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Abstract— Teleoperation is increasingly used in the operation 

of delivery robots and is beginning to be utilized for certain 

autonomous vehicle intervention applications. This paper 

addresses the challenges in teleoperation of an autonomous 

vehicle due to latencies in wireless communication between the 

remote vehicle and the teleoperator station. Camera video 

images and Lidar data are typically delayed during wireless 

transmission but are critical for proper display of the remote 

vehicle’s real-time road environment to the teleoperator. Data 

collected with experiments in this project show that a 0.5 second 

delay in real-time display makes it extremely difficult for the 

teleoperator to control the remote vehicle. This problem is 

addressed in the paper by using a predictive display (PD) system 

which provides intermediate updates of the remote vehicle’s 

environment while waiting for actual camera images. The 

predictive display utilizes estimated positions of the ego vehicle 

and of other vehicles on the road computed using model-based 

extended Kalman filters. A crucial result presented in the paper 

is that vehicle motion models need to be inertial rather than 

relative and so tracking of other vehicles requires accurate 

localization of the ego vehicle itself. An experimental study using 

5 human teleoperators is conducted to compare teleoperation 

performance with and without predictive display. A 0.5 second 

time-delay in camera images makes it impossible to control the 

vehicle to stay in its lane on curved roads, but the use of the 

developed predictive display system enables safe remote vehicle 

control with almost as accurate a performance as the delay-free 

case. 

Key Words: Autonomous vehicles, teleoperation, predictive display, 

trajectory estimation 

I. INTRODUCTION 

While there is significant on-going research in the US 

related to autonomous vehicles (AVs) that will operate 

entirely without the need for driver intervention, it is not 

expected that the first fully self-driving vehicles will be 

introduced into the market until at least 2028, even according 

to the most optimistic estimates [1]. Current automated 

driving systems can operate autonomously a majority of the 

time in many traffic and environment scenarios. However, 

human intervention is occasionally needed, and backup safety 

drivers are now almost always present as a part of test 

vehicles.  Some examples of situations where human 

intervention may be needed are the presence of snow cover 

on the road making the lane markers invisible, active 

snow/rain precipitation, the presence of construction zones on 

road, and the failure of critical sensors, actuators or other 

components on the vehicle. 
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Enabling autonomous vehicles (AVs) to operate without 

requiring a backup in-vehicle safety driver is essential for 

scaling the deployment of the technology.  Teleoperation has 

long been a solution in space robotics where a human 

teleoperator takes over when autonomous operation is 

prevented. In the case of AVs, a remote teleoperator can 

likewise step in to get the car past whatever hazard might be 

too hard for the vehicle to handle by itself in an autonomous 

fashion. 

A German startup company Vay [2] is currently using a 

human teleoperator to remotely drive vehicles via computer 

to a location where a human customer wants to be picked up. 

Then the customer drives to their destination, after which the 

remote operator again drives the car away. Likewise, the 

company Halo is experimenting with a system in Las Vegas 

where a rental car is driven remotely by a human and dropped 

off for the customer to drive.  When the customer is done, the 

remote operators take it to its next destination [3].  

Applications of such autonomous vehicles with occasional 

teleoperation when needed can include valet parking, taxi 

fleets, and ride-sharing services similar to Uber or Lyft.  

Teleoperation performance requires strong wireless 

connectivity that depends on network conditions such as 

latency, bandwidth, packet loss and reliability. Due to huge 

data streams originating from Lidar and camera sensors on the 

vehicle and also the need for reliably communicating critical 

real-time inputs from the tele-driver to the vehicle every few 

milli-seconds, addressing bandwidth and latency limitations 

is critical for this application.  

Human drivers can solve delay-free tasks with cognitive 

challenges faster than automation systems, but this 

relationship reverses with the presence of time delays. 

Delayed perception during teleoperated driving significantly 

increases the effort of the human, and the operator has to take 

care of the task and the monitoring of the environment with 

more intensive effort [4,5]. This paper proposes to develop an 

estimation based predictive display (PD) system that 

estimates trajectories of the ego vehicle and other vehicles on 

the road to perform realistic intermediate updates of the 

remote environment to compensate for delayed camera data.  

Previous researchers have studied the display of 

predicted ego-vehicle position on the teleoperator screen 

using a semitransparent vehicle [6], a rectangular frame and 

tracks [7] or a pointing line [8]. However, they just assumed 
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the non-delayed future position of the ego-vehicle was known 

and did not do position estimation.  

Others have used open-loop predictions of future motion 

to predict ego vehicle position, such as clothoids trajectories 

[9,10] and predictors [11]. Finally, researchers have also used 

zooming and sliding (or image transformation) based on real-

time throttle/brake/steering inputs from the teleoperator 

[12,13]. However, none of the authors described above have 

used model-based estimation algorithms for prediction of 

ego-vehicle position. Further, none of them have included 

predictions of positions of other nearby vehicles on the road. 

Predictions of trajectories of nearby vehicles is critical to 

ensure safe driving by the teleoperator. 

The primary contributions of this paper are as follows: 

1) The paper develops a teleoperation platform using 

MATLAB’s Automated Driving Toolbox to provide a co-

simulation environment for experimental human-in-the-

loop teleoperation studies. 

2) This paper presents for the first time an estimation-based 

PD system which uses both ego state estimation and 

estimation of other vehicle trajectories for teleoperation 

enhancement. Hence, the trajectories of both ego and non-

ego actors are used to augment PD. 

3) This paper describes the inaccuracies of using relative 

vehicle motion models and the importance of using inertial 

models for vehicle tracking.  

4) This paper presents an experimental human-subjects study 

to evaluate the effectiveness of using estimation-based PD 

for teleoperation enhancement and compensation of the 

degradation caused by delay. 
The outline of the rest of the paper is as follows. In section 

II, the MATLAB based teleoperation simulator is described. 
Section III describes the estimation-based PD system where 
both state estimation and vehicle tracking are described along 
with the inaccuracies of relative motion models and the need 
for an inertial motion model. Section IV and V describes and 
discusses the results for image comparison analysis, lane offset 
analysis for various time delay and from a human-subjects 
study and proves the efficacy of using PD. Section VI contains 
the conclusions. 

II. TELEOPERATION SIMULATOR DESIGN 

Designing a teleoperation platform requires a virtual 

driving environment, control input devices including throttle, 

brakes and steering wheel, accurate vehicle dynamics, delay 

control units and realistic visual feedback of the remote 

vehicle environment to the human user. This section details 

the various aspects of the teleoperator station design which 

has been used as the testing environment for human-in-the-

loop teleoperation simulations. The MATLAB Automated 

Driving Toolbox has been used for this purpose. The toolbox 

provides a co-simulation environment which uses Simulink to 

model the driving algorithms and an Unreal Engine to create 

the virtual driving environment which is a 3D creation tool 

for photorealistic visualization. The driving scenario for the 

simulations has been implemented using MATLAB’s Driving 

Scenario Designer. The teleoperation station used in the 

current work is shown in Fig. 1 along with the computer and 

monitor. The computer has 24 cores with an Intel i9 processor, 

64 GB RAM and a NVIDIA RTX 4090 24 GB graphics card. 

The monitor is a Samsung 49” Odyssey G29. 

A. Control Input Device and Vehicle Dynamics 

The teleoperator provides the control inputs i.e., steering 

angle, throttle and brake commands using the Logitech G29 

racing wheel along with external throttle and brake pedals. 

