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ARTICLE INFO ABSTRACT

Keywords: This study investigates the application of large language models (LLMs), specifically GPT-3.5 and GPT-4, with

Artificial intelligence (A Chain-of-Though (CoT) in the automatic scoring of student-written responses to science assessments. We focused

S}I:T—SPT on overcoming the challenges of accessibility, technical complexity, and lack of explainability that have previ-
at

ously limited the use of artificial intelligence-based automatic scoring tools among researchers and educators.
With a testing dataset comprising six assessment tasks (three binomial and three trinomial) with 1,650 student
responses, we employed six prompt engineering strategies to automatically score student responses. The six
strategies combined zero-shot or few-shot learning with CoT, either alone or alongside item stem and scoring
rubrics, developed based on a novel approach, WRVRT (prompt writing, reviewing, validating, revising, and
testing). Results indicated that few-shot (acc = 0.67) outperformed zero-shot learning (acc = 0.60), with 12.6%
increase. CoT, when used without item stem and scoring rubrics, did not significantly affect scoring accuracy
(acc = 0.60). However, CoT prompting paired with contextual item stems and rubrics proved to be a significant
contributor to scoring accuracy (13.44% increase for zero-shot; 3.7% increase for few-shot). We found a more
balanced accuracy across different proficiency categories when CoT was used with a scoring rubric, highlighting
the importance of domain-specific reasoning in enhancing the effectiveness of LLMs in scoring tasks. We also
found that GPT-4 demonstrated superior performance over GPT-3.5 in various scoring tasks when combined with
the single-call greedy sampling or ensemble voting nucleus sampling strategy, showing 8.64% difference.
Particularly, the single-call greedy sampling strategy with GPT-4 outperformed other approaches. This study also
demonstrates the potential of LLMs in facilitating explainable and interpretable automatic scoring, emphasizing
that CoT enhances accuracy and transparency, particularly when used with item stem and scoring rubrics.

Large language models (LLMs)
Automatic scoring
Chain-of-Thought

Education

1. Introduction their use of disciplinary core ideas and crosscutting concepts to solve

problems (Zhai, 2021).

The field of education is undergoing a transformation with the
increasing integration of artificial intelligence (AI) to enhance teaching
and learning. Within this transformative landscape, automatic scoring
systems have emerged as indispensable tools. They play a pivotal role in
meeting the pressing need for efficient, precise, and timely assessment of
students’ proficiency in applying knowledge to solve problems (Zhai,
Haudek, Shi, Nehm, & Urban-Lurain, 2020). While automatic scoring
can be applied for many subject matters, science education is in
particular need for such systems to address the expansive scope of the
integrated science disciplines, engage students in solving real-world
problems, and advance the intricate nature of assessment practices for
learning. Automatic scoring enables immediate feedback, which is
crucial for fostering an adaptive learning environment where students
can promptly recognize and rectify misunderstandings, thus enhancing
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Existing methods of automatic scoring have largely hinged on the
advancements in machine learning and natural language processing
(NLP). Techniques ranging from individual algorithms (Nehm, Ha, &
Mayfield, 2012), ensemble algorithms that utilize multiple scoring
models rather than a single model (Wilson et al., 2023), to sophisticated
large language models (LLMs) (Latif & Zhai, 2023; Liu, He et al., 2023)
have been employed to evaluate short-answer questions to extensive
essays. These systems have made strides in understanding the syntacti-
cal structure of student responses but frequently grapple with the nu-
ances of scientific reasoning and the interpretation of students’ thinking
processes. Despite the progress, research suggests that developing such
scoring models is time- and effort-consuming (Zhai, in press). Therefore,
recent studies leverage prompt engineering and have reported the pos-
sibility of leveraging this new method to free researchers from labelling
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a large number of training cases (Wu, He, Liu, Liu, & Zhai, 2023).
However, the reported scoring accuracy needs significant efforts to
improve, which is often attributed to the limited capacity of LLMs to
grasp the depth of content-specific knowledge and the rationale behind
students’ answers. Also, while many LLMs, such as the Generative
Pre-trained Transformer (GPT) family, have been released until now, the
question of which models and which settings of hyperparameters could
best serve the automatic scoring has not been answered. If Gemini Pro by
Google shows less performance than GPT-4(V) for educational tasks
(Lee, Latif, Shi, & Zhai, 2023), it is recommended to further explore how
to fully exploit GPT variants’ function for automatic scoring.

To address these research gaps, this study posits that the integration
of LLMs with chain-of-thought (CoT) prompting methods could signifi-
cantly enhance the accuracy of automatic scoring systems in science
education. CoT is characterized as a sequence of intermediary reasoning
steps expressed in natural language, culminating in the final output (Wei
et al., 2022). Traditional scoring models have suffered from significant
efforts needed to collect training data and develop algorithmic models,
while LLMs hold a distinct advantage in addressing this challenge. This
study specifically investigates how the application of LLMs with CoT to
the scoring process can ease human efforts while capturing student
thinking in constructing scientific explanations, aligning more closely
with human scoring outcomes. Using an experimental design, we
examined LLMs’ scoring accuracy under different conditions, specif-
ically controlling for variables of prompting approach (zero-short vs.
few short learning), LLM reasoning strategy (CoT vs. Non-CoT), and
provision of contextual item information and scoring rubrics (CR). We
further tested the effect of versions and hyperparameters of the GPT
family (i.e., ChatGPT/GPT-3.5 and GPT-4) on the automatic scoring
performance. The study addresses four research questions (RQs):

RQ 1. How do GPT-3.5 and GPT-4 automatically generate explain-
able scores?

RQ 2. How accurate are GPT-3.5 and GPT-4 in automatically scoring
student-written explanations of scientific phenomena under varying
conditions (zero-shot, few-shot, CoT, CR)?

RQ 3. To what extent does CoT improve GPT-3.5 and GPT-4’s
automatic scoring accuracy under various conditions?

RQ 4. Which LLM models (i.e., GPT-3.5 and GPT-4) yields better
scoring accuracy using the single-call vs. voting approach?

2. Literature Review

In this section, we review four strands of existing literature relevant
to this study. The first section reviews previous approaches to devel-
oping automatic scoring models, before the rise of LLMs. We then review
the concept and strength of LLMs that are promising for automatic
scoring. In the section to follow, we examine prompt engineering stra-
tegies widely used to exploit LLMs for various purposes. At last, we
summarize established methods to yield accurate results from LLMs,
which are used in this study to fully elicit the GPT family’s potential for
automatic scoring.

2.1. Existing approaches to developing automatic scoring models

Automatic scoring of student-written responses to science assessment
items leverages text classification NLP techniques in supervised machine
learning. Previous studies have succeeded in achieving high machine-
human agreement, developing automatic scoring models following the
typical and labor-intensive process of machine learning: collecting stu-
dent responses and scoring them, developing algorithms and training
the model, and testing the model performance to further employ various
strategies to improve it (Nehm et al., 2012; Wilson et al., 2023; Zhai, in
press).

To construct a robust scoring model, a substantial amount of data
collection is imperative. Researchers typically need to gather a
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significant volume of student responses, ranging from hundreds to over
a thousand, to ensure a diverse and representative dataset. This process
is critical for the development of an accurate and reliable model. Once
these responses are compiled, trained human experts are employed to
evaluate and score them. Their assessments serve a dual purpose: they
not only provide a benchmark for the model’s performance but also
generate crucial training and testing data. This data is then used to train
the model, teaching it to recognize and evaluate key elements in student
responses. The involvement of human experts ensures that the model’s
scoring aligns with educational standards and objectives, thereby
enhancing the model’s utility in real-world educational settings. This
rigorous process of data collection and expert evaluation forms the
foundation of a normal scoring model, setting the stage for it to accu-
rately and effectively assess student responses.

More than a decade ago, researchers started to develop automatic
scoring algorithmic models based on tokens in student answers (bag of
words) (Leacock & Chodorow, 2003; Ramesh & Sanampudi, 2022).
After tokenizing student-written answers to items, the input data were
converted to a document-term matrix or term-document matrix (in case
of automatic scoring, a student’s answer to an item can be considered a
‘document’). Later, a document was represented as a vector with mul-
tiple dimensions, as many as the kinds of tokens used for various cal-
culations for classification. Usually, the number of dimensions of the
documents is reduced by word or document embedding, which is typi-
cally done by kernels, principal component analysis, or a neural network
(Cozma, Butnaru, & Ionescu, 2018; Selva Birunda & Kanniga Devi,
2021). After embedding, features or semantics of student-written re-
sponses to items can be processed in sophisticated neural network-based
algorithms. Aligned with the data structure, recurrent neural
network-based models such as long-short term memory, attention, and
transformer enabled considering the context of the document, which is
defined by the (bidirectional) distribution of certain tokens or characters
(Haller, Aldea, Seifert, & Strisciuglio, 2022). After processing student
answers using these algorithms, the classification layers could yield the
softmax probabilities to determine the label for a student’s written
response.

To further improve the scoring model performance, researchers have
adopted the strategy of combining predictions from various scoring
models to determine the final label. This ensemble approach has been
applied to assess students’ argumentation (Wilson et al., 2023; Zhai, He,
& Krajcik, 2022), explanations (Jescovitch et al., 2021), and teachers’
pedagogical content knowledge (Zhai, Haudek, Stuhlsatz, & Wilson,
2020a), and showing superior results. However, this ensemble approach
is part of a larger process encompassing data preparation, model
development, training, and testing, which has proven to be a formidable
obstacle, especially for educational researchers not versed in computer
programming and machine learning methodologies.

Consequently, there is a pressing need to overcome these technical
barriers in the field of automatic scoring research. By simplifying these
complexities, the potential for Al-enhanced scoring innovations can be
expanded, making them more accessible and beneficial to a wider range
of educational professionals. This initiative is crucial in leveraging the
full capabilities of generative Al such as ChatGPT in educational settings
(Zhai, 2023a), ensuring that advanced scoring models are not just
reserved for those with technical expertise but are also available to ed-
ucators who can most directly apply these tools in their teaching and
assessment practices.

