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Teleoperation Enhancement for Autonomous Vehicles Using
Estimation Based Predictive Display*

Gaurav Sharma and Rajesh Rajamani

Abstract— Teleoperation is increasingly used in the operation
of delivery robots and is beginning to be utilized for certain
autonomous vehicle intervention applications. This paper
addresses the challenges in teleoperation of an autonomous
vehicle due to latencies in wireless communication between the
remote vehicle and the teleoperator station. Camera video
images and Lidar data are typically delayed during wireless
transmission but are critical for proper display of the remote
vehicle’s real-time road environment to the teleoperator. Data
collected with experiments in this project show that a 0.5 second
delay in real-time display makes it extremely difficult for the
teleoperator to control the remote vehicle. This problem is
addressed in the paper by using a predictive display (PD) system
which provides intermediate updates of the remote vehicle’s
environment while waiting for actual camera images. The
predictive display utilizes estimated positions of the ego vehicle
and of other vehicles on the road computed using model-based
extended Kalman filters. A crucial result presented in the paper
is that vehicle motion models need to be inertial rather than
relative and so tracking of other vehicles requires accurate
localization of the ego vehicle itself. An experimental study using
5 human teleoperators is conducted to compare teleoperation
performance with and without predictive display. A 0.5 second
time-delay in camera images makes it impossible to control the
vehicle to stay in its lane on curved roads, but the use of the
developed predictive display system enables safe remote vehicle
control with almost as accurate a performance as the delay-free
case.

Key Words: Autonomous vehicles, teleoperation, predictive display,
trajectory estimation

1. INTRODUCTION

While there is significant on-going research in the US
related to autonomous vehicles (AVs) that will operate
entirely without the need for driver intervention, it is not
expected that the first fully self-driving vehicles will be
introduced into the market until at least 2028, even according
to the most optimistic estimates [1]. Current automated
driving systems can operate autonomously a majority of the
time in many traffic and environment scenarios. However,
human intervention is occasionally needed, and backup safety
drivers are now almost always present as a part of test
vehicles. Some examples of situations where human
intervention may be needed are the presence of snow cover
on the road making the lane markers invisible, active
snow/rain precipitation, the presence of construction zones on
road, and the failure of critical sensors, actuators or other
components on the vehicle.
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Enabling autonomous vehicles (AVs) to operate without
requiring a backup in-vehicle safety driver is essential for
scaling the deployment of the technology. Teleoperation has
long been a solution in space robotics where a human
teleoperator takes over when autonomous operation is
prevented. In the case of AVs, a remote teleoperator can
likewise step in to get the car past whatever hazard might be
too hard for the vehicle to handle by itself in an autonomous
fashion.

A German startup company Vay [2] is currently using a
human teleoperator to remotely drive vehicles via computer
to a location where a human customer wants to be picked up.
Then the customer drives to their destination, after which the
remote operator again drives the car away. Likewise, the
company Halo is experimenting with a system in Las Vegas
where a rental car is driven remotely by a human and dropped
off for the customer to drive. When the customer is done, the
remote operators take it to its next destination [3].
Applications of such autonomous vehicles with occasional
teleoperation when needed can include valet parking, taxi
fleets, and ride-sharing services similar to Uber or Lyft.

Teleoperation performance requires strong wireless
connectivity that depends on network conditions such as
latency, bandwidth, packet loss and reliability. Due to huge
data streams originating from Lidar and camera sensors on the
vehicle and also the need for reliably communicating critical
real-time inputs from the tele-driver to the vehicle every few
milli-seconds, addressing bandwidth and latency limitations
is critical for this application.

Human drivers can solve delay-free tasks with cognitive
challenges faster than automation systems, but this
relationship reverses with the presence of time delays.
Delayed perception during teleoperated driving significantly
increases the effort of the human, and the operator has to take
care of the task and the monitoring of the environment with
more intensive effort [4,5]. This paper proposes to develop an
estimation based predictive display (PD) system that
estimates trajectories of the ego vehicle and other vehicles on
the road to perform realistic intermediate updates of the
remote environment to compensate for delayed camera data.

Previous researchers have studied the display of
predicted ego-vehicle position on the teleoperator screen
using a semitransparent vehicle [6], a rectangular frame and
tracks [7] or a pointing line [8]. However, they just assumed
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the non-delayed future position of the ego-vehicle was known

and did not do position estimation.

Others have used open-loop predictions of future motion
to predict ego vehicle position, such as clothoids trajectories
[9,10] and predictors [11]. Finally, researchers have also used
zooming and sliding (or image transformation) based on real-
time throttle/brake/steering inputs from the teleoperator
[12,13]. However, none of the authors described above have
used model-based estimation algorithms for prediction of
ego-vehicle position. Further, none of them have included
predictions of positions of other nearby vehicles on the road.
Predictions of trajectories of nearby vehicles is critical to
ensure safe driving by the teleoperator.

The primary contributions of this paper are as follows:

1) The paper develops a teleoperation platform using
MATLAB’s Automated Driving Toolbox to provide a co-
simulation environment for experimental human-in-the-
loop teleoperation studies.

2) This paper presents for the first time an estimation-based
PD system which uses both ego state estimation and
estimation of other vehicle trajectories for teleoperation
enhancement. Hence, the trajectories of both ego and non-
ego actors are used to augment PD.

3) This paper describes the inaccuracies of using relative
vehicle motion models and the importance of using inertial
models for vehicle tracking.

4) This paper presents an experimental human-subjects study
to evaluate the effectiveness of using estimation-based PD
for teleoperation enhancement and compensation of the
degradation caused by delay.

The outline of the rest of the paper is as follows. In section

II, the MATLAB based teleoperation simulator is described.
Section III describes the estimation-based PD system where
both state estimation and vehicle tracking are described along
with the inaccuracies of relative motion models and the need
for an inertial motion model. Section IV and V describes and
discusses the results for image comparison analysis, lane offset
analysis for various time delay and from a human-subjects
study and proves the efficacy of using PD. Section VI contains
the conclusions.