The racing wheel provides dual-motor force feedback which 

accurately simulates the force effects and like real steering 

wheels, it has a 900-degree lock-to-lock rotation. The brake 

pedal, which is nonlinear, mimics the characteristics of a 

pressure sensitive brake system. The Joystick Input block has 

been used as an interface between the control commands 

provided by the user and the Simulink environment. 

To simulate real-world driving, it is very important to use 

an accurate vehicle dynamics algorithm. A 

Simulink/MATLAB based 34-DOF vehicle dynamic 

simulator including nonlinear tire force models has been used 

to simulate the actual vehicle dynamics for the ego vehicle 

while utilizing the control inputs provided by the user. 

B. Delay Control Unit 

Wireless latency affects teleoperation due to delay in 

transmission of the remote vehicle environment over wireless 

communication network. In particular, camera images and 

Lidar data which have large sizes are more likely to be 

delayed during wireless transmission. To simulate this 

latency, the delay block in Simulink has been used to delay 

the display to the teleoperator. This block delays the display 

signal based on the specified delay length. Moreover, it is also 

possible to input a variable delay length based on the local 

wireless network characteristics. For the present simulations, 

a constant delay has been used. 

C. Simulink-Unreal Engine Co-simulation Environment 

The co-simulation environment in the MATLAB 

Automated Driving Toolbox uses Simulink to simulate the 

positions and orientation of various actors and 3D 

photorealism to visualize the various actors in the 3D 

simulation environment which acts as the visual display for 
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the teleoperator. The vehicle dynamics provides the trajectory 

of the ego vehicle in response to the real time control 

commands of the teleoperator, which is then used in the 

Scenario Reader block to obtain the trajectories of the other 

actors and real-time lane boundary information. The 

trajectories of the various actors (ego and non-ego vehicles) 

are then fed to a Simulation 3D Vehicle with Ground 

Following block which provides the position and yaw angle 

data in the inertial frame to the Simulation 3D Scene 

Configuration block. The Simulation 3D Scene Configuration 

block renders the 3D simulation environment in the Unreal 

Engine which provides photo-realistic visual feedback to the 

teleoperator.  

To simulate latency in the teleoperation process, the 

display of the trajectories of the various actors is delayed 

using a delay block and are then fed to an Unreal Engine. The 

block diagram of the teleoperation simulator platform for both 

without delay and with delay cases is shown in Fig. 2. 

III. PREDICTIVE DISPLAY SYSTEM 

Latency in the display of the remote vehicle environment 

affects the performance of the teleoperator drastically and it 

was shown in [14] that even a 0.17 s delay degrades control 

performance significantly for driving in a right lane position 

at 55 mph. Although the study was successful in evaluating 

the teleoperator’s performance in the presence of delay, it did 

not propose any solution to tackle latency. This paper aims to 

address this problem using PD. The estimation-based PD 

method modifies the visual feedback to the teleoperator based 

on intermediate updates of the state estimates of the ego-

vehicle and the other vehicles on the road. This method offers 

an attractive option to enhance teleoperation. This section 

describes the state estimation and vehicle tracking algorithms 

which have been used to provide the PD, along with 

presenting the drawbacks for a relative motion model and 

need for an inertial motion model. 

A. State Estimation of Ego Vehicle 

Consider an inertial frame (𝑂𝐼 , 𝑥𝐼 , 𝑦𝐼) whose origin is 

located at 𝑂𝐼  and the 𝑥 and 𝑦 axis are given by 𝑥𝐼 ,𝑦𝐼 . Consider 

the ego frame (𝑂𝐸 , 𝑥𝐸 , 𝑦𝐸) located at the center of mass (CoM) 

of the ego vehicle 𝑂𝐸  (𝑥𝐸 , 𝑦𝐸) where 𝑥𝐸  and 𝑦𝐸  are chosen to 

be the position of the CoM of ego vehicle expressed in the 

Inertial frame 𝐼. Let, the state vector 𝑋 be, 

 𝑋 = [𝑥𝐸 𝑦𝐸 𝑥̇𝐸 𝑦̇𝐸 𝜓𝐸]𝑇 = [𝑥1 … 𝑥5]𝑇 (1) 

where, 𝑥̇𝐸  and 𝑦̇𝐸 are the time derivatives of 𝑥𝐸  and 𝑦𝐸 , 

respectively and 𝜓𝐸  is the yaw angle of the ego vehicle.  

It is assumed that the ego vehicle has an IMU located at its 

CoM which provides the following measurements that can be 

used as inputs by the observer, 

 𝑢 = [𝑎𝑥 𝑎𝑦 𝜔𝐸]𝑇 = [𝑢1 𝑢2 𝑢3]𝑇 (2) 

where 𝑎𝑥 and 𝑎𝑦 are the accelerations of the ego vehicle about 

𝑥𝐸  and 𝑦𝐸  axis respectively and 𝜔𝐸 is the yaw rate of ego 

vehicle. Fig. 3 shows the ego vehicle with respect to (w.r.t.) 

the Inertial frame, the states vector, and the inputs provided 

by IMU. 

The state dynamics for ego motion is as follows, 

 

𝑋̇ =

[
 
 
 
 

𝑥3

𝑥4

𝑢1 cos(𝑥5) − 𝑢2 sin(𝑥5)

𝑢1 sin(𝑥5) + 𝑢2 cos(𝑥5)
𝑢3 ]

 
 
 
 

= 𝑓(𝑋, 𝑢) (3) 

Eq. (3) uses the inputs from the IMU to compute the state 

derivatives which can be integrated to obtain the desired 

states. However, estimation purely from the IMU will suffer 

from a problem of drift due to the presence of unknown bias 

which increases the error over time. Hence, other position 

 
 

Fig. 3. Ego Vehicle with respect to inertial frame 

 

Fig. 2. Schematic diagram for human-in-loop teleoperation platform 
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sensor measurements are needed to compensate for the drift 

due to IMU. Examples of position sensors include LIDAR, 

camera, and GPS. Although LIDAR and camera based 

odometry methods can be highly accurate but their use is 

infeasible in teleoperation due to increased data size which 

consumes large bandwidth thus adding delay in state 

estimation. On the other hand, due to low data size, GPS is a 

feasible option for teleoperation which will avoid latency. 

However, regular GPS suffers from low accuracy (±1.5 m) 

but when used with RTK corrections the accuracy can 

increase to the order of 1-10 cm. The Mn-CORS network 

operated by MnDOT and the Minnesota State Government 

provides RTK-corrected GPS with accuracy of 10 cm 

throughout the state of Minnesota. Hence, in this work GPS 

measurements corrected using the Mn-CORS type networks 

have been used. 

The noisy and biased measured IMU readings are related 

to the true signals as follows, 

 𝑎𝑥 = 𝑎𝑥,𝑡 + 𝑎𝑥,𝑏𝑡 + 𝑎𝑥,𝑛 (4) 

 𝑎𝑦 = 𝑎𝑦,𝑡 + 𝑎𝑦,𝑏𝑡 + 𝑎𝑦,𝑛 (5) 

 𝜔𝐸 = 𝜔𝐸,𝑡 + 𝜔𝐸,𝑏𝑡 + 𝜔𝐸,𝑛 (6) 

where, 𝑎𝑥,𝑡 , 𝑎𝑦,𝑡 and 𝜔𝐸,𝑡 are the true readings, 𝑎𝑥,𝑏𝑡 , 𝑎𝑦,𝑏𝑡 and 

𝜔𝐸,𝑏𝑡 are the constant accelerometer and gyro bias 

respectively and 𝑎𝑥,𝑛, 𝑎𝑦,𝑛 and 𝜔𝐸,𝑛 are as follows, 

 

[

𝑎𝑥,𝑛

𝑎𝑦,𝑛

𝜔𝑛

] ~

[
 
 
 
𝑁(0, 𝜎𝑎𝑥,𝑛

)

𝑁 (0, 𝜎𝑎𝑦
)

𝑁(0, 𝜎𝜔𝑛
) ]
 
 
 

 (7) 

where, 𝑁(0, 𝜎𝑎𝑥,𝑛
) indicates white noise with zero mean and 

standard deviation of 𝜎𝑎𝑥,𝑛
. 

