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A B S T R A C T   

This study investigates the application of large language models (LLMs), specifically GPT-3.5 and GPT-4, with 
Chain-of-Though (CoT) in the automatic scoring of student-written responses to science assessments. We focused 
on overcoming the challenges of accessibility, technical complexity, and lack of explainability that have previ
ously limited the use of artificial intelligence-based automatic scoring tools among researchers and educators. 
With a testing dataset comprising six assessment tasks (three binomial and three trinomial) with 1,650 student 
responses, we employed six prompt engineering strategies to automatically score student responses. The six 
strategies combined zero-shot or few-shot learning with CoT, either alone or alongside item stem and scoring 
rubrics, developed based on a novel approach, WRVRT (prompt writing, reviewing, validating, revising, and 
testing). Results indicated that few-shot (acc = 0.67) outperformed zero-shot learning (acc = 0.60), with 12.6% 
increase. CoT, when used without item stem and scoring rubrics, did not significantly affect scoring accuracy 
(acc = 0.60). However, CoT prompting paired with contextual item stems and rubrics proved to be a significant 
contributor to scoring accuracy (13.44% increase for zero-shot; 3.7% increase for few-shot). We found a more 
balanced accuracy across different proficiency categories when CoT was used with a scoring rubric, highlighting 
the importance of domain-specific reasoning in enhancing the effectiveness of LLMs in scoring tasks. We also 
found that GPT-4 demonstrated superior performance over GPT-3.5 in various scoring tasks when combined with 
the single-call greedy sampling or ensemble voting nucleus sampling strategy, showing 8.64% difference. 
Particularly, the single-call greedy sampling strategy with GPT-4 outperformed other approaches. This study also 
demonstrates the potential of LLMs in facilitating explainable and interpretable automatic scoring, emphasizing 
that CoT enhances accuracy and transparency, particularly when used with item stem and scoring rubrics.   

1. Introduction 

The field of education is undergoing a transformation with the 
increasing integration of artificial intelligence (AI) to enhance teaching 
and learning. Within this transformative landscape, automatic scoring 
systems have emerged as indispensable tools. They play a pivotal role in 
meeting the pressing need for efficient, precise, and timely assessment of 
students’ proficiency in applying knowledge to solve problems (Zhai, 
Haudek, Shi, Nehm, & Urban-Lurain, 2020). While automatic scoring 
can be applied for many subject matters, science education is in 
particular need for such systems to address the expansive scope of the 
integrated science disciplines, engage students in solving real-world 
problems, and advance the intricate nature of assessment practices for 
learning. Automatic scoring enables immediate feedback, which is 
crucial for fostering an adaptive learning environment where students 
can promptly recognize and rectify misunderstandings, thus enhancing 

their use of disciplinary core ideas and crosscutting concepts to solve 
problems (Zhai, 2021). 

Existing methods of automatic scoring have largely hinged on the 
advancements in machine learning and natural language processing 
(NLP). Techniques ranging from individual algorithms (Nehm, Ha, & 
Mayfield, 2012), ensemble algorithms that utilize multiple scoring 
models rather than a single model (Wilson et al., 2023), to sophisticated 
large language models (LLMs) (Latif & Zhai, 2023; Liu, He et al., 2023) 
have been employed to evaluate short-answer questions to extensive 
essays. These systems have made strides in understanding the syntacti
cal structure of student responses but frequently grapple with the nu
ances of scientific reasoning and the interpretation of students’ thinking 
processes. Despite the progress, research suggests that developing such 
scoring models is time- and effort-consuming (Zhai, in press). Therefore, 
recent studies leverage prompt engineering and have reported the pos
sibility of leveraging this new method to free researchers from labelling 
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a large number of training cases (Wu, He, Liu, Liu, & Zhai, 2023). 
However, the reported scoring accuracy needs significant efforts to 
improve, which is often attributed to the limited capacity of LLMs to 
grasp the depth of content-specific knowledge and the rationale behind 
students’ answers. Also, while many LLMs, such as the Generative 
Pre-trained Transformer (GPT) family, have been released until now, the 
question of which models and which settings of hyperparameters could 
best serve the automatic scoring has not been answered. If Gemini Pro by 
Google shows less performance than GPT-4(V) for educational tasks 
(Lee, Latif, Shi, & Zhai, 2023), it is recommended to further explore how 
to fully exploit GPT variants’ function for automatic scoring. 

To address these research gaps, this study posits that the integration 
of LLMs with chain-of-thought (CoT) prompting methods could signifi
cantly enhance the accuracy of automatic scoring systems in science 
education. CoT is characterized as a sequence of intermediary reasoning 
steps expressed in natural language, culminating in the final output (Wei 
et al., 2022). Traditional scoring models have suffered from significant 
efforts needed to collect training data and develop algorithmic models, 
while LLMs hold a distinct advantage in addressing this challenge. This 
study specifically investigates how the application of LLMs with CoT to 
the scoring process can ease human efforts while capturing student 
thinking in constructing scientific explanations, aligning more closely 
with human scoring outcomes. Using an experimental design, we 
examined LLMs’ scoring accuracy under different conditions, specif
ically controlling for variables of prompting approach (zero-short vs. 
few short learning), LLM reasoning strategy (CoT vs. Non-CoT), and 
provision of contextual item information and scoring rubrics (CR). We 
further tested the effect of versions and hyperparameters of the GPT 
family (i.e., ChatGPT/GPT-3.5 and GPT-4) on the automatic scoring 
performance. The study addresses four research questions (RQs): 

RQ 1. How do GPT-3.5 and GPT-4 automatically generate explain
able scores? 
RQ 2. How accurate are GPT-3.5 and GPT-4 in automatically scoring 
student-written explanations of scientific phenomena under varying 
conditions (zero-shot, few-shot, CoT, CR)? 
RQ 3. To what extent does CoT improve GPT-3.5 and GPT-4’s 
automatic scoring accuracy under various conditions? 
RQ 4. Which LLM models (i.e., GPT-3.5 and GPT-4) yields better 
scoring accuracy using the single-call vs. voting approach? 

2. Literature Review 

In this section, we review four strands of existing literature relevant 
to this study. The first section reviews previous approaches to devel
oping automatic scoring models, before the rise of LLMs. We then review 
the concept and strength of LLMs that are promising for automatic 
scoring. In the section to follow, we examine prompt engineering stra
tegies widely used to exploit LLMs for various purposes. At last, we 
summarize established methods to yield accurate results from LLMs, 
which are used in this study to fully elicit the GPT family’s potential for 
automatic scoring. 

2.1. Existing approaches to developing automatic scoring models 

Automatic scoring of student-written responses to science assessment 
items leverages text classification NLP techniques in supervised machine 
learning. Previous studies have succeeded in achieving high machine- 
human agreement, developing automatic scoring models following the 
typical and labor-intensive process of machine learning: collecting stu
dent responses and scoring them, developing algorithms and training 
the model, and testing the model performance to further employ various 
strategies to improve it (Nehm et al., 2012; Wilson et al., 2023; Zhai, in 
press). 

To construct a robust scoring model, a substantial amount of data 
collection is imperative. Researchers typically need to gather a 

significant volume of student responses, ranging from hundreds to over 
a thousand, to ensure a diverse and representative dataset. This process 
is critical for the development of an accurate and reliable model. Once 
these responses are compiled, trained human experts are employed to 
evaluate and score them. Their assessments serve a dual purpose: they 
not only provide a benchmark for the model’s performance but also 
generate crucial training and testing data. This data is then used to train 
the model, teaching it to recognize and evaluate key elements in student 
responses. The involvement of human experts ensures that the model’s 
scoring aligns with educational standards and objectives, thereby 
enhancing the model’s utility in real-world educational settings. This 
rigorous process of data collection and expert evaluation forms the 
foundation of a normal scoring model, setting the stage for it to accu
rately and effectively assess student responses. 

More than a decade ago, researchers started to develop automatic 
scoring algorithmic models based on tokens in student answers (bag of 
words) (Leacock & Chodorow, 2003; Ramesh & Sanampudi, 2022). 
After tokenizing student-written answers to items, the input data were 
converted to a document-term matrix or term-document matrix (in case 
of automatic scoring, a student’s answer to an item can be considered a 
‘document’). Later, a document was represented as a vector with mul
tiple dimensions, as many as the kinds of tokens used for various cal
culations for classification. Usually, the number of dimensions of the 
documents is reduced by word or document embedding, which is typi
cally done by kernels, principal component analysis, or a neural network 
(Cozma, Butnaru, & Ionescu, 2018; Selva Birunda & Kanniga Devi, 
2021). After embedding, features or semantics of student-written re
sponses to items can be processed in sophisticated neural network-based 
algorithms. Aligned with the data structure, recurrent neural 
network-based models such as long-short term memory, attention, and 
transformer enabled considering the context of the document, which is 
defined by the (bidirectional) distribution of certain tokens or characters 
(Haller, Aldea, Seifert, & Strisciuglio, 2022). After processing student 
answers using these algorithms, the classification layers could yield the 
softmax probabilities to determine the label for a student’s written 
response. 