II. TELEOPERATION SIMULATOR DESIGN

Designing a teleoperation platform requires a virtual
driving environment, control input devices including throttle,
brakes and steering wheel, accurate vehicle dynamics, delay
control units and realistic visual feedback of the remote
vehicle environment to the human user. This section details
the various aspects of the teleoperator station design which
has been used as the testing environment for human-in-the-
loop teleoperation simulations. The MATLAB Automated
Driving Toolbox has been used for this purpose. The toolbox
provides a co-simulation environment which uses Simulink to
model the driving algorithms and an Unreal Engine to create
the virtual driving environment which is a 3D creation tool
for photorealistic visualization. The driving scenario for the
simulations has been implemented using MATLAB’s Driving
Scenario Designer. The teleoperation station used in the
current work is shown in Fig. 1 along with the computer and

Fig. 1. Teleoperation Station

monitor. The computer has 24 cores with an Intel i9 processor,
64 GB RAM and a NVIDIA RTX 4090 24 GB graphics card.
The monitor is a Samsung 49” Odyssey G29.

A. Control Input Device and Vehicle Dynamics

The teleoperator provides the control inputs i.e., steering
angle, throttle and brake commands using the Logitech G29
racing wheel along with external throttle and brake pedals.
The racing wheel provides dual-motor force feedback which
accurately simulates the force effects and like real steering
wheels, it has a 900-degree lock-to-lock rotation. The brake
pedal, which is nonlinear, mimics the characteristics of a
pressure sensitive brake system. The Joystick Input block has
been used as an interface between the control commands
provided by the user and the Simulink environment.

To simulate real-world driving, it is very important to use
an  accurate  vehicle  dynamics  algorithm. A
Simulink/MATLAB based 34-DOF vehicle dynamic
simulator including nonlinear tire force models has been used
to simulate the actual vehicle dynamics for the ego vehicle
while utilizing the control inputs provided by the user.

B. Delay Control Unit

Wireless latency affects teleoperation due to delay in
transmission of the remote vehicle environment over wireless
communication network. In particular, camera images and
Lidar data which have large sizes are more likely to be
delayed during wireless transmission. To simulate this
latency, the delay block in Simulink has been used to delay
the display to the teleoperator. This block delays the display
signal based on the specified delay length. Moreover, it is also
possible to input a variable delay length based on the local
wireless network characteristics. For the present simulations,
a constant delay has been used.

C. Simulink-Unreal Engine Co-simulation Environment

The co-simulation environment in the MATLAB
Automated Driving Toolbox uses Simulink to simulate the
positions and orientation of various actors and 3D
photorealism to visualize the various actors in the 3D
simulation environment which acts as the visual display for
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Fig. 2. Schematic diagram for human-in-loop teleoperation platform

the teleoperator. The vehicle dynamics provides the trajectory
of the ego vehicle in response to the real time control
commands of the teleoperator, which is then used in the
Scenario Reader block to obtain the trajectories of the other
actors and real-time lane boundary information. The
trajectories of the various actors (ego and non-ego vehicles)
are then fed to a Simulation 3D Vehicle with Ground
Following block which provides the position and yaw angle
data in the inertial frame to the Simulation 3D Scene
Configuration block. The Simulation 3D Scene Configuration
block renders the 3D simulation environment in the Unreal
Engine which provides photo-realistic visual feedback to the
teleoperator.

To simulate latency in the teleoperation process, the
display of the trajectories of the various actors is delayed
using a delay block and are then fed to an Unreal Engine. The
block diagram of the teleoperation simulator platform for both
without delay and with delay cases is shown in Fig. 2.

III. PREDICTIVE DISPLAY SYSTEM

Latency in the display of the remote vehicle environment
affects the performance of the teleoperator drastically and it
was shown in [14] that even a 0.17 s delay degrades control
performance significantly for driving in a right lane position
at 55 mph. Although the study was successful in evaluating
the teleoperator’s performance in the presence of delay, it did
not propose any solution to tackle latency. This paper aims to
address this problem using PD. The estimation-based PD
method modifies the visual feedback to the teleoperator based
on intermediate updates of the state estimates of the ego-
vehicle and the other vehicles on the road. This method offers
an attractive option to enhance teleoperation. This section
describes the state estimation and vehicle tracking algorithms
which have been used to provide the PD, along with
presenting the drawbacks for a relative motion model and
need for an inertial motion model.

A. State Estimation of Ego Vehicle

Consider an inertial frame (O;, x;,y;) whose origin is
located at O; and the x and y axis are given by x;,y;. Consider
the ego frame (O, xi, yi) located at the center of mass (CoM)

Fig. 3. Ego Vehicle with respect to inertial frame

of the ego vehicle Oy (xg, yz) where x; and yg are chosen to
be the position of the CoM of ego vehicle expressed in the
Inertial frame I. Let, the state vector X be,

X=[xg ye X Ve ¥e]"=[% xs]" (1)
where, Xz and yp are the time derivatives of xy and yjg,
respectively and ¢ is the yaw angle of the ego vehicle.