The measurement equation for the GPS is as follows, 

 𝑦 =  [𝑥𝐸  𝑦𝐸]𝑇 + 𝑣 (8) 

where, 𝑣~𝑁(0, 𝑅𝑔𝑝𝑠) is the measurement noise with error 

covariance matrix 𝑅𝑔𝑝𝑠. Although the state is observable 

using the measurement in (8), however error analysis for 

Vehicle Tracking (described in the next subsection) reveals 

that yaw angle of the ego vehicle must be estimated with high 

accuracy. Hence, it is very important to use measurements of 

yaw angle. In literature [15], various methods have been 

described to compute heading which includes, using magnetic 

field, angular velocity of earth, vision, dual antenna GNSS, 

velocity and acceleration heading. The use of magnetic field 

to compute heading accurately is infeasible in AVs due to the 

presence of many local magnetic materials. Using angular 

velocity of earth requires costly sensors and using vision will 

add latency to state estimation. A dual antenna GPS provides 

accurate measurements for heading; however, this method 

requires a large baseline. Computing heading using velocities 

from GPS is a viable option as it is low cost and suitable for 

teleoperation. Acceleration based methods for computing 

heading require the differentiation of velocities obtained from 

GPS and are prone to errors at low acceleration. Hence, 

velocities computed using GPS have been used to measure the 

yaw angle.  

The velocity of the ego vehicle in the inertial frame (𝑥̇𝐸
𝐼  and 

𝑦̇𝐸
𝐼 ) are related to those in the ego frame as follows, 

 
[
𝑥̇𝐸

𝑦̇𝐸
] = 𝑅𝐸 [

𝑣𝑥

𝑣𝑦
] = [

𝑐𝐸𝑣𝑥 − 𝑠𝐸𝑣𝑦

𝑐𝐸𝑣𝑦 + 𝑠𝐸𝑣𝑥
] (9) 

where, 𝑣𝑥 and 𝑣𝑦 is the velocity of ego vehicle along the ego 

frame axis, 𝑐𝐸 and 𝑠𝐸 are cos (𝜓𝐸) and sin (𝜓𝐸) respectively, 

and 𝑅𝐸 is the rotation matrix of ego frame w.r.t. inertial frame 

given by, 

 𝑅𝐸 = [
𝑐𝐸 −𝑠𝐸

𝑠𝐸 𝑐𝐸
] (10) 

If 𝑣𝑥 ≫ 𝑣𝑦, then (9) reduces to, 

 
[
𝑥̇𝐸

𝑦̇𝐸
] = [

𝑐𝐸𝑣𝑥

𝑠𝐸𝑣𝑥
] (11) 

Hence,  

 
𝜓𝐸 = tan−1 (

𝑦̇𝐸

𝑥̇𝐸

) (12) 

Both 𝑥̇𝐸  and 𝑦̇𝐸 can be measured from GPS with sufficient 

accuracy [16] and hence can be used to measure the yaw 

angle. However, the measurements are prone to error when 

the lateral velocity is high (i.e., high slip angle). 

 Given the measurement of position and yaw angle along 

with the IMU inputs, an Extended Kalman Filter (EKF) has 

been used for state estimation. The prediction equations for 

the EKF are as follows,  

 𝑥̅𝑘+1
− = 𝑓(𝑥̅𝑘

+, 𝑢𝑘) (13) 

 𝑃𝑘+1
− = 𝐹𝑘𝑃𝑘

+𝐹𝑘
𝑇 + 𝑄𝑘  (14) 

where, 𝐹𝑘 = 𝐼5 + Δ𝑡𝐴𝑘, 𝐴𝑘 =
𝜕𝑓

𝜕𝑥
(𝑥̅𝑘

+, 𝑢𝑘) and 𝑃𝑘 and 𝑄𝑘 are 

the state covariance matrix and process noise covariance 

matrix respectively. The correction equations for the EKF are 

as follows, 

 𝐾𝑘+1 = 𝑃𝑘+1
− 𝐻𝑘+1

𝑇 (𝐻𝑘+1𝑃𝑘+1
− 𝐻𝑘+1

𝑇 + 𝑅𝑘+1)
−1 (15) 

 𝑥̅𝑘+1
+ = 𝑥̅𝑘+1 + 𝐾𝑘+1(𝑦𝑘+1 − 𝐻𝑘+1𝑥𝑘+1) (16) 

 𝑃𝑘+1
+ = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1

−  (17) 

where, 𝐻𝑘+1 = [
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

] and 𝑅𝑘+1  is the 

measurement noise covariance matrix. Due to the low size of 

IMU and GPS data [17], it has been assumed that there is no 

latency in their transmission to the teleoperator and that state 

estimation is being done on the teleoperator side. 

B. Vehicle Tracking 

The relative orientation between the ego vehicle and 

tracked vehicle is shown in Fig. 4. The tracked vehicle frame 

(𝑂𝐶 , 𝑥𝐶 , 𝑦𝐶) is located at the CoM of the tracked vehicle 

𝑂𝐶(𝑥𝐶 , 𝑦𝐶). The relative position of the tracked vehicle w.r.t. 

the ego vehicle in the Inertial frame (𝑟𝐸𝐶) is given as follows,  

 𝑟𝐸𝐶 = 𝑂𝐶 − 𝑂𝐸 = [
𝑟𝑥
𝑟𝑦

] = [
𝑥𝐶 − 𝑥𝐸

𝑦𝐶 − 𝑦𝐸
] (18) 

Let the state vector of the tracked vehicle be, 

 𝑋𝑣 = [𝑥𝐶  𝑦𝐶  𝑉𝐶  𝐴𝐶  𝜓𝐶  𝛽𝐶]
𝑇 = [𝑥1 …  𝑥6]

𝑇 (19) 

where 𝑉𝐶 is the velocity, 𝐴𝐶 is the acceleration, 𝜓𝐶  is the yaw 
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angle and 𝛽𝐶  is the slide slip angle of the tracked vehicle. 

The state dynamics of the tracked vehicle is as follows, 

 

𝑋̇𝑣 =

[
 
 
 
 
 
𝑥3cos (𝑥5 + 𝑥6)
𝑥3sin (𝑥5 + 𝑥6)

𝑥4

0
𝑥3 sin(𝑥6) /𝑙𝑟

0 ]
 
 
 
 
 

= 𝑓𝑣(𝑋𝑣) (20) 

where 𝑙𝑟  is the distance of the rear wheels from the CoM of 

the tracked vehicle. The given vehicle tracking model is 

suitable to track a vehicle on both straight and curved road 

with constant acceleration and side slip angle [15]. The radar 

provides the position of the tracked vehicle w.r.t. the ego 

vehicle given by, 

 𝑦𝑣 = (𝑅𝐸)𝑇𝑟𝐸𝐶 + 𝑤 (21) 

where, 𝑤~𝑁(0, 𝜎𝑤). The radar measurements are w.r.t. the 

ego frame but the vehicle tracking model is w.r.t. the inertial 

frame. The radar measurements can be converted to the 

inertial frame using the ego state estimates and then can be 

used with the vehicle tracking model. The reasons for using 

this approach will be detailed in the next sub-section. The new 

measurement model is as follows, 

 𝑦𝑣𝑛
= 𝑅̂𝐸𝑦𝑣 + 𝑂̂𝐸 = 𝑅̂𝐸(𝑅𝐸)𝑇𝑟𝐸𝐶 + 𝑂̂𝐸 + 𝑅̂𝐸𝑤 (22) 

where, 𝑅̂𝐸 is the rotation matrix of the estimated ego frame 

w.r.t. the inertial frame formed using estimated yaw angle 𝜓̂𝐸.  