To further improve the scoring model performance, researchers have 
adopted the strategy of combining predictions from various scoring 
models to determine the final label. This ensemble approach has been 
applied to assess students’ argumentation (Wilson et al., 2023; Zhai, He, 
& Krajcik, 2022), explanations (Jescovitch et al., 2021), and teachers’ 
pedagogical content knowledge (Zhai, Haudek, Stuhlsatz, & Wilson, 
2020a), and showing superior results. However, this ensemble approach 
is part of a larger process encompassing data preparation, model 
development, training, and testing, which has proven to be a formidable 
obstacle, especially for educational researchers not versed in computer 
programming and machine learning methodologies. 

Consequently, there is a pressing need to overcome these technical 
barriers in the field of automatic scoring research. By simplifying these 
complexities, the potential for AI-enhanced scoring innovations can be 
expanded, making them more accessible and beneficial to a wider range 
of educational professionals. This initiative is crucial in leveraging the 
full capabilities of generative AI such as ChatGPT in educational settings 
(Zhai, 2023a), ensuring that advanced scoring models are not just 
reserved for those with technical expertise but are also available to ed
ucators who can most directly apply these tools in their teaching and 
assessment practices. 

Moreover, prior research on automatic scoring has frequently over
looked the explainability of the scoring outcomes (Hahn, Navarro, 
Valentín, & Burgos, 2021; Korkmaz & Correia, 2019). Many sophisti
cated scoring models, such as neural networks, encode information in an 
abstract mathematical space with their intricate architectural structure, 
which makes it difficult to understand how each factor contributes to the 
final model prediction (Bearman & Ajjawi, 2023). This black box issue 
necessitates explainability so that users may establish trustworthiness in 
automatic scoring, which has gained increasing recognition (Holzinger, 

G.-G. Lee et al.                                                                                                                                                                                                                                  



Computers and Education: Artificial Intelligence 6 (2024) 100213

3

Saranti, Molnar, Biecek, & Samek, 2022). This matter is especially 
pertinent to education, where AI models process sensitive data (i.e., 
student responses), and the outcomes can significantly impact teachers’ 
instructional decision-making (Khosravi et al., 2022; Gillani, Eynon, 
Chiabaut, & Finkel, 2023; Muhamedyev et al., 2020; Hitron et al., 2019). 
The imperative for transparency becomes essential when these models 
are employed for formative assessment of students’ responses to scien
tific practices (Zhai, 2021). In such scenarios, educators must under
stand the rationale behind the assigned grades and the criteria used to 
effectively provide authentic pedagogical support. Thus, enhancing the 
explainability of AI models in educational settings is not just a technical 
challenge but also a fundamental ethical consideration, ensuring that 
these technologies align with the educational objectives and support 
effective teaching practices. 

2.2. Large language model for automatic scoring 

LLMs such as Google pre-trained BERT (Bidirectional Encoder Rep
resentations from Transformers; Devlin, Chang, Lee, & Toutanova, 
2018), SciEdBERT (specialized for science education) (Liu, Yuan, et al., 
2023), and GPT variants (Latif & Zhai, 2023) have become visionary 
instruments for automatic scoring in the rapidly developing field of AI. 
There are now new possibilities in educational assessment and other 
fields thanks to their unmatched capacity to process, comprehend, and 
generate natural language. This research program sheds light on 
exploring the fusion between advanced technology and practical us
ability, evidencing the ever-growing capabilities of LLMs. 

2.2.1. Strengths of large language models in automatic scoring 
LLMs have shown significant advancements in educational assess

ment and automatic scoring. A pivotal moment in this field was marked 
by the introduction of BERT by Devlin et al. (2018). BERT’s deep bidi
rectional training fundamentally enhanced the understanding of lan
guage context, a critical factor in the effectiveness of scoring 
applications where nuanced interpretation of text is essential. Building 
upon this foundation, recent studies such as Lee, Jung, et al. (2023) have 
highlighted the efficiency of models like GPT-3.5 in few-shot learning 
scenarios. This approach, requiring minimal examples to generate or 
score content effectively, is particularly valuable in educational settings 
characterized by varied and complex responses. 

Further emphasizing the versatility of LLMs, research by Organ
isciak, Acar, Dumas, and Berthiaume (2023) has demonstrated their 
potential in scoring tasks involving divergent thinking. While tradi
tionally challenging for automated systems, this area has seen signifi
cant improvement with LLMs that are now capable of assessing 
creativity and originality beyond mere semantic analysis. In the realm of 
automated essay scoring, the work by Rodriguez, Jafari, and Ormerod 
(2019) reveals that LLMs offer higher accuracy and reliability, 
addressing many of the limitations of earlier scoring systems. This 
advancement is crucial in ensuring fair and comprehensive evaluation of 
complex written responses. The potential of LLMs, particularly GPT-3.5, 
in educational applications extends beyond scoring. They highlight how 
generative AI can significantly support and enhance teaching and 
learning processes, making these advanced technologies accessible and 
beneficial for educators and learners (Baidoo-Anu & Ansah, 2023). 
LLMs’ potential goes beyond simple scoring of student responses - 
rather, it streamlines teachers’ assessment practices and facilitates 
providing feedback to students. A remarkable work by Bewersdorff, 
Seßler, Baur, Kasneci, and Nerdel (2023) provided a foundation for 
productive and personalized feedback and found that GPT-4 can accu
rately identify errors in student response than human rater. These works 
also highlight the potential use of LLMs for education, specifically when 
fine-tuning models like GPT-3.5 using challenging mathematical data
sets (Latif & Zhai, 2023) can provide more insights about its application 
in education. 

In summary, the strengths of LLMs in automatic scoring are deemed 

multifaceted. They exhibit an advanced understanding of language, 
demonstrate efficiency in adaptive learning scenarios, accurately score 
complex cognitive tasks, and hold the potential to transform educational 
practices through their user-friendly AI capabilities. 

2.2.2. Current research trends in LLMs for automatic scoring 
The landscape of automatic scoring is being reshaped by the advent 

of LLMs, with recent studies revealing diverse applications and 
exploring their potential limitations. Expanding on the foundation of 
BERT, several studies have explored the application of LLMs in specific 
educational settings. For instance, researchers have focused on pre- 
training strategies tailored for science education, demonstrating how 
context-specific adaptations can enhance the effectiveness of LLMs in 
scoring and content generation for science-related tasks (SciEdBERT - 
Liu, He et al., 2023), as well as the German version–G-SciEdBERT (Latif, 
Lee, Neuman, Kastorff, & Zhai, 2024). Similarly, another study (Shen 
et al., 2021) introduced MathBERT, a model specifically designed for 
mathematics education, showcasing the potential of subject-specialized 
LLMs in automatic scoring. 

The emergence of GPT, particularly in its GPT-3.5 variant, has 
introduced a new paradigm in using LLMs for educational purposes 
(Zhai, 2023b). Studies also highlight GPT3.5’s effectiveness in few-shot 
learning scenarios and its application in educational content generation. 
These works underline the model’s efficiency in understanding and 
generating nuanced language with minimal input, surpassing the ca
pabilities of earlier LLMs like BERT in certain aspects, particularly in 
user-friendly interaction and adaptability to diverse educational needs 
(Lee, Jung, et al., 2023; Rahman & Watanobe, 2023). 

However, the deployment of LLMs in education is not without 
challenges. Studies also provide critical perspectives on the implications 
of LLMs like GPT-3.5 in traditional assessments and the ethical consid
erations in educational settings. Research points to the need for careful 
evaluation of the impact of these models on traditional learning and 
assessment methodologies, highlighting the importance of addressing 
potential biases and ethical dilemmas, which can significantly impact 
teachers’ assessment practices and thus provide customized support to 
students (Rudolph, Tan, & Tan, 2023; Yan et al., 2023). 

To sum up, current research trends in LLMs for automatic scoring are 
increasingly focusing on the interplay between sophisticated general 
language understanding and the specific needs in educational applica
tions. Specialized models like SciEdBERT have emerged, building upon 
the BERT architecture and targeting specific educational domains (Liu, 
He et al., 2023). Studies also explored context-specific pre-training 
strategies, indicating the importance of tailoring LLMs to particular 
educational subjects for improved performance in automatic scoring 
(Liu, He et al., 2023; Wu et al., 2023). This study builds upon these 
trends by exploring the practical implications of using advanced LLMs in 
a novel educational context, emphasizing the need for balanced and 
ethical deployment of these technologies in educational settings. 