It is assumed that the ego vehicle has an IMU located at its
CoM which provides the following measurements that can be
used as inputs by the observer,
wp]" =[w Uz us]” 2)

where a, and a,, are the accelerations of the ego vehicle about

u=[A a

xg and yg axis respectively and wg is the yaw rate of ego
vehicle. Fig. 3 shows the ego vehicle with respect to (w.r.t.)
the Inertial frame, the states vector, and the inputs provided
by IMU.
The state dynamics for ego motion is as follows,
X3
X4
X = |uq cos(xs) —uz sin(xs) [ = f(X,u) (3)
Uy sin(xs) + u, cos(xs)
Us
Eq. (3) uses the inputs from the IMU to compute the state
derivatives which can be integrated to obtain the desired
states. However, estimation purely from the IMU will suffer
from a problem of drift due to the presence of unknown bias
which increases the error over time. Hence, other position
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sensor measurements are needed to compensate for the drift
due to IMU. Examples of position sensors include LIDAR,
camera, and GPS. Although LIDAR and camera based
odometry methods can be highly accurate but their use is
infeasible in teleoperation due to increased data size which
consumes large bandwidth thus adding delay in state
estimation. On the other hand, due to low data size, GPS is a
feasible option for teleoperation which will avoid latency.
However, regular GPS suffers from low accuracy (£1.5 m)
but when used with RTK corrections the accuracy can
increase to the order of 1-10 cm. The Mn-CORS network
operated by MnDOT and the Minnesota State Government
provides RTK-corrected GPS with accuracy of 10 cm
throughout the state of Minnesota. Hence, in this work GPS
measurements corrected using the Mn-CORS type networks
have been used.

The noisy and biased measured IMU readings are related
to the true signals as follows,

Ay = Ay + Aype + Ay “)
ay = Ay +ayp+ayq ®)
W = W+ Wgpe + Wgy (6)

where, a, ., a,; and wg . are the true readings, a, ¢, a, pr and

wgpe are the constant accelerometer and gyro bias
respectively and a, p,, @, , and wg,, are as follows,
Qyn N(O’ Uax,n)
[ay,n ~|N(0,04,) (7
n
N(0,0,,)

where, N(0, g, ) indicates white noise with zero mean and
standard deviation of g, _.
x,n

The measurement equation for the GPS is as follows,

y= [xpyel" +v (®)
where, v~N (0, Ryps) is the measurement noise with error
covariance matrix Rgps. Although the state is observable
using the measurement in (8), however error analysis for
Vehicle Tracking (described in the next subsection) reveals
that yaw angle of the ego vehicle must be estimated with high
accuracy. Hence, it is very important to use measurements of
yaw angle. In literature [15], various methods have been
described to compute heading which includes, using magnetic
field, angular velocity of earth, vision, dual antenna GNSS,
velocity and acceleration heading. The use of magnetic field
to compute heading accurately is infeasible in AVs due to the
presence of many local magnetic materials. Using angular
velocity of earth requires costly sensors and using vision will
add latency to state estimation. A dual antenna GPS provides
accurate measurements for heading; however, this method
requires a large baseline. Computing heading using velocities
from GPS is a viable option as it is low cost and suitable for
teleoperation. Acceleration based methods for computing
heading require the differentiation of velocities obtained from
GPS and are prone to errors at low acceleration. Hence,
velocities computed using GPS have been used to measure the

yaw angle.
The velocity of the ego vehicle in the inertial frame (% and
yL) are related to those in the ego frame as follows,

xg] VUx1  [CEVx — SEVy
[5’5] = R [vy] B [CEvy + Sva] ©)
where, v, and v, is the velocity of ego vehicle along the ego

frame axis, ¢ and s are cos () and sin () respectively,
and Ry is the rotation matrix of ego frame w.r.t. inertial frame

given by,
_[¢e —SE
Re=ls o (10)
If v, > v, then (9) reduces to,
JEE _ CEUx
[}’E] B [SEVx] (i
Hence,
Yp =tan™?! <§C,—E> (12)
E

Both % and y; can be measured from GPS with sufficient
accuracy [16] and hence can be used to measure the yaw
angle. However, the measurements are prone to error when
the lateral velocity is high (i.e., high slip angle).

Given the measurement of position and yaw angle along
with the IMU inputs, an Extended Kalman Filter (EKF) has
been used for state estimation. The prediction equations for
the EKF are as follows,

Xierr = f (%, ) (13)
Py = FPEFY + Qi (14)
where, Fj, =[5 + AtAy, A, = z—ﬁ(f,:r, u) and Py and Qy are

the state covariance matrix and process noise covariance
matrix respectively. The correction equations for the EKF are
as follows,

Kir1 = PyaHirs (Hio1 P Hipy + Ree)™ (15)

Xip1 = X1 + Kiew1 Qa1 — Hir1Xpes1) (16)

Pk++1 =0 - Kk+1Hk+1)Pk_+1 (17)
1 0 0 0 O

where, Hpyp =[0 1 0 0 O and Ryyq is the
0 0 0 0 1

measurement noise covariance matrix. Due to the low size of
IMU and GPS data [17], it has been assumed that there is no
latency in their transmission to the teleoperator and that state
estimation is being done on the teleoperator side.

B. Vehicle Tracking

The relative orientation between the ego vehicle and
tracked vehicle is shown in Fig. 4. The tracked vehicle frame
(Oc¢,x¢,yc) is located at the CoM of the tracked vehicle
O¢(x¢,yc). The relative position of the tracked vehicle w.r.t.
the ego vehicle in the Inertial frame (rg¢) is given as follows,

o ™ _[¥c—XE
roc = 0c—0p =[] = [,r _ 7] (18)

Let the state vector of the tracked vehicle be,
Xy = [xc ye Ve Ac e Bel” = [x1 . x6]" (19)

where V- is the velocity, A is the acceleration, 1 is the yaw
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Fig. 4. Relative orientations of vehicles w.r.t. inertial frame

angle and f3 is the slide slip angle of the tracked vehicle.
The state dynamics of the tracked vehicle is as follows,
x3€0S (X5 + X¢)
x3sin (x5 + x¢)
X, = ’64
x5 sin(x) /1,
0
where [, is the distance of the rear wheels from the CoM of
the tracked vehicle. The given vehicle tracking model is
suitable to track a vehicle on both straight and curved road
with constant acceleration and side slip angle [15]. The radar
provides the position of the tracked vehicle w.r.t. the ego
vehicle given by,

= f,(Xy) (20)

