hamner et al. (2013) with ten subjects running at 2.0,
3.0, 4.0, and 5.0 m s'1[62] (40 total trials), as well as a multi-activity dataset [49] that
included sit-to-stand, squatting, jumping, and walking motions (104 total trials). We
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https://addbiomechanics.org/

[t el ettt ittt 1

1Results: 1.30 cmm RMSE (2.43N, 2.62Nm residuals)

¥ Download OpenSim Results ®

¥ Download Nimble Physics & PyTorch Data File @

© View Results in Visualizer

app.addbiomechanics.org/data/RajagopalT -

Download results to
OpenSim or PyTorch,
or view in the 3D visualizer

#  Download OpenSim Resuits @

Scale and fit a subject to
many trials simultaneously
with bulk uploading

i |
' '
' |
il & Download Nimble Physics & PyTorch Data File ® f
'

' i
! 1
X |
!

@ View Results in 3D Visualizer
g Log

© Reprocess

Weight (kg

1
1
Drop C3D or TRC files here (or just click here) to bulk upload trials. |
1
1

Trial Name Mocap File Action -

Create new trial

Fig 2. The web interface for AddBiomechanics. The web interface allows users to drag
and drop data files for individual experimental trials and the subject data is processed
automatically in the cloud.

compared root mean squared errors between experimental and model markers and
computed residual forces and moments for both the expert- and
AddBiomechanics-determined values. We also qualitatively compared joint angles and
joint torques. We used the model, marker set, and raw experimental data (markers and
ground reaction forces) from the original study as inputs to AddBiomechanics and
compared to the published results computed by the study investigators.

Quantitative comparison of the solved joint angles and moments with ground truth
values is another critical test of our method. However, ground truth joint angles and
moments cannot be directly measured from experiments. We thus used a
three-dimensional dynamic simulation of walking created using trajectory
optimization [63], where joint angles and moments are known and residual forces and
moments are also known to be zero, to generate a synthetic dataset. We used
synthesized marker trajectories, along with the computed ground reaction forces and
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centers of pressure from the simulation, as inputs to AddBiomechanics. Additional
inputs included the original generic, unscaled model and an unregistered version of the
appropriate marker set. We then used AddBiomechanics to optimize and compared the
recovered motion to the known joint angles and moments.

Results
Human expert versus automated processing: running dataset

The average marker RMSE achieved by AddBiomechanics for the running dataset was

1.5 cm, which is significantly smaller than the 4.3 cm marker RMSE (p < 0.005, paired
t-test) in the originally published results from [62] obtained after using OpenSim’s
Residual Reduction Algorithm (Fig 3, left) to modify the running kinematics to reduce
residual loads. In addition, the maximum marker error produced by AddBiomechanics
(3.8 cm) was smaller than the maximum marker error in the expert-processed results
(7.5 cm). AddBiomechanics produced a small but significant reduction in average RMS
residual force magnitude (p < 0.05, paired t-test) compared to the original study (Fig 3,
right). In addition, AddBiomechanics was able to significantly reduce residual torque
magnitudes (p < 0.005, paired t-test) such that they were below the threshold
recommended by Hicks et al. [34], which was not achieved in the original study. Finally,
the lower-limb joint angle and joint torque trajectories from the automated approach
were qualitatively similar to the trajectories from the original study (Fig 4).
AddBiomechanics produced similar results in both the stance and flight phases of
running across all subjects.

The manual data processing by the expert in the original publication was labor
intensive: each participant took several days for the expert to create a
dynamically-consistent scaled model and compute joint angles and torques. Average
computation time for a participant processed with AddBiomechanics was less than 30
minutes on a desktop machine, with 3-5 minutes spent on scaling and inverse
kinematics, and the remainder on dynamic consistency.

Human expert versus automatic processing: multi-activity dataset

AddBiomechanics produced similar marker errors (RMS: 1.6 cm, max: 3.9 cm) when

processing the multi-activity dataset compared to manual processing by experts (RMS:
1.7 cm, max: 3.7 cm; Fig 5, left). The original study published by Uhlrich et al. [49] did
not perform a residual reduction step before computing joint moments. However,
AddBiomechanics automatically produced an inverse dynamics solution that met the
recommendations of Hicks et al. [34] (Fig 5, right) and significantly reduced both
residual forces and moments (p < 0.005, paired t-test). In addition, the lower-limb joint
angle and joint torque trajectories from the automated approach were qualitatively
similar to the trajectories from the original study (Fig 6).