2.3. Prompt engineering with chain-of-thought 

Prompt engineering (Liu, Yuan, et al., 2023) focuses on enhancing 
the in-context learning ability of LLMs by designing more efficient 
prompt templates. However, utilizing LLMs for complex reasoning tasks 
remains a significant challenge, even with refined prompt engineering 
techniques. For example, LLMs sometimes fail to solve logical reasoning 
or arithmetic problems when they are presented in intricate statements 
(Jung et al., 2022; Zhou et al., 2022). Given this, it is crucial to recognize 
that automatic scoring is a complex reasoning task, as there is a strict 
rubric to guide the grading process. Especially in science education, the 
levels of scores are usually designed as the essential steps of a reasoning 
path, from the known to the answer (Zhai, He, & Krajcik, 2022). 

Recently, Wei et al. (2022) found that guiding LLMs to perform the 
task following a reasoning path could significantly improve their capa
bility in solving such challenging tasks, known as chain-of-thought 
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(CoT) prompting. CoT is defined as “a series of intermediate natural 
language reasoning steps that lead to the final output” (Wei et al., 2022, 
p. 2). The most straightforward way to achieve this goal is to encourage 
LLMs to generate their reasoning paths before making the final predic
tion, which could be easily made by using a magic prompt, i.e., "Let’s 
think step by step,” as suggested by Kojima, Gu, Reid, Matsuo, and 
Iwasawa (2022). With this prompt provided, the LLMs would provide 
the rationales for the given tasks and follow the self-generated rationales 
to make the final prediction, called the zero-shot CoT (Kojima et al., 
2022). Following this path, many advanced strategies are proposed to 
improve the rationales generated by the models (Besta et al., 2023; 
Wang et al., 2022; Yao et al., 2023), and they are widely adapted to 
diverse tasks and various scenarios, such as programming (Bi et al., 
2023; Cheng et al., 2022), math problems (Imani, Du, & Shrivastava, 
2023), multi-modalities question answering (Chen et al., 2023). 

The self-generated CoT approach has shown potential in utilizing 
LLMs for various reasoning tasks. However, it may not be ideally suited 
for specific tasks like automatic scoring. This limitation arises because 
grading rubrics, especially those crafted by educators for individual 
items, often follow unique reasoning paths not typically encountered by 
LLMs during their pre-training phase. Consequently, LLMs might 
struggle to generate valid reasoning paths aligned with these specialized 
grading processes. To address this challenge, our study tries the few-shot 
CoT method (Wei et al., 2022) for automatic scoring. In this approach, 
the prompt template will incorporate a selection of student responses, 
each accompanied by a CoT demonstration guided grading score written 
by human graders. 

To sum up, we compare the results of zero-shot and few-shot CoT 
prompt engineering of LLM on grading student-written answers, which 
of both have rarely been tried in automatic scoring research (Fig. 1). 
This setup aims to help the LLMs follow the reasoning paths behind the 
example CoT demonstrations, thereby enhancing their predictive accu
racy in the context of grading. 

2.4. Yielding reliable results from GPT 

Although it is promising to apply LLMs for automatic scoring with 
the zero/few-shot CoT strategy, it faces a significant challenge due to the 
inherent uncertainty in LLMs’ generative process. This uncertainty is 
introduced by the sampling strategies used to produce diverse responses 
(Hewitt, Manning, & Liang, 2022; Holtzman, Buys, Du, Forbes, & Choi, 
2019; Li et al., 2022; Meister, Pimentel, Wiher, & Cotterell, 2023; Su 
et al., 2022). LLMs predict the likelihood of each word in a sequence, 
aiming to create responses with the highest joint probability over each 
word of the sequences. However, considering the vast number of po
tential combinations on the order of O(VN), where V is the number of 
candidate words and N is the response length, it is impractical to eval
uate all possible responses. 

The Greedy Sampling is the most naive solution for this problem, 
which generates the word with the maximum likelihood at each step. If 
the problem space being searched by the model has a characteristic that 
the minima found by the greedy sampling are the global minima, not a 
local minimum, greedy sampling can be the most effective and efficient 
way to solve the problem. Practically, setting hyperparameters as tem
perature = 0.0 and top_p = 0.01 for GPT is used to take the greedy 
sampling approach.1 However, it could lead to poor performance in 
generating a long text without a powerful enough LLM (e.g., GPT-4 has 
more parameters than GPT-3.5) since the estimations of word likelihood 

can be incorrect (Fu, Lam, So, & Shi, 2021; Holtzman et al., 2019). 
Another common approach is Nucleus Sampling (Holtzman et al., 

2019). By allowing a dynamic nucleus of the probability distribution, 
the quality of machine generated responses could be increased. Practi
cally, setting hyperparameters as temperature = 0.9 and top p = 0.95 for 
GPT is used to take the nucleus sampling approach. However, this 
approach could lead to different outputs over the same input, intro
ducing uncertainty to the grading process. 

To overcome this issue, we propose to append a voting strategy to 
aggregate the prediction scores generated by multiple calls. Specifically, 
we could call GPT API multiple times and consider the most frequent 
predicted label mentioned by the responses as the final prediction. In 
this way, we increase the reliability of the advanced nucleus sampling. 
This approach is inspired by both strands of research: (1) machine 
learning fields ensembling the answers from multiple models, and (2) 
educational studies asking two or three educators to independently 
grade the same student submission. By incorporating multiple grading 
instances, we aim to decrease the variance of the predictions, thereby 
enhancing the reliability and consistency of the grading process. 

The issue of yielding reliable results from LLMs is a complicated 
matter since it is related to the power of the model itself. For example, 
using greedy sampling or nucleus sampling with GPT-4 could return 
different results from using these with GPT-3.5, since the former has 
broader general knowledge and problem solving abilities (OpenAI, 
2023). However, the impact of these mixed conditions on the perfor
mance of LLMs, particularly of GPT, on automatic scoring has not been 
explored yet, to our knowledge. 

In this study, we conducted experiments using both greedy sampling 
and nucleus sampling, with both LLMs that are more powerful (GPT-4) 
or less powerful (GPT-3.5). Our study distinctively compares the per
formance of GPT-4 and GPT-3.5 in handling complex, authentic student 
responses to science items. This comparative aspect is critical in high
lighting the evolutionary strides in LLMs and their practical efficacy in 
educational contexts. Our unique contribution lies in our methodolog
ical approach: we analyzed extensive data sets, prioritize the authen
ticity of student responses, and focus on obtaining explainable and 
interpretable results. This approach not only benchmarks the perfor
mance differences between GPT-4 and GPT-3.5 but also sets a new 
standard in evaluating the practical utility of LLMs in educational as
sessments – comparing different prompt engineering methods and 
hyperparameters simultaneously. Our findings offer novel insights into 
the operational dynamics of these models, contributing significantly to 
the growing body of knowledge on the effective use of LLMs in educa
tional settings. The details of the experiments and the results are pre
sented in Methods and Findings. 

3. Methods 

3.1. Dataset 

This study conducted a secondary analysis of a dataset that asked 
middle school students in U.S. to describe scientific models accounting 
for science phenomena (details see Zhai, He, and Krajcik (2022)). Spe
cifically, we employed six assessment tasks, three with binomial scoring 
rubrics (Tasks R1_2, J2_2, and J6_2) and three with trinomial scoring 
rubrics (Tasks H4_2, H4_3, and J6_3). The tasks were designed to 
examine whether students meet the NGSS performance expectation, 
MS-PS1-4 (MS: Middle School, PS: Physical Sciences). Develop a model 
that predicts and describes changes in particle motion, temperature, and state 
of a pure substance when thermal energy is added or removed. For each task, 
Zhai, He, and Krajcik (2022) collected more than 1,000 student re
sponses. All the items were scored using corresponding rubrics to 
examine students’ proficiency levels (i.e., Beginning, Developing, and 
Proficient), and the inter-rater reliability for each item was over Cohen’s 
kappa = 0.75. We used the dataset from the parental study with 
ground-truth labels given by human scorers. 

1 Temperature can span 0–2 and higher values make the output more random 
and lower values make it more focused and deterministic; Also, top_p designates 
the probability mass the model considers - e.g., top_p = 0.1 means only the 
tokens comprising the top 10% probability will be considered in text genera
tion. For details, see https://platform.openai.com/docs/api-reference/chat/cre 
ate. 
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To examine the scoring accuracy of LLMs, we randomly sampled 
student responses from the existing dataset to make a balanced testing 
dataset for each task to avoid unnecessary errors, potential bias in model 
fitting and possible inflation/detriment in performance (Fang, Lee, & 
Zhai, 2023). For example, since the original dataset was dominated by 
‘Beginning’ cases (~78% in the original task H4_2 data), even if a model 
just predicts every test case into ‘Beginning’ without exception, it could 
show seemingly but delusively high accuracy. Consequently, we 
randomly selected 120 student responses ranked at ‘Beginning’ for all 
the tasks and randomly selected cases ranked at ‘Proficient’ and 
‘Developing’ as close to 120 as possible, respectively, depending on the 
available responses at the respective levels. We found that besides Task 
H4_2 with 110 ‘Proficient’ cases and 80 ‘Developing’ cases, and J6_3 
with only 20 ‘Proficient’ cases, each task provided 120 testing cases at 
each proficiency level. This sampling approach resulted in 1,650 
student-written responses in the test dataset (see Table 1). 