Moreover, prior research on automatic scoring has frequently over-
looked the explainability of the scoring outcomes (Hahn, Navarro,
Valentin, & Burgos, 2021; Korkmaz & Correia, 2019). Many sophisti-
cated scoring models, such as neural networks, encode information in an
abstract mathematical space with their intricate architectural structure,
which makes it difficult to understand how each factor contributes to the
final model prediction (Bearman & Ajjawi, 2023). This black box issue
necessitates explainability so that users may establish trustworthiness in
automatic scoring, which has gained increasing recognition (Holzinger,
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Saranti, Molnar, Biecek, & Samek, 2022). This matter is especially
pertinent to education, where AI models process sensitive data (i.e.,
student responses), and the outcomes can significantly impact teachers’
instructional decision-making (Khosravi et al., 2022; Gillani, Eynon,
Chiabaut, & Finkel, 2023; Muhamedyev et al., 2020; Hitron et al., 2019).
The imperative for transparency becomes essential when these models
are employed for formative assessment of students’ responses to scien-
tific practices (Zhai, 2021). In such scenarios, educators must under-
stand the rationale behind the assigned grades and the criteria used to
effectively provide authentic pedagogical support. Thus, enhancing the
explainability of Al models in educational settings is not just a technical
challenge but also a fundamental ethical consideration, ensuring that
these technologies align with the educational objectives and support
effective teaching practices.

2.2. Large language model for automatic scoring

LLMs such as Google pre-trained BERT (Bidirectional Encoder Rep-
resentations from Transformers; Devlin, Chang, Lee, & Toutanova,
2018), SciEdBERT (specialized for science education) (Liu, Yuan, et al.,
2023), and GPT variants (Latif & Zhai, 2023) have become visionary
instruments for automatic scoring in the rapidly developing field of AL
There are now new possibilities in educational assessment and other
fields thanks to their unmatched capacity to process, comprehend, and
generate natural language. This research program sheds light on
exploring the fusion between advanced technology and practical us-
ability, evidencing the ever-growing capabilities of LLMs.

2.2.1. Strengths of large language models in automatic scoring

LLMs have shown significant advancements in educational assess-
ment and automatic scoring. A pivotal moment in this field was marked
by the introduction of BERT by Devlin et al. (2018). BERT’s deep bidi-
rectional training fundamentally enhanced the understanding of lan-
guage context, a critical factor in the effectiveness of scoring
applications where nuanced interpretation of text is essential. Building
upon this foundation, recent studies such as Lee, Jung, et al. (2023) have
highlighted the efficiency of models like GPT-3.5 in few-shot learning
scenarios. This approach, requiring minimal examples to generate or
score content effectively, is particularly valuable in educational settings
characterized by varied and complex responses.

Further emphasizing the versatility of LLMs, research by Organ-
isciak, Acar, Dumas, and Berthiaume (2023) has demonstrated their
potential in scoring tasks involving divergent thinking. While tradi-
tionally challenging for automated systems, this area has seen signifi-
cant improvement with LLMs that are now capable of assessing
creativity and originality beyond mere semantic analysis. In the realm of
automated essay scoring, the work by Rodriguez, Jafari, and Ormerod
(2019) reveals that LLMs offer higher accuracy and reliability,
addressing many of the limitations of earlier scoring systems. This
advancement is crucial in ensuring fair and comprehensive evaluation of
complex written responses. The potential of LLMs, particularly GPT-3.5,
in educational applications extends beyond scoring. They highlight how
generative Al can significantly support and enhance teaching and
learning processes, making these advanced technologies accessible and
beneficial for educators and learners (Baidoo-Anu & Ansah, 2023).
LLMs’ potential goes beyond simple scoring of student responses -
rather, it streamlines teachers’ assessment practices and facilitates
providing feedback to students. A remarkable work by Bewersdorff,
SeBler, Baur, Kasneci, and Nerdel (2023) provided a foundation for
productive and personalized feedback and found that GPT-4 can accu-
rately identify errors in student response than human rater. These works
also highlight the potential use of LLMs for education, specifically when
fine-tuning models like GPT-3.5 using challenging mathematical data-
sets (Latif & Zhai, 2023) can provide more insights about its application
in education.

In summary, the strengths of LLMs in automatic scoring are deemed
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multifaceted. They exhibit an advanced understanding of language,
demonstrate efficiency in adaptive learning scenarios, accurately score
complex cognitive tasks, and hold the potential to transform educational
practices through their user-friendly Al capabilities.

2.2.2. Current research trends in LLMs for automatic scoring

The landscape of automatic scoring is being reshaped by the advent
of LLMs, with recent studies revealing diverse applications and
exploring their potential limitations. Expanding on the foundation of
BERT, several studies have explored the application of LLMs in specific
educational settings. For instance, researchers have focused on pre-
training strategies tailored for science education, demonstrating how
context-specific adaptations can enhance the effectiveness of LLMs in
scoring and content generation for science-related tasks (SciEdBERT -
Liu, He et al., 2023), as well as the German version—-G-SciEdBERT (Latif,
Lee, Neuman, Kastorff, & Zhai, 2024). Similarly, another study (Shen
et al.,, 2021) introduced MathBERT, a model specifically designed for
mathematics education, showcasing the potential of subject-specialized
LLMs in automatic scoring.

The emergence of GPT, particularly in its GPT-3.5 variant, has
introduced a new paradigm in using LLMs for educational purposes
(Zhai, 2023b). Studies also highlight GPT3.5’s effectiveness in few-shot
learning scenarios and its application in educational content generation.
These works underline the model’s efficiency in understanding and
generating nuanced language with minimal input, surpassing the ca-
pabilities of earlier LLMs like BERT in certain aspects, particularly in
user-friendly interaction and adaptability to diverse educational needs
(Lee, Jung, et al., 2023; Rahman & Watanobe, 2023).

However, the deployment of LLMs in education is not without
challenges. Studies also provide critical perspectives on the implications
of LLMs like GPT-3.5 in traditional assessments and the ethical consid-
erations in educational settings. Research points to the need for careful
evaluation of the impact of these models on traditional learning and
assessment methodologies, highlighting the importance of addressing
potential biases and ethical dilemmas, which can significantly impact
teachers’ assessment practices and thus provide customized support to
students (Rudolph, Tan, & Tan, 2023; Yan et al., 2023).

To sum up, current research trends in LLMs for automatic scoring are
increasingly focusing on the interplay between sophisticated general
language understanding and the specific needs in educational applica-
tions. Specialized models like SciEdABERT have emerged, building upon
the BERT architecture and targeting specific educational domains (Liu,
He et al., 2023). Studies also explored context-specific pre-training
strategies, indicating the importance of tailoring LLMs to particular
educational subjects for improved performance in automatic scoring
(Liu, He et al., 2023; Wu et al., 2023). This study builds upon these
trends by exploring the practical implications of using advanced LLMs in
a novel educational context, emphasizing the need for balanced and
ethical deployment of these technologies in educational settings.

2.3. Prompt engineering with chain-of-thought

Prompt engineering (Liu, Yuan, et al., 2023) focuses on enhancing
the in-context learning ability of LLMs by designing more efficient
prompt templates. However, utilizing LLMs for complex reasoning tasks
remains a significant challenge, even with refined prompt engineering
techniques. For example, LLMs sometimes fail to solve logical reasoning
or arithmetic problems when they are presented in intricate statements
(Jung et al., 2022; Zhou et al., 2022). Given this, it is crucial to recognize
that automatic scoring is a complex reasoning task, as there is a strict
rubric to guide the grading process. Especially in science education, the
levels of scores are usually designed as the essential steps of a reasoning
path, from the known to the answer (Zhai, He, & Krajcik, 2022).

Recently, Wei et al. (2022) found that guiding LLMs to perform the
task following a reasoning path could significantly improve their capa-
bility in solving such challenging tasks, known as chain-of-thought
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(CoT) prompting. CoT is defined as “a series of intermediate natural
language reasoning steps that lead to the final output” (Wei et al., 2022,
p- 2). The most straightforward way to achieve this goal is to encourage
LLMs to generate their reasoning paths before making the final predic-
tion, which could be easily made by using a magic prompt, i.e., "Let’s
think step by step,” as suggested by Kojima, Gu, Reid, Matsuo, and
Iwasawa (2022). With this prompt provided, the LLMs would provide
the rationales for the given tasks and follow the self-generated rationales
to make the final prediction, called the zero-shot CoT (Kojima et al.,
2022). Following this path, many advanced strategies are proposed to
improve the rationales generated by the models (Besta et al., 2023;
Wang et al., 2022; Yao et al., 2023), and they are widely adapted to
diverse tasks and various scenarios, such as programming (Bi et al.,
2023; Cheng et al., 2022), math problems (Imani, Du, & Shrivastava,
2023), multi-modalities question answering (Chen et al., 2023).

The self-generated CoT approach has shown potential in utilizing
LLMs for various reasoning tasks. However, it may not be ideally suited
for specific tasks like automatic scoring. This limitation arises because
grading rubrics, especially those crafted by educators for individual
items, often follow unique reasoning paths not typically encountered by
LLMs during their pre-training phase. Consequently, LLMs might
struggle to generate valid reasoning paths aligned with these specialized
grading processes. To address this challenge, our study tries the few-shot
CoT method (Wei et al., 2022) for automatic scoring. In this approach,
the prompt template will incorporate a selection of student responses,
each accompanied by a CoT demonstration guided grading score written
by human graders.

To sum up, we compare the results of zero-shot and few-shot CoT
prompt engineering of LLM on grading student-written answers, which
of both have rarely been tried in automatic scoring research (Fig. 1).
This setup aims to help the LLMs follow the reasoning paths behind the
example CoT demonstrations, thereby enhancing their predictive accu-
racy in the context of grading.

2.4. Yielding reliable results from GPT

Although it is promising to apply LLMs for automatic scoring with
the zero/few-shot CoT strategy, it faces a significant challenge due to the
inherent uncertainty in LLMs’ generative process. This uncertainty is
introduced by the sampling strategies used to produce diverse responses
(Hewitt, Manning, & Liang, 2022; Holtzman, Buys, Du, Forbes, & Choi,
2019; Li et al., 2022; Meister, Pimentel, Wiher, & Cotterell, 2023; Su
et al., 2022). LLMs predict the likelihood of each word in a sequence,
aiming to create responses with the highest joint probability over each
word of the sequences. However, considering the vast number of po-
tential combinations on the order of O(VY), where V is the number of
candidate words and N is the response length, it is impractical to eval-
uate all possible responses.