Manual expert scaling for the multi-activity dataset was also labor intensive, taking
roughly one working day per subject, not including additional time to perform inverse
kinematics and inverse dynamics for each of the movement trials. AddBiomechanics
required less than one hour on a desktop machine to automatically perform scaling,
inverse kinematics, and inverse dynamics for each subject with no input from the user.
Scaling and inverse kinematics was completed in under 10 minutes, with the remaining
time being consumed by dynamics processing.
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B Hamner et al. (2013)
Im AddBiomechanics

_ Thresholds suggested by
Hicks et al. (2015)

*k

Average RMS Error [cm]
w
1
Normalized Average RMS Residual Load [%]

Marker Error Residual Residual
Force Torque

Fig 3. Human expert versus automated processing: running dataset. The
root-mean-square marker errors (left) and residual forces and torques (right) from the
original published study from Hamner et al. [62] (gray) compared to the results obtained
using AddBiomechanics (blue). The results from Hamner et al. [62] were obtained using
OpenSim’s scaling, inverse kinematics, and inverse dynamics tools, and residual loads
were minimized using OpenSim'’s Residual Reduction Algorithm (RRA). The residual
forces are normalized to a percent of the peak ground reaction force, and the residual
torques are normalized to a percent of the peak ground reaction force times the average
center of mass height. The solid bars show the average per-trial RMS error, averaged over
the 10 subjects in the evaluation. The error bars show the standard deviation of RMSE
across the subjects. The dashed horizontal lines represent residual force and torque
magnitude thresholds recommended by Hicks et al. [34]. Asterisks indicate statistical
differences based on pairwise t-tests.

Synthetic walking data results

We found that AddBiomechanics was able to recover the ground truth joint angles and o

joint torques from the synthetic walking marker data to an average of 1.6 deg RMSE 5

and 0.15% body weight times height (computed over all joints in a trial together). The
marker errors and residual loads achieved by AddBiomechanics for the synthetic data
were small (0.63 cm and 0.01% normalized load, respectively; Table 1).

544
545

546

Discussion

547

Our bilevel optimization algorithm to find body segment scales, marker offsets, and "

joint angle and torque trajectories found dynamically-consistent trajectories for the 58

multi-activity dataset while achieving marker reconstruction errors similar to the
originally published expert-processed data. In addition, AddBiomechanics was able to
automatically reproduce lower-limb joint angles and torques from the running dataset

550

551

552
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AddBiomechanics

Fig 4. Running data: joint angles and torques. Joint angles (left) and joint torques (right)
from the original published study from Hamner et al. [62] (gray) compared to the results
obtained using AddBiomechanics (blue) for the 2.0 and 5.0 m s'! running trials. The solid
lines represent joint angles and torques averaged over the 10 subjects in the evaluation;
the shaded bands represent the standard deviation across subjects.

Table 1. Synthetic walking data results.

Quantity| Average RMSE" Units
gles 1.6 £ 0.3 degrees
ques % BW  heig
S 0.63 £+ 0.08 centimeters
Force % normalized f x
0.01+0.01 ¥
Residual 0.01£0.01 %
Torque normalized
torque#

TThe average RMSE results are presented as mean * standard deviation across subjects. *
The residual forces are normalized to a percent of the peak ground reaction force, and the
residual torques are normalized to a percent of the peak ground reaction force times the
average center of mass height.
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while achieving similar residual loads and significantly reducing marker error. Finally, sss
AddBiomechanics reproduced the joint angles and torques from the synthetic walking ss.

5 7 30 A
B Uhlrich et al. (2022)
I AddBiomechanics
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= 55 Hicks et al. (2015)
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Fig 5. Human expert versus automatic processing: multi-activity dataset. The root-
mean-square marker errors (left) and residual forces and torques (right) from the original
published study from Uhlrich et al. [49] (gray) compared to the results obtained using
AddBiomechanics (blue). The results from Uhlrich et al. [49] were obtained using
OpenSim'’s scaling, inverse kinematics, and inverse dynamics tools, but no residual
reduction step was performed. The residual forces are normalized to a percent of the peak
ground reaction force, and the residual torques are normalized to a percent of the peak
ground reaction force times the average center of mass height. The solid bars show the
average of per-trial RMS error, averaged over the 10 subjects in the evaluation. The error
bars show the standard deviation of RMSE across the subjects. The dashed horizontal
lines represent residual force and torque magnitude thresholds recommended by Hicks et
al. [34]. Asterisks indicate statistical differences based on pairwise t-tests.

dataset with high accuracy while achieving very low marker error and residual forces. 5%
The sequential approach we used to create initial guesses for solving the model scaling,
inverse kinematics, and inverse dynamics optimizations problems made our method fast
and robust, requiring no expert intervention.