3.2. Experimental design 

We conducted experiments using various combinations of prompt 
engineering approaches to compare the performance of those in auto
matic scoring. 

The first aspect we tested was zero-shot and few-shot learning. For 
zero-shot learning, we did not provide GPT-4 with any example of 
human coders’ evaluation of student written responses. In contrast, we 
provided GPT-4 with four examples of human coders’ evaluation for 
few-shot learning. Note that these four few-shot cases were not included 
in the test dataset. The second aspect we tested was the use of CoT, 
which formulated three conditions: prompts without CoT, with CoT, and 
with CoT plus scoring rubric and problem context. Consequently, we 
tried six prompts to automatically score each item. The details of 
prompts are presented in Prompt Engineering. 

We mainly used GPT-4 API with hyperparameters of temperature =
0 and top_p = 0.01 for automatic scoring, which is expected to give the 
most reliable results by greedy decoding. We conducted additional ex
periments to compare our approach’s automatic scoring performance 
with others. We adopted three additional approaches that use GPT-4 or 
GPT-3.5.2 The first and second approaches call GPT-4 or GPT-3.5 API 
thrice with hyperparameters of temperature = 0.9 and top_p = 0.95 and 
holds a vote to determine the label of the test case. The labels of almost 
every test case could be decided through this process (e.g., if there are 
two for ‘Developing’ and one for ‘Beginning,’ the label is determined as 
‘Developing’), while 12 and 15 cases among 930 trinomial classification 
cases had no majority prediction (i.e., one for ‘Proficient,’ one for 
‘Developing,’ and another one for ‘Beginning’). We called GPT-4 or GPT- 
3.5 API once again to determine the label for those cases. The third 
approach, calls GPT-3.5 once with hyperparameters of temperature =
0 and top_p = 0.01. 

Note that all four approaches (calling GPT-4 once, GPT-4 thrice, 
GPT-3.5 once, and GPT-3.5 thrice) could be considered as ways to 
receive reliable classification results from the GPT model family, as 

Fig. 1. Typical examples of zero-shot and few-shot learning prompt engineering (ZS: Zero-shot, FS: Few-shot, CoT: Chain-of-thought) (reorganized from Wei et al., 
2022; Kojima et al., 2022). 

Table 1 
Task IDs and number of cases (N = 1650).  

Task Total ‘Proficient’ ‘Developing’ ‘Beginning’ 

R1_2 240 120 NA 120 
J2_2 240 120 NA 120 
H4_2 310 110 80 120 
H4_3 360 120 120 120 
J6_2 240 120 NA 120 
J6_3 260 20 120 120  

2 We used gpt-4 and gpt-3.5-turbo models in OpenAI API calls throughout this 
study. See https://platform.openai.com/docs/models/overview. 
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explained in the Literature Review. The summary of the experimental 
design is presented in Table 2. 

3.3. Prompt engineering 

This study proposed an iterative procedure of prompt engineering for 
educational studies, including four major components—prompt writing, 
reviewing, validating, revising, and testing (WRVRT) (Fig. 2). First, re
searchers write a prompt for the automatic scoring of the given item. 
Second, more than one expert from educational studies (in this case, 
from educational assessment) and AI, respectively, review the prompt. 
In this stage, the internal validity of the prompt is secured by means of 
face validity. If the needs for modification arise, researchers revise the 
prompt. Next, researchers validate the prompts by automatic scoring of 
student responses that are not included in the test data. By using the 
validation cases, external validity of the prompt is secured. If the needs 
for modification arise in terms of model performance, researchers will 
revise the prompt again. The iterative WRVRT is completed until the 
prompts reach saturation. Finally, researchers can run the test cases with 
the prompts to examine the scoring accuracy. 

Using WRVRT, the first author with expertise in chemistry education 
and automatic scoring research wrote the initial prompts. Another 
researcher with expertise in K12 science education and automatic 
scoring research, one expert in large language models and machine 
learning, and one doctoral student in computer science reviewed the 
prompt. The need to revise the prompts was pointed out twice in the 
review stage and once in the validation stage. We finalized our prompts 
after three revisions. 

Our prompt engineering combined six components to generate six 
types of prompts for each task (Table 2).  

• BasicRole instructs GPT’s role as an evaluator of student responses. 
BasicRole is transferred as the ‘role’ of ‘system’ in the GPT API call. 
for the prompts that provide GPT with ContRubTEXT, a sentence that 
instructs GPT to refer to ContRubTEXT is concatenated with 
BasicRole.  

• ContRubTEXT first describes the stem of the assessment item, which 
was provided to students when they addressed the item. And then, it 
describes the scoring rubric for each item. Each scoring rubric lists 
2–4 scoring components and, based on which, the holistic categories 
of ‘Proficient,’ ‘Developing,’ and ‘Beginning’ are determined.  

• FewEXAMPLES provides four student-written responses with human 
scores for the three proficiency levels– ‘Proficient,’ ‘Developing,’ and 
‘Beginning.’  

• CoT Initiator instructs GPT to develop its reasoning according to CoT. 
For zero-shot learning, "Let’s think step by step” serves this purpose. 
For few-shot learning, the prompt component provides four human 
scoring examples with human evaluator-written CoT, as well as the 
category of ‘Proficient,’ ‘Developing,’ and ‘Beginning.’ For example, 

the human evaluator exemplifies which part of the student-written 
answer can be considered evidence of each component in the 
scoring rubrics or point out that there is no evidence of it. After 
investigating the answer for all the components, the human evalu
ator synthesizes it to decide the holistic category. 

Table 3 shows the inclusion of each component according to the 
types of prompts. Note that for zero-shot with CoT prompt or zero-shot 
with CoT with problem context and rubric, "Let’s think step by step” was 
concatenated at the end of the prompt to provoke CoT reasoning of GPT. 
Also, Fig. 3 compares the six prompt engineering strategies. The 
comprehensive examples of the six components are presented in Ap
pendix 1. 

3.4. Data analysis 

We conducted the experiment on Python 3.10 environment, with 
GPT-4 and GPT3.5-turbo APIs provided by OpenAI. After collecting GPT 
family APIs’ classification of student-written responses, accuracy, pre
cision, recall, and F1 were calculated by comparing GPT labeling with 
human consent labeling. 

4. Findings 

In this section, we first exemplify how GPT-4 responds to the auto
matic scoring query from the users (RQ 1). We then present the scoring 
accuracy of various strategies to answer RQs 2–3. At last, we present the 
comparison of performance between different GPT versions according to 
hyperparameters compared to answer RQ 4. 

4.1. Responses of GPT to automatic scoring queries 

The results show that LLMs can respond to automatic scoring tasks, 
providing the user with explainable responses. Fig. 4 shows examples of 
GPT-4’s responses to the automatic scoring task (H4_3) (see Fig. 3 for the 
prompt components). Specifically, in every prompt, GPT-4 returned the 
reason for why it classified a student’s response into a specific category - 
‘Proficient,’ ‘Developing,’ or ‘Beginning,’ other than FS_noCoT. Excep
tionally, FS_noCoT prompt made GPT-4 return simple classification re
sults, following the example of human grading provided in 

Table 2 
Experimental Design (above: acronyms of used prompts, below: large language 
model settings.  

Types of Prompt used  

No Chain-of- 
Thought 

Chain-of- 
Thought 

Chain-of-Thought with Context 
and Rubric 

Zero- 
shot 

ZS_noCoT ZS_CoT ZS_CoT_CR 

Few- 
shot 

FS_noCoT FS_CoT FS_CoT_CR  

Large Language Model Used 

Sampling Strategy Greedy Nucleus Greedy Nucleus 
GPT Version 4 4 3.5 3.5 
Hyperparameters (temperature, 

top_p) 
(0, 
0.01) 

(0.9, 
0.95) 

(0, 
0.01) 

(0.9, 
0.95) 

Number of API Call 1 3 1 3  

Fig. 2. Iterative procedure of prompt engineering for educational 
studies (WEVRT). 

Table 3 
Combinations of prompt components according to the prompt engineering type.   

BasicRole ContRubTEXT FewEXAMPLES CoT Initiator 

ZS_noCoT Y N N N 
ZS_CoT Y N N “Let’s think step 

by step" 
ZS_CoT_CR Y Y N “Let’s think step 

by step" 
FS_noCoT Y N Y N 
FS_CoT Y N Y Examples of 

human scoring 
FS_CoT_CR Y Y Y Examples of 

human scoring  
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Fig. 3. Examples of the six prompts used for automatic scoring (task H4_3; ZS: Zero-Shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context and rubric).  
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FewEXAMPLES. 
We found that zero-shot prompts returned relatively longer re

sponses, allowing GPT-4 to spontaneously generate reasons for its clas
sification. In contrast, few-shot prompts returned relatively shorter 
responses, strictly following the structure given in the few-shot exam
ples. Especially, FS_CoT and FS_CoT_CR generated answers according to 
the CoT structure developed in this study for automatic scoring. Note 
that in the examples in Fig. 4, ZS_CoT_CR, FS_CoT, and FS_CoT_CR made 
correct predictions. 