The Greedy Sampling is the most naive solution for this problem,
which generates the word with the maximum likelihood at each step. If
the problem space being searched by the model has a characteristic that
the minima found by the greedy sampling are the global minima, not a
local minimum, greedy sampling can be the most effective and efficient
way to solve the problem. Practically, setting hyperparameters as tem-
perature = 0.0 and top_p = 0.01 for GPT is used to take the greedy
sampling approach.' However, it could lead to poor performance in
generating a long text without a powerful enough LLM (e.g., GPT-4 has
more parameters than GPT-3.5) since the estimations of word likelihood

1 Temperature can span 0-2 and higher values make the output more random
and lower values make it more focused and deterministic; Also, top_p designates
the probability mass the model considers - e.g., top_p = 0.1 means only the
tokens comprising the top 10% probability will be considered in text genera-
tion. For details, see https://platform.openai.com/docs/api-reference/chat/cre
ate.
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can be incorrect (Fu, Lam, So, & Shi, 2021; Holtzman et al., 2019).

Another common approach is Nucleus Sampling (Holtzman et al.,
2019). By allowing a dynamic nucleus of the probability distribution,
the quality of machine generated responses could be increased. Practi-
cally, setting hyperparameters as temperature = 0.9 and top p = 0.95 for
GPT is used to take the nucleus sampling approach. However, this
approach could lead to different outputs over the same input, intro-
ducing uncertainty to the grading process.

To overcome this issue, we propose to append a voting strategy to
aggregate the prediction scores generated by multiple calls. Specifically,
we could call GPT API multiple times and consider the most frequent
predicted label mentioned by the responses as the final prediction. In
this way, we increase the reliability of the advanced nucleus sampling.
This approach is inspired by both strands of research: (1) machine
learning fields ensembling the answers from multiple models, and (2)
educational studies asking two or three educators to independently
grade the same student submission. By incorporating multiple grading
instances, we aim to decrease the variance of the predictions, thereby
enhancing the reliability and consistency of the grading process.

The issue of yielding reliable results from LLMs is a complicated
matter since it is related to the power of the model itself. For example,
using greedy sampling or nucleus sampling with GPT-4 could return
different results from using these with GPT-3.5, since the former has
broader general knowledge and problem solving abilities (OpenAl,
2023). However, the impact of these mixed conditions on the perfor-
mance of LLMs, particularly of GPT, on automatic scoring has not been
explored yet, to our knowledge.

In this study, we conducted experiments using both greedy sampling
and nucleus sampling, with both LLMs that are more powerful (GPT-4)
or less powerful (GPT-3.5). Our study distinctively compares the per-
formance of GPT-4 and GPT-3.5 in handling complex, authentic student
responses to science items. This comparative aspect is critical in high-
lighting the evolutionary strides in LLMs and their practical efficacy in
educational contexts. Our unique contribution lies in our methodolog-
ical approach: we analyzed extensive data sets, prioritize the authen-
ticity of student responses, and focus on obtaining explainable and
interpretable results. This approach not only benchmarks the perfor-
mance differences between GPT-4 and GPT-3.5 but also sets a new
standard in evaluating the practical utility of LLMs in educational as-
sessments — comparing different prompt engineering methods and
hyperparameters simultaneously. Our findings offer novel insights into
the operational dynamics of these models, contributing significantly to
the growing body of knowledge on the effective use of LLMs in educa-
tional settings. The details of the experiments and the results are pre-
sented in Methods and Findings.

3. Methods
3.1. Dataset

This study conducted a secondary analysis of a dataset that asked
middle school students in U.S. to describe scientific models accounting
for science phenomena (details see Zhai, He, and Krajcik (2022)). Spe-
cifically, we employed six assessment tasks, three with binomial scoring
rubrics (Tasks R1_2, J2 2, and J6_2) and three with trinomial scoring
rubrics (Tasks H4_2, H4 3, and J6_3). The tasks were designed to
examine whether students meet the NGSS performance expectation,
MS-PS1-4 (MS: Middle School, PS: Physical Sciences). Develop a model
that predicts and describes changes in particle motion, temperature, and state
of a pure substance when thermal energy is added or removed. For each task,
Zhai, He, and Krajcik (2022) collected more than 1,000 student re-
sponses. All the items were scored using corresponding rubrics to
examine students’ proficiency levels (i.e., Beginning, Developing, and
Proficient), and the inter-rater reliability for each item was over Cohen’s
kappa = 0.75. We used the dataset from the parental study with
ground-truth labels given by human scorers.
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ZS_noCoT

4 )

Q: A juggler can juggle 16 balls. Half of the balls are
golf balls, and half of the golf balls are blue. How
many blue golf balls are there?

A: The answer (Arabic numerals) is

(Output) 8“

o
/

/
~

Q: A juggler can juggle 16 balls. Half of the balls are
golf balls, and half of the golf balls are blue. How
many blue golf balls are there?

A: Let’s think step by step.

ZS_CoT

(Output) There are 16 balls in total. Half of the balls
are golf balls. That means that there are 8 golf balls.

Half of the golf balls are blue. That means that

there are 4 blue golf balls.

\
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4 )

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

FS_noCoT

Q: A juggler can juggle 16 balls. Half of the balls are
golf balls, and half of the golf balls are blue. How
many blue golf balls are there?

A:

(Output) The answer is S.x

FS_CoT
ﬁioger has 5 tennis balls. He buys 2 more cansh
tennis balls. Each can has 3 tennis balls. How many

tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is
11.

Q: A juggler can juggle 16 balls. Half of the balls are
golf balls, and half of the golf balls are blue. How
many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the
balls are golf balls. So there are 16 / 2 = 8 golf

balls. Half of the golf balls are blue. So there are 8
% 4 golf balls. The answer is 4. O /

Fig. 1. Typical examples of zero-shot and few-shot learning prompt engineering (ZS: Zero-shot, FS: Few-shot, CoT: Chain-of-thought) (reorganized from Wei et al.,

2022; Kojima et al., 2022).

To examine the scoring accuracy of LLMs, we randomly sampled
student responses from the existing dataset to make a balanced testing
dataset for each task to avoid unnecessary errors, potential bias in model
fitting and possible inflation/detriment in performance (Fang, Lee, &
Zhai, 2023). For example, since the original dataset was dominated by
‘Beginning’ cases (~78% in the original task H4_2 data), even if a model
just predicts every test case into ‘Beginning’ without exception, it could
show seemingly but delusively high accuracy. Consequently, we
randomly selected 120 student responses ranked at ‘Beginning’ for all
the tasks and randomly selected cases ranked at ‘Proficient’ and
‘Developing’ as close to 120 as possible, respectively, depending on the
available responses at the respective levels. We found that besides Task
H4_2 with 110 ‘Proficient’ cases and 80 ‘Developing’ cases, and J6_3
with only 20 ‘Proficient’ cases, each task provided 120 testing cases at
each proficiency level. This sampling approach resulted in 1,650
student-written responses in the test dataset (see Table 1).

3.2. Experimental design

We conducted experiments using various combinations of prompt
engineering approaches to compare the performance of those in auto-
matic scoring.

Table 1
Task IDs and number of cases (N = 1650).
Task Total ‘Proficient’ ‘Developing’ ‘Beginning’
R12 240 120 NA 120
J22 240 120 NA 120
H4_2 310 110 80 120
H4_3 360 120 120 120
J6_2 240 120 NA 120
J6_3 260 20 120 120

The first aspect we tested was zero-shot and few-shot learning. For
zero-shot learning, we did not provide GPT-4 with any example of
human coders’ evaluation of student written responses. In contrast, we
provided GPT-4 with four examples of human coders’ evaluation for
few-shot learning. Note that these four few-shot cases were not included
in the test dataset. The second aspect we tested was the use of CoT,
which formulated three conditions: prompts without CoT, with CoT, and
with CoT plus scoring rubric and problem context. Consequently, we
tried six prompts to automatically score each item. The details of
prompts are presented in Prompt Engineering.

We mainly used GPT-4 API with hyperparameters of temperature =
0 and top_p = 0.01 for automatic scoring, which is expected to give the
most reliable results by greedy decoding. We conducted additional ex-
periments to compare our approach’s automatic scoring performance
with others. We adopted three additional approaches that use GPT-4 or
GPT-3.5.% The first and second approaches call GPT-4 or GPT-3.5 API
thrice with hyperparameters of temperature = 0.9 and top_p = 0.95 and
holds a vote to determine the label of the test case. The labels of almost
every test case could be decided through this process (e.g., if there are
two for ‘Developing’ and one for ‘Beginning,’ the label is determined as
‘Developing’), while 12 and 15 cases among 930 trinomial classification
cases had no majority prediction (i.e., one for ‘Proficient,” one for
‘Developing,” and another one for ‘Beginning’). We called GPT-4 or GPT-
3.5 API once again to determine the label for those cases. The third
approach, calls GPT-3.5 once with hyperparameters of temperature =
0 and top_p = 0.01.

Note that all four approaches (calling GPT-4 once, GPT-4 thrice,
GPT-3.5 once, and GPT-3.5 thrice) could be considered as ways to
receive reliable classification results from the GPT model family, as

2 We used gpt-4 and gpt-3.5-turbo models in OpenAl API calls throughout this
study. See https://platform.openai.com/docs/models/overview.
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explained in the Literature Review. The summary of the experimental
design is presented in Table 2.

3.3. Prompt engineering

This study proposed an iterative procedure of prompt engineering for
educational studies, including four major components—prompt writing,
reviewing, validating, revising, and testing (WRVRT) (Fig. 2). First, re-
searchers write a prompt for the automatic scoring of the given item.
Second, more than one expert from educational studies (in this case,
from educational assessment) and Al, respectively, review the prompt.
In this stage, the internal validity of the prompt is secured by means of
face validity. If the needs for modification arise, researchers revise the
prompt. Next, researchers validate the prompts by automatic scoring of
student responses that are not included in the test data. By using the
validation cases, external validity of the prompt is secured. If the needs
for modification arise in terms of model performance, researchers will
revise the prompt again. The iterative WRVRT is completed until the
prompts reach saturation. Finally, researchers can run the test cases with
the prompts to examine the scoring accuracy.