The product of 𝑅̂𝐸 and 𝑅𝐸 is given as follows, 

 
𝑅̂𝐸(𝑅𝐸)𝑇 = [

𝑐𝑒𝜓
−𝑠𝑒𝜓

𝑠𝑒𝜓
𝑐𝑒𝜓

] (23) 

where, 𝑒𝜓 = 𝜓̂𝐸 − 𝜓𝐸  is the error in estimated yaw angle. The 

error in the measurement is given by, 

 𝑒𝑦 = [𝑒𝑦(1) 𝑒𝑦(2)]
𝑇

= 𝑦𝑣𝑛
− 𝑂𝐶  

= 𝑅̂𝐸(𝑅𝐸)𝑇 (𝑂𝐶 − 𝑂𝐸) − (𝑂𝐶 − 𝑂̂𝐸) + 𝑅̂𝐸𝑤 
(24) 

where 𝑂𝐶 − 𝑂̂𝐸 is the relative position of tracked vehicle w.r.t. 

the estimated ego frame given by, 

 
𝑂𝐶 − 𝑂̂𝐸 = [

𝑟̂𝑥
𝑟̂𝑦

] = [
𝑥𝐶 − 𝑥̂𝐸

𝑦𝐶 − 𝑦̂𝐸
] (25) 

where, 𝑥̂𝐸  and 𝑦̂𝐸 are the estimated ego position. On further 

solving (24),  

 
𝑒𝑦 = 𝑅̂𝐸(𝑅𝐸)𝑇 [

𝑟𝑥
𝑟𝑦

] − [
𝑟̂𝑥
𝑟̂𝑦

] + 𝑅̂𝐸𝑤        

= [
𝑐𝑒𝜓

𝑟𝑥 − 𝑠𝑒𝜓
𝑟𝑦 − 𝑟̂𝑥

𝑐𝑒𝜓
𝑟𝑦 + 𝑠𝑒𝜓

𝑟𝑥 − 𝑟̂𝑦
] + 𝑅̂𝐸𝑤 

(26) 

Using small angle approximation, (26) can be further 

simplified as follows, 

 

 
𝑒𝑦 ≈ [

𝑟𝑥 − 𝑒𝜓𝑟𝑦 − 𝑟̂𝑥
𝑟𝑦 + 𝑒𝜓𝑟𝑥 − 𝑟̂𝑦

] + 𝑅̂𝐸𝑤 

= [
𝑥̂𝐸 − 𝑥𝐸 − 𝑒𝜓𝑟𝑦
𝑦̂𝐸 − 𝑦𝐸 + 𝑒𝜓𝑟𝑥

] + 𝑅̂𝐸𝑤 

(27) 

From (27), it can be observed that the error in the 

measurement scales up with the relative position of the 

tracked vehicle w.r.t. ego vehicle and is linearly proportional 

to the error in estimated ego position and estimated yaw angle. 

Fig. 5 shows the plot of variation of the error in measurement 

w.r.t. increase in relative distance for various values of 𝑒𝜓. 

From this plot it can be easily observed that even a 10 error in 

the estimated yaw angle can give an error of 1.5 m for a 

relative distance of 100 m. Moreover, for vehicle tracking in 

the same lane, 𝑟𝑦  is small compared to 𝑟𝑥 introducing more 

error in measuring the lateral position of the tracked vehicle. 

For 𝑟𝑥 = 80 𝑚 and 𝑟𝑦 = 5 𝑚, which is typical for lane 

following, it can be observed that even 10 error in yaw angle 

results in 1.39 m error in lateral measurement which is 

sufficient to misjudge the tracked vehicle as being in the 

adjacent lane. Hence it is very important to estimate the states 

of the ego vehicle such that there is least error in the 

measurement. Due to this reason, it was important to include 

heading measurements using GPS velocities in the previous 

sub-section. 

For applications related to PD, it is very important to 

estimate the tracked vehicle accurately for displaying it to the 

teleoperator. Due to the increase in error in measurement with 

the relative distance, an upper bound was put on the relative 

distance. This upper bound is decided based on safe driving 

distance on highway which is around 80 m. If the tracked 

vehicle is within 80 m, vehicle tracking was performed. 

Otherwise, a delayed feed was displayed (without estimation). 

Given the vehicle tracking dynamics in (20) and the 

 
Fig. 5. The error in measurement Vs relative distance 

 
Fig. 4. Relative orientations of vehicles w.r.t. inertial frame 
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measurement equations in (22), EKF as given in Eqs. (13)-

(17) has been used to estimate the tracked vehicle variables, 

with 𝑓 replaced with 𝑓𝑣 and 𝐻𝑘+1 = [
1 0 0 0 0 0
0 1 0 0 0 0

].  

Given the combined estimates of ego vehicle and tracked 

vehicle, the estimated vehicles were displayed to the 

teleoperator using the position and yaw angles of the vehicles. 

The complete flow chart of the PD system using state and 

vehicle tracking estimates is shown in Fig. 6.  

It is important to know how the images are generated based 

on the estimates of ego vehicle and tracked vehicle. The 

Unreal Engine creates a colored mesh for the static 

environment (which includes the roads, trees, buildings and 

traffic lights) and loads the in-built colored mesh for the 

tracked vehicles. The tracked vehicles are placed in this 

environment based on the estimates of their position and yaw 

angle. A camera object is created on the ego vehicle based on 

the extrinsic and intrinsic matrix of the camera. The extrinsic 

matrix of the camera is computed based on the position and 

orientation of the ego vehicle while the intrinsic matrix is 

computed based on the pixel focal length and offset of 

principal points. Using the camera object, ray casting is done 

on the mesh of static scene and the tracked vehicles, and an 

image is generated to be shown to the teleoperator. A 

schematic of the complete PD algorithm in pseudo-code is 

shown in Algorithm 1. It is important to note that PD for real-

time application requires a colored mesh which can be 

generated based on delayed point cloud and images but this 

task is beyond the scope of this paper and is an important 

research area in itself. 