4.2. Scoring accuracy of LLMs by prompting strategy 

The scoring accuracy of various prompting strategies is presented in 
Table 4. There was no single prompting that showed the best accuracy 
for all tasks; instead, the best-performing prompting differs by the item, 
though showing some patterns. Overall, prompt engineering works 
better for binomial items as compared with trinomial items. Specifically, 
the accuracy was found to be up to 0.9083 (J6_3), 0.8792 (J2_2), and 
0.7833 (R1_2) for the binomial items and up to 0.6806 (H4_3), 0.5935 
(H4_2), and 0.5885 (J6_3) for the trinomial items. Other metrics, such as 
Precision, Recall, F1, and Quadratic Weighted Kappa for each item 

Fig. 4. Example responses of gpt according to prompting strategy (task H4_3; ZS: Zero-Shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context and rubric).  
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according to prompting, are presented in Appendix 2. Below, we un
covered some patterns according to the experiment. 

4.2.1. Zero-shot vs. few-shot learning prompts 
We first compared the scoring accuracy between zero-shot and few- 

shot learning. On average, we found that few-shot learning showed a 
higher average scoring accuracy (M = 0.6698; SD = 0.1744) compared 
to zero-shot learning (M = 0.595; SD = 0.1205), with an increase of 
12.6%. Specifically, our testing suggests that zero-shot (ZS_noCoT) 
yielded an average scoring accuracy, M = 0.5487 (SD = 0.1135), while 
few-short learning (FS_noCoT) demonstrated a higher average scoring 
accuracy, M = 0.6604 (SD = 0.1342) with an average increase of 20.4% 
throughout six items. These results serve as the baseline of the concur
rent GPT family’s performance on automatic scoring of student-written 
responses, indicating that few-shot learning significantly outperformed 
zero-shot learning on automatic scoring. 

We found a similar pattern between zero-shot and few-shot learning 
with the CoT strategy. Specifically, our results show an average increase 
of 17.8% in scoring accuracy from zero-shot with CoT (ZS_CoT; M =

0.5532, SD = 0.102) to few-shot with CoT strategies (FS_CoT; M =

0.6515, SD = 0.2047). Interestingly, we found a decreased difference 
(2.1%) in average scoring accuracy from few-shot (FS_CoT_CR; M =

0.6975, SD = 0.1737) to zero-shot (ZS_CoT_CR; M = 0.6831, SD =

0.0927) learning when using both CoT and CR. 

4.2.2. Effects of chain-of-thought prompt engineering 
To examine how CoT impacts automatic scoring accuracy (RQ 3), we 

first checked the best scoring performance strategies for each task and 
then compared the average performance with and without CoT. We 
found that five out of the six tasks scored best with CoT, except for one 
task (R1_2). Specifically, H4_3 showed its highest accuracy = 0.6806 
with FS_CoT, H4_2 (acc = 0.5935) and J6_3 (acc = 0.5885) with 
ZS_CoT_CR, and J2 2 (acc = 0.8792) and J6_2 (acc = 0.9083) with 
FS_CoT_CR. These results suggest that prompts with CoT yielded the best 
scoring performance for most tasks. 

We found that CoT was especially useful when pairing with CR. 
Among the five highest-performing prompts mentioned above, four 
showed the highest scoring accuracy with CoT_CR. Similar evidence was 
found in zero-shot and few-shot learning, respectively. ZS_CoT_CR 
yielded a scoring accuracy = 0.6831, which is about 13.44% higher than 
ZS_noCoT on average, while few-shot learning with CR (FS_CoT_CR) 
showed an average scoring accuracy = 0.6975, which is 3.7% higher 
than FS_noCoT on average. 

In contrast, we found that CoT made a limited contribution to scoring 
accuracy without pairing with CR. Specifically, ZS_noCoT showed 
average accuracy = 0.5487 throughout the six items, and ZS_CoT 
showed average accuracy = 0.5532, which is only a 0.82% improve
ment. Likewise, FS_noCoT showed an average accuracy = 0.6604, and 
FS_CoT showed an average accuracy = 0.6515, a slight decrease 
(−1.35%). The less than a 2% difference brought by both cases suggests 
that CoT without CR contributed limitedly to the automatic scoring 
performance of GPT-4. 

4.2.3. How chain-of-thought prompt engineering functions 
To uncover how CoT functions with CR, we investigated its perfor

mance by digging into category-wise test accuracy of scoring prompts 
(Table 5). CoT_CR seems to increase the overall accuracy by balancing 
accuracy for all proficiency categories (‘Proficient,’ ‘Developing,’ or 
‘Beginning’). For example, in task J2_2, ZS_CoT_CR (acc = 0.8458) 
increased the scoring accuracy of ZS_CoT (acc = 0.6417) by 31.81% 
(Table 4). This change diverged at the two proficiency levels. While 
scoring accuracy decreased by 0.94% for the ‘Proficient’ category from 
0.8833 to 0.875, it changed from 0.4 to 0.8167 for the ‘Beginning’ 
category, improving by 104.2% (Table 5). Likewise, from FS_CoT to 
FS_CoT_CR, average scoring accuracy for the ‘Proficient’ level increased 
by 20.0% while that for the ‘Beginning’ level decreased by 6.0% 
(Table 5). Consequently, FS_CoT_CR (acc = 0.8792) showed 4.98% 
higher accuracy than FS_CoT (acc = 0.8375) (Table 4). 

The category-wise balancing effect of CoT_CR is more obvious in 
trinomial tasks. For example, in task H4_2, ZS_CoT_CR (acc = 0.5935) 
increased the scoring accuracy of ZS_CoT (acc = 0.3710) by 59.97% 
(Table 4). This change diverged at the three proficiency levels. While 
scoring accuracy decreased by 9.84% for the ‘Developing’ category from 
0.7625 to 0.6875, it changed from 0.275 to 0.6833 for the ‘Beginning’ 
category, improving by 148.47%, and from 0.1909 to 0.4273 for the 
‘Proficient’ category, improving by 123.83%. Consequently, the 
Quadratic Weighted Kappa changed from 0.2525 (ZS_CoT) to 0.5806 
(ZS_CoT_CR), improving by 129.94%. This increase of Quadratic 
Weighted Kappa accompanied by balanced category-wise accuracy was 
observed in every comparison of ZS/FS_CoT versus ZS/FS_CoT_CR in 
tasks H4_2, H4_3, and J6_3, except for one case (from FS_CoT to 
FS_CoT_CR in task H4_2). Convincingly, similar pattern balancing effect 
was found throughout the six items, with few exceptions. 

To sum up, the results (Tables 4–5) present that (1) few-shot learning 
prompts show about 7.48% higher accuracy than zero-shot learning, (2) 
addition of mere CoT to prompts does not help increasing scoring ac
curacy in general, and (3) CoT given with Context and Rubric improves 
the scoring accuracy up to 13.44% (zero-shot) or 3.71% (few-shot). If we 
consider ZS_noCoT as the very baseline of automatic scoring using GPT- 
4 with greedy sampling, FS_CoT_CR increases the scoring accuracy by 
14.88%. 

4.3. Performances of GPT-4 vs. GPT-3.5 according to hyperparameters 

The scoring accuracy of GPT-4 and GPT-3.5 according to hyper
parameters is presented in Table 6. 

To answer RQ 4, we compared the average scoring accuracy of GPT-4 
and GPT-3.5 with FS_CoT_CR prompt, which yielded the best perfor
mance in Table 4. We found that automatic scoring using GPT-4 yielded 
higher accuracy than using GPT-3.5 in general. Specifically, in greedy 
sampling (temperature = 0 and top_p = 0.01), GPT-4 showed accuracy 
= 0.6975 which is higher than GPT-3.5 (accuracy = 0.6331) by 10.2%. 
In nucleus sampling (temperature = 0.9 and top_p = 0.95), GPT-4 
showed accuracy = 0.6802, which is above GPT-3.5 (accuracy =

0.635) by 4.52%. Therefore, GPT-4 showed approximately 8.64% better 
performance than GPT-3.5 in overall sense. 

Table 4 
Test accuracy (standard deviation) of GPT-4 for the items by prompt engineering strategies (ZS: Zero-shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context 
and rubric; Bold: Best accuracy for the item among the prompt engineering strategies).  

