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Abstract
Learning multi-agent dynamics is a core AI problem with broad applications in robotics and

autonomous driving. While most existing works focus on deterministic prediction, producing proba-

bilistic forecasts to quantify uncertainty is critical for downstream decision-making tasks such as

motion planning and collision avoidance. By leveraging the internal symmetry in multi-agent dynam-

ics, specifically rotational equivariance, we can improve not only the accuracy, but also calibration

of our probabilistic forecasts. We propose a novel deep dynamics model, Probabilistic Equivariant

Continuous COnvolution (PECCO) for probabilistic prediction of multi-agent trajectories. PECCO

extends equivariant continuous convolution to model the joint velocity distribution of multiple agents.

It uses dynamics integration to propagate the uncertainty from velocity to position. We introduce

Energy Score, a proper scoring rule, to evaluate probabilistic predictions. On both synthetic and

real-world datasets, PECCO shows significant improvements in accuracy and calibration compared

to non-equivariant baselines.

Our code is released at https://github.com/Rose-STL-Lab/PECCO. The appendix of

the paper can be accessed at https://arxiv.org/abs/2205.01927.

Keywords: Multi-Agent Modeling, Probabilistic forecasting, deep dynamics model, uncertainty

quantification, equivariant neural networks

1. Introduction

Predicting the future trajectory of multiple agents is a critical task with applications in autonomous

driving (Chang et al., 2019), social behavioral modeling (Sun et al., 2021). In practice, the problem

is difficult due to the inherent stochasticity of human motion, and the strong inter-dependency among

the agents where the number of interactions grows quadratically with the number of agents. Moreover,

agent movements are often influenced by environmental features such as road markings, boundaries,

and social preference, which are impossible to measure and model effectively. Such a partially

observed setting introduces a significant amount of uncertainty.

Many recent works on learning multi-agent dynamics has shifted to probabilistic modeling as a

principled framework to represent uncertainty (Tang and Salakhutdinov, 2019; Salzmann et al., 2020).

However, common metrics used in probabilistic trajectory predictions works, such as minimum
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average displacement of 6 samples (minADE) , do not fully reflect the quality of probabilistic

forecasts. A probabilistic prediction should be calibrated and sharp; that is, the predicted distribution

must cover likely future scenarios without being so broad and uncertain as to be useless.

(a) Original scene (b) Rotated scene

Figure 1: Prediction on the same scene rotated

by 90 degrees. PECCO is consistent in trajec-

tory and uncertainty prediction, whereas the non-

equivariant model (CtsConv) fails.

In this paper, we propose a Probabilistic

Equivariant Continuous COnvolutional model

(PECCO). PECCO is an equivariant probabilis-

tic trajectory prediction model. Our key insight

is to exploit symmetry to estimate multidimen-

sional conditional distributions with limited data.

We assume the predicted probability distribution

is rotation and translation equivariant. That is,

if the input data is transformed, the probability

distribution will also be likewise transformed.

In Figure 1, we see the same car approaching an

intersection from either the south or east. The

scenes are related by a π/2 rotation. As the

absolute compass direction is not particularly

meaningful for local trajectory prediction, the

model should thus output the same probability

distributions over future trajectories for the car coming from the east as that coming from the north,

but rotated by π/2. Rotational equivariance not only allows our model to produce physically consis-

tent predictions, the multiplicative nature of equivariance also allows us to model a probability space

with a smaller sample size (Bloem-Reddy and Teh, 2020). For each sample which an equivariant

model is trained on, an equivariant model learns as if it were trained on all transformations of that

sample by the symmetry group (Wang et al., 2021).

PECCO also mitigates issues posed by other methods for enforcing equivariance such as data

augmentation and normalization. Data augmentation adds rotated versions of data samples to the

training dataset such that the model learns rotational equivariance. However, this slows training

drastically, requires greater model capacity, and rarely achieves the level of equivariance or accuracy

as equivariant neural networks (Salzmann et al., 2020). Data normalization is a technique that rotates

the scene to the agent’s reference frame for each data sample, as in Gao et al. (2020). However, in

the multi-agent setting, it is impossible to rotate the scene for multiple agents without a canonical

reference frame. PECCO allows the weights to be relative to the local orientation of each agent

without the need to rotate the scene repeatedly.

Our main contributions are two folds: (1) We design an equivariant neural network, PECCO,

for probabilistic forecast of multi-agent dynamics, and (2) we demonstrate that by incorporating

symmetry, PECCO improves both calibration and sharpness of probabilistic forecasts on a synthetic

particle dataset and two real-world benchmark datasets.