 

Algorithm 1: Estimation based predictive display 
 Require: Predictive Display ← f(Camera Intrinsic, IMU, GPS, Radar, 

 1.   X0
+, P0, Q, R,XV0

+ , PV0, QV, RV) 

 2. while The system runs do 

 3.  ⊳State Estimation: 

 4.  X̂k+1
−  ← f(X̂k

+, IMU) 

 5.  Pk+1
−  ← FkPk

+Fk
T + Q 

 6.  Kk+1  ← Pk+1
− Hk+1

T (Hk+1Pk+1
− Hk+1

T + R)
−1

 

 7.  X̂k+1
+ ← X̂k+1

− + Kk+1(GPS − Hk+1X̂k+1
− ) 

 8.  Pk+1
+   ← (I − Kk+1Hk+1)Pk+1

−  

 9.  ⊳Vehicle Tracking: 

   10.  X̂Vk+1
− ← fV(X̂k

+, IMU) 

   11.  Pvk+1
− ← FvkPvk

+ Fvk
T + Qv 

   12.  Kk+1 ← Pk+1
− Hk+1

T (Hk+1Pk+1
− Hk+1

T + Rv)
−1

 

   13.  yvn
← R̂E(X̂k+1

+ )Radar+ÔE(X̂k+1
+ )  

   14.  X̂vk+1
+ ← X̂vk+1

− + Kk+1(GPS − Hk+1X̂vk+1
− ) 

   15.  Pvk+1
+ ← (I − Kk+1Hk+1)Pvk+1

−  

   16.  Predictive Display = UnrealEngine(Camera Intrinsic,    

   X̂k+1
+ , X̂vk+1

+ ) 

   17. end while 

   18. Result: PD using state estimation of ego vehicle and other vehicles. 

C. Models for Vehicle Tracking: Relative Vs Inertial 

In previous literature, it has often been erroneously 

assumed that the state vectors of the tracked vehicle are 

relative to the ego vehicle. In other words, the state dynamics 

as given in (20), have been used by many authors to track 

vehicles [18-20], but with the states assumed to include 

relative distance variables, instead of inertial variables. Let 

the relative position of the tracked vehicle w.r.t. the ego 

vehicle be 𝑟𝐸𝐶
′ , given by 

 
𝑟𝐸𝐶

′ = [
𝑟𝑥

′

𝑟𝑦
′] = (𝑅𝐸)𝑇𝑟𝐸𝐶

= [
𝑐𝐸(𝑥𝐶 − 𝑥𝐸) + 𝑠𝐸(𝑦𝐶 − 𝑦𝐸)

−𝑠𝐸(𝑥𝐶 − 𝑥𝐸) + 𝑐𝐸(𝑦𝐶 − 𝑦𝐸)
] 

(28) 

Consider a state vector of the relative motion model where 

the first two states are the relative longitudinal and lateral 

positions,   

 𝑋𝑣𝑟 = [𝑟𝑥
′ 𝑟𝑦

′ 𝑉𝐶  𝐴𝐶  𝜓𝑟  𝛽𝐶]
𝑇

= [𝑥1 …  𝑥6]
𝑇 (29) 

Where, 𝜓𝑟 = 𝜓𝐶 − 𝜓𝐸  is the relative yaw angle.  

The state dynamics of this relative model constructed 

similar to (20) is given by, 

 

𝑋̇𝑣𝑟 =

[
 
 
 
 
 
𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4

𝑥̇5

𝑥̇6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑥3cos (𝑥5 + 𝑥6)
𝑥3sin (𝑥5 + 𝑥6)

𝑥4

0
𝑥3 sin(𝑥6) /𝑙𝑟

0 ]
 
 
 
 
 

= 𝑓𝑣(𝑋𝑣𝑟) (30) 

The output for the relative model is given by, 

 𝑦𝑣𝑟 = 𝑟𝐸𝐶
′ = 𝐶𝑋𝑣𝑟 = [

1 0 0 0 0 0
0 1 0 0 0 0

] 𝑋𝑣𝑟 (31) 

The derivative of 𝑟𝐸𝐶
′  w.r.t. time is as follows, 

 
𝑟̇𝐸𝐶

′ = [
𝑟̇𝑥

′

𝑟̇𝑦
′]

= [
𝑐𝐸(𝑥̇𝐶 − 𝑥̇𝐸) + 𝑠𝐸(𝑦̇𝐶 − 𝑦̇𝐸) + 𝜓𝐸̇𝑟𝑦

′

−𝑠𝐸(𝑥̇𝐶 − 𝑥̇𝐸) + 𝑐𝐸(𝑦̇𝐶 − 𝑦̇𝐸) − 𝜓𝐸̇𝑟𝑥
′
] 

(32) 

Assuming that the motion of the tracked vehicle in the 

inertial coordinates is correctly given by (20), then (32) can 

be simplified as follows, 

 
𝑟̇𝐸𝐶

′ = [
𝑐𝐸(𝑉𝐶cC − 𝑥̇𝐸) + 𝑠𝐸(𝑉𝐶𝑠𝐶 − 𝑦̇𝐸) + 𝜓̇𝐸𝑟𝑦

′

−𝑠𝐸(𝑉𝐶cC − 𝑥̇𝐸) + 𝑐𝐸(𝑉𝐶𝑠𝐶 − 𝑦̇𝐸) − 𝜓𝐸̇𝑟𝑥
′
] 

= [
𝑉𝑐(𝑐𝐸𝑐𝐶 + 𝑠𝐸𝑠𝐶) − 𝑥̇𝐸𝑐𝐸 − 𝑦̇𝐸𝑠𝐸 + 𝜓̇𝐸𝑟𝑦

′

𝑉𝑐(𝑠𝐶𝑐𝐸 − 𝑠𝐸𝑐𝐶) + 𝑥̇𝐸𝑠𝐸 + 𝑦̇𝐸𝑐𝐸 − 𝜓𝐸̇𝑟𝑥
′
] 

(33) 

where, 𝑠𝐶 = sin (𝜓𝐶 + 𝛽𝐶) and 𝑐𝐶 = cos (𝜓𝐶 + 𝛽𝐶). The 

above equation can be further simplified as follows, 

 
𝑟̇𝐸𝐶

′ = [
𝑉𝐶cos (𝜓𝐶 + 𝛽𝐶 − 𝜓𝐸) − 𝑣𝑥 + 𝜓̇𝐸𝑟𝑦

′

𝑉𝐶 sin(𝜓𝐶 + 𝛽𝐶 − 𝜓𝐸) − 𝑣𝑦 − 𝜓𝐸̇𝑟𝑥
′
] (34) 

where, 𝑣𝑥 = 𝑐𝐸𝑥̇𝐸 + 𝑠𝐸𝑦̇𝐸 and 𝑣𝑦 = 𝑐𝐸𝑦̇𝐸 − 𝑠𝐸 𝑥̇𝐸. The error 

in the differential equation 𝑒𝑟 = [𝑥̇1 𝑥̇2]
𝑇 − 𝑟̇𝐸𝐶

′  is given by, 

 
𝑒𝑟 = [

𝑣𝑥 − 𝜓𝐸̇𝑟𝑦
′

𝑣𝑦 + 𝜓̇𝐸𝑟𝑥
′
] (35) 

It can be observed that 𝑒𝑟 = 0, for the case when 𝑣𝑥 =

𝑣𝑦 = 𝜓̇𝐸 = 0, i.e. when the ego vehicle is stationary, 

 
Fig. 6. Block diagram for estimation-based PD 



Final Version as submitted for publication in IEEE Transactions on Intelligent Vehicles  

otherwise for a general vehicle motion 𝑒𝑟 ≠ 0, which means 

the two differential equations are not same indicating that the 

output is not compatible with the relative positions in the 

relative motion model. Moreover, the relative motion model 

does not consider the effect of the yaw rate of ego vehicle in 

the derivative of relative yaw angle (𝑥̇5). Thus, for general 

vehicle motion such relative motion model will give 

inaccurate results and hence the observer design will also be 

inaccurate.  