Yo = (Rg) 1 +w (21)
where, w~N (0, g,,). The radar measurements are w.r.t. the
ego frame but the vehicle tracking model is w.r.t. the inertial
frame. The radar measurements can be converted to the
inertial frame using the ego state estimates and then can be
used with the vehicle tracking model. The reasons for using
this approach will be detailed in the next sub-section. The new
measurement model is as follows,

You = Reyy + 0p = Rg(Rp) 15 + O + Rpw  (22)

where, Ry is the rotation matrix of the estimated ego frame
w.r.t. the inertial frame formed using estimated yaw angle 1.
The product of R and R is given as follows,

~ Ce —Se

T _ P P
R = [t o] 23)
where, e, = P — Py is the error in estimated yaw angle. The

error in the measurement is given by,

ey = [ey(D) e,]" =, — 0

= Rg(Rp)" (0c — 05) — (0¢ — Og) + Rgw

where O, — Op is the relative position of tracked vehicle w.r.t.

the estimated ego frame given by,

A Tx Xc — X

Oc =05 = [fy] - [)’C - 3715]

where, X; and y are the estimated ego position. On further
solving (24),

(24)

(25)

N 1, T ~
e, = R.(R)T|.” —[3‘]+Rw
y E( E) [ry] ry E

Cople = Seyty —H| . (26)
= . |+ Rgw
CoyTy T Sey T — Ty

Using small angle approximation, (26) can be further
simplified as follows,

T — eyly — T ~
ey ~ [rx " ewry _ fx] + Rpw

y Yix —ly
[T

Ye — Vg T eyl

From (27), it can be observed that the error in the
measurement scales up with the relative position of the
tracked vehicle w.r.t. ego vehicle and is linearly proportional
to the error in estimated ego position and estimated yaw angle.
Fig. 5 shows the plot of variation of the error in measurement
w.r.t. increase in relative distance for various values of ey,
From this plot it can be easily observed that even a 1° error in
the estimated yaw angle can give an error of 1.5 m for a

27

ey(l:fcre =0.1°
4
e (1) fore =05°
5 e (1)fore =1° ’-”
-- —ey(ZJI‘cre =0.1° ’,"
= o Lt
2t ey(2;|‘cre =05 “—
o =10 = R
ey(z:fcre L P

Error in measurment (m)

0 20 40 60 80 100 120 140 160 180 200
Iy, Iy (m)

Fig. 5. The error in measurement Vs relative distance

relative distance of 100 m. Moreover, for vehicle tracking in
the same lane, 7, is small compared to 7, introducing more
error in measuring the lateral position of the tracked vehicle.
For o, =80m and n, = 5m, which is typical for lane
following, it can be observed that even 1° error in yaw angle
results in 1.39 m error in lateral measurement which is
sufficient to misjudge the tracked vehicle as being in the
adjacent lane. Hence it is very important to estimate the states
of the ego vehicle such that there is least error in the
measurement. Due to this reason, it was important to include
heading measurements using GPS velocities in the previous
sub-section.

For applications related to PD, it is very important to
estimate the tracked vehicle accurately for displaying it to the
teleoperator. Due to the increase in error in measurement with
the relative distance, an upper bound was put on the relative
distance. This upper bound is decided based on safe driving
distance on highway which is around 80 m. If the tracked
vehicle is within 80 m, vehicle tracking was performed.
Otherwise, a delayed feed was displayed (without estimation).
Given the vehicle tracking dynamics in (20) and the
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measurement equations in (22), EKF as given in Egs. (13)-
(17) has been used to estimate the tracked vehicle variables,

with f replaced with f,, and Hp ., = [(1) (1) 8 8 8 8 .

Given the combined estimates of ego vehicle and tracked
vehicle, the estimated vehicles were displayed to the
teleoperator using the position and yaw angles of the vehicles.
The complete flow chart of the PD system using state and
vehicle tracking estimates is shown in Fig. 6.

It is important to know how the images are generated based
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Fig. 6. Block diagram for estimation-based PD

on the estimates of ego vehicle and tracked vehicle. The
Unreal Engine creates a colored mesh for the static
environment (which includes the roads, trees, buildings and
traffic lights) and loads the in-built colored mesh for the
tracked vehicles. The tracked vehicles are placed in this
environment based on the estimates of their position and yaw
angle. A camera object is created on the ego vehicle based on
the extrinsic and intrinsic matrix of the camera. The extrinsic
matrix of the camera is computed based on the position and
orientation of the ego vehicle while the intrinsic matrix is
computed based on the pixel focal length and offset of
principal points. Using the camera object, ray casting is done
on the mesh of static scene and the tracked vehicles, and an
image is generated to be shown to the teleoperator. A
schematic of the complete PD algorithm in pseudo-code is
shown in Algorithm 1. It is important to note that PD for real-
time application requires a colored mesh which can be
generated based on delayed point cloud and images but this
task is beyond the scope of this paper and is an important
research area in itself.

Algorithm 1: Estimation based predictive display
Require: Predictive Display « f(Camera Intrinsic, IMU, GPS, Radar,
L. X3, Py, Q RXo, Pyo, Qv, Ry)
2. while The system runs do
3 o>State Estimation:
4. Ry < f(Xf,MU)
5. PBga <« RBIFLHQ
6
7
8

_ _ -1
Kis1 < Pk+1H1I+1(Hk+1Pk+1H1I+1 + R)
X1 < Xt + Kiwa (GPS — Hy 1 Xieyp)
: P&« (U= K Hir )P
9. =Vehicle Tracking:
10 Xjper < (X, IMU)
11. Pice1 < FuPiFo + Qy
- _ -1
12. Kis1 < Pk+1HIZ+1(Hk+1Pk+1HI+1 + Rv)
13y, © Re(Riy)Radar+0p (i)
14 Xfer « Xior + Kis1 (GPS — Hi1 XGiep0)