Using WRVRT, the first author with expertise in chemistry education
and automatic scoring research wrote the initial prompts. Another
researcher with expertise in K12 science education and automatic
scoring research, one expert in large language models and machine
learning, and one doctoral student in computer science reviewed the
prompt. The need to revise the prompts was pointed out twice in the
review stage and once in the validation stage. We finalized our prompts
after three revisions.

Our prompt engineering combined six components to generate six
types of prompts for each task (Table 2).

e BasicRole instructs GPT’s role as an evaluator of student responses.
BasicRole is transferred as the ‘role’ of ‘system’ in the GPT API call.
for the prompts that provide GPT with ContRubTEXT, a sentence that
instructs GPT to refer to ContRubTEXT is concatenated with
BasicRole.

ContRubTEXT first describes the stem of the assessment item, which
was provided to students when they addressed the item. And then, it
describes the scoring rubric for each item. Each scoring rubric lists
2-4 scoring components and, based on which, the holistic categories
of ‘Proficient,” ‘Developing,” and ‘Beginning’ are determined.
FewEXAMPLES provides four student-written responses with human
scores for the three proficiency levels— ‘Proficient,” ‘Developing,” and
‘Beginning.’

CoT Initiator instructs GPT to develop its reasoning according to CoT.
For zero-shot learning, "Let’s think step by step” serves this purpose.
For few-shot learning, the prompt component provides four human
scoring examples with human evaluator-written CoT, as well as the
category of ‘Proficient,” ‘Developing,” and ‘Beginning.” For example,

Table 2
Experimental Design (above: acronyms of used prompts, below: large language
model settings.

Types of Prompt used

No Chain-of- Chain-of- Chain-of-Thought with Context
Thought Thought and Rubric
Zero- ZS noCoT ZS_CoT ZS_CoT_CR
shot
Few- FS_noCoT FS_CoT FS_CoT_CR
shot
Large Language Model Used
Sampling Strategy Greedy Nucleus Greedy Nucleus
GPT Version 4 4 3.5 3.5
Hyperparameters (temperature, o, (0.9, o, (0.9,
top_p) 0.01) 0.95) 0.01) 0.95)
Number of API Call 1 3 1 3
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Revise

Review
Write * - Education Expert + Validate l Test
- Al Expert

Fig. 2. Iterative procedure of prompt engineering for educational
studies (WEVRT).

the human evaluator exemplifies which part of the student-written
answer can be considered evidence of each component in the
scoring rubrics or point out that there is no evidence of it. After
investigating the answer for all the components, the human evalu-
ator synthesizes it to decide the holistic category.

Table 3 shows the inclusion of each component according to the
types of prompts. Note that for zero-shot with CoT prompt or zero-shot
with CoT with problem context and rubric, "Let’s think step by step” was
concatenated at the end of the prompt to provoke CoT reasoning of GPT.
Also, Fig. 3 compares the six prompt engineering strategies. The
comprehensive examples of the six components are presented in Ap-
pendix 1.

3.4. Data analysis

We conducted the experiment on Python 3.10 environment, with
GPT-4 and GPT3.5-turbo APIs provided by OpenAl. After collecting GPT
family APIs’ classification of student-written responses, accuracy, pre-
cision, recall, and F1 were calculated by comparing GPT labeling with
human consent labeling.

4. Findings

In this section, we first exemplify how GPT-4 responds to the auto-
matic scoring query from the users (RQ 1). We then present the scoring
accuracy of various strategies to answer RQs 2-3. At last, we present the
comparison of performance between different GPT versions according to
hyperparameters compared to answer RQ 4.

4.1. Responses of GPT to automatic scoring queries

The results show that LLMs can respond to automatic scoring tasks,
providing the user with explainable responses. Fig. 4 shows examples of
GPT-4’s responses to the automatic scoring task (H4_3) (see Fig. 3 for the
prompt components). Specifically, in every prompt, GPT-4 returned the
reason for why it classified a student’s response into a specific category -
‘Proficient,” ‘Developing,” or ‘Beginning,” other than FS_noCoT. Excep-
tionally, FS_noCoT prompt made GPT-4 return simple classification re-
sults, following the example of human grading provided in

Table 3
Combinations of prompt components according to the prompt engineering type.

BasicRole  ContRubTEXT  FewEXAMPLES  CoT Initiator

ZS_noCoT Y N N N

ZS_CoT Y N N “Let’s think step
by step"

ZSCoTCR Y Y N “Let’s think step
by step"

FS_noCoT Y N Y N

FS_CoT Y N Y Examples of
human scoring

FS_CoT_CR Y Y Y Examples of

human scoring
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Fig. 3. Examples of the six prompts used for automatic scoring (task H4_3; ZS: Zero-Shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context and rubric).

ZS_noCoT

(BasicRole) Please act as an impartial science teacher and evaluate
the quality of the response ...

- Student response: “water vapor gathers and cools on mirror
causing condensation turning to a liquid. As the atoms cool, lose
heat, they slow down.”

- Score:

ZS_CoT

(BasicRole) Please act as an impartial science teacher and evaluate
the quality of the response ...

- Student response: “water vapor gathers and cools on mirror
causing condensation turning to a liquid. As the atoms cool, lose
heat, they slow down.”

- Score: Let’s think step by step.

ZS_CoT_CR

(BasicRole) Please act as an impartial science teacher and
evaluate the quality of the response ... Refer to the
<<<CONTEXT>>> and <<<RUBRIC>>> while rating.
(ContRubTEXT)

CONTEXT Simone took a hot shower and wondered what would
happen to the water vapor when it came in contact with a cold
mirror. The task is to construct a model that ...

RUBRIC COMPONENT A: ... COMPONENT B: ... Holistic score: The
score will be ‘Proficient’ if the response includes ALL of the
criteria <<<COMPONENT A>>> AND <<<COMPONENT B>>>;
‘Developing’ if the response includes at least ONE BUT NOT ALL
of the criteria in ‘Proficient’, and ‘Beginning’ if the response
includes NONE of the criteria in ‘Proficient’.

- Student response: “water vapor gathers and cools on mirror
causing condensation turning to a liquid. As the atoms cool, lose
heat, they slow down.”

- Score: Let’s think step by step.
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FS_noCoT

(BasicRole) Please act as an impartial science teacher and evaluate
the quality of the response ...

(FewEXAMPLES)

- Student response: “The model show that transferring thermal
energy to the water, changes the movement of the water
molecules by making them move faster, results in the increasing
of temperature of the water.”

- Score: 'Proficient’. Rating: [[Proficient]]

... (two sets of student response and score are omitted) ...

- Student response: “So first the little bubble will appear and
once you boil it a lot of bubble spreads out will show”

- Score: 'Beginning'. Rating: [[Beginning]]

- Student response: “Cold mirror is solid, water vapor is gas, Cold
mirror met water vapor, the mirror will be covered with a layer of
fog, into a liquid.”

- Score:

FS_CoT

(BasicRole) Please act as an impartial science teacher and evaluate
the quality of the response ...

(FeWEXAMPLES)

- Student response: “The model show that transferring thermal
energy to the water, changes the movement of the water
molecules by making them move faster, results in the increasing
of temperature of the water.”

- Score: The response includes "transferring thermal energy to the
water, changes the movement of the water molecules by making
them move faster" as <<<COMPONENT A>>>. In sum, the
response includes <<<COMPONENT A>>>. The appropriate score
fore the response is 'Proficient'. Rating: [[Proficient]]

... (three sets of student response and score are omitted) ...

- Student response: “Cold mirror is solid, water vapor is gas, Cold
mirror met water vapor, the mirror will be covered with a layer of
fog, into a liquid.”

- Score:

FS_CoT_CR

(BasicRole) Please act as an impartial science teacher and
evaluate the quality of the response ... Refer to the
<<<CONTEXT>>> and <<<RUBRIC>>> while rating.
(ContRUbTEXT)

CONTEXT Simone took a hot shower and wondered what would
happen to the water vapor when it came in contact with a cold
mirror. The task is to construct a model that ...

RUBRIC COMPONENT A: ... COMPONENT B: ... Holistic score: The
score will be ‘Proficient’ if the response includes ALL of the
criteria <<<COMPONENT A>>> AND <<<COMPONENT B>>>;
‘Developing’ if the response includes at least ONE BUT NOT ALL
of the criteria in ‘Proficient’, and ‘Beginning’ if the response
includes NONE of the criteria in ‘Proficient’.

(FeWEXAMPLES)

- Student response: “The model show that transferring thermal
energy to the water, changes the movement of the water
molecules by making them move faster, results in the increasing
of temperature of the water.”

- Score: The response includes "transferring thermal energy to
the water, changes the movement of the water molecules by
making them move faster" as <<<COMPONENT A>>>. In sum,
the response includes <<<COMPONENT A>>>. The appropriate
score fore the response is 'Proficient'. Rating: [[Proficient]]

... (three sets of student response and score are omitted) ...

- Student response: “Cold mirror is solid, water vapor is gas, Cold
mirror met water vapor, the mirror will be covered with a layer of
fog, into a liquid.”

- Score:
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ZS_noCoT

... (prompt components are omitted) ...

- Student response: “water vapor gathers and cools on mirror
causing condensation turning to a liquid. As the atoms cool, lose
heat, they slow down.”

- Score:

(Output) The student's response is quite accurate. They correctly
identified the process of condensation and explained it in a simple
and understandable way. They also correctly mentioned that the
process involves water vapor cooling and turning into a liquid.
Additionally, they correctly stated that as atoms cool, they slow
down. However, the response could be improved by providing a
more detailed explanation of the process, such as mentioning that
the water vapor turns into liquid because the mirror is cooler than

the air, causing the water vapor to lose energy and change state.
Rating: [[Developing]] x

ZS_CoT

... (prompt components are omitted) ...