 One solution to address the inaccuracy in using the relative 

motion model is to use the inertial motion model as described 

in (19) and (20) and add the relative measurements obtained 

from the radar sensor to estimated ego state variables. The 

new output for the inertial model is then given by, 

 
𝑦𝑣𝑛

= 𝑅𝐸𝑟𝐸𝐶
′ + 𝑂𝐸 = [

𝑐𝐸 −𝑠𝐸

𝑠𝐸 𝑐𝐸
] [

𝑟𝑥
′

𝑟𝑦
′] + [

𝑥𝐸

𝑦𝐸
] = [

𝑥𝑐

𝑦𝐶
] (36) 

It can be easily observed that if the motion of tracked 

vehicle in the inertial coordinates is given by (20), then the 

output given in (36) is consistent with the states in the inertial 

motion model. Thus, ego states estimates together with radar 

measurements can be used with the inertial motion model of 

the tracked vehicle to estimate its states as described in 

previous sub-section.  

Consider the case when the ego vehicle is moving on a 

straight road with constant velocity of 6.07 m/s with another 

vehicle in the adjacent lane. Assume that the other vehicle 

moves with a constant velocity of 20 m/s on the straight road 

and the ego vehicle performs a lane change maneuver to the 

same lane as the target vehicle. The real relative position and 

the position obtained from the relative motion model is shown 

in Fig. 7. It can be easily observed that the real relative 

position is inconsistent with that of relative motion model, 

resulting in significant errors over time. However, if the ego 

states are used along with the inertial motion model, the 

position from the inertial motion model and inertial positions 

are consistent and there is negligible error as shown in Fig. 8. 

These results validate the inaccuracies in relative motion 

model and the importance of using inertial vehicle models 

along with ego state variables. 

IV. RESULTS 

To evaluate the performance of the estimation-based PD 

system, an experimental human subjects study was conducted 

and will be described in this section.  

A. Image Comparison Analysis 

First, a pixel-based image analysis has been used to evaluate 

the effectiveness of the estimation-based PD system as 

compared to the delayed display. Peak signal to noise ratio 

(PSNR), mean squared error (MSE) and structural similarity 

index measure (SSIM) have been used to compare both the 

delayed display and the PD enhancement with the un-delayed 

feed.  

Given a reference image 𝑓 and a test image 𝑔 with size 

𝑀 × 𝑁, where the location of pixel with coordinates (𝑖, 𝑗) is 

given by 𝑓𝑖𝑗, the MSE is given by, 

 
Fig. 8. Positions from inertial motion model and new outputs 

 
Fig. 7. Positions from relative motion model and measured outputs 

  
(a) Delayed feed (b) With PD 

Fig. 9. Scenario for image comparison 
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𝑀𝑆𝐸(𝑓, 𝑔) =

1

𝑀𝑁
∑ ∑(𝑓𝑖𝑗 − 𝑔𝑖𝑗)

2
𝑁

𝑖=1

𝑀

𝑖=1

 (37) 

The lower the MSE the higher is the image quality. The PSNR 

between the reference image and test image is given as  

 𝑃𝑆𝑁𝑅(𝑓, 𝑔) = 10 𝑙𝑜𝑔10(2552/𝑀𝑆𝐸(𝑓, 𝑔)) (38) 

As PSNR increases the image quality also increases. The 

SSIM between the reference and test image is as given as 

follows,  

 
𝑆𝑆𝐼𝑀(𝑓, 𝑔) =

(2𝜇𝑓𝜇𝑔 + 𝐶1)(2𝜎𝑓𝑔 + 𝐶2)

(𝜇𝑓
2 + 𝜇𝑔

2 + 𝐶1)(𝜎𝑓
2 + 𝜎𝑔

2 + 𝐶2)
 (39) 

where, 𝜎𝑓𝑔, 𝜎𝑓 , 𝜎𝑔, 𝜇𝑓 , 𝜇𝑔 are the cross-covariance, standard 

deviations and local means for images 𝑓 and 𝑔. The SSIM 

ranges between 0 and 1. Zero SSIM means no correlation and 

an SSIM of one means 𝑓 = 𝑔.  

For the image comparison analysis, a straight road highway 

driving scenario was designed using MATLAB’s Driving 

Scenario Designer and is shown in Fig. 9 which also shows 

the display feed with delay and with PD. In this specific 

comparison scenario only a constant throttle was provided to 

the ego vehicle. The scenario had three more vehicles one in 

the same lane, another in the adjacent lane and a truck in the 

opposite lane. All the vehicles had straight motion. A one 

second delay was present for the delayed feed and state 

estimation and vehicle tracking was used for the PD system. 

Both delayed display and PD enhanced display were 

compared with the un-delayed video display for the image 

comparison analysis.  

TABLE I.  IMAGE COMPARISION WITH AND WITHOUT PD 

Metric 
Scenario % 

improvement 

using PD 1 s delay PD 

Average PSNR 25.28 35.8 41.59 

Average MSE 189.51 21.56 88.62 

Average SSIM 0.92 0.99 8 

 

The plot of PSNR, MSE and SSIM for the delayed display 

and PD is shown in Fig. 10. Table I describes the average 

values of the Image comparison metrices. 

B. Emergency Lane Change 

An experiment was performed to analyze the effect of time 

delay on the steering control performance of the ego vehicle. 

Consider a scenario in which the ego vehicle follows another 

vehicle in the same lane but the other vehicle suddenly stops 

forcing the ego vehicle to change lanes. The whole scenario 

is depicted in Fig. 11 where the blue car is the ego vehicle, 

and the red car is the other vehicle.  

This scenario was studied for the no-delay case, with 

various values of delay and with PD to evaluate the 

degradation caused due to delay and the effectiveness of PD. 

Previous work from the literature showed that even a 0.17 s 

delay can start causing degradation in performance, hence the 

scenario was analyzed for the following values of time delay: 

0.2 s, 0.25 s, 0.3 s, 0.35 s, 0.4 s, 0.45 s and 0.5 s and compared 

to the no-delay (i.e. 0.01 sec sampling) case. The performance 

for this scenario was evaluated using a metric of excursion 

from the lane center, as shown in Fig. 11. The results for the 

excursion from lane center of the ego vehicle without delay, 

with various values of delay and with PD are shown in the bar 

chart given in Fig. 12. From this figure it is clear that the 

degradation in teleoperator’s performance is quite high at 0.5 

s delay and hence the larger human subjects study was 

designed based on this value of delay. 

C. Human Subjects Study 

To further evaluate the performance of the estimation-based 

PD system, a human subjects study has been conducted. In 

this study the data of five teleoperator participants was 

analyzed to evaluate the degradation caused due to delay and 

the effectiveness of the PD system. For the human subject 

 
Fig. 12. Excursion from lane center for ego vehicle with various 

values of delay 

 
Fig. 11. Lane change scenario 

Excursion from lane center line

 
Fig. 10. Plots for PSNR, MSE and SSIM for delayed display and PD 
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study, a curved road scenario was used. The curved road 

extends from 1400 m to 200 m in x direction and -200 m to 

1600 m in y direction as shown in Fig. 13. 

The curved road has 4 lanes of width 3.85 m each and have 

been rendered in the teleoperation platform as shown in Fig. 

14 and was displayed to the participants. The display included 

the cockpit of the ego vehicle along with the speed display (in 

miles per hour (mph)).  

Each participant was required to drive the vehicle in three 

tests. In the first test, the participants drove the vehicle 

without any delay, in the second test with a delay of 0.5 s and 

in the third test with estimation-based PD. In each test, the 

participant drove the vehicle for 10 mins. For the first few 

minutes, the participants had to drive without any vehicle in 

the lane, then they had to follow a red sedan, then sole driving 

on an extremely curved road, then follow a black SUV and 

then a green sports car. This scenario was common to all the 

three tests. Thus, a total of 15 experiments were conducted for 

the human subjects study. The participants were instructed to 

always try to keep the ego vehicle in the same lane, drive at a 

speed of 30 to 35 mph and if they encountered another 

vehicle, they had to follow it even if their speed had to be 

reduced but never leave the lane even if the other vehicle does. 

