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Abstract 

The Anthropocene has been framed around humanity’s impact on atmospheric, 

biologic, and near-surface processes, such as land use and vegetation change, greenhouse gas 

emissions, and the above-ground hydrologic cycle. Groundwater extraction has lowered water 

tables in many key aquifers but comparatively little attention has been given to the impacts in 

the deeper subsurface. Here, we show that fluid fluxes from the extraction and injection of 

fluids associated with oil and gas production and inflow of water into mines likely exceed 

background flow rates in deep (>500 m) groundwater systems at a global scale. Projected 

carbon capture and sequestration (CCS), geothermal energy production, and lithium extraction 

to facilitate the energy transition will require fluid production rates exceeding current oil and 

co-produced water extraction. Natural analogs and geochemical modeling indicate that 
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subsurface fluid manipulation in the Anthropocene will likely appear in the rock record. The 

magnitude and importance of these changes are unclear, due to a lack of understanding of how 

deep subsurface hydrologic and geochemical cycles and associated microbial life interact with 

the rest of the Earth system. 

Key Points 

● Current anthropogenic fluid fluxes in the deep subsurface likely exceed background 

fluxes. 

● Anthropogenic fluid fluxes in the deep subsurface are expected to accelerate with the 

energy transition. 

● Injection and production of fluids from the deep subsurface is expected to leave a mark 

on the geologic record. 

Plain Language Summary 

The Anthropocene is often framed in terms of changes in climate, ecosystems and land 

use. These have been accompanied by changes in the Earth’s water cycle, including depleted 

groundwater storage due to pumping in many regions. The scale of anthropogenic change in 

the subsurface at depths beyond typical water wells has received less attention. Fluid flow rates 

associated with oil and gas production likely exceed natural groundwater flow rates at depths 

greater than 500 m. Anthropogenic impacts to this deeper zone of the Earth’s subsurface are 

expected to increase dramatically as we look to store carbon, mine lithium from deep brines 

and produce geothermal energy as part of the ongoing energy transition. 

Introduction 
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The Anthropocene is often thought of in terms of land use change, greenhouse gas 

emissions and climate change, biodiversity and the appearance of distinctive physical and 

chemical features in the stratigraphic record (Crutzen, 2002; Lewis & Maslin, 2015; McCarthy et 

al., 2023; Seddon et al., 2016). The atmosphere has changed dramatically since the Industrial 

Revolution with rising carbon dioxide and methane concentrations (Crutzen, 2002). Land use 

change has resulted in substantial increases in erosion (Borrelli et al., 2017). Excavations and 

boreholes are widespread (Zalasiewicz et al., 2014), particularly in urban environments (Melo 

Zurita et al., 2018). Combined with aggregate extraction for building materials, humans are the 

largest geomorphologic agent on Earth (Syvitski et al., 2022). The hydrologic cycle has also been 

profoundly altered at a global scale, with changes in soil moisture, surface water, the 

cryosphere and groundwater at scales impacting the Earth system (Gleeson et al., 2020). How 

the Anthropocene is manifested in the deeper subsurface, below typical depths of current 

groundwater extraction (>~500 m), has received less attention (Melo Zurita et al., 2018). Pores 

and fractures at these depths contain the largest volume of water aside from the ocean 

(Ferguson et al., 2021) and may contain ~15% of the Earth’s biomass (Bar-On et al., 2018).  

Groundwater residence times exceeding one million years have been found in a variety of 

geological settings (Ferguson et al., 2023; Warr et al., 2018), indicating that these deep 

subsurface ecosystems have been isolated for prolonged periods of geologic time in this 

“hidden” part of the Earth system that has minimal interaction with the rest of the hydrologic 

cycle (Warr et al., 2018). Continental to global scale studies tend to treat the subsurface as a 

black box that is capable of storing or producing fluids without considering how fluxes and 

microbial communities might change within the subsurface.  
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Anthropogenic impacts in the deeper subsurface are and will likely continue to be 

dominated by the production and injection of fluids; extraction of groundwater (Konikow, 2011; 