Item Type ZS_noCoT ZS_CoT ZS_CoT_CR FS_noCoT FS_CoT FS_CoT_CR 

R1_2 Binomial 0.6625 0.6458 0.7583 0.7833 0.7500 0.7625 
J2_2 Binomial 0.6417 0.6417 0.8458 0.7958 0.8375 0.8792 
H4_2 Trinomial 0.3613 0.3710 0.5935 0.5581 0.5774 0.5452 
H4_3 Trinomial 0.4722 0.5111 0.6333 0.5917 0.6806 0.6667 
J6_2 Binomial 0.6583 0.6458 0.6792 0.7833 0.8250 0.9083 
J6_3 Trinomial 0.4962 0.5038 0.5885 0.4500 0.2385 0.4231 
Average 0.5487 (0.1135) 0.5532 (0.102) 0.6831 (0.0927) 0.6604 (0.1342) 0.6515 (0.2047) 0.6975 (0.1737)  

0.595 (0.1205)   0.6698 (0.1744)   

G.-G. Lee et al.                                                                                                                                                                                                                                  



Computers and Education: Artificial Intelligence 6 (2024) 100213

10

However, there was no clear pattern regarding the voting strategy. 
As decreasing order, with GPT-4, a single-call with the greedy sampling 
showed better performance (acc = 0.6975) than the voting strategy with 
the nucleus sampling (acc = 0.6802). Specifically, only three tasks 
(R1_2, J2_2, and H4_3) showed higher accuracy with the single-call than 
the voting strategy. In contrast, for GPT-3.5, the voting strategy showed 
a better performance (acc = 0.635) than single-call (acc = 0.6331). That 
is, we found only four tasks (R1_2, J2_2, H4_3, and H4 4) showed higher 
accuracy with the voting strategy than the single-call. These results 
show the complex interaction between the model capacity and the 
voting strategy with different hyperparameters. 

To investigate the divergence of GPT-4 and GPT-3.5, we dug into the 
responses to our prompts and found that they used the scoring criteria 
differently. Fig. 5 presents examples from GPT-4 and GPT-3.5. The 
scoring rubric of the task requires satisfying only one component, which 
is ’"When the water is heated, water particles move faster (or increase in 
kinetic energy")." Both models generated responses indicating that 
“transferring heat energy changes the movement of the water” could be 
regarded as the component specified in the rubric. It is also notable that 
models corrected a misspelled word in the student’s answer (‘movment’ 
→ ‘movement’) even without related instruction. However, while GPT-4 
strictly followed the structure of the rubric and example human scoring, 
GPT-3.5 did not. Although GPT-3.5 identified COMPONENT A, it ranked 
this student response as ‘Beginning.’ Further research has to be con
ducted to uncover why GPT-3.5 behaves this which results in less 

accurate outcomes. Fig. 5 shows the difference of GPT-4 and GPT-3.5 on 
a student answer on Task J6_2. 

5. Discussion 

5.1. LLM yields explainable automatic scoring 

Although research has shown the significant potential of AI in 
automatic scoring (Zhai et al., 2020), educators are concerned about the 
transparency and ethics of AI outcomes. Researchers have constantly 
called for establishing interpretability and explainability of AI applica
tions and uncovering the “black box,” so that AI applications can be 
embraced by general users (Du, Liu, & Hu, 2019). Our research suggests 
that LLMs can potentially tackle this issue. As shown in Figs. 4 and 5, 
GPT family produced natural language responses to the automatic 
scoring prompts of student-written answers to science items (RQ 1). 
Specifically, GPT-4 and GPT-3.5’s responses identified the part of sen
tences in student-written answers, which uncovered the “black box” in 
scoring. Further, we found that users can instruct GPT’s response style 
by instructing it to use prompt components. 

Technically, our results suggest the feasibility of LLMs for generating 
interpretable and explainable scores by leveraging prompt engineering. 
Interpretability has been a challenge in deploying AI applications in 
sectors of society, so researchers developed many strategies to unpack 
the “black box,” such as placing additional layer with interpretable 
constraints in the model or extracting post-hoc features from the model 
(Du et al., 2019). These strategies are found effective but need sub
stantial professional knowledge to develop and deploy, which is usually 
beyond the reach of general educators. 

Practically, we found that GPT-4 and GPT-3.5 can generate natural 
language explanations using chatbot-like functions, which are effective 
for broader users, including teachers. Particularly, when two researchers 
with expertise in science education reviewed the responses from GPT 
based on the scoring rubrics (Figs. 4–5), they found that response 
components extracted by GPT match the scoring rubric components, 
indicating plausibility. Further, we found that CoT yielded explicit and 
transparent scoring outcomes. This opens the essential possibility for 
human users to check and correct how scoring machines score student 
responses, which was impossible in previous automatic scoring systems. 
Differently speaking, if there are any issues related to ethics and bias in 
the LLM-based scoring models, they could be found in the CoT steps and 

Table 5 
Category-wise test accuracy of GPT-4 according to item and prompt engineering (ZS:Zero-Shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context and rubric).  

Task Parameter ZS_noCoT ZS_CoT ZS_CoT_CR FS_noCoT FS_CoT FS_CoT_CR 

R1_2 Acc Prof 0.7917 0.8333 0.9083 0.675 0.5167 0.55 
Acc Dev NA NA NA NA NA NA 
Acc Beg 0.5333 0.4583 0.6083 0.8917 0.9833 0.975 
Kappa NA NA NA NA NA NA 

J2_2 Acc Prof 0.8583 0.8833 0.875 0.7167 0.7083 0.85 
Acc Dev NA NA NA NA NA NA 
Acc Beg 0.425 0.4 0.8167 0.875 0.9667 0.9083 
Kappa NA NA NA NA NA NA 

H4_2 Acc Prof 0.2583 0.275 0.6833 0.6 0.475 0.4833 
Acc Dev 0.725 0.7625 0.6875 0.3625 0.5 0.8125 
Acc Beg 0.2091 0.1909 0.4273 0.6545 0.7455 0.4182 
Kappa 0.2791 0.2525 0.5806 0.4701 0.5583 0.5004 

H4_3 Acc Prof 0.5417 0.6083 0.775 0.7083 0.5667 0.6833 
Acc Dev 0.7417 0.7667 0.7083 0.225 0.6833 0.675 
Acc Beg 0.1333 0.1583 0.4167 0.8417 0.7917 0.6417 
Kappa 0.4258 0.4835 0.6276 0.6111 0.6667 0.6831 

J6_2 Acc Prof 0.9417 0.9667 1 0.7167 0.7417 0.8833 
Acc Dev NA NA NA NA NA NA 
Acc Beg 0.375 0.325 0.3583 0.85 0.9083 0.9333 
Kappa NA NA NA NA NA NA 

J6_3 Acc Prof 0.2583 0.275 1 0.5333 0.3417 0.75 
Acc Dev 0.8 0.8 0.2583 0.3417 0.025 0.05 
Acc Beg 0.1 0.1 0.1 0.6 0.9 0.7 
Kappa 0.186 0.1824 0.3467 0.3309 0.02351 0.4045  

Table 6 
Test Accuracy of GPT-3.5-based Prompt Engineering (*: Calling GPT API once 
with temperature = 0 and top_p = 0.01, **: Calling GPT API thrice with tem
perature = 0.9 and top_p = 0.95, Bold: Best accuracy within the item).  

Item Type FS_CoT_CR 
4_1* 

FS_CoT_CR 
4_3** 

FS_CoT_CR 
3.5_1* 

FS_CoT_CR 
3.5_3** 

R1_2 Binomial 0.7625 0.7458 0.6833 0.6875 
J2_2 Binomial 0.8792 0.7625 0.7542 0.7625 
H4_2 Trinomial 0.5452 0.5645 0.5484 0.5548 
H4_3 Trinomial 0.6667 0.6528 0.5638 0.5722 
J6_2 Binomial 0.9083 0.925 0.7833 0.7792 
J6_3 Trinomial 0.4231 0.4308 0.4654 0.4538 

Average 0.6975 
(0.1737) 

0.6802 
(0.1717) 

0.6331 0.635 
(0.1289)  
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fixed instructing the LLM with appropriate prompts, which sheds light to 
‘black-box’ systems used for education. Further, teachers could also 
leverage LLMs to develop scoring rubrics, draft their evaluation of stu
dent responses, before they review, revise, and finalize their assessment, 
which could dramatically expediate the scoring process. 

These advantages ease the efforts of developing fancy algorithms to 
uncover the interpretability of automatic scoring, evidencing a mile
stone improvement. Therefore, the adoption of LLMs could make a 
substantial change in automatic scoring research, making previous 
‘black-box’ models explainable and user-friendly. This could facilitate 
the integration of AI technologies for automatic scoring even for class
room settings in the future so that teachers and researchers have a 
powerful tool to realize real-time feedback based on formative 
assessment. 

5.2. Zero-shot versus few-shot learning 

This study demonstrated the high accessibility of prompt-based 
automatic scoring to broader populations other than professional de
velopers. We found that the prompt engineering (e.g., zero-shot, few- 
shot learning) techniques are less data-demanding and labor-intensive, 
and thus are promising to transform the automatic scoring paradigm. 
Prior research on AI-based assessments usually needs a large training 
corpus to develop scoring algorithmic models, which is cost- and time- 
consuming (Zhai et al., 2020). By using prompt engineering, we only 
need a small number of human-scored data to validate and test the 
prompts. Moreover, traditional AI-based assessments usually demand 
coding skills to create algorithmic models, which was beyond the reach 
of general educators. In this study, we leveraged GPT and prompt en
gineering to score student written responses without using any pro
gramming or strenuous model training. This advance sharply 
distinguishes this approach from the previous text classification models 
that mainly used complex machine learning algorithms without 
explanation. 