The sensor specifications of the Ego vehicle are provided 

in Table II which describe the specifications of GPS, IMU, 

camera and radar. 

TABLE II.  SENSOR SPECIFICATION OF EGO VEHICLE 

Sensor Specification Value 

GPS position accuracy (m) 0.1 

GPS velocity accuracy (m/s) 0.1 

GPS rate (Hz) 100 

Accelerometer initial bias (m/s2) 0.0141 

Accelerometer VRW (mg) 0.2 

Gyroscope initial bias (deg/s) 0.0573 

Gyroscope ARW (deg/√Hr ) 0.21 

IMU rate (Hz) 100 

Radar accuracy (m) 0.1 

Radar rate (Hz) 100 

Camera field of view horizontal (deg)  56.72 

Camera field of view vertical (deg)  87.66 

Camera frame rate (FPS) 100 

 

For estimation-based PD, the sensor data was transmitted 

to the teleoperator side and due to very small data size for 

these variables, it was assumed that there is no delay in the 

transmission. An EKF based state estimation and vehicle 

tracking was then done to modify the delayed feed for PD. 

Table III describes the state estimation error for each of the  

 
Fig. 15. Error in state estimation of ego vehicle 

 
Fig. 13. Curved road scenario for human subjects study 

 
Fig. 14. Real-time display to the teleoperator during remote driving 
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TABLE III.  STATE ESTIMATION ERROR FOR EACH PARTICIPANT 

Participant 𝒙̃ (m) 𝒚̃ (m) 𝝍̃ (deg) 

 RMSE Max 

error 

RMSE Max 

error 

RMSE Max 

error 

1 0.012 0.087 0.013 0.139 0.115 0.607 

2 0.012 0.087 0.014 0.139 0.119 0.539 

3 0.012 0.087 0.014 0.139 0.167 0.825 

4 0.011 0.087 0.013 0.139 0.108 0.4 

5 0.011 0.087 0.013 0.139 0.100 0.472 

TABLE IV.  VEHICLE TRACKING ERROR FOR EACH PARTICIPANT 

Participant 𝒙̃ (m) 𝒚̃ (m) 𝝍̃ (deg) 

 RMSE Max 

error 

RMSE Max 

error 

RMSE Max 

error 

1 0.039 0.347 0.076 0.690 1.26 9.76 

2 0.058 0.347 0.082 0.690 1.28 9.62 

3 0.140 0.677 0.090 0.692 1.30 9.38 

4 0.044 0.347 0.099 0.689 1.29 9.85 

5 0.040 0.347 0.072 0.690 1.24 9.37 

 

participants. The state estimation error is 𝑒̃ = 𝑒 − 𝑒̂, where  

𝑒 is the true value and 𝑒̂ is the estimated value. The state 

estimation results for a sample participant are shown in Fig. 

15. Table IV shows the vehicle tracking error for red sedan 

(actor 1) for each of the participants. The relative distance 

and error in measurement for the red sedan is shown in Fig. 

16 and Fig. 17 shows the error in vehicle tracking for a 

sample participant.  

 
Fig. 17. Vehicle Tracking for Red Sedan 

 
Fig. 18. Box plot for speed of each participant 

 
Fig. 16. Error in measurement for Red Sedan 

 
Fig. 19. Speed Vs time for one of the participants 

 
Fig. 20. Box plot for lane offset of each participant 
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For evaluating longitudinal control performance, the speed 

of the ego vehicle for each participant has been computed. 

Fig. 18 shows the box plot for the speed of each participant 

over the whole experiment. In all box plots, the lower and 

upper boundaries of the whisker correspond to the minimum 

and maximum value of data respectively and the red line in 

the box corresponds to the median of the data. Fig. 19 shows 

the plot of the speed of a sample participant for all the three 

driving cases. 

For evaluating the lateral control performance for the ego 

vehicle of each participant, the lane offsets have been 

evaluated for each participant. The box plot for the lane offset 

of each participant for all three cases is given in Fig. 20. The 

plot for the lane offset of the ego vehicle for both delayed and 

PD cases for a sample participant is shown in Fig. 21.   

  For vehicle following performance the relative distance 

from the tracked vehicle has been evaluated for each 

participant. The box plot for the relative distance from the red 

sedan has been shown in Fig. 22. The plot shows the 

participants performances for all three cases. 

 The overall results for the human subjects study are 

summarized in Table V. The metrics are an average over all 

the five participants. The average speed and distance covered 

were used as metrics to evaluate the longitudinal 

performance. The maximum distance outside the lane and the 

number of times the vehicle moved outside the lane were used 

for evaluating lateral performance. The relative distance to the 

tracked vehicle were used for evaluating the vehicle following 

performance.  The table shows the data for all three cases and 

percent change due to delay and PD case as compared to the 

without delay case. 

TABLE V.  RESULTS FROM TELEOPERATION STATION STUDY 

Metric Average Values % 

change 

due to 

delay 

% 

change 

after PD  
Without 

delay 

0.5 s 

delay 

PD 

Average speed (m/s) 12.38 11.35 12.4 8.3 0.16 

Distance covered (km) 7.43 6.75 7.44 9.15 0.13 

Max distance outside 

lane (m) 

0.07 3.2 0.09 4471 28.6 

Number of times 

outside lane 

0.6 9.6 0.8 1500 33.3 

Relative distance Red 

Sedan (m) 

26.8 58.77 27.4

4 

119.3 2.38 

Relative distance 

Black SUV (m) 

24.16 98.41 28.1 307.3 16.3 

V. DISCUSSION 

A. Image Comparison Analysis 

The image comparison metric as shown in Fig. 10 clearly 

shows that PSNR for PD is always higher than that of the 

delayed display, the MSE for PD is always less than that of 

the delayed display and the SSIM of PD is closer to 1 as 

compared to delayed display. The results indicate that image 

quality using PD is closer to the undelayed video as compared 

to the delayed display. Table I describes the average values of 

the Image comparison metrices. It can be clearly observed 

from the table that estimation-based PD is able to increase the 

average PSNR by 41.59 %, decrease the average MSE by 

88.62 % and increase the average SSIM by 8 %. Hence, it can 

  
(a) With delay (b) With PD 

Fig. 21. Lane offset Vs Time 

 
Fig. 22. Box plot for relative distances of each participant 
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be concluded from the Image comparison analysis that the use 

of state estimation and vehicle tracking in estimation-based 

PD is able to enhance the delayed video display. 

B. Emergency Lane Change 

The excursion from lane center performance as shown in Fig. 

12 indicates that the ego vehicle is able to perform the 

emergency lane change for the no delay case and for delay 

values less than 0.3 s. In this test case the speed of the 

participant was less than 35 mph because of which a delay 

lower than 0.3 s did not hamper the performance of the 

teleoperator. But in prior work a degradation was observed 

even at 0.17 s because the speed of the ego vehicle was 55 

mph which is quite high. In the current test case, the 

performance of the teleoperator starts degrading after 0.3 s 

delay where a slight excursion is seen. This degradation in 

performance peaks after 0.4 s when the ego vehicle starts 

moving out of road boundary and at 0.5 s the teleoperator is 

not able to control the vehicle properly as indicated by the 

large out of lane excursion. In fact, for the 0.5 s case, the ego 

vehicle goes completely off the road during the lane change. 