Rodell et al., 2018) and oil and gas (BP, 2022; C. Clark & Veil, 2009; McIntosh & Ferguson, 2019) 

already account for a substantial fraction of deep subsurface fluid fluxes. Subsurface fluid 

extraction and injection will accelerate with rapidly growing production of lithium (Kumar et al., 

2019), helium (Cao et al., 2022), geothermal energy (Nardini, 2022), and storage and 

production of hydrogen (Miocic et al., 2023)  and compressed air (Olabi et al., 2021), as well as, 

and likely most important, carbon capture and sequestration (CCS) (Benson & Cole, 2008; 

Krevor et al., 2023; Zoback & Smit, 2023) (Figure 1). Here, we evaluate how fluid fluxes in the 

Earth’s deep subsurface have been affected to date, along with how they are expected to 

change over the coming century and how this might affect geochemical cycles and microbial 

communities. 

Current Uses of the Subsurface 

Groundwater systems have been profoundly affected during the Anthropocene.  

Approximately 1,000 km3/yr of groundwater is extracted each year (Wada et al., 2010). While 

this volume is only  ~5 to 17% of global groundwater recharge, where fluxes of 6,000 to 20,000 

km3/yr have been estimated (Döll & Fiedler, 2007; Gleeson et al., 2016; Wada et al., 2010), it 

has resulted in widespread and substantial losses of groundwater storage, which can now be 

tracked at monthly scales with remote sensing such as the GRACE satellite project (Rodell et al., 

2018). Approximately 3,500 km3 of groundwater depletion occurred globally between 1900 and 

2008 (Konikow, 2011). The extracted groundwater in excess of depletion has largely been 

balanced by loss of streamflow (Konikow & Leake, 2014).  Most extracted groundwater is from 
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wells less than ~35 m deep (Jasechko & Perrone, 2021). Pumping appears to be causing an 

acceleration of the shallow subsurface hydrologic cycle through increases in hydraulic 

gradients, as modern water (i.e. containing 3H from nuclear weapons testing (Gleeson et al., 

2016)) is reaching greater depths in areas where large volumes of groundwater have been 

extracted (Thaw et al., 2022).  The corollary of this is that groundwaters that were recharged 

several millennia ago or longer (GebreEgziabher et al., 2022) are being reconnected with the 

rest of the hydrologic cycle. 

 The deeper subsurface (defined here as >500 m) has been more profoundly affected 

than shallower realms when background conditions are compared to anthropogenic activities. 

Fluid volumes deeper than 500 m likely exceed 30 million km3 (Ferguson et al., 2021) but these 

fluids are weakly connected to the rest of the hydrologic cycle under natural conditions, with 

estimated fluxes of  <13 km3/yr (Ferguson et al., 2023) (Figure 2). Between 1970 and 2020, 

approximately 200 km3 of oil was produced globally (IEA, 2021b). For every 1 m3 of oil extracted 

from the subsurface, approximately 3-5 m3 of water is co-produced (C. Clark & Veil, 2009), 

resulting in a total fluid volume of 1,000 km3.  The approximately 20 km3/yr of fluid produced 

by the oil industry during that 50 year time period likely exceeds any background fluid fluxes at 

depths between 500 m and a few km in sedimentary basins. Overall fluid budgets in these 

environments are often near zero because the co-produced water and additional water for 

reservoir pressure maintenance (i.e. waterflooding) or hydraulic fracturing is injected into the 

subsurface. However, at subregional scales the production and injection of fluids often results 

in large changes in hydraulic gradients (Jellicoe et al., 2022).  
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Environmental concerns surrounding fluids in the deep subsurface have focused on 

upward leakage into the rest of the hydrologic cycle and the atmosphere (Dusseault & Jackson, 

2014; Kang et al., 2014; Lacombe et al., 1995; Perra et al., 2022). However, impacts to the deep 

subsurface itself will also occur because the chemical and microbial composition of injected 

fluids differ from in situ fluids. Water injected for hydraulic fracturing and secondary recovery 

(waterflooding) is often seawater, surface water, or shallow groundwater (Bayona, 1993; 

Kondash & Vengosh, 2015; Scanlon et al., 2019) with various additives (e.g. biocides, corrosion 

inhibitors) (Elsner & Hoelzer, 2016). Produced and flowback water are often injected into other 

strata with different original fluid chemistries and this reinjection strategy has become 

increasingly common in unconventional oil and gas developments. For example, flowback and 

produced water from the Bakken Formation are routinely injected into the shallower 