Our findings suggest that prompting strategies are beneficial to 
improve zero-shot and few-shot scoring. In their prior research, Wu et al. 

(2023) reported scoring accuracy that needs improvement. By exper
imenting with various prompting strategies, we found that GPT-4 and 
GPT-3.5 could automatically score student-written responses with 
improved scoring accuracy. We started from the baseline prompts, such 
as ZS_noCoT and FS_noCoT, and furthered the investigation with CoT 
prompt components for the zero/few-shot learning approach. Our 
research suggests that few-shot learning shows 7.48% higher accuracy 
than zero-shot learning on average 4. These improvements suggest that 
few-shot learning is promising for automatic scoring tasks with signifi
cantly less human effort. 

Compared with zero-shot learning, we found that few-shot learning 
leveraged examples provided and CoT. As shown in Figs. 3–4, few-shot 
prompts tended to produce shorter and more structured responses 
compared to zero-shot learning, as like human evaluator’s scoring ex
amples. Particularly, when CoT was introduced to the prompts, GPT 
followed CoT reasoning steps to score students’ answers. This structure- 
coercing effect of few-shot learning can be the main reason it improves 
scoring accuracy, imitating human scorers’ way of thinking. 

5.3. Chain-of-thought paired with contextual instructions contributes to 
automatic scoring 

Aligning with prior research (Kojima et al., 2022; Wei et al., 2022), 
our findings indicate that CoT is an efficient strategy for improving 
prompt engineering, particularly for the automatic scoring performance; 
yet CoT cannot work in isolation. CoT can be effective only when paired 
with the problem context and scoring rubrics. That is, we found that 
simply including CoT without the contextual instructions contributed 
limited to scoring model performance (Table 4), which somehow 
diverged from the examples (e.g., arithmetic, commonsense reasoning, 
letter concatenation) presented in the original CoT papers. This differ
ence may be due to the complexity of automatic scoring of 
student-written responses, as compared to the example tasks presented 
in the papers that suggested CoT methods. This finding implies that the 
general reasoning elicited by CoT in LLMs has limited to improve 
automatic scoring (Wei et al., 2022), but domain-specific or task-specific 

Fig. 5. Comparison of the answers from GPT-4 and GPT-3.5 (task J6_2).  
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reasoning is critical to increasing scoring accuracy. 
Consistent with the findings above, this study contributes to the 

literature on CoT prompting by introducing the WRVRT approach. 
WRVRT employs an iterative procedure to develop prompts that include 
multiple components. Specifically, we have to first specify the role of 
GPT by using the prompt “act as an impartial science teacher” (Basi
cRole). It leverages the few-shot learning examples, item contexts, and 
scoring rubrics and incorporates CoT to efficiently guide GPT to assign 
scores to students’ written responses. We would analogize this role of 
guideline as ‘a chain mold’, which makes the chain of reasoning aligned 
and prepared to be used. 

In addition, our qualitative analysis also revealed the processes of 
GPT in improving scoring accuracy when leveraging the WRVRT 
approach. We found that the model performance increases because the 
category-wise accuracy increases (Table 5). That is, scoring accuracy in 
some scoring categories increased, while decreased on others, and the 
overall performance is increased. This pattern was identical both in zero- 
shot and few-shot learnings. We suspect that this ability may specifically 
address unbalanced data issues, but future research should further un
pack the mechanisms. 

5.4. GPT-4 versus GPT-3.5 by hyperparameter 

Our results suggest that GPT-4 with single-call greedy sampling 
seems to be the best strategy for automatic scoring compared to GPT-3.5 
with other strategies. Table 6 illustrates the superior performance of 
GPT-4 compared to GPT-3.5, evidenced in both the ensemble voting and 
single-call strategies. This result highlights that GPT-4’s enhanced 
reasoning abilities are beneficial for automated grading systems. 
Therefore, it is recommended to use GPT-4 rather than GPT-3.5 in the 
automatic scoring of student-written responses concerning scoring ac
curacy. However, educators may also have to consider the availability of 
resources, given that GPT-4 API call is 30 times more expensive than 
GPT-3.5 as of November 2023. 

We also found that the voting strategy may be only beneficial when 
using lower computation LLMs. The voting strategy is more resource- 
demanding and thus deserves investigations on its effectiveness. In 
this study, we found that the voting strategy with GPT-4 or 3.5 did not 
largely improve the average performance for all the tasks compared to 
using the single-calls strategy. Particularly, GPT-3.5 benefited from the 
voting strategy in majority tasks, although the improvement was minor. 
However, the voting strategy with GPT-4 seems less productive 
compared to the single-call greedy-sampling approach. This result sug
gests that the voting strategy is primarily aimed at reducing uncertainty 
in grading predictions for less advanced LLMs. The high confidence of 
GPT-4 in predictions marks a distinct behavior from GPT-3.5. However, 
in general, users need to balance the usability and cost, because the 
ensemble voting strategy requires three times additional computations 
while offering limited improvement in the model accuracy. 

6. Conclusions 

This study examined the affordance of GPT-4, equipped with CoT, on 
the automatic scoring of students’ written explanations to science 
questions. The research findings underscore the feasibility of using LLMs 
to not only execute scoring tasks with high efficiency but also provide 
explainable and interpretable outcomes, which is vital in the context of 
educational assessments. Our investigation into the comparative per
formance of zero-shot and few-shot learning prompts revealed a marked 
improvement in scoring accuracy with the application of few-shot 
learning (12.6%). This advancement indicates a few-shot learning as a 
promising direction for automatic scoring tasks, reducing the need for 
extensive human input while maintaining high accuracy levels. Addi
tionally, the CoT prompting strategy, especially when paired with 
contextual item stems and rubrics, proved to be a significant contributor 
to scoring accuracy (13.44% increase for zero-shot; 3.7% increase for 

few-shot). The study was conducted under a novel approach WRVRT, 
which was found to facilitate a more balanced accuracy across different 
proficiency categories, highlighting the importance of domain-specific 
reasoning in enhancing the effectiveness of LLMs in scoring tasks. 

The study also suggests that GPT-4 demonstrated superior perfor
mance over GPT3.5 in various scoring tasks, showing 8.64% difference. 
The study revealed that the single-call strategy with GPT-4, particularly 
using greedy sampling, outperformed other approaches, including 
ensemble voting strategies. This finding suggests that the advanced 
reasoning abilities of GPT-4 are more conducive for automated scoring 
systems, offering greater reliability and accuracy. The nuanced under
standing of the interaction between model capacity and voting strategy, 
alongside the exploration of the cost versus usability trade-offs, adds a 
practical dimension to the research, making it highly relevant for edu
cators and researchers seeking to integrate AI technologies into their 
instructional and assessment practices. 

Despite of the potential documented in this study, future research 
should continue improving the model capacity to increase the automatic 
scoring performance. While the scoring accuracy estimated in this study 
spanned 0.5885-0.9083, the parental study that used the equivalent 
dataset to train and test the ensemble automatic scoring machine shows 
an accuracy spanning 0.86-0.94, which is higher than the prompt en
gineering approach (Zhai, He, & Krajcik, 2022). This may be because the 
ensemble approach fine-tuned the parameters for specific tasks, while 
the zero- or few-shot learning approaches using pre-trained LLM are 
more generic. Therefore, users have to balance efficiency and accuracy 
for specific assessment purposes. Studies should further explore novel 
and sophisticated prompt engineering for LLMs to advance automatic 
scoring, delve into the nuance of students’ thinking. In this regard, while 
this study focused on the final label of student-written responses for 
model performance, analytic scoring approach for each component of 
scoring rubric, which will correspond to CoT process, could be further 
studied with appropriate dataset. Also, the characteristics of items and 
scoring rubrics need to be investigated further to improve CoT 
outcomes. 
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Appendix 1. Comprehensive Example of Prompt Engineering Components (Task H4_3) 

BasicRole (*: Concatenated only for ZS_CoT_CR and FS_CoT_CR) Please act as an impartial science teacher and evaluate the quality of the response 
provided by a middle school student to a science item displayed below. Begin your evaluation by providing a short explanation. Be as objective as 
possible. After providing your explanation, you must classify the response on a scale of ‘Beginning,’ ‘Developing,’ and ‘Proficient’ by strictly following 
this format: "[[rating]]," for example: “Rating: [[Beginning]]." *(Refer to the <<<CONTEXT>>and <<<RUBRIC»while rating). 