- Student response: “water vapor gathers and cools on mirror
causing condensation turning to a liquid. As the atoms cool, lose
heat, they slow down.”

- Score: Let’s think step by step.

(Output) The student's response shows a good understanding of
the process of condensation. They correctly identified that water
vapor gathers and cools on a surface (in this case, a mirror) and
turns into a liquid. They also correctly explained that as the atoms
cool, they lose heat and slow down, which is a basic explanation of
how temperature affects the state of matter. However, the
response could be improved by providing a more detailed
explanation of the process, such as explaining that the water vapor

turns into a liquid because the cooled atoms move closer together,
forming liquid droplets. Rating: [[Developing]]

ZS_CoT_CR

mrompt components are omitted) ...

- Student response: “water vapor gathers and cools on mirror
causing condensation turning to a liquid. As the atoms cool, lose
heat, they slow down.”

- Score: Let’s think step by step.

~

(Output) The student's response includes both components required
by the rubric. The student explains that the water vapor changes its
state from gas to liquid when it comes in contact with the cold
mirror, satisfying Component A. The student also mentions that the
atoms slow down as they cool, which implies a decrease in kinetic

energy, satisfying Component B. Therefore, the student's response
&eets all the criteria for a 'Proficient’ rating. Rating: [[Proﬁcient]_lg
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FS_noCoT

... (prompt components are omitted) ...

- Student response: “Cold mirror is solid, water vapor is gas, Cold
mirror met water vapor, the mirror will be covered with a layer of
fog, into a liquid.”

- Score:

(Output) 'Proficient’. Rating: [[Proficient]J§§

FS_CoT

... (prompt components are omitted) ...

- Student response: “Cold mirror is solid, water vapor is gas, Cold
mirror met water vapor, the mirror will be covered with a layer of
fog, into a liquid.”

- Score:

(Output) The response includes "water vapor is gas" as
<<<COMPONENT A>>>. The response does not include
<<<COMPONENT B>>>. In sum, the response includes at least
ONE BUT NOT ALL of the criteria <<<COMPONENT A>>> AND
<<<COMPONENT B>>>. The appropriate score for the response is
'Developing'. Rating: [[Developing]O

FS_CoT_CR

m&rompt components are omitted) ...

- Student response: “Cold mirror is solid, water vapor is gas, Cold

mirror met water vapor, the mirror will be covered with a layer of
fog, into a liquid.”

- Score:

(Output) The response includes "water vapor is gas...into a liquid"
as <<<COMPONENT A>>>. The response does not include
<<<COMPONENT B>>>. In sum, the response includes at least ONE
BUT NOT ALL of the criteria <<<COMPONENT A>>> AND
<<<COMPONENT B>>>. The appropriate score for the response is

Qvelopiﬂg . Rating: [[Developing]] o /

Fig. 4. Example responses of gpt according to prompting strategy (task H4_3; ZS: Zero-Shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context and rubric).

FewEXAMPLES.

We found that zero-shot prompts returned relatively longer re-
sponses, allowing GPT-4 to spontaneously generate reasons for its clas-
sification. In contrast, few-shot prompts returned relatively shorter
responses, strictly following the structure given in the few-shot exam-
ples. Especially, FS_CoT and FS_CoT_CR generated answers according to
the CoT structure developed in this study for automatic scoring. Note
that in the examples in Fig. 4, ZS_CoT_CR, FS_CoT, and FS_CoT_CR made
correct predictions.

4.2. Scoring accuracy of LLMs by prompting strategy

The scoring accuracy of various prompting strategies is presented in
Table 4. There was no single prompting that showed the best accuracy
for all tasks; instead, the best-performing prompting differs by the item,
though showing some patterns. Overall, prompt engineering works
better for binomial items as compared with trinomial items. Specifically,
the accuracy was found to be up to 0.9083 (J6_3), 0.8792 (J2_2), and
0.7833 (R1_2) for the binomial items and up to 0.6806 (H4_3), 0.5935
(H4_2), and 0.5885 (J6_3) for the trinomial items. Other metrics, such as
Precision, Recall, F1, and Quadratic Weighted Kappa for each item
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Table 4

Test accuracy (standard deviation) of GPT-4 for the items by prompt engineering strategies (ZS: Zero-shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context
and rubric; Bold: Best accuracy for the item among the prompt engineering strategies).

Item Type ZS noCoT ZS_CoT ZS_CoT_CR FS_noCoT FS_CoT FS_CoT_CR
R1.2 Binomial 0.6625 0.6458 0.7583 0.7833 0.7500 0.7625

J2.2 Binomial 0.6417 0.6417 0.8458 0.7958 0.8375 0.8792

H4 2 Trinomial 0.3613 0.3710 0.5935 0.5581 0.5774 0.5452

H43 Trinomial 0.4722 0.5111 0.6333 0.5917 0.6806 0.6667

J6.2 Binomial 0.6583 0.6458 0.6792 0.7833 0.8250 0.9083

J6.3 Trinomial 0.4962 0.5038 0.5885 0.4500 0.2385 0.4231

Average 0.5487 (0.1135) 0.5532 (0.102) 0.6831 (0.0927) 0.6604 (0.1342) 0.6515 (0.2047) 0.6975 (0.1737)

0.595 (0.1205)

0.6698 (0.1744)

according to prompting, are presented in Appendix 2. Below, we un-
covered some patterns according to the experiment.

4.2.1. Zero-shot vs. few-shot learning prompts

We first compared the scoring accuracy between zero-shot and few-
shot learning. On average, we found that few-shot learning showed a
higher average scoring accuracy (M = 0.6698; SD = 0.1744) compared
to zero-shot learning (M = 0.595; SD = 0.1205), with an increase of
12.6%. Specifically, our testing suggests that zero-shot (ZS_noCoT)
yielded an average scoring accuracy, M = 0.5487 (SD = 0.1135), while
few-short learning (FS_noCoT) demonstrated a higher average scoring
accuracy, M = 0.6604 (SD = 0.1342) with an average increase of 20.4%
throughout six items. These results serve as the baseline of the concur-
rent GPT family’s performance on automatic scoring of student-written
responses, indicating that few-shot learning significantly outperformed
zero-shot learning on automatic scoring.

We found a similar pattern between zero-shot and few-shot learning
with the CoT strategy. Specifically, our results show an average increase
of 17.8% in scoring accuracy from zero-shot with CoT (ZS_CoT; M =
0.5532, SD = 0.102) to few-shot with CoT strategies (FS_CoT; M =
0.6515, SD = 0.2047). Interestingly, we found a decreased difference
(2.1%) in average scoring accuracy from few-shot (FS_CoT_ CR; M =
0.6975, SD = 0.1737) to zero-shot (ZS_CoT_CR; M = 0.6831, SD =
0.0927) learning when using both CoT and CR.

4.2.2. Effects of chain-of-thought prompt engineering

To examine how CoT impacts automatic scoring accuracy (RQ 3), we
first checked the best scoring performance strategies for each task and
then compared the average performance with and without CoT. We
found that five out of the six tasks scored best with CoT, except for one
task (R1_2). Specifically, H4_3 showed its highest accuracy = 0.6806
with FS_CoT, H4 2 (acc = 0.5935) and J6_3 (acc = 0.5885) with
ZS_CoT_CR, and J2 2 (acc = 0.8792) and J6_2 (acc = 0.9083) with
FS_CoT_CR. These results suggest that prompts with CoT yielded the best
scoring performance for most tasks.

We found that CoT was especially useful when pairing with CR.
Among the five highest-performing prompts mentioned above, four
showed the highest scoring accuracy with CoT_CR. Similar evidence was
found in zero-shot and few-shot learning, respectively. ZS_CoT CR
yielded a scoring accuracy = 0.6831, which is about 13.44% higher than
ZS_noCoT on average, while few-shot learning with CR (FS_CoT_CR)
showed an average scoring accuracy = 0.6975, which is 3.7% higher
than FS_noCoT on average.

In contrast, we found that CoT made a limited contribution to scoring
accuracy without pairing with CR. Specifically, ZS_noCoT showed
average accuracy = 0.5487 throughout the six items, and ZS_CoT
showed average accuracy = 0.5532, which is only a 0.82% improve-
ment. Likewise, FS_noCoT showed an average accuracy = 0.6604, and
FS_CoT showed an average accuracy = 0.6515, a slight decrease
(—1.35%). The less than a 2% difference brought by both cases suggests
that CoT without CR contributed limitedly to the automatic scoring
performance of GPT-4.

4.2.3. How chain-of-thought prompt engineering functions

To uncover how CoT functions with CR, we investigated its perfor-
mance by digging into category-wise test accuracy of scoring prompts
(Table 5). CoT_CR seems to increase the overall accuracy by balancing
accuracy for all proficiency categories (‘Proficient,” ‘Developing,” or
‘Beginning’). For example, in task J2_2, ZS_CoT_CR (acc = 0.8458)
increased the scoring accuracy of ZS CoT (acc = 0.6417) by 31.81%
(Table 4). This change diverged at the two proficiency levels. While
scoring accuracy decreased by 0.94% for the ‘Proficient’ category from
0.8833 to 0.875, it changed from 0.4 to 0.8167 for the ‘Beginning’
category, improving by 104.2% (Table 5). Likewise, from FS_CoT to
FS_CoT_CR, average scoring accuracy for the ‘Proficient’ level increased
by 20.0% while that for the ‘Beginning’ level decreased by 6.0%
(Table 5). Consequently, FS_CoT_CR (acc = 0.8792) showed 4.98%
higher accuracy than FS_CoT (acc = 0.8375) (Table 4).

The category-wise balancing effect of CoT_CR is more obvious in
trinomial tasks. For example, in task H4_2, ZS_CoT_CR (acc = 0.5935)
increased the scoring accuracy of ZS_CoT (acc = 0.3710) by 59.97%
(Table 4). This change diverged at the three proficiency levels. While
scoring accuracy decreased by 9.84% for the ‘Developing’ category from
0.7625 to 0.6875, it changed from 0.275 to 0.6833 for the ‘Beginning’
category, improving by 148.47%, and from 0.1909 to 0.4273 for the
‘Proficient” category, improving by 123.83%. Consequently, the
Quadratic Weighted Kappa changed from 0.2525 (ZS_CoT) to 0.5806
(ZS_CoT_CR), improving by 129.94%. This increase of Quadratic
Weighted Kappa accompanied by balanced category-wise accuracy was
observed in every comparison of ZS/FS_CoT versus ZS/FS_CoT _CR in
tasks H4_2, H4_3, and J6_3, except for one case (from FS_CoT to
FS_CoT_CR in task H4_2). Convincingly, similar pattern balancing effect
was found throughout the six items, with few exceptions.