Dakota/Mannville Group in the Williston Basin (Jellicoe et al., 2022; Scanlon et al., 2016) and 

produced water from the Mississippi Lime, a play relying on dewatering to drive gas exsolution, 

is injected into the deeper Arbuckle Group in Oklahoma and Kansas (Murray, 2013). However, 

even where produced water is injected back into its same source strata, the oxidation-

reduction (redox) states and microbial communities within these fluids are profoundly altered 

from their initial conditions. There have been no comprehensive studies examining how these 

changes affect solute transport, fluid chemistry and microbial activity at regional scales. 

 Fluid injection can have notable effects on the subsurface biosphere, by introducing new 

microorganisms, fluids with different chemistries and redox conditions, and/or amendments 

that alter in situ microbial communities that have coevolved with fluid and host rock properties 

over long time periods, in some cases 10s of millions of years or more (Castro et al., 1998; 
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Ferguson et al., 2018). Documentation of these anthropogenic changes to the deep biosphere 

has rarely been done along with tracking of produced and injected fluid volumes. One well 

known example is that of reservoir souring, resulting from the introduction of SO4 via fluid 

injection, which can stimulate sulfate reducing microbial populations, producing H2S and 

reducing fuel grade (Cord-Ruwisch et al., 1987). The common mechanisms of ameliorating this 

“souring,” such as NO3 injection, represent intentional modulation of the subsurface biosphere 

at industrial scales.  Another is the introduction of Halanaerobium in deep hydraulically 

fractured shale gas reservoirs, which were previously sterile or near sterile(Booker et al., 2019). 

In some cases, oil and gas companies have intentionally stimulated existing microbial 

populations to degrade hydrocarbons and produce methane by injecting amendments, such as 

yeast or algal extracts and nutrients (Barnhart et al., 2022; Ritter et al., 2015). Similarly, CO2 

injection for enhanced oil recovery or storage can enhance microbial methanogenesis in some 

settings (McIntosh et al., 2010; Tyne et al., 2021).  Preliminary research on H2 storage suggests 

that this may also promote microbial activity (Dopffel et al., 2021).  

The inflow of groundwater into mines and pumping to prevent these inflows also 

represents a substantial perturbation to deep groundwater flow. There is no comprehensive 

global database of inflow rates but values of 1 to 1,000 L/s have been documented (Dong et al., 

2021; Greene et al., 2008; Winter et al., 1983). If an inflow rate of 10 L/s is representative of the 

globe’s 6,000 active mines (Maus et al., 2020), this would result in 1.9 km3/yr, which is similar 

to the current rate of global oil production. These waters are often released to surface waters 

as the lower permeability environment associated with many mines prevents subsurface 

disposal. Changes in hydrogeochemical conditions and microbial communities in the vicinity of 
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mines will result from downwelling of meteoric water and upwelling of older, more saline water 

(Figure 1). 

The Future of the Subsurface  

Humanity’s use of the subsurface over the next century is expected to increase to 

address climate change and energy security. This will include production of lithium, helium, and 

geothermal energy, along with storage and production of hydrogen, storage of compressed air 

and geologic CCS. CCS is arguably the most important of these projected uses in terms of 

reducing greenhouse gas emissions, with many of the studies examining the capacity to 

sequester carbon in the subsurface focusing on estimation of the volume of porosity in 

sedimentary basins suited for this purpose (Benson & Cole, 2008; Krevor et al., 2023; Zoback & 

Smit, 2023). Additional capacity exists in mafic and ultramafic rocks(Gislason & Oelkers, 2014) 

but uncertainty exists around the ability to inject large volumes of fluid into these often low 

permeability environments (Fisher, 1998). Global capacity in sedimentary basins may exceed 

60,000 Gt (Kearns et al., 2017), which far exceeds the 220 to 2500 Gt that may need to be 

sequestered. Comparing this amount to historical fluid production and injection and fluid fluxes 

provides a different perspective.  