2. Related Work

Trajectory Prediction. Multi-agent trajectory forecasting has been extensively studied, approaches

ranged from Kalman filters (Kalman, 1960) to non-linear Gaussian Process Regression models

(Jordan, 1998). However, these methods either rely on strong assumptions of the dynamics, or

do not explicitly model multi-agent interactions. We refer readers to Rudenko et al. (2020) for
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a comprehensive survey of such methods. Advancements in deep learning have allowed flexible

modeling of trajectory dynamics (Alahi et al., 2016; Wang et al., 2018; Deo and Trivedi, 2018;

Sadeghian et al., 2019; Liang et al., 2020; Walters et al., 2021; Gao et al., 2020; Roddenberry et al.,

2021), but they focus mainly on point estimation without uncertainty.

Recent methods have shifted to predicting distributions of future trajectories, capturing uncer-

tainty in dynamics. There are two main categories for probabilistic forecasting: (1) explicitly via

exact likelihood (Tang and Salakhutdinov, 2019; Chai et al., 2019; Gu et al., 2021) and variational

inference (Sohn et al., 2015; Salzmann et al., 2020; Lee et al., 2017), or (2) implicitly with Generative

Adversarial Networks (GANs) (Gupta et al., 2018; Liu et al., 2019). Our work falls into the first

category where we model the distributions parametrically. Parametric models allow us to evaluate

the likelihood of future trajectories, which are useful for downstream planning tasks (Chai et al.,

2019; Schwarting et al., 2018).

Despite the development in probabilistic modeling, there is no standard metric for quantifying

uncertainty of the prediction. Negative log likelihood often overfits the distribution (Guo et al., 2017),

and best-of-n-sample results do not evaluate the full distribution (Ivanovic and Pavone, 2021). We

argue that probabilistic forecasts should accurately reflect the uncertainty in the model predictions.

We propose using proper scoring rules such as Energy Score or mean interval score (Gneiting and

Raftery, 2007) for evaluating probabilistic forecasts.

Equivariant Deep Learning. Geometric deep learning that leverages invariance and symmetries

has found wide applications in areas ranging from image recognition (Bao and Song, 2019; Worrall

et al., 2017; Weiler and Cesa, 2019) to reinforcement learning (van der Pol et al., 2020). Equivariant

neural networks are studied for modeling dynamics as well - Fuchs et al. (2020) use SE(3)-equivariant

transformers to predict trajectories for a small number of particles as a regression task, and Walters

et al. (2021) proposed a S0(2) equivariant continuous convolution for traffic trajectory prediction.

All the methods mentioned above are deterministic. Köhler et al. (2020) and Satorras et al. (2021)

studies equivariant normalizing flows for modeling symmetric densities, however their domains

focus on generative modeling and therefore differ from our work significantly. To our knowledge, no

previous work has studied equivariant neural networks for probabilistic dynamics forecasting.

Uncertainty Quantification (UQ). Uncertainty quantification is critical for risk assessment in

safety-critical domains. Properly quantified uncertainties can be used to create probabilistic con-

straints and generate more robust planning and control strategies (Ostafew et al., 2016; Bujarbaruah

et al., 2019). With the increasing use of deep learning in forecasting tasks, many works have UQ

for neural networks (Luo et al., 2021; Wu et al., 2021; Guo et al., 2017). Stankevičiūtė et al. (2021)

proposes a conformal prediction algorithm for 1D RNN forecasters with a prediction region with

coverage guarantees. However, these works focus only on classification or 1-dimensional forecasts.

Salinas et al. (2019, 2020) use autoregressive RNNs for probabilistic forecasting of multiple time

series, however, their method cannot explicitly model spatial relations. We present a model design

for multi-agent dynamics and produce probabilistic distributions with better calibration.

3. Background

We give a short background on symmetry and equivariance and their probabilistic extension.

Symmetry and Equivariance. A symmetry group G is a set together with a composition operation

◦ : G×G → G which is associative and has an identity and inverses. The group G can transform a
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vector space V by specifying a representation which is a mapping ρ : G → GLn(V ) sending each

element of the group G to an invertible n× n matrix such that ρ(g1 ◦ g2) = ρ(g1)ρ(g2).
Given a function f : X → Y such that G has representations ρX and ρY acting on X and

Y respectively, we say f is G-equivariant if for all x ∈ X and g ∈ G, we have ρY (g)f(x) =
f(ρX(g)x). That is, a transformation of the input of x induces a corresponding transformation of the

output. Invariance for the function f is a special case in which ρY (g)y = y.

SO(2) Equivariant Continuous Convolution. Continuous convolution (Ummenhofer et al., 2019)

generalizes discrete convolution. The feature vector f (i) ∈ Rcin of particle i forms a vector field f ,

and the kernel of the convolution K : R2 �→ Rcout×cin forms a matrix field: for each point x ∈ R2,

K(x) is a cout × cin matrix. The continuous convolution is then defined by

g(i) =
∑

j

a(‖x(j) − x(i)‖)K(x(j) − x(i)) · f (j).