15. Picsr © (U = Kot Hir )P

16.  Predictive Display = UnrealEngine(Camera Intrinsic,
Xir1 Xiicr1)

17. end while

18. Result: PD using state estimation of ego vehicle and other vehicles.

C. Models for Vehicle Tracking: Relative Vs Inertial

In previous literature, it has often been erroneously
assumed that the state vectors of the tracked vehicle are
relative to the ego vehicle. In other words, the state dynamics
as given in (20), have been used by many authors to track
vehicles [18-20], but with the states assumed to include
relative distance variables, instead of inertial variables. Let
the relative position of the tracked vehicle w.r.t. the ego
vehicle be g, given by

Tge = [:z] = (Rp)"1gc
[ cg(x¢ —xg) + sg(Yc — YE) ]
—sg(x¢ —xg) + cg(Yec — ¥E)
Consider a state vector of the relative motion model where

the first two states are the relative longitudinal and lateral
positions,

! ! T
Xpr = [y Ve Ac ¥y Be] =[xy o x6]T  (29)
Where, Y, = Y — Yy is the relative yaw angle.

The state dynamics of this relative model constructed
similar to (20) is given by,

(28)

X x3c0s (x5 + x¢)
X, x3sin (x5 + xg)
Xor = xi = ; = fo(Xor) (30)
X5 x5 sin(xg) /1,
566 0
The output for the relative model is given by,
, 10 0 0 0O
va' = rEC = CXUT = [0 1 0 0 0 0 XUT (31)
The derivative of g, w.r.t. time is as follows,
=3
Tge = | .2
co - (32)
_ [ cg(c —xp) + se (Ve — Vi) + Yg1y ]
—sg(Xc — %g) + cg(Ye — Ye) — Y7y

Assuming that the motion of the tracked vehicle in the
inertial coordinates is correctly given by (20), then (32) can
be simplified as follows,

i [ cg(Veee — xg) + sg(Vese —ye) + l/)Ery’ ]
EC = . . -
—sp(Veee = Xg) + cg(Vese — yg) — ety (33)
_ [VC(CECC + SpSc) — XgCg — YpSg + 1/1573;]
Ve(scep — sgec) + XpSg + YpCp — ety
where, s¢ = sin (Y¢ + ;) and c; = cos (Y + B¢). The
above equation can be further simplified as follows,
o [VCCOS (e + Bc—Yp) —vx + 111137”3;
EC = . -
Vesin(e + Be — ¥g) — vy, — g1y
where, v, = cgXg + sgYg and v), = cgYg — SgXg. The error

] (34)

in the differential equation e, = [X; %,]T — 74 is given by,

_ Ux — I,ZJET);
Vy + l/)ETx’

It can be observed that e, = 0, for the case when v, =

vy, =Yy =0, ie. when the ego vehicle is stationary,

(35)

er
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otherwise for a general vehicle motion e, # 0, which means
the two differential equations are not same indicating that the
output is not compatible with the relative positions in the
relative motion model. Moreover, the relative motion model
does not consider the effect of the yaw rate of ego vehicle in
the derivative of relative yaw angle (xs). Thus, for general
vehicle motion such relative motion model will give
inaccurate results and hence the observer design will also be
inaccurate.

Real relative position I

~— 200 |——Real relative position r'y .1
— - = =r, from relative motion model A0
-

S el P
© "Y[|= = =r, from relative motion model B
o ¥ -
Rt -
= o
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(a4 e
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Fig. 7. Positions from relative motion model and measured outputs

|——Real inertial position Xo

Real inertial position Ye

- =X from inertial motion model
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Fig. 8. Positions from inertial motion model and new outputs

One solution to address the inaccuracy in using the relative
motion model is to use the inertial motion model as described
in (19) and (20) and add the relative measurements obtained
from the radar sensor to estimated ego state variables. The

Delayed

(a) Delayed feed

new output for the inertial model is then given by,
g —Sg1[Ty X X
o= roic 0 =[5 1]+ B2 = (oo

It can be easily observed that if the motion of tracked
vehicle in the inertial coordinates is given by (20), then the
output given in (36) is consistent with the states in the inertial
motion model. Thus, ego states estimates together with radar
measurements can be used with the inertial motion model of
the tracked vehicle to estimate its states as described in
previous sub-section.

Consider the case when the ego vehicle is moving on a
straight road with constant velocity of 6.07 m/s with another
vehicle in the adjacent lane. Assume that the other vehicle
moves with a constant velocity of 20 m/s on the straight road
and the ego vehicle performs a lane change maneuver to the
same lane as the target vehicle. The real relative position and
the position obtained from the relative motion model is shown
in Fig. 7. It can be easily observed that the real relative
position is inconsistent with that of relative motion model,
resulting in significant errors over time. However, if the ego
states are used along with the inertial motion model, the
position from the inertial motion model and inertial positions
are consistent and there is negligible error as shown in Fig. 8.
These results validate the inaccuracies in relative motion
model and the importance of using inertial vehicle models
along with ego state variables.

IV. RESULTS

To evaluate the performance of the estimation-based PD
system, an experimental human subjects study was conducted
and will be described in this section.

A. Image Comparison Analysis

First, a pixel-based image analysis has been used to evaluate
the effectiveness of the estimation-based PD system as
compared to the delayed display. Peak signal to noise ratio
(PSNR), mean squared error (MSE) and structural similarity
index measure (SSIM) have been used to compare both the
delayed display and the PD enhancement with the un-delayed
feed.

Given a reference image f and a test image g with size
M X N, where the location of pixel with coordinates (i, ) is
given by f;;, the MSE is given by,

(b) With PD

Fig. 9. Scenario for image comparison



Final Version as submitted for publication in IEEE Transactions on Intelligent Vehicles

L &Y ,
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The lower the MSE the higher is the image quality. The PSNR

between the reference image and test image is given as

PSNR(f,g) = 1010g:0(255?/MSE(f,9)) ~ (38)

As PSNR increases the image quality also increases. The
SSIM between the reference and test image is as given as
follows,

(Zﬂfﬂg + Cl)(zafg + C3)
(U} + g+ C)(0f +0Z + ()
where, 054, 0, 0g, Uf, 11y are the cross-covariance, standard
deviations and local means for images f and g. The SSIM
ranges between 0 and 1. Zero SSIM means no correlation and
an SSIM of one means f = g.