To sum up, the results (Tables 4-5) present that (1) few-shot learning
prompts show about 7.48% higher accuracy than zero-shot learning, (2)
addition of mere CoT to prompts does not help increasing scoring ac-
curacy in general, and (3) CoT given with Context and Rubric improves
the scoring accuracy up to 13.44% (zero-shot) or 3.71% (few-shot). If we
consider ZS_noCoT as the very baseline of automatic scoring using GPT-
4 with greedy sampling, FS_CoT_CR increases the scoring accuracy by
14.88%.

4.3. Performances of GPT-4 vs. GPT-3.5 according to hyperparameters

The scoring accuracy of GPT-4 and GPT-3.5 according to hyper-
parameters is presented in Table 6.

To answer RQ 4, we compared the average scoring accuracy of GPT-4
and GPT-3.5 with FS_CoT_CR prompt, which yielded the best perfor-
mance in Table 4. We found that automatic scoring using GPT-4 yielded
higher accuracy than using GPT-3.5 in general. Specifically, in greedy
sampling (temperature = 0 and top_p = 0.01), GPT-4 showed accuracy
= 0.6975 which is higher than GPT-3.5 (accuracy = 0.6331) by 10.2%.
In nucleus sampling (temperature = 0.9 and top_p = 0.95), GPT-4
showed accuracy = 0.6802, which is above GPT-3.5 (accuracy =
0.635) by 4.52%. Therefore, GPT-4 showed approximately 8.64% better
performance than GPT-3.5 in overall sense.
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Table 5
Category-wise test accuracy of GPT-4 according to item and prompt engineering (ZS:Zero-Shot, FS: Few-shot, CoT: Chain-of-thought, CR: Problem context and rubric).
Task Parameter ZS _noCoT ZS_CoT ZS_CoT_CR FS_noCoT FS_CoT FS_CoT_CR
R12 Acc Prof 0.7917 0.8333 0.9083 0.675 0.5167 0.55
Acc Dev NA NA NA NA NA NA
Acc Beg 0.5333 0.4583 0.6083 0.8917 0.9833 0.975
Kappa NA NA NA NA NA NA
J2.2 Acc Prof 0.8583 0.8833 0.875 0.7167 0.7083 0.85
Acc Dev NA NA NA NA NA NA
Acc Beg 0.425 0.4 0.8167 0.875 0.9667 0.9083
Kappa NA NA NA NA NA NA
H4.2 Acc Prof 0.2583 0.275 0.6833 0.6 0.475 0.4833
Acc Dev 0.725 0.7625 0.6875 0.3625 0.5 0.8125
Acc Beg 0.2091 0.1909 0.4273 0.6545 0.7455 0.4182
Kappa 0.2791 0.2525 0.5806 0.4701 0.5583 0.5004
H43 Acc Prof 0.5417 0.6083 0.775 0.7083 0.5667 0.6833
Acc Dev 0.7417 0.7667 0.7083 0.225 0.6833 0.675
Acc Beg 0.1333 0.1583 0.4167 0.8417 0.7917 0.6417
Kappa 0.4258 0.4835 0.6276 0.6111 0.6667 0.6831
J6_2 Acc Prof 0.9417 0.9667 1 0.7167 0.7417 0.8833
Acc Dev NA NA NA NA NA NA
Acc Beg 0.375 0.325 0.3583 0.85 0.9083 0.9333
Kappa NA NA NA NA NA NA
J6_3 Acc Prof 0.2583 0.275 1 0.5333 0.3417 0.75
Acc Dev 0.8 0.8 0.2583 0.3417 0.025 0.05
Acc Beg 0.1 0.1 0.1 0.6 0.9 0.7
Kappa 0.186 0.1824 0.3467 0.3309 0.02351 0.4045
Table 6 accurate outcomes. Fig. 5 shows the difference of GPT-4 and GPT-3.5 on
able

Test Accuracy of GPT-3.5-based Prompt Engineering (*: Calling GPT API once
with temperature = 0 and top_p = 0.01, **: Calling GPT API thrice with tem-
perature = 0.9 and top_p = 0.95, Bold: Best accuracy within the item).

Item Type FS_CoT_CR FS_CoT_CR FS_CoT_CR FS_CoT_CR
4.1* 4_3%* 3.51* 3.5_3**
R1.2  Binomial 0.7625 0.7458 0.6833 0.6875
J2.2 Binomial 0.8792 0.7625 0.7542 0.7625
H42  Trinomial  0.5452 0.5645 0.5484 0.5548
H43  Trinomial 0.6667 0.6528 0.5638 0.5722
J6.2 Binomial 0.9083 0.925 0.7833 0.7792
J6_3 Trinomial  0.4231 0.4308 0.4654 0.4538
Average 0.6975 0.6802 0.6331 0.635
(0.1737) (0.1717) (0.1289)

However, there was no clear pattern regarding the voting strategy.
As decreasing order, with GPT-4, a single-call with the greedy sampling
showed better performance (acc = 0.6975) than the voting strategy with
the nucleus sampling (acc = 0.6802). Specifically, only three tasks
(R1_2,J2_2, and H4_3) showed higher accuracy with the single-call than
the voting strategy. In contrast, for GPT-3.5, the voting strategy showed
a better performance (acc = 0.635) than single-call (acc = 0.6331). That
is, we found only four tasks (R1_2, J2_2, H4_3, and H4 4) showed higher
accuracy with the voting strategy than the single-call. These results
show the complex interaction between the model capacity and the
voting strategy with different hyperparameters.

To investigate the divergence of GPT-4 and GPT-3.5, we dug into the
responses to our prompts and found that they used the scoring criteria
differently. Fig. 5 presents examples from GPT-4 and GPT-3.5. The
scoring rubric of the task requires satisfying only one component, which
is "When the water is heated, water particles move faster (or increase in
kinetic energy"." Both models generated responses indicating that
“transferring heat energy changes the movement of the water” could be
regarded as the component specified in the rubric. It is also notable that
models corrected a misspelled word in the student’s answer (‘movment’
— ‘movement’) even without related instruction. However, while GPT-4
strictly followed the structure of the rubric and example human scoring,
GPT-3.5 did not. Although GPT-3.5 identified COMPONENT A, it ranked
this student response as ‘Beginning.” Further research has to be con-
ducted to uncover why GPT-3.5 behaves this which results in less
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a student answer on Task J6_2.

5. Discussion
5.1. LLM yields explainable automatic scoring

Although research has shown the significant potential of Al in
automatic scoring (Zhai et al., 2020), educators are concerned about the
transparency and ethics of Al outcomes. Researchers have constantly
called for establishing interpretability and explainability of AI applica-
tions and uncovering the “black box,” so that AI applications can be
embraced by general users (Du, Liu, & Hu, 2019). Our research suggests
that LLMs can potentially tackle this issue. As shown in Figs. 4 and 5,
GPT family produced natural language responses to the automatic
scoring prompts of student-written answers to science items (RQ 1).
Specifically, GPT-4 and GPT-3.5’s responses identified the part of sen-
tences in student-written answers, which uncovered the “black box” in
scoring. Further, we found that users can instruct GPT’s response style
by instructing it to use prompt components.

Technically, our results suggest the feasibility of LLMs for generating
interpretable and explainable scores by leveraging prompt engineering.
Interpretability has been a challenge in deploying Al applications in
sectors of society, so researchers developed many strategies to unpack
the “black box,” such as placing additional layer with interpretable
constraints in the model or extracting post-hoc features from the model
(Du et al., 2019). These strategies are found effective but need sub-
stantial professional knowledge to develop and deploy, which is usually
beyond the reach of general educators.

Practically, we found that GPT-4 and GPT-3.5 can generate natural
language explanations using chatbot-like functions, which are effective
for broader users, including teachers. Particularly, when two researchers
with expertise in science education reviewed the responses from GPT
based on the scoring rubrics (Figs. 4-5), they found that response
components extracted by GPT match the scoring rubric components,
indicating plausibility. Further, we found that CoT yielded explicit and
transparent scoring outcomes. This opens the essential possibility for
human users to check and correct how scoring machines score student
responses, which was impossible in previous automatic scoring systems.
Differently speaking, if there are any issues related to ethics and bias in
the LLM-based scoring models, they could be found in the CoT steps and
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(BasicRole) Please act as an impartial science teacher
and evaluate the quality of the response ... Refer to
the <<<CONTEXT>>> and <<<RUBRIC>>> while rating.
(ContRubTEXT)

CONTEXT ... The student is required to draw a model
depicting the state of water molecules and the

temperature both before and after heating the water e:ChOt_he'
in a teapot. ... core:
RUBRIC

- COMPONENT A: Student response includes that
'When the water is heated, water particles move
faster (or increase in kinetic energy).".

- Holistic score: The score will be 'Proficient’ if the
response includes the criteria <<<COMPONENT A>>>;
and 'Beginning' if the response includes NONE of the
criteria in 'Proficient’.

(FewEXAMPLES)

- Student response: “The model show that
transferring thermal energy to the water, changes
the movement of the water molecules by making
them move faster, results in the increasing of
temperature of the water.”

- Score: The response includes "transferring thermal
energy to the water, changes the movement of the
water molecules by making them move faster" as
<<<COMPONENT A>>>. In sum, the reponse includes
<<<COMPONENT A>>>. The appropriate score fore
the response is 'Proficient'. Rating: [[Proficient]]

... (three sets of student response and score are
omitted) ...