Although some of the injected CO2 may be quickly mineralized in rock or dissolved in 

fluids (Benson & Cole, 2008), if sequestered as a separate phase, 2,000 Gt of CO2 is equivalent 

to a volume of ~3,300 km3. This assumes a density of 600 kg/m3 is assumed for supercritial CO2 

(Zoback & Smit, 2023), which is a typical value for the temperatures and pressure found at 

depths greater than 800 m (Benson & Cole, 2008). This volume of fluid is an order of magnitude 

larger than cumulative historical global oil production. A proposed annual sequestration rate of 
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6 Gt/yr (~10 km3/yr) of CO2 by 2050 would occur at a rate  50% greater than global oil 

production in 2022 (Zoback & Smit, 2023) and similar to the maximum estimated global flux of 

deep groundwater (Ferguson et al., 2023). CO2 injection is likely to be concentrated 

geographically, near anthropogenic sources of CO2 (e.g., power plants) and in areas where 

suitable subsurface reservoirs exist (Bachu, 2003). Experience from oil and gas production and 

associated co-produced water management indicates that even where fluid budgets are close 

to balanced, large hydraulic head changes will occur at local scales near injection wells resulting 

in substantial changes in regional groundwater flow systems (Barson, 1993; Jellicoe et al., 2022) 

and, in some cases, induced seismicity (Peterie et al., 2018). Such impacts have yet to be 

documented in CCS projects but regional pressure changes exceeding 0.1 MPa have been 

predicted based on simulations (Birkholzer et al., 2015). Leakage of CO2 might occur through 

leaky wells (Gasda et al., 2014) and faults (Song & Zhang, 2013) where they exist. Caution will 

need to be exercised if use of the subsurface for CCS becomes more extensive. 

 Produced water from oil production and other sedimentary brines have been proposed 

as sources of lithium (Kumar et al., 2019; Munk et al., 2016). Lithium extraction from 

sedimentary basin brines will only be viable if large fluid volumes can be produced, likely from 

wells producing at several times the rate of a typical oil well (Marza et al., 2023).  The median Li 

concentration in sedimentary basin brines in the USA is 5 mg/L (Blondes et al., 2016) and we 

assume that concentrations in similar environments around the globe are comparable. At this 

concentration, 20 km3 of brine would be required to produce an amount equal to global Li 

production of 100,000 tpy in 2022 (USGS, 2023), an amount similar to current combined annual 

oil and associated produced water volumes (Figure 2).  
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Geothermal electricity production of 1,050 TW h/yr using binary technology, where a 

secondary working fluid is used to generate steam in lower temperature environments (>70°C 

and <180°C), in conventional and enhanced geothermal systems has been projected for 2050 

using an integrated assessment model (van der Zwaan & Dalla Longa, 2019). Binary geothermal 

systems require approximately 610,000 USGPD/MWe (= 6.53 x 107 m3/yr/MWe) (C. E. Clark et 

al., 2010), indicating that 75 km3/yr of fluid would need to be produced to support the 

projected level of geothermal electricity production. This target represents a large expansion of 

geothermal capacity but would only account for a small fraction of current electricity 

generation, at 67 TWh/yr compared to the overall generation of 23,000 TWh in 2019 (IEA, 

2021a).  

Despite the large volume of pore space in the subsurface globally, there will inevitably 

be competition between different applications (Ferguson, 2013). All developments here will 

benefit from the presence of elevated permeability and porosity to allow for larger injection 

and/or extraction rates. In some cases, such as geothermal power production and CCS, 

overlapping temperature ranges may allow for synergistic developments (Randolph & Saar, 

2011). Proposed and operational CCS projects at depths > 3,000 m in Canada (Worth et al., 

2014) and China (Tang et al., 2014) have temperatures >70°C required to produce electricity with 

a binary geothermal system (van der Zwaan & Dalla Longa, 2019). In other cases, previous 

developments may complicate other types of subsequent uses. For example, strata that have 

previously been extensively developed for oil and gas may not be appropriate for CCS or H2 

storage because of the possibility of leakage through older wells (Gasda et al., 2014) or newer 

wells with construction issues (Bexte et al., 2008). Reservoirs that have a history of injection of 



ACCEPTED FOR PUBLICATION IN AGU’S EARTH’S FUTURE, MARCH 21, 2024 

11 
 

fluids that have spent time at the surface are likely to have cooled, which will have altered their 

potential to produce geothermal power or sequester carbon (Ferguson & Ufondu, 2017). The 

lack of characterization of impacts of fluid production and injection will be a challenge as we 

look to repurpose portions of the subsurface that have been previously developed. Whether 

this competition restricts development or expands that volume of subsurface use is unclear. 