In addition to being computationally efficient, our method improves upon previous
automated model optimization methods. For comparison, the method in [24] assumed
that all the body segment scalings were known to the algorithm and only attempted to
find the marker offsets and the joint angles, and resulted in 1.21 degree joint angle
RMSE. Our method must also recover segment scaling information from the data but
achieves similar results: processing the synthetic walking data led to a joint angle
RMSE of 1.6 degrees. The marker error results from our approach are also consistent
with previous automated scaling approaches, which all outperform human experts when
fitting a model to the same data [24,43,44,64-66]. However, previous approaches
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required large amounts of compute time, were limited to one specific skeleton, or only
addressed part of the body segment scaling and marker registration problem. In
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Fig 6. Multi-activty data: joint angles and torques. Joint angles (left) and joint torques
(right) from the original published study from Uhlrich et al. [49] (gray) compared to the
results obtained using AddBiomechanics (blue) for drop jump and squatting activities. The
solid lines represent joint angles and torques averaged over the 10 subjects in the
evaluation; the shaded bands represent the standard deviation across subjects.

addition, our method found inverse dynamics solutions with normalized residual forces
and torques similar to the results from the automated RRA optimization algorithm
proposed by Sturdy et al. [25]. Our approach found scaling, inverse kinematics, and
inverse dynamics solutions for multiple trials in less than 30 minutes, whereas the
approach by Sturdy et al. [25] can take up to two hours to find dynamics for a single
trial, and requires scaling be known in advance.

Our optimization approach has some limitations that should be considered when
processing experimental movement data with AddBiomechanics. First, there is some
fundamental ambiguity in reconstructing the full kinematic and anthropometric
information (body segment scales, marker offset registrations, and body positions) from
only marker location data. For example, the pelvis can be tilted slightly forward, with
the markers at the front of the pelvis shifted upward, and if the angles of the hips and
spine are appropriately adjusted then the markers will still closely match the target
data. If this effect is observed in practice, AddBiomechanics users can leverage the fact
that the optimizer will prioritize solutions that move the anatomical markers as little as
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possible, and adjust the marker starting locations on the bones to more closely match

the experimental placement. Second, the optimizer applies a statistical prior to body
segment scales to bring them more in-line with population statistics as represented by
the ANSUR II anthropometric dataset [55]. If the optimizer can find a way to fit the
marker data with a skeleton that is more likely to exist in the ANSUR II population
(such as by tilting the pelvis forward 2 degrees), it will choose that one, even if the
“true” underlying skeleton was slightly different. The data in ANSUR Il is large and
detailed, but was collected from active-duty military personnel, and so is not reflective
of many patient populations. A broader anthropometric dataset could help address this
limitation. Finally, AddBiomechanics may not always find an inverse dynamics solution
with sufficiently low residual forces and torques due to inconsistencies between the
marker and ground reaction force data that cannot be accounted for with a rigid body
model.

By creating and sharing this tool, we aim to make quantitative biomechanics results
more accessible, including to clinicians and researchers who do not possess the technical
expertise or time traditionally required to achieve high-quality results. Our method goes
from labeled marker trajectories to a scaled, registered, and physically-consistent
musculoskeletal model and corresponding human motion in less than 30 minutes on a
low-end server. We also provide a web version at AddBiomechanics.org which features a
drag-and-drop interface to automatically process human movement data in the cloud.

In exchange for sharing the resulting anonymized motion data with the scientific
community under a creative commons license, we make AddBiomechanics freely
available for researchers. As of this writing, over 300 researchers have used the
prototype tool to process and share more than 14,000 motion files from almost 1,200
experimental subjects. We hope AddBiomechanics will increase the quality, consistency,
and availability of biomechanical data analyses and lead to the creation of a large-scale
public dataset of accurately modeled human motion biomechanics.

Data availability statement

All data and code used for running experiments, model fitting, and our cloud

application is available on a GitHub repository at
https://github.com/keenon/AddBiomechanics and we have archived our code on
Zenodo (DOI: 10.5281/zenodo0.6981568). The data and code used to generate the results
can be found at https://github.com/stanfordnmbl/addbiomechanics-paper.
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Supporting information

S$1 Appendix

Joint acceleration smoothing

Prior to finding inverse dynamics solutions with AddBiomechanics, we first perform a
simple optimization to smooth the inverse kinematics solution we found by minimizing
the jerk in the joint angle trajectories. This step is necessary to prevent large acceleration
artifacts that appear as a result of small differences in joint angles between adjacent time
steps from inverse kinematics. This optimization computes a new set of joint angles, g™,
and includes a regularization term controlled by the weighting parameter,; ¢, which
prevents large deviations from the original inverse kinematics solution, g
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3

min 1L gl + ollqc - 4.l
§ ﬁ?,qt_z i q_tz (23)
| {7z

{7 1
regularization
q"tjerk

83
In our implementation, the joint jerks :2q" are computed using finite differences.

Constructing the b vector for angular dynamics fitting

The vector b € R6T represents the current COM trajectory through space (first half, 3T

entries), and the current root (e.g., pelvis) angular trajectory (second half, 3T entries), at
the initial conditions Z.