For the image comparison analysis, a straight road highway
driving scenario was designed using MATLAB’s Driving
Scenario Designer and is shown in Fig. 9 which also shows
the display feed with delay and with PD. In this specific
comparison scenario only a constant throttle was provided to
the ego vehicle. The scenario had three more vehicles one in
the same lane, another in the adjacent lane and a truck in the
opposite lane. All the vehicles had straight motion. A one
second delay was present for the delayed feed and state
estimation and vehicle tracking was used for the PD system.
Both delayed display and PD enhanced display were
compared with the un-delayed video display for the image
comparison analysis.

SSIM(f,g) = (39)
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Fig. 10. Plots for PSNR, MSE and SSIM for delayed display and PD

TABLE L IMAGE COMPARISION WITH AND WITHOUT PD
Scenario Y%
Metric improvement
1's delay PD using PD
Average PSNR 25.28 35.8 41.59
Average MSE 189.51 21.56 88.62
Average SSIM 0.92 0.99 8

The plot of PSNR, MSE and SSIM for the delayed display
and PD is shown in Fig. 10. Table I describes the average
values of the Image comparison metrices.

B. Emergency Lane Change

An experiment was performed to analyze the effect of time
delay on the steering control performance of the ego vehicle.
Consider a scenario in which the ego vehicle follows another
vehicle in the same lane but the other vehicle suddenly stops
forcing the ego vehicle to change lanes. The whole scenario
is depicted in Fig. 11 where the blue car is the ego vehicle,
and the red car is the other vehicle.

() R = h

Lane centre

Excursion from lane center line

Fig. 11. Lane change scenario
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This scenario was studied for the no-delay case, with
various values of delay and with PD to evaluate the
degradation caused due to delay and the effectiveness of PD.
Previous work from the literature showed that even a 0.17 s
delay can start causing degradation in performance, hence the
scenario was analyzed for the following values of time delay:
0.25,0.255,0.35,0.355,0.4,0.45 sand 0.5 s and compared
to the no-delay (i.e. 0.01 sec sampling) case. The performance
for this scenario was evaluated using a metric of excursion
from the lane center, as shown in Fig. 11. The results for the
excursion from lane center of the ego vehicle without delay,
with various values of delay and with PD are shown in the bar
chart given in Fig. 12. From this figure it is clear that the
degradation in teleoperator’s performance is quite high at 0.5
s delay and hence the larger human subjects study was
designed based on this value of delay.

C. Human Subjects Study

To further evaluate the performance of the estimation-based
PD system, a human subjects study has been conducted. In
this study the data of five teleoperator participants was
analyzed to evaluate the degradation caused due to delay and
the effectiveness of the PD system. For the human subject
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study, a curved road scenario was used. The curved road
extends from 1400 m to 200 m in x direction and -200 m to
1600 m in y direction as shown in Fig. 13.

The curved road has 4 lanes of width 3.85 m each and have

1600 1400 1200

Sy (m)

Fig. 13. Curved road scenario for human subjects study
been rendered in the teleoperation platform as shown in Fig.
14 and was displayed to the participants. The display included

the cockpit of the ego vehicle along with the speed display (in
miles per hour (mph)).

Fig. 14. Real-time display to the teleoperator during remote driving

Each participant was required to drive the vehicle in three
tests. In the first test, the participants drove the vehicle
without any delay, in the second test with a delay of 0.5 s and
in the third test with estimation-based PD. In each test, the
participant drove the vehicle for 10 mins. For the first few
minutes, the participants had to drive without any vehicle in
the lane, then they had to follow a red sedan, then sole driving
on an extremely curved road, then follow a black SUV and
then a green sports car. This scenario was common to all the
three tests. Thus, a total of 15 experiments were conducted for
the human subjects study. The participants were instructed to
always try to keep the ego vehicle in the same lane, drive at a
speed of 30 to 35 mph and if they encountered another
vehicle, they had to follow it even if their speed had to be
reduced but never leave the lane even if the other vehicle does.

The sensor specifications of the Ego vehicle are provided
in Table IT which describe the specifications of GPS, IMU,

camera and radar.

TABLE II. SENSOR SPECIFICATION OF EGO VEHICLE
Sensor Specification Value
GPS position accuracy (m) 0.1
GPS velocity accuracy (m/s) 0.1
GPS rate (Hz) 100
Accelerometer initial bias (m/s?) 0.0141
Accelerometer VRW (mg) 0.2
Gyroscope initial bias (deg/s) 0.0573
Gyroscope ARW (deg/+/Hr ) 0.21
IMU rate (Hz) 100
Radar accuracy (m) 0.1
Radar rate (Hz) 100
Camera field of view horizontal (deg) 56.72
Camera field of view vertical (deg) 87.66
Camera frame rate (FPS) 100