Similar magnitudes of changes to subsurface fluid budgets and associated changes in 

hydraulic gradients due to extraction of groundwater and hydrocarbons and injection of various 

fluids for storage and disposal are occurring orders of magnitude more rapidly than geological 

drivers. For example, groundwater flow in the Mannville Group of the central portion of the 

Williston Basin, Canada appeared to have been stable for millions of years, even through 

multiple glacial cycles (Cheng et al., 2021), yet operation of injection wells since the 1960s for 

disposal of oilfield produced waters has resulted in substantial disruption of background 

groundwater flow patterns (Jellicoe et al., 2022). The implications of these changes to 

groundwater flow on solute transport and microbial activity will likely occur with substantial 

time lags and may persist well into the future even once the anthropogenic perturbation ceases 

due to the long-time scales associated with hydraulic diffusion (Bredehoeft & Durbin, 2009). 

Responses of shallow groundwater systems to new boundary conditions associated with 

climate change will likely take decades to centuries (Cuthbert et al., 2019). Fluids in the deeper 

subsurface are slow to respond to shifts in climate and topography, with regional aquifer 

systems typically having hydraulic response times of thousands to millions of years (Rousseau-

Gueutin et al., 2013). Solute transport responses typically take place over longer time periods 

due differences between rates of advection and hydraulic diffusion(Ferguson et al., 2023). 
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Evidence for increases in subsurface paleofluid fluxes, solute transport and microbial activity 

have been tied to geological events such as continental scale glaciations (McIntosh et al., 2012) 

or extensive denudation and incision by large rivers (Kim et al., 2022; Li et al., 2023).  

 There has been considerable debate about how the Anthropocene will appear in the 

geologic record but this has largely focused on depositional processes and what markers will 

delineate the shift from the Holocene to Anthropocene (McCarthy et al., 2023; Zalasiewicz et 

al., 2011). Anthropogenic activities in the deep subsurface will also leave a mark in the geologic 

record. Wells and boreholes will likely be rarely encountered due to their small diameter and 

large spacing (Gasda et al., 2014; Nicot, 2009; Zalasiewicz et al., 2014). This is likely to be the 

case even in areas of extremely high well densities, such as historical oil fields in Pennsylvania, 

USA (Dilmore et al., 2015) or some areas of heavy oil production in Alberta, Canada (Gasda et 

al., 2014), where well densities exceed 50 wells/km2 locally. Hydraulic fractures, which 

commonly extend 50 to 100 m from the wellbore (Davies et al., 2012), will increase the 

footprint of human activities slightly but activities associated with more permeable strata, 

where fluids can migrate greater distances, are likely to leave more extensive evidence. 

Transport of fluids from injection into conventional oil and gas reservoirs commonly reaches 

several 100 m (Craig Jr et al., 1955; Wassmuth et al., 2009) and transport of CO2 of distances of 

several 100 m have been observed in CCS projects (Ringrose, 2018).  Contaminant plumes with 

greater extents can develop in shallower groundwater systems under background hydraulic 

gradients(Van der Kamp et al., 1994) but will be less common in deeper systems due to the 

lower hydraulic gradients unless injection or pumping wells are operated for long time periods 

(Jellicoe et al., 2022). Transport can be further enhanced by the presence of leaky wells. 
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Instances are documented where migration of fluids over distances of several 100 m have 

occurred through leaky wells in waterflooding (Eger & Vargo, 1989) and hydraulic fracturing 

operations(DiGiulio & Jackson, 2016).  Contaminant plumes in shallow groundwater systems 

can persist for decades or longer (Essaid et al., 2011) and timescales in the deep subsurface 

could be even longer due to the smaller geochemical fluxes available to support geochemical 

transformations. 