- Student response: “It shows how transferring heat
energy changes the movment of the water by showing
the arows and if it is free or not from eachother”

FS_CoT_CR_4_1

ﬁ)rompt components are omitted) ... \

- Student response: “It shows how transferring heat
energy changes the movment of the water by
showing the arows and if it is free or not from
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FS_CoT_CR_4_3

K(prompt components are omitted) ... \

- Student response: “It shows how transferring heat
energy changes the movment of the water by
showing the arows and if it is free or not from
eachother”

- Score:

(Output) The response includes "transferring heat
energy changes the movement of the water" as
<<<COMPONENT A>>>. In sum, the response
includes <<<COMPONENT A>>>. The appropriate

score for the response is 'Proficient’. Rating:
{Proﬁcient]] o /

FS_CoT_CR_3.5_1

ﬁrompt components are omitted) ...

- Student response: “It shows how transferring heat
energy changes the movment of the water by
showing the arows and if it is free or not from
eachother”

- Score:

(Output) The response includes "transferring heat
energy changes the movement of the water" as
<<<COMPONENT A>>>. In sum, the response
includes <<<COMPONENT A>>>. The appropriate

score for the response is 'Proficient’. Rating:
{Proﬁcient]] O /

FS_CoT_CR_3.5_3

.. (prompt components are omitted) ...

- Student response: “It shows how transferring heat
energy changes the movment of the water by
showing the arows and if it is free or not from
eachother”

- Score:

(Output) The response includes "transferring heat
energy changes the movement of the water" as
<<<COMPONENT A>>>. However, the response
does not provide a clear explanation of how the
model showcases the change in molecular
movement and water temperature. In sum, the

(Output) The response includes "transferring heat
energy changes the movement of the water" as
<<<COMPONENT A>>>. However, the response
does not clearly explain how the model depicts this
change in movement and temperature. In sum, the
response includes <<<COMPONENT A>>>, but lacks

- Score:

response includes only one of the criteria
<<<COMPONENT A>>>. The appropriate score for
the resp is 'Beginning'. Rating: [[Beginning]]

clarity in the explanation. The appropriate score
for the response is 'Beginning'. Rating:
Beginning]] x

Fig. 5. Comparison of the answers from GPT-4 and GPT-3.5 (task J6_2).

fixed instructing the LLM with appropriate prompts, which sheds light to
‘black-box’ systems used for education. Further, teachers could also
leverage LLMs to develop scoring rubrics, draft their evaluation of stu-
dent responses, before they review, revise, and finalize their assessment,
which could dramatically expediate the scoring process.

These advantages ease the efforts of developing fancy algorithms to
uncover the interpretability of automatic scoring, evidencing a mile-
stone improvement. Therefore, the adoption of LLMs could make a
substantial change in automatic scoring research, making previous
‘black-box’ models explainable and user-friendly. This could facilitate
the integration of Al technologies for automatic scoring even for class-
room settings in the future so that teachers and researchers have a
powerful tool to realize real-time feedback based on formative
assessment.

5.2. Zero-shot versus few-shot learning

This study demonstrated the high accessibility of prompt-based
automatic scoring to broader populations other than professional de-
velopers. We found that the prompt engineering (e.g., zero-shot, few-
shot learning) techniques are less data-demanding and labor-intensive,
and thus are promising to transform the automatic scoring paradigm.
Prior research on Al-based assessments usually needs a large training
corpus to develop scoring algorithmic models, which is cost- and time-
consuming (Zhai et al., 2020). By using prompt engineering, we only
need a small number of human-scored data to validate and test the
prompts. Moreover, traditional Al-based assessments usually demand
coding skills to create algorithmic models, which was beyond the reach
of general educators. In this study, we leveraged GPT and prompt en-
gineering to score student written responses without using any pro-
gramming or strenuous model training. This advance sharply
distinguishes this approach from the previous text classification models
that mainly used complex machine learning algorithms without
explanation.

Our findings suggest that prompting strategies are beneficial to
improve zero-shot and few-shot scoring. In their prior research, Wu et al.
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(2023) reported scoring accuracy that needs improvement. By exper-
imenting with various prompting strategies, we found that GPT-4 and
GPT-3.5 could automatically score student-written responses with
improved scoring accuracy. We started from the baseline prompts, such
as ZS_noCoT and FS_noCoT, and furthered the investigation with CoT
prompt components for the zero/few-shot learning approach. Our
research suggests that few-shot learning shows 7.48% higher accuracy
than zero-shot learning on average 4. These improvements suggest that
few-shot learning is promising for automatic scoring tasks with signifi-
cantly less human effort.

Compared with zero-shot learning, we found that few-shot learning
leveraged examples provided and CoT. As shown in Figs. 3-4, few-shot
prompts tended to produce shorter and more structured responses
compared to zero-shot learning, as like human evaluator’s scoring ex-
amples. Particularly, when CoT was introduced to the prompts, GPT
followed CoT reasoning steps to score students’ answers. This structure-
coercing effect of few-shot learning can be the main reason it improves
scoring accuracy, imitating human scorers’ way of thinking.

5.3. Chain-of-thought paired with contextual instructions contributes to
automatic scoring

Aligning with prior research (Kojima et al., 2022; Wei et al., 2022),
our findings indicate that CoT is an efficient strategy for improving
prompt engineering, particularly for the automatic scoring performance;
yet CoT cannot work in isolation. CoT can be effective only when paired
with the problem context and scoring rubrics. That is, we found that
simply including CoT without the contextual instructions contributed
limited to scoring model performance (Table 4), which somehow
diverged from the examples (e.g., arithmetic, commonsense reasoning,
letter concatenation) presented in the original CoT papers. This differ-
ence may be due to the complexity of automatic scoring of
student-written responses, as compared to the example tasks presented
in the papers that suggested CoT methods. This finding implies that the
general reasoning elicited by CoT in LLMs has limited to improve
automatic scoring (Wei et al., 2022), but domain-specific or task-specific
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reasoning is critical to increasing scoring accuracy.

Consistent with the findings above, this study contributes to the
literature on CoT prompting by introducing the WRVRT approach.
WRVRT employs an iterative procedure to develop prompts that include
multiple components. Specifically, we have to first specify the role of
GPT by using the prompt “act as an impartial science teacher” (Basi-
cRole). It leverages the few-shot learning examples, item contexts, and
scoring rubrics and incorporates CoT to efficiently guide GPT to assign
scores to students’ written responses. We would analogize this role of
guideline as ‘a chain mold’, which makes the chain of reasoning aligned
and prepared to be used.

In addition, our qualitative analysis also revealed the processes of
GPT in improving scoring accuracy when leveraging the WRVRT
approach. We found that the model performance increases because the
category-wise accuracy increases (Table 5). That is, scoring accuracy in
some scoring categories increased, while decreased on others, and the
overall performance is increased. This pattern was identical both in zero-
shot and few-shot learnings. We suspect that this ability may specifically
address unbalanced data issues, but future research should further un-
pack the mechanisms.

5.4. GPT-4 versus GPT-3.5 by hyperparameter

Our results suggest that GPT-4 with single-call greedy sampling
seems to be the best strategy for automatic scoring compared to GPT-3.5
with other strategies. Table 6 illustrates the superior performance of
GPT-4 compared to GPT-3.5, evidenced in both the ensemble voting and
single-call strategies. This result highlights that GPT-4’s enhanced
reasoning abilities are beneficial for automated grading systems.
Therefore, it is recommended to use GPT-4 rather than GPT-3.5 in the
automatic scoring of student-written responses concerning scoring ac-
curacy. However, educators may also have to consider the availability of
resources, given that GPT-4 API call is 30 times more expensive than
GPT-3.5 as of November 2023.

We also found that the voting strategy may be only beneficial when
using lower computation LLMs. The voting strategy is more resource-
demanding and thus deserves investigations on its effectiveness. In
this study, we found that the voting strategy with GPT-4 or 3.5 did not
largely improve the average performance for all the tasks compared to
using the single-calls strategy. Particularly, GPT-3.5 benefited from the
voting strategy in majority tasks, although the improvement was minor.
However, the voting strategy with GPT-4 seems less productive
compared to the single-call greedy-sampling approach. This result sug-
gests that the voting strategy is primarily aimed at reducing uncertainty
in grading predictions for less advanced LLMs. The high confidence of
GPT-4 in predictions marks a distinct behavior from GPT-3.5. However,
in general, users need to balance the usability and cost, because the
ensemble voting strategy requires three times additional computations
while offering limited improvement in the model accuracy.

6. Conclusions

This study examined the affordance of GPT-4, equipped with CoT, on
the automatic scoring of students’ written explanations to science
questions. The research findings underscore the feasibility of using LLMs
to not only execute scoring tasks with high efficiency but also provide
explainable and interpretable outcomes, which is vital in the context of
educational assessments. Our investigation into the comparative per-
formance of zero-shot and few-shot learning prompts revealed a marked
improvement in scoring accuracy with the application of few-shot
learning (12.6%). This advancement indicates a few-shot learning as a
promising direction for automatic scoring tasks, reducing the need for
extensive human input while maintaining high accuracy levels. Addi-
tionally, the CoT prompting strategy, especially when paired with
contextual item stems and rubrics, proved to be a significant contributor
to scoring accuracy (13.44% increase for zero-shot; 3.7% increase for

12

Computers and Education: Artificial Intelligence 6 (2024) 100213

few-shot). The study was conducted under a novel approach WRVRT,
which was found to facilitate a more balanced accuracy across different
proficiency categories, highlighting the importance of domain-specific
reasoning in enhancing the effectiveness of LLMs in scoring tasks.

The study also suggests that GPT-4 demonstrated superior perfor-
mance over GPT3.5 in various scoring tasks, showing 8.64% difference.
The study revealed that the single-call strategy with GPT-4, particularly
using greedy sampling, outperformed other approaches, including
ensemble voting strategies. This finding suggests that the advanced
reasoning abilities of GPT-4 are more conducive for automated scoring
systems, offering greater reliability and accuracy. The nuanced under-
standing of the interaction between model capacity and voting strategy,
alongside the exploration of the cost versus usability trade-offs, adds a
practical dimension to the research, making it highly relevant for edu-
cators and researchers seeking to integrate Al technologies into their
instructional and assessment practices.