For estimation-based PD, the sensor data was transmitted
to the teleoperator side and due to very small data size for
these variables, it was assumed that there is no delay in the
transmission. An EKF based state estimation and vehicle
tracking was then done to modify the delayed feed for PD.
Table III describes the state estimation error for each of the
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Fig. 15. Error in state estimation of ego vehicle
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TABLE III. STATE ESTIMATION ERROR FOR EACH PARTICIPANT
Participant % (m) ¥ (m) P (deg)
RMSE | Max | RMSE | Max | RMSE | Max
error error error
1 0.012 0.087 0.013 0.139 0.115 0.607
2 0.012 0.087 0.014 0.139 0.119 0.539
3 0.012 0.087 0.014 0.139 0.167 0.825
4 0.011 0.087 0.013 0.139 0.108 0.4
5 0.011 0.087 0.013 0.139 0.100 0.472
TABLE IV. VEHICLE TRACKING ERROR FOR EACH PARTICIPANT
Participant X (m) y (m) P (deg)
RMSE Max RMSE Max RMSE Max
error error error
1 0.039 0.347 0.076 0.690 1.26 9.76
2 0.058 0.347 0.082 0.690 1.28 9.62
3 0.140 0.677 0.090 0.692 1.30 9.38
4 0.044 0.347 0.099 0.689 1.29 9.85
5 0.040 0.347 0.072 0.690 1.24 9.37
= 100 |
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Fig. 16. Error in measurement for Red Sedan
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Fig. 17. Vehicle Tracking for Red Sedan
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participants. The state estimation error is € = e — €, where
e is the true value and é is the estimated value. The state
estimation results for a sample participant are shown in Fig.
15. Table IV shows the vehicle tracking error for red sedan
(actor 1) for each of the participants. The relative distance
and error in measurement for the red sedan is shown in Fig.
16 and Fig. 17 shows the error in vehicle tracking for a

Fig. 18. Box plot for speed of each participant
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Fig. 20. Box plot for lane offset of each participant
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Fig. 21. Lane offset Vs Time

For evaluating longitudinal control performance, the speed
of the ego vehicle for each participant has been computed.
Fig. 18 shows the box plot for the speed of each participant
over the whole experiment. In all box plots, the lower and
upper boundaries of the whisker correspond to the minimum
and maximum value of data respectively and the red line in
the box corresponds to the median of the data. Fig. 19 shows
the plot of the speed of a sample participant for all the three
driving cases.

For evaluating the lateral control performance for the ego
vehicle of each participant, the lane offsets have been
evaluated for each participant. The box plot for the lane offset
of each participant for all three cases is given in Fig. 20. The
plot for the lane offset of the ego vehicle for both delayed and
PD cases for a sample participant is shown in Fig. 21.

For vehicle following performance the relative distance
from the tracked vehicle has been evaluated for each
participant. The box plot for the relative distance from the red
sedan has been shown in Fig. 22. The plot shows the
participants performances for all three cases.
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Fig. 22. Box plot for relative distances of each participant

The overall results for the human subjects study are
summarized in Table V. The metrics are an average over all
the five participants. The average speed and distance covered
were used as metrics to evaluate the longitudinal

performance. The maximum distance outside the lane and the
number of times the vehicle moved outside the lane were used
for evaluating lateral performance. The relative distance to the
tracked vehicle were used for evaluating the vehicle following
performance. The table shows the data for all three cases and
percent change due to delay and PD case as compared to the
without delay case.

TABLE V. RESULTS FROM TELEOPERATION STATION STUDY
Metric Average Values % %
change | change
Without| 0.5s PD due to |after PD
delay delay delay

Average speed (m/s) 12.38 11.35 12.4 8.3 0.16

Distance covered (km) 7.43 6.75 7.44 9.15 0.13

Max distance outside 0.07 32 0.09 4471 28.6

lane (m)
Number of times 0.6 9.6 0.8 1500 33.3
outside lane
Relative distance Red 26.8 58.77 27.4 119.3] 2.38
Sedan (m) 4

Relative distance 24.16 98.41 28.1 307.3| 163

Black SUV (m)

V. DISCUSSION

A. Image Comparison Analysis

The image comparison metric as shown in Fig. 10 clearly
shows that PSNR for PD is always higher than that of the
delayed display, the MSE for PD is always less than that of
the delayed display and the SSIM of PD is closer to 1 as
compared to delayed display. The results indicate that image
quality using PD is closer to the undelayed video as compared
to the delayed display. Table I describes the average values of
the Image comparison metrices. It can be clearly observed
from the table that estimation-based PD is able to increase the
average PSNR by 41.59 %, decrease the average MSE by
88.62 % and increase the average SSIM by 8 %. Hence, it can
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be concluded from the Image comparison analysis that the use
of state estimation and vehicle tracking in estimation-based
PD is able to enhance the delayed video display.

B. Emergency Lane Change

The excursion from lane center performance as shown in Fig.
12 indicates that the ego vehicle is able to perform the
emergency lane change for the no delay case and for delay
values less than 0.3 s. In this test case the speed of the
participant was less than 35 mph because of which a delay
lower than 0.3 s did not hamper the performance of the
teleoperator. But in prior work a degradation was observed
even at 0.17 s because the speed of the ego vehicle was 55
mph which is quite high. In the current test case, the
performance of the teleoperator starts degrading after 0.3 s
delay where a slight excursion is seen. This degradation in
performance peaks after 0.4 s when the ego vehicle starts
moving out of road boundary and at 0.5 s the teleoperator is
not able to control the vehicle properly as indicated by the
large out of lane excursion. In fact, for the 0.5 s case, the ego
vehicle goes completely off the road during the lane change.
This clearly indicates that a 0.5 s delay can hamper
teleoperation drastically and hence this value of delay was
used for the larger human subjects study. The last bar in Fig.
12 shows the performance for the PD case. From the plot it is
clear that using PD allows the teleoperator to keep the ego
vehicle in lane and gives a performance close to that of the
no-delay case. Thus, using PD effectively compensates for
latency and provides performance much better than delayed
cases.

C. Human Subjects Study

The error in state estimation for each participant, as shown
in Table III, indicates the error in estimates for position and
yaw angle. From the table it is clear that the estimator is able
to achieve an accuracy of 1.2 cm (RMSE) using the GPS
measurements which have an accuracy of 10 cm. Moreover,
the use of heading angle for measuring the yaw angle results
in more accurate estimation of the yaw angle giving an
accuracy of 0.1 deg (RMSE), - This indicates that (12) is a
valid approximation for measuring yaw angle when the slip
angle is not high. The 0.1 deg accuracy of yaw angle ensures
that the error in measurement for vehicle tracking will be less
than 0.2 m for a relative distance of 80 m, thus allowing for
accurate vehicle tracking. From Fig. 15, it is clear that the
error in the position and velocity is of the order of 5 cm and 5
cm/s. The error in the yaw angle is less than 0.50 indicating
that the filter is able to estimate the yaw angle accurately.