  Secondary minerals, such as barite, carbonates and sulfides are commonly precipitated 

following the injection of water for secondary recovery of oil (i.e. waterflooding), hydraulic 

fracturing or for disposal of produced water from oil and gas operations (Bennion et al., 1998; 

Engle & Rowan, 2014; Jew et al., 2017). CCS operations are predicted to result in bleaching of 

sandstones and release of trace metals due to removal of hematite (Bickle & Kampman, 2013), 

along with precipitation of halite (Muller et al., 2009). At a smaller scale, calcite and sulfide 

precipitation may occur due to stimulation of microbial activity by materials introduced during 

drilling and well construction (Pidchenko et al., 2023).  The isotopic signatures of these minerals 

precipitated due to injection of fluids may differ from similar minerals precipitated under 

background conditions (Śliwiński et al., 2017). The rock record in environments that have 

experienced fluid flow events that resulted in precipitation of secondary minerals driven by 

changes in solute fluxes, salinity, redox conditions and microbial communities can provide some 

insights into how anthropogenic activities in the deep subsurface are being preserved. 

Conclusions 

 Extraction of groundwater as well as production and injection of fluids by the oil and gas 

industry have become important components of the global subsurface fluid budgets during the 
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Anthropocene. Increased use of subsurface fluids for extraction of energy and mineral 

resources and associated pore space for storage of alternative energy and anthropogenic waste 

has been proposed to confront climate change. While there is likely adequate subsurface 

storage, the fluxes of fluids involved with CCS, geothermal energy production and lithium 

extraction will be substantial, likely exceeding current levels associated with the oil and gas 

industry.  

The subsurface and its pore space has often been viewed as a resource(Melo Zurita et 

al., 2018) rather than part of the Earth system. Over the past two decades, there has been an 

increase in the awareness of the microbial communities that inhabit the deep subsurface of 

depths of up to a few km (Bar-On et al., 2018; Magnabosco et al., 2018; McMahon & Parnell, 

2014). This has been accompanied by questions about how the deep subsurface fits within the 

larger Earth system in terms of microbial life and associated water and geochemical fluxes 

(Ferguson et al., 2021, 2023; Lollar et al., 2019; Warr et al., 2018). As we stand at the precipice 

of the energy transition, we have the opportunity to develop the deep subsurface in a manner 

that allows us to study its natural functions and response to anthropogenic perturbations to 

minimize human impacts and build understanding, synergies and resilience.  
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Figure 1: Approximate depths of subsurface activities. Median (31 m) and 95th (130 m) 

percentile of water wells (Jasechko & Perrone, 2021); minimum depth of CCS in sedimentary 

basins (800 m) (Benson & Cole, 2008); shallow limit of oil and gas development (including 

injection and disposal; 600 m) (Lemay, 2008); geothermal (>2,000 m) (Nardini, 2022). The upper 

temperature limit for life (80-121 °C) (Bar-On et al., 2018; Magnabosco et al., 2018) 
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approximately corresponds to the lowest temperatures required for geothermal power 

generation (Nardini, 2022; Tester et al., 2021). Circulation of meteoric water occurs up to depths 

of a few km (McIntosh & Ferguson, 2021) but fluxes are small below 500 m and residence times 

range from tens of thousands to millions of years (Ferguson et al., 2023; Jasechko et al., 2017; 

Warr et al., 2021).  

 

 

Figure 2: Current oil and gas production involves similar fluid fluxes to natural deep (>500 m) 

groundwater flow with uncertainties based on 25th and 75 percentiles from a Cl flux-based 

estimate (Ferguson et al., 2023). Current geothermal projects are associated with smaller fluxes 

(C. E. Clark et al., 2010; IEA, 2021a). The range of projected fluxes for future CCS (Krevor et al., 

2023; Zoback & Smit, 2023) and geothermal electricity production (van der Zwaan & Dalla 
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Longa, 2019) are similar to current fluxes from oil and gas production (IEA, 2021b). Scaling up Li 

extraction (Marza et al., 2023) from sedimentary basins to current global production from all 

sources considering 25th, 50th and 75th percentile of Li concentrations in produced waters 

would also require a similar amount of fluid. 

 