ContRubTEXT 

CONTEXT 
Simone took a hot shower and wondered what would happen to the water vapor when it came in contact with a cold mirror. The task is to construct 

a model that illustrates the changes in water molecules from Simone’s shower once they hit the cold mirror. This model should display the thermal 
energy and kinetic energy of the water molecules. The goal is to explain how the state of water vapor changes after it interacts with the cold mirror. 

RUBRIC  

- COMPONENT A: Student response includes an ‘explanation that the substance changes its state from gas to liquid.’  
- COMPONENT B: Student response includes that ‘the change in state occurs because of a decrease in the particles’ motion/kinetic energy.’  
- Holistic score: The score will be ‘Proficient’ if the response includes ALL of the criteria <<<COMPONENT A>>>AND <<<COMPONENT 

B>>>; ‘Developing’ if the response includes at least ONE BUT NOT ALL of the criteria in ‘Proficient; ’ and ‘Beginning’ if the response includes 
NONE of the criteria in ‘Proficient.’ 

FewEXAMPLES (for FS_noCoT)  

- Student response: “In water vapor, water molecules move fast and are far apart as a gas in the bathroom. When water molecules touch the cold 
mirror, thermal energy is transferred from the water molecules to the cold mirror. This causes the kinetic energy of the molecules of water vapor to 
decrease, the molecules to move slower as represented by the shorter arrows in the model, and the molecules to stay closer to each other like a 
liquid and form water droplets. So, the prediction is that the water vapor from Simone’s shower (gas) will become water droplets (liquid)."  

- Score: ‘Proficient.’ Rating: [[Proficient]]  
- Student response: “the molecules are starting to get warmer, moving faster as they are turning into a gas."  
- Score: ‘Developing.’ Rating: [[Developing]]  
- Student response: “in the cold mirror, the water vapor is moving slower  
- Score: ‘Developing.’ Rating: [[Developing]]  
- Student response: “This shows that when the water vapor hits the mirror it can start to do evaporation this is what the picture represents."  
- Score: ‘Beginning.’ Rating: [[Beginning]] 

FewEXAMPLES (for FS_CoT and FS_CoT_CR)  

- Student response: “In water vapor, water molecules move fast and are far apart as a gas in the bathroom. When water molecules touch the cold 
mirror, thermal energy is transferred from the water molecules to the cold mirror. This causes the kinetic energy of the molecules of water vapor to 
decrease, the molecules to move slower as represented by the shorter arrows in the model, and the molecules to stay closer to each other like a 
liquid and form water droplets. So, the prediction is that the water vapor from Simone’s shower (gas) will become water droplets (liquid)."  

- Score: The response includes “the water vapor … (gas) will become water droplets (liquid)" as ≪<COMPONENT A≫>. The response includes “the 
kinetic energy of … water vapor to decrease” as ≪<COMPONENT B≫>. In sum, the response includes ALL of the criteria ≪<COMPONENT 
A≫>AND ≪<COMPONENT B≫>. The appropriate score for the response is ‘Proficient.’ Rating: [[Proficient]]  

- Student response: “the molecules are starting to get warmer moving faster as they are turning into a gas"  
- Score: The response includes “turning into a gas” as ≪<COMPONENT A≫>. The response does not include ¡¡¡COMPONENT B≫>. In sum, the 

response includes at least ONE BUT NOT ALL of the criteria ≪<COMPONENT A≫> AND ≪<COMPONENT B≫>. The appropriate score for the 
response is ‘Developing.’ Rating: [[Developing]]  

- Student response: “In the cold mirror the water vapor is moving slower"  
- Score: The response does not include ≪<COMPONENT A≫>. The response includes “moving slower” as ≪<COMPONENT B≫>. In sum, the 

response includes at least ONE BUT NOT ALL of the criteria ≪<COMPONENT A≫>AND ≪<COMPONENT B≫>. The appropriate score for the 
response is ‘Developing.’ Rating: [[Developing]]  

- Student response: “This shows that when the water vapor hits the mirror it can start to do evaporation this is what the picture represents." 
- Score: The response does not include ≪<COMPONENT A≫>. The response does not include ≪<COMPONENT B≫>. In sum, the response in

cludes NONE of the criteria ≪<COMPONENT A≫>AND ≪<COMPONENT B≫>. The appropriate score for the response is ‘Beginning.’ Rating: 
[[Beginning]] 

Appendix 2. Overall Model Performance Metrics  

- ZS: Zero-Shot, FS: Few-Shot, CoT: Chain-of-Thought, CR: Problem Context and Rubric, KappaQW: Quadratic Weighted Kappa, Acc: Accuracy, Prof: 
Proficient, Dev: Developing, Beg: Beginning  

- Method: Calling GPT-4 API once with temperature = 0 and top_p = 0.01 
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Task Method Accuracy Precision Recall F1 KappaQW Acc_Prof Acc_Dev Acc_Beg 

R1_2 ZS_noCoT 0.6625 0.6741 0.6625 0.6568 NA 0.7917 NA 0.5333 
ZS_CoT 0.6458 0.6697 0.6458 0.6329 NA 0.8333 NA 0.4583 
ZS_CoT_CR 0.7583 0.7839 0.7583 0.7528 NA 0.9083 NA 0.6083 
FS_noCoT 0.7833 0.7973 0.7833 0.7808 NA 0.675 NA 0.8917 
FS_CoT 0.75 0.8196 0.75 0.7356 NA 0.5167 NA 0.9833 
FS_CoT_CR 0.7625 0.8204 0.7625 0.7513 NA 0.55 NA 0.975 

J2_2 ZS_noCoT 0.6417 0.6744 0.6417 0.624 NA 0.8583 NA 0.425 
ZS_CoT 0.6417 0.6848 0.6417 0.6194 NA 0.8833 NA 0.4 
ZS_CoT_CR 0.8458 0.847 0.8458 0.8457 NA 0.875 NA 0.8167 
FS_noCoT 0.7958 0.8034 0.7958 0.7945 NA 0.7167 NA 0.875 
FS_CoT 0.8375 0.8616 0.8375 0.8347 NA 0.7083 NA 0.9667 
FS_CoT_CR 0.8792 0.8805 0.8792 0.8791 NA 0.85 NA 0.9083 

H4_2 ZS_noCoT 0.3613 0.5087 0.3975 0.3545 0.2791 0.2583 0.725 0.2091 
ZS_CoT 0.371 0.5061 0.4095 0.3601 0.2525 0.275 0.7625 0.1909 
ZS_CoT_CR 0.5935 0.6542 0.5994 0.5898 0.5806 0.6833 0.6875 0.4273 
FS_noCoT 0.5581 0.5414 0.539 0.5383 0.4701 0.6 0.3625 0.6545 
FS_CoT 0.5774 0.5973 0.5735 0.5681 0.5583 0.475 0.5 0.7455 
FS_CoT_CR 0.5452 0.6558 0.5713 0.5504 0.5004 0.4833 0.8125 0.4182 

H4_3 ZS_noCoT 0.4722 0.556 0.4722 0.4429 0.4258 0.5417 0.7417 0.1333 
ZS_CoT 0.5111 0.6096 0.5111 0.4832 0.4835 0.6083 0.7667 0.1583 
ZS_CoT_CR 0.6333 0.698 0.6333 0.6298 0.6276 0.775 0.7083 0.4167 
FS_noCoT 0.5917 0.566 0.5917 0.5589 0.6111 0.7083 0.225 0.8417 
FS_CoT 0.6806 0.7013 0.6806 0.6813 0.6667 0.5667 0.6833 0.7917 
FS_CoT_CR 0.6667 0.6971 0.6667 0.6734 0.6831 0.6833 0.675 0.6417 

J6_2 ZS_noCoT 0.6583 0.7332 0.6583 0.6285 NA 0.9417 NA 0.375 
ZS_CoT 0.6458 0.7479 0.6458 0.6052 NA 0.9667 NA 0.325 
ZS_CoT_CR 0.6792 0.8046 0.6792 0.6424 NA 1 NA 0.3583 
FS_noCoT 0.7833 0.7885 0.7833 0.7824 NA 0.7167 NA 0.85 
FS_CoT 0.825 0.8343 0.825 0.8238 NA 0.7417 NA 0.9083 
FS_CoT_CR 0.9083 0.9094 0.9083 0.9083 NA 0.8833 NA 0.9333 

J6_3 ZS_noCoT 0.4962 0.4677 0.3861 0.3631 0.186 0.2583 0.8 0.1 
ZS_CoT 0.5038 0.4728 0.3917 0.3715 0.1824 0.275 0.8 0.1 
ZS_CoT_CR 0.5885 0.5096 0.4528 0.4135 0.3467 1 0.2583 0.1 
FS_noCoT 0.45 0.4551 0.4917 0.4132 0.3309 0.5333 0.3417 0.6 
FS_CoT 0.2385 0.3806 0.4222 0.2375 0.2351 0.3417 0.025 0.9 
FS_CoT_CR 0.4231 0.5061 0.5 0.35 0.4045 0.75 0.05 0.7  
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