Despite of the potential documented in this study, future research
should continue improving the model capacity to increase the automatic
scoring performance. While the scoring accuracy estimated in this study
spanned 0.5885-0.9083, the parental study that used the equivalent
dataset to train and test the ensemble automatic scoring machine shows
an accuracy spanning 0.86-0.94, which is higher than the prompt en-
gineering approach (Zhai, He, & Krajcik, 2022). This may be because the
ensemble approach fine-tuned the parameters for specific tasks, while
the zero- or few-shot learning approaches using pre-trained LLM are
more generic. Therefore, users have to balance efficiency and accuracy
for specific assessment purposes. Studies should further explore novel
and sophisticated prompt engineering for LLMs to advance automatic
scoring, delve into the nuance of students’ thinking. In this regard, while
this study focused on the final label of student-written responses for
model performance, analytic scoring approach for each component of
scoring rubric, which will correspond to CoT process, could be further
studied with appropriate dataset. Also, the characteristics of items and
scoring rubrics need to be investigated further to improve CoT
outcomes.
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Appendix 1. Comprehensive Example of Prompt Engineering Components (Task H4_3)

BasicRole (*: Concatenated only for ZS_CoT_CR and FS_CoT_CR) Please act as an impartial science teacher and evaluate the quality of the response
provided by a middle school student to a science item displayed below. Begin your evaluation by providing a short explanation. Be as objective as
possible. After providing your explanation, you must classify the response on a scale of ‘Beginning,” ‘Developing,” and ‘Proficient’ by strictly following
this format: "[[rating]]," for example: “Rating: [[Beginning]]." *(Refer to the <<<CONTEXT>>and <<<RUBRIC»while rating).

ContRubTEXT

CONTEXT

Simone took a hot shower and wondered what would happen to the water vapor when it came in contact with a cold mirror. The task is to construct
a model that illustrates the changes in water molecules from Simone’s shower once they hit the cold mirror. This model should display the thermal
energy and kinetic energy of the water molecules. The goal is to explain how the state of water vapor changes after it interacts with the cold mirror.

RUBRIC

- COMPONENT A: Student response includes an ‘explanation that the substance changes its state from gas to liquid.’

- COMPONENT B: Student response includes that ‘the change in state occurs because of a decrease in the particles’ motion/kinetic energy.’

- Holistic score: The score will be ‘Proficient’ if the response includes ALL of the criteria < < <COMPONENT A>>>AND < < <COMPONENT
B>>>; ‘Developing’ if the response includes at least ONE BUT NOT ALL of the criteria in ‘Proficient; * and ‘Beginning’ if the response includes
NONE of the criteria in ‘Proficient.’

FewEXAMPLES (for FS_noCoT)

- Student response: “In water vapor, water molecules move fast and are far apart as a gas in the bathroom. When water molecules touch the cold
mirror, thermal energy is transferred from the water molecules to the cold mirror. This causes the kinetic energy of the molecules of water vapor to
decrease, the molecules to move slower as represented by the shorter arrows in the model, and the molecules to stay closer to each other like a
liquid and form water droplets. So, the prediction is that the water vapor from Simone’s shower (gas) will become water droplets (liquid)."

- Score: ‘Proficient.” Rating: [[Proficient]]

- Student response: “the molecules are starting to get warmer, moving faster as they are turning into a gas."

- Score: ‘Developing.” Rating: [[Developing]]

- Student response: “in the cold mirror, the water vapor is moving slower

- Score: ‘Developing.” Rating: [[Developing]]

- Student response: “This shows that when the water vapor hits the mirror it can start to do evaporation this is what the picture represents."

- Score: ‘Beginning.” Rating: [[Beginning]]

FewEXAMPLES (for FS_CoT and FS_CoT CR)

- Student response: “In water vapor, water molecules move fast and are far apart as a gas in the bathroom. When water molecules touch the cold
mirror, thermal energy is transferred from the water molecules to the cold mirror. This causes the kinetic energy of the molecules of water vapor to
decrease, the molecules to move slower as represented by the shorter arrows in the model, and the molecules to stay closer to each other like a
liquid and form water droplets. So, the prediction is that the water vapor from Simone’s shower (gas) will become water droplets (liquid)."
Score: The response includes “the water vapor ... (gas) will become water droplets (liquid)" as «<COMPONENT A>>. The response includes “the
kinetic energy of ... water vapor to decrease” as <«<COMPONENT B>>>. In sum, the response includes ALL of the criteria «<<COMPONENT
A>>AND «<COMPONENT B>>>. The appropriate score for the response is ‘Proficient.” Rating: [[Proficient]]

Student response: “the molecules are starting to get warmer moving faster as they are turning into a gas"

Score: The response includes “turning into a gas” as <<COMPONENT A>>>. The response does not include ;j;;COMPONENT B>>. In sum, the
response includes at least ONE BUT NOT ALL of the criteria «<COMPONENT A>>> AND «<<COMPONENT B>>>. The appropriate score for the
response is ‘Developing.” Rating: [[Developing]]

Student response: “In the cold mirror the water vapor is moving slower"

Score: The response does not include «<COMPONENT A>>>. The response includes “moving slower” as «<COMPONENT B>>. In sum, the
response includes at least ONE BUT NOT ALL of the criteria <<COMPONENT A>>>AND «<COMPONENT B>>>. The appropriate score for the
response is ‘Developing.” Rating: [[Developing]]

Student response: “This shows that when the water vapor hits the mirror it can start to do evaporation this is what the picture represents."
Score: The response does not include «<COMPONENT A>>. The response does not include «<COMPONENT B>>. In sum, the response in-
cludes NONE of the criteria <<COMPONENT A>>>AND «<COMPONENT B>>>. The appropriate score for the response is ‘Beginning.” Rating:
[[Beginning]]

Appendix 2. Overall Model Performance Metrics
- ZS: Zero-Shot, FS: Few-Shot, CoT: Chain-of-Thought, CR: Problem Context and Rubric, KappaQW: Quadratic Weighted Kappa, Acc: Accuracy, Prof:

Proficient, Dev: Developing, Beg: Beginning
- Method: Calling GPT-4 API once with temperature = 0 and top_p = 0.01
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Task Method Accuracy Precision Recall F1 KappaQW Acc_Prof Acc_Dev Acc_Beg
R1.2 ZS_noCoT 0.6625 0.6741 0.6625 0.6568 NA 0.7917 NA 0.5333

ZS_CoT 0.6458 0.6697 0.6458 0.6329 NA 0.8333 NA 0.4583
ZS_CoT_CR 0.7583 0.7839 0.7583 0.7528 NA 0.9083 NA 0.6083
FS_noCoT 0.7833 0.7973 0.7833 0.7808 NA 0.675 NA 0.8917
FS_CoT 0.75 0.8196 0.75 0.7356 NA 0.5167 NA 0.9833
FS_CoT_CR 0.7625 0.8204 0.7625 0.7513 NA 0.55 NA 0.975
J2.2 ZS_noCoT 0.6417 0.6744 0.6417 0.624 NA 0.8583 NA 0.425
7S_CoT 0.6417 0.6848 0.6417 0.6194 NA 0.8833 NA 0.4
ZS_CoT_CR 0.8458 0.847 0.8458 0.8457 NA 0.875 NA 0.8167
FS_noCoT 0.7958 0.8034 0.7958 0.7945 NA 0.7167 NA 0.875
FS_CoT 0.8375 0.8616 0.8375 0.8347 NA 0.7083 NA 0.9667
FS_CoT_CR 0.8792 0.8805 0.8792 0.8791 NA 0.85 NA 0.9083
H4.2 ZS_noCoT 0.3613 0.5087 0.3975 0.3545 0.2791 0.2583 0.725 0.2091
7S_CoT 0.371 0.5061 0.4095 0.3601 0.2525 0.275 0.7625 0.1909
ZS_CoT_CR 0.5935 0.6542 0.5994 0.5898 0.5806 0.6833 0.6875 0.4273
FS_noCoT 0.5581 0.5414 0.539 0.5383 0.4701 0.6 0.3625 0.6545
FS_CoT 0.5774 0.5973 0.5735 0.5681 0.5583 0.475 0.5 0.7455
FS_CoT_CR 0.5452 0.6558 0.5713 0.5504 0.5004 0.4833 0.8125 0.4182
H4.3 ZS_noCoT 0.4722 0.556 0.4722 0.4429 0.4258 0.5417 0.7417 0.1333
ZS_CoT 0.5111 0.6096 0.5111 0.4832 0.4835 0.6083 0.7667 0.1583
7S_CoT_CR 0.6333 0.698 0.6333 0.6298 0.6276 0.775 0.7083 0.4167
FS_noCoT 0.5917 0.566 0.5917 0.5589 0.6111 0.7083 0.225 0.8417
FS_CoT 0.6806 0.7013 0.6806 0.6813 0.6667 0.5667 0.6833 0.7917
FS_CoT_CR 0.6667 0.6971 0.6667 0.6734 0.6831 0.6833 0.675 0.6417
J6.2 7S noCoT 0.6583 0.7332 0.6583 0.6285 NA 0.9417 NA 0.375
7S_CoT 0.6458 0.7479 0.6458 0.6052 NA 0.9667 NA 0.325
7S_CoT_CR 0.6792 0.8046 0.6792 0.6424 NA 1 NA 0.3583
FS_noCoT 0.7833 0.7885 0.7833 0.7824 NA 0.7167 NA 0.85
FS_CoT 0.825 0.8343 0.825 0.8238 NA 0.7417 NA 0.9083
FS_CoT_CR 0.9083 0.9094 0.9083 0.9083 NA 0.8833 NA 0.9333
J6.3 ZS_noCoT 0.4962 0.4677 0.3861 0.3631 0.186 0.2583 0.8 0.1
7S_CoT 0.5038 0.4728 0.3917 0.3715 0.1824 0.275 0.8 0.1
ZS_CoT_CR 0.5885 0.5096 0.4528 0.4135 0.3467 1 0.2583 0.1
FS_noCoT 0.45 0.4551 0.4917 0.4132 0.3309 0.5333 0.3417 0.6
FS_CoT 0.2385 0.3806 0.4222 0.2375 0.2351 0.3417 0.025 0.9
FS_CoT_CR 0.4231 0.5061 0.5 0.35 0.4045 0.75 0.05 0.7
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