This clearly indicates that a 0.5 s delay can hamper 

teleoperation drastically and hence this value of delay was 

used for the larger human subjects study. The last bar in Fig. 

12 shows the performance for the PD case. From the plot it is 

clear that using PD allows the teleoperator to keep the ego 

vehicle in lane and gives a performance close to that of the 

no-delay case. Thus, using PD effectively compensates for 

latency and provides performance much better than delayed 

cases. 

C. Human Subjects Study 

The error in state estimation for each participant, as shown 

in Table III, indicates the error in estimates for position and 

yaw angle. From the table it is clear that the estimator is able 

to achieve an accuracy of 1.2 cm (RMSE) using the GPS 

measurements which have an accuracy of 10 cm. Moreover, 

the use of heading angle for measuring the yaw angle results 

in more accurate estimation of the yaw angle giving an 

accuracy of 0.1 deg (RMSE), - This indicates that (12) is a 

valid approximation for measuring yaw angle when the slip 

angle is not high. The 0.1 deg accuracy of yaw angle ensures 

that the error in measurement for vehicle tracking will be less 

than 0.2 m for a relative distance of 80 m, thus allowing for 

accurate vehicle tracking. From Fig. 15, it is clear that the 

error in the position and velocity is of the order of 5 cm and 5 

cm/s. The error in the yaw angle is less than 0.50 indicating 

that the filter is able to estimate the yaw angle accurately. 

 The error in vehicle tracking for each of the participants, as 

shown in Table IV, indicates that the error in the position is 

of the order of 5 cm (RMSE). Only for Participant 3 the error 

is more than 10 cm, this is because of the fact that the relative 

distance between the ego vehicle and tracked vehicle was 

quite high (as will be described later in this section) resulting 

in increased error in measurement thus hampering the 

accuracy of the estimator. Moreover, the error in estimate of 

yaw angle is less than 1.25 deg. Thus, the estimator is able to 

accurately estimate the position and yaw angle of the tracked 

vehicle - Only in cases when the relative distance is high the 

performance of the estimator decreases. These results also 

show that the accuracy of state estimation for the ego vehicle 

is sufficient to perform accurate vehicle tracking.  

From Fig.16 it can be observed that 𝑟𝑥 is larger than 𝑟𝑦  till 

200s after which 𝑟𝑦  starts increasing, this is because till 200s 

the red sedan is in the same lane as the ego vehicle and starts 

to change lane at around 196s. Due to this the error in 

measurement in 𝑦 (𝑒𝑦 (2)) is larger as compared to the error 

in measurement in 𝑥 (𝑒𝑦 (1)) till 200s but after the lane change 

maneuver error in measurement in x (𝑒𝑦(1)) starts increasing. 

Since the error in the estimated yaw angle and position is less 

than 2.50 and 0.05 m, the error in the measurement is less than 

0.1 m. From Fig. 17, it can be observed that the estimator is 

able to track the position of the target vehicle accurately along 

with the velocity, acceleration, yaw angle and the side slip 

angle of the vehicle. However, when the vehicle changes lane 

(at around 196 s) the assumption of constant acceleration is 

not valid and hence the accuracy of acceleration estimation 

decreases which affects other estimates also. 

The box plot for the speed of each participant given in Fig. 

18, is indicative of the longitudinal control performance of the 

ego vehicle. The higher the speed of the ego vehicle for the 

ego vehicle, the higher will be the longitudinal performance 

of the participant. From the plot we can clearly observe that 

the median speed for each of the participant for the without 

delay case and PD case is greater than that of delayed case. 

The decrease in speed of the vehicle due to time delay is also 

observed in previous works and this study proves it even 

more. Because of the presence of time delay there is a lag in 

the visual feed of the teleporter, resulting in increased efforts 

to control the vehicle thus compromising the speed. However 

due to accurate ego vehicle state estimation the PD is able to 

improve the speed of the teleoperator such that it is better than 

delayed case and is closer to the without delay case. To 

analyze this further, the plot of the speed of a sample 

participant for all the three cases as shown in Fig. 19 were 

examined. From the plot it is clear that the speed of the 

participant for the delayed case is less than that of the without 

delay and PD case. Moreover, high magnitude of variation in 

speeds indicates difficulty in driving the vehicle in the 

delayed case. The speed of the participant for the PD case is 

comparable to that of the without delay case and is higher as 

compared to delayed case indicating an improved 

performance in longitudinal control. From Table V, it can be 

observed that both the average speed and distance covered 

with 0.5 s delay decreases drastically but when PD is used the 

performance is much closer to the without delay case and 

there is an increase of around 8 % in these metrics when PD 

is used as compared to delayed case.  

The lateral offset of the center of the ego vehicle for each 

participant as shown in Fig. 20, indicates that the vehicle 

center was always inside the lane for the without delay and 

PD case. However, it went outside the lane boundaries for all 

the participants when there was a delay of 0.5 s. The results 

clearly indicate that the delay hampers the lateral control 

performance as more control effort is need to stabilize the ego 

vehicle. To analyze this further, the plot of the lateral offset 

as shown in Fig. 21 (which also shows the right and left edge 
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of the ego vehicle) was examined. From the plot it is clear that 

the ego vehicle goes outside the lane many times for the 

delayed case, moreover at around 400 s the whole vehicle is 

outside the lane. But for the PD system the lane keeping 

performance is much better than the delayed case as the ego 

vehicle is always within the lane boundaries. Table V 

indicates that the maximum times the vehicle goes out of lane 

is much less for PD as compared to delayed case. Moreover, 

the frequency of vehicles moving outside the lane is 1467 % 

more in the delayed case as compared to the PD case.  

The box plot for the relative distance to actor 1, as shown 

in Fig. 22, indicates that the relative distance between the 

tracked and ego vehicles is always more in the delayed case 

as compared to the no-delay and PD cases. This indicates that 

the vehicle following performance degrades when there is a 

delay but improves when PD is used. Furthermore, the 

average relative distance with the two tracked vehicles is 

significantly less in PD as compared to the delayed case and 

much closer to the without delay case. Also, PD decreases the 

relative distance by 117 % with the red sedan and 290 % for 

the black SUV as compared to the delayed case. 

VI. CONCLUSION 

In this paper, an estimation-based predictive display (PD) 

system was designed to improve teleoperation performance 

with autonomous vehicles. The teleoperation application 

suffers from a problem of latency in transmitting images to 

the teleoperation station which can degrade the teleoperator's 

performance. A MATLAB-based human in-loop 

teleoperation environment was developed to evaluate the 

degradation caused due to delay and the effectiveness of PD 

in compensating for the delay. State estimation and vehicle 

tracking were used by the PD system in predicting the 

position of ego and non-ego vehicles. A novel vehicle 

tracking algorithm was developed using an inertial motion 

model and ego state estimates. Error analysis was performed 

to further analyze the new vehicle tracking algorithm. Image 

comparison analysis compared delayed and modified displays 

(based on the developed PD algorithm) with the original un-

delayed display, and results indicated that PD increased the 

performance of the display using metrics of PSNR, MSE, and 

SSIM. A human subjects experimental study demonstrated 

the determinantal effect of even a 0.5 s delay and 

improvements obtained by PD in longitudinal control, lateral 

control, and vehicle following. Although this study proves the 

efficacy of PD, it used a 0.01 second update rate for 

measurements of GPS, IMU and radar. There is a need to 

analyze the performance of PD at lower update frequencies 

which will be a part of future research. 
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