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The XGBoost has emerged as a powerful Al algorithm achieving high
accuracy winning multiple Kaggle competitions in many tasks
including medical diagnosis, recommendation system, and
autonomous driving [1]. It provides a great potential for edge devices
due to a binary-tree-based simple computing kernel compared to
deep learning [2]. Despite such a potential from the kernel-level
simplicity, the efficient end-to-end realization is hindered by multiple
design challenges due to 1) the highly irregular tree shape, 2) low
hardware utilization, 3) delay from the sequential processing of each
tree node, and 4) a large data movement to all nodes [3-5]. We
propose low-power and high performance XGBoost accelerator by
employing modular unit trees and reconfigurable interconnects along
with a selective data movement and execution. The proposed
accelerator achieves 52.5 TOPS/W and 0.41 TOPS/mm?2, which are
the best among the reported CNN and tree-based classifiers [2-5].

Fig. 1 (left top) describes the inference of XGBoost which generates
the final decision by combining the local decisions from multiple (H)
trees. Each tree corresponds to a specific class. Multiple trees are
dedicated for the specific class, e.g., the # of trees dedicated for r-th
class is Hr, where r=1,..., R (H++...+Hr = H). At every tree node, the
feature ID decides which feature out of multiple input features will be
used to be compared with a threshold (Th) to establish a path
between left and right children. When a node can no longer be
compared (i.e., it is a leaf node), such node outputs gain (), which
is unique for each leaf node. The output gain (Gr.:) obtained from the
i-th tree for r-th class is multiplied by a tree-specific weight (W+,:).
Summing the output gains of trees for the same (r-th) class yields the

class gain (Gr = ?:1 W, i+ G; ). The final decision is obtained by
selecting the class with the maximum gain. The XGBoost operation
described above incurs multiple implementation challenges. The
shape of trees has high irregularities in its width and depth across
different trees. Brute force implementation with a full tree result in a
large number of nodes as all potential node positions have to be
annotated, e.g., 4095 nodes per tree with a depth of 12. As the depth
grows, many nodes are not utilized, leading to low node utilizations,
e.g., 0.7% in case2 (right top in Fig. 1). The operation also suffers
from the inherent sequential nature (left bottom in Fig. 1) by running
level by level sequentially toward leaf node leading to the large delay
of >12. Running all nodes in parallel can enhance performance but
at high energy costs, computing even unselected paths. Our solution
uses a Modular Unit Tree (MUT) and reconfigurable interconnects to
construct trees, conserving hardware resources by making
unnecessary to prepare for all potential node positions. We also
implement path-based dynamic gating (PDG) to activate data
movement and execution only for selected paths, and a hybrid
parallel-serial execution for balanced energy and delay. We achieve
further energy reductions based on shape-based tree disabling to
strictly gate the unused MUTs after building trees.

Fig. 2 shows the proposed XGBoost tree's architecture with depth D,
organized into three MUT group stages with depths of D/3. The first
stage has one MUT, the second N, and the third M MUTs (1<N<M).
MUTs are linked by reconfigurable child node interconnects (RCNI)
to form tree shapes before inference. MUTs are pre-loaded with
feature IDs, thresholds, child tree IDs for bottom-most nodes, and
leaf node output gains. The bottom-most nodes in the MUT can be
routed to any MUT in the next stage increasing the hardware
utilization based on the enhanced flexibility. The child tree ID at the
bottom-most node indicate which MUT in the next stage should be
connected to the bottom node. If a certain bottom-most node is a leaf
(no further connection is needed), the corresponding gain (output) is
stored instead of child tree ID. After building the shape of tree, the
unused MUTs are fully disabled by shutting the clock for power
savings, so-called shape-based MUT disabling. Such a
reconfiguration for the tree shape building is required only once
before the inference for multiple streamed inputs. The total count of
nodes is much lower (e.g., 3.6x) than full shape-based trees even
considering some of MUTs are left unused. The full-tree based

conventional approach has a low node
utilization of 0.78% (Fig. 2).In contrast, the
proposed MUT-based approach achieves 3.6x
improvement in the node utilization. The
Winner-take-all unit generates the final decision | .
by choosing the class with the maximum
accumulated gain from many trees.

Fig. 3 depicts the parallel-serial hybrid operation
of tree where all the nodes inside an MUT are
computed in parallel while the MUTs across
different stages are processed sequentially,
e.g., 1st - 2nd — 3rd stage, which guarantees reaching a leaf node
within 3 cycles whereas full serial processing takes >12 cycles. The
MUT-based operation also guarantees executing only 45 nodes at
maximum from all stages in total whereas full tree executes 4095
nodes. During the execution, the MUT receives input features. Each
node's feature ID selects an input feature for threshold comparison.
The results then go to a Lookup Table (LUT) to guide MUT-level
decisions, yielding an output gain if it's a leaf or directing to the next
MUT via the RCNI if not. The RCNI is pre-configured during the tree-
building phase to choose a path during execution based on the input
feature. We propose path-based dynamic gating (PDG) which
enables the only MUTSs on the selective path. All the other MUTs on
the unselected path and sometimes the entire stage is completely
gated preventing data movement on registers and computation to
minimize power consumption leading to ~60% power savings
compared to the case without such selective MUT enabling.

Fig. 4 depicts how input features and output gains move across
stages with their timings. After the tree is built, stages execute in a
pipeline, and if a leaf is reached at the 1st or 2nd stage, the process
stops, passing the gain forward without further stage execution. The
leaf-based data movement (LDM) method only transfers data to the
next stage if the leaf isn't reached, reducing unnecessary data
movement.

Fig. 5 analyzes the proposed architecture on four realistic datasets
1) traffic sign, 2) stroke, 3) heart disease, and 4) diabetes detections
(8-classes for traffic sign, 2-classes for others). The depth (D) is 12
and the tree number (H) is 28 as the accuracy saturates at the
number. The 8-bit fixed-point is used for all the data, which results
negligible accuracy drop (<0.3%) compared to floating-point (Traffic
sign: 90.0%, Stroke: 97.2%, Heart disease: 90.2%, Diabetes: 95.9%).
The prototype supports up to 20 features, 10 classes, N = 14 and M
= 62, which are sufficient for all the datasets, and a single 12-depth
tree. It is scalable as the Winner-Take-All unit can collect the
decisions from up to 150 trees through the serial off-chip interface.
With real datasets, about half the inputs reach leaf nodes by the 2nd
stage, highlighting the efficiency of our data and compute gating
methods. Trees ending at the 1st stage use up to 29% less power
than those ending at the 3rd. On average, our approach saves 12%
power across datasets and trees, thanks to our PDG and LDM.
Setting a D=4 for each MUT optimizes the node count and boosts
node utilization to 32%, resulting in a 53x increase over traditional
full tree designs.

Fig. 6 compares the prototype with prior tree accelerators [2-5]. The
proposed work achieves >42x higher throughput than other tree-
based works although this work supports the largest tree depth and
more nodes. It also achieves more than 253 x higher TOPS/W, and
404x higher TOPS/mm? (25°C) compared to others [3-5] due to its
reconfigurability and selective processing. Shmoo plot shows the
operation at the maximum 1.7GHz with 1.0V. A significant (72%)
reduction in area is also achieved compared to the full tree. We also
compare the energy efficiency with an 8-b CNN accelerator [2]. Even
assuming tiny CNN model such as LeNET-5 [2, 6], the proposed
work achieves 320x lower energy per decision even with 900 trees
due to the simple computing kernel.
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