R R6T
b L"J © (24)

To compute z:, note that we are holding the mass of the subject constant during this
optimization step (m), so we can simply integrate the effects of known external forces
(gravity, GRFs) on the known mass of the subject over time.

L
m g (25)

¢
zp =2z + Z(t —i)A?3;
i=1 (26)

To compute ¢, we linearly integrate the “residual free angular acceleration” over time.
We define the “residual free angular acceleration” with joint state g;q g+ to be the
necessary root angular acceleration ¢ ¢such that no angular residual force is present. By

convention ¥ «is always the first three entries of g"t, which we write "¢ [1:3].

We can compute ¢ :given q1,q’q "+ by first solving for joint torques t:using inverse
dynamics. Then, set the first three entries of 7:to 0, and solve forward dynamics using
g4 5T The first three entries of the resulting gt are the “residual free angular

acceleration” 9 .
Given the “residual free angular acceleration” ¢ ¢, we can compute 9: by linearly

integrating the “residual free angular acceleration” over time:

t

Fe=0h + X(t - A2D i (27)

=1
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Accounting for force plate registration errors

The location of experimental force plates are often registered incorrectly in the motion
capture volume, which leads to solutions with center of mass trajectories offset slightly
from the experimental marker data. To align our solution with the observed experimental
data, we shift both the location of the force plates and the marker trajectories by the offset
between the center of mass trajectory we find and the experimentally estimated center of
mass trajectory, which typically is only a fraction of a centimeter.

It is also common to have ground reaction force data recorded from force plates that
are very slightly (e.g., less than 0.5 degrees) off of perfectly vertical. This makes finding a
physically-consistent solution challenging, because if we assume that the force plates are
perfectly vertical in our optimization problem, the total ground reaction force vector will
be very slightly off of perfectly vertical in the ground reference frame. This can lead to a
substantial horizontal acceleration bias on very long trajectories, since the horizontal
ground reaction forces will not be exactly anti-parallel to gravity.

Since the force plate rotation errors are typically very small, we can preserve the
linearity of our system by using a first-order Taylor expansion to approximate the rotation
of measured forces by very small angles. In our implementation, we append a rotational
correction term a; € R3to { for each force plate i, where n is the number of force plates.

Blz1
Az1E
P u Bl s,
{=BBuBE € R (28)
pea ..

On

For each ai, we append to A a 3T x 3 columnar block:

0
A2e[fa1]
ai= B Az2e([fi] + 2[f1i]) (29)

A2t P1e=1(T - t)[fei]

where fiis the ground reaction force vector associated with force plate i. The [.] operator
makes a skew-symmetric matrix out of a vector in R3, so that a x b = [a]b.

Finally, we regularize to angles aito discourage large force plate rotations. With this
extension to our linear fitting problem, we can recover force plate rotations to a very
small fraction of a degree.
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Quantifying the impact of using the bilevel constraint in kinematics fitting

We ran an ablation study to quantify the impact of the formulating our kinematics fitting
problem as a bilevel optimization problem. Here, we compare two conditions: optimizing
a bilevel objective and optimizing a simple monolevel objective. The objective for the
bilevel optimization problem (stated previously in Eq (2)) is as follows:

max (max P:(Zt|qy, s,p) - Ps(s) - Pp(p|p)>
s,p a:

(30)

To convert the bilevel objective to a monolevel objective, we move joint angle
optimization, max,, to the outer objective along with the body scale and marker
registration optimization:

S$,P,qt

max ( Pu(@ilde.5.p) - P(s) - Pp(plﬁ)>
(31)

We find that using a bilevel approach leads to much faster convergence, and we can get
lower marker RMSE at the cost of slightly lower anthropometric prior probability. The
bilevel optimizer takes slightly more wall-clock time per iteration, but because it is able to
reach high quality marker RMSE in many fewer iterations, it is able to save wall-clock time
overall. We ran both optimization functions for several different fixed numbers of
iterations on a single walking trial on a commodity server; these results are summarized
in Table A1l.

Table Al. Monolevel versus bilevel optimization.

Monolevel Bilevel

Iterations | Time (s) RMSE (m)  Anthrot | Time(s) RMSE(m) Anthrof

100 6.817 0.0166 26.6 10.6 0.0150 259
300 21.693 0.0203 26.8 319 0.0150 26.6
500 35.7 0.0153 26.9 52.6 0.0146 26.9
1000 70.3 0.0157 27.5 104 0.0144 27.4
2000 178 0.0157 27.5 233 0.014523 27.5

T This is the probability density function value for a multivariate gaussian derived from
the ANSUR II dataset [55] of human anthropometrics.

August 19, 2024

33/33