The error in vehicle tracking for each of the participants, as
shown in Table IV, indicates that the error in the position is
of the order of 5 cm (RMSE). Only for Participant 3 the error
is more than 10 cm, this is because of the fact that the relative
distance between the ego vehicle and tracked vehicle was
quite high (as will be described later in this section) resulting
in increased error in measurement thus hampering the
accuracy of the estimator. Moreover, the error in estimate of
yaw angle is less than 1.25 deg. Thus, the estimator is able to
accurately estimate the position and yaw angle of the tracked
vehicle - Only in cases when the relative distance is high the

performance of the estimator decreases. These results also
show that the accuracy of state estimation for the ego vehicle
is sufficient to perform accurate vehicle tracking.

From Fig.16 it can be observed that 7, is larger than 7, till
200s after which 7, starts increasing, this is because till 200s
the red sedan is in the same lane as the ego vehicle and starts
to change lane at around 196s. Due to this the error in
measurement in y (e,, (2)) is larger as compared to the error
in measurement in x (ey (1)) till 200s but after the lane change
maneuver error in measurement in x (e, (1)) starts increasing.
Since the error in the estimated yaw angle and position is less
than 2.50 and 0.05 m, the error in the measurement is less than
0.1 m. From Fig. 17, it can be observed that the estimator is
able to track the position of the target vehicle accurately along
with the velocity, acceleration, yaw angle and the side slip
angle of the vehicle. However, when the vehicle changes lane
(at around 196 s) the assumption of constant acceleration is
not valid and hence the accuracy of acceleration estimation
decreases which affects other estimates also.

The box plot for the speed of each participant given in Fig.
18, is indicative of the longitudinal control performance of the
ego vehicle. The higher the speed of the ego vehicle for the
ego vehicle, the higher will be the longitudinal performance
of the participant. From the plot we can clearly observe that
the median speed for each of the participant for the without
delay case and PD case is greater than that of delayed case.
The decrease in speed of the vehicle due to time delay is also
observed in previous works and this study proves it even
more. Because of the presence of time delay there is a lag in
the visual feed of the teleporter, resulting in increased efforts
to control the vehicle thus compromising the speed. However
due to accurate ego vehicle state estimation the PD is able to
improve the speed of the teleoperator such that it is better than
delayed case and is closer to the without delay case. To
analyze this further, the plot of the speed of a sample
participant for all the three cases as shown in Fig. 19 were
examined. From the plot it is clear that the speed of the
participant for the delayed case is less than that of the without
delay and PD case. Moreover, high magnitude of variation in
speeds indicates difficulty in driving the vehicle in the
delayed case. The speed of the participant for the PD case is
comparable to that of the without delay case and is higher as
compared to delayed case indicating an improved
performance in longitudinal control. From Table V, it can be
observed that both the average speed and distance covered
with 0.5 s delay decreases drastically but when PD is used the
performance is much closer to the without delay case and
there is an increase of around 8 % in these metrics when PD
is used as compared to delayed case.

The lateral offset of the center of the ego vehicle for each
participant as shown in Fig. 20, indicates that the vehicle
center was always inside the lane for the without delay and
PD case. However, it went outside the lane boundaries for all
the participants when there was a delay of 0.5 s. The results
clearly indicate that the delay hampers the lateral control
performance as more control effort is need to stabilize the ego
vehicle. To analyze this further, the plot of the lateral offset
as shown in Fig. 21 (which also shows the right and left edge
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of the ego vehicle) was examined. From the plot it is clear that
the ego vehicle goes outside the lane many times for the
delayed case, moreover at around 400 s the whole vehicle is
outside the lane. But for the PD system the lane keeping
performance is much better than the delayed case as the ego
vehicle is always within the lane boundaries. Table V
indicates that the maximum times the vehicle goes out of lane
is much less for PD as compared to delayed case. Moreover,
the frequency of vehicles moving outside the lane is 1467 %
more in the delayed case as compared to the PD case.

The box plot for the relative distance to actor 1, as shown
in Fig. 22, indicates that the relative distance between the
tracked and ego vehicles is always more in the delayed case
as compared to the no-delay and PD cases. This indicates that
the vehicle following performance degrades when there is a
delay but improves when PD is used. Furthermore, the
average relative distance with the two tracked vehicles is
significantly less in PD as compared to the delayed case and
much closer to the without delay case. Also, PD decreases the
relative distance by 117 % with the red sedan and 290 % for
the black SUV as compared to the delayed case.

VI. CONCLUSION

In this paper, an estimation-based predictive display (PD)
system was designed to improve teleoperation performance
with autonomous vehicles. The teleoperation application
suffers from a problem of latency in transmitting images to
the teleoperation station which can degrade the teleoperator's
performance. A  MATLAB-based human in-loop
teleoperation environment was developed to evaluate the
degradation caused due to delay and the effectiveness of PD
in compensating for the delay. State estimation and vehicle
tracking were used by the PD system in predicting the
position of ego and non-ego vehicles. A novel vehicle
tracking algorithm was developed using an inertial motion
model and ego state estimates. Error analysis was performed
to further analyze the new vehicle tracking algorithm. Image
comparison analysis compared delayed and modified displays
(based on the developed PD algorithm) with the original un-
delayed display, and results indicated that PD increased the
performance of the display using metrics of PSNR, MSE, and
SSIM. A human subjects experimental study demonstrated
the determinantal effect of even a 0.5 s delay and
improvements obtained by PD in longitudinal control, lateral
control, and vehicle following. Although this study proves the
efficacy of PD, it used a 0.01 second update rate for
measurements of GPS, IMU and radar. There is a need to
analyze the performance of PD at lower update frequencies
which will be a part of future research.
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