By Weiler and Cesa (2019), this is SO(2)-equivariant if K(gv) = ρout(g)K(v)ρin(g
−1).

ECCO (Walters et al., 2021) defines the convolution kernel K in polar coordinates K(θ, r).
Let Rcin and Rcout be SO(2)-representations ρin and ρout respectively, then the convolution kernel

satisfies the equivariance condition as follows, making the continuous convolution SO(2)-equivariant.

K(θ + φ, r) = ρout(Rotθ)K(φ, r)ρin(Rot
−1
θ )

Calibration and Sharpness of Probabilistic Prediction. It is desirable for a probabilistic predic-

tion to be both calibrated and sharp. A model is calibrated when the predicted probability correspond

to the true probability of an event. In forecasting, calibration is often measured with coverage, the

probability of ground truth Y falls into prediction region of confidence Ĉ1−α, 1− α ∈ [0, 1].

P (Y ∈ Ĉ1−α) ≥ 1− α (1)

Note that one can always obtain a calibrated prediction region by setting Ĉ1−α to be the entire Y
space. We introduce the concept of Sharpness, which refers to the size of the prediction region

|Ĉ1−α|. The balance between calibration and sharpness can be measured by a class of metrics called

proper scoring rules (Gneiting and Raftery, 2007).

4. PECCO

4.1. Problem Setup

Given past trajectories of n agents over t time steps {x(1)j , x
(2)
j , · · · , x(n)j }tj=1, where x

(i)
j ∈ R2 , and

the environmental context information e including marker positions of map lane boundaries, we

model the probability distribution of agents’ positions over k future time steps as pθ(xt+1:t+k|x1:t, e),
with xj = (x

(1)
j , · · · , x(n)j ) being the positions of all agents at time step j. We introduce PECCO, a

deep learning model that leverages rotational equivariance to produce probabilistic forecasts.

The high-level architecture of our model is illustrated in Figure 2. PECCO takes as input the

positions of all agents x1:t in the past, and the covariance matrix Σx,j at time j. It outputs the

probability distribution of each agents’ velocity as a 2-D Gaussian N (μ
(i)
v,j+1, Σ

(i)
v,j+1) for the next

time step. The velocity distribution is then integrated into a position distribution N (μ
(i)
x,j+1, Σ

(i)
x,j+1)

through dynamics integration. PECCO predicts the future k timesteps autoregressively. The output

distributions are guaranteed to be rotational equivariant by our model implementation.
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Figure 2: Overview of PECCO’s model architecture. Agent trajectories consisting of velocities and

position uncertainties are encoded along with map information by equivariant continuous convolution

and fully connected layers. The model outputs vj+1 and Σv,j+1 for all agents, which we use to

calculate position uncertainty Σx,j+1 via dynamics. The model takes in the forecast and predicts

autoregressively.

4.2. Probabilistic Symmetry through Equivariant Neural Networks

Rotational equivariance effectively reduces the dimension of the data space by placing different

samples in the same equivalence class. This improves data coverage for better probabilistic modeling.

Intuitively, real-world trajectory dynamics has intrinsic symmetry. That is, if past trajectories and

environmental data such as the map is rotated, then the probability of a rotated future trajectory will

be equally likely. We can model the probability density function pθ as an invariant function of its

inputs as in Equation 2. Here, each past and future position x
(i)
j ∈ R2 is transformed according the

standard representation ρ1.

pθ(xt+1:t+k|x1:t, e) = pθ(gxt+1:t+k|gx1:t, ge) ∀g ∈ SO(2) (2)

In order to implement Equation 2, we assume future positions follow a multivariate normal

distribution x
(i)
j ∼ N(μ

(i)
x,j ,Σ

(i)
x,j). This is a common assumption in trajectory forecasting literature

(Rudenko et al., 2020) and provides a convenient parametric form for optimization and reasoning. In

the following expositions we omit the underscore x for simplicity.

We aim to construct an equivariant neural network fθ that outputs the parameters μ
(i)
j and Σ

(i)
j

autoregressively, taking as input probability distributions over the positions of all agents in the past k
time steps

μj+1,Σj+1 = fθ(μj−t+1:j ,Σj−t+1:j , e).

where μj = (μ
(1)
j , . . . , μ

(n)
j ) and Σj = (Σ

(1)
j , . . . ,Σ

(n)
j ) and e denotes environmental information.

In this case, the equivariance of fθ leads to the desired invariance of pθ. This may be seen as a

partial evaluation or currying of the conditional probability density function which has the effect of

transforming invariance to equivariance. The following proposition relates equivariant networks with

probabilistic symmetry. See Appendix A for a proof.

5



PROBABILISTIC SYMMETRY FOR MULTI-AGENT DYNAMICS

Proposition 1 (One step equivariance implies n-step equivariance) If the one-step probabilis-
tic forecasting model fθ is G-equivariant, then the probability distribution pθ(xt+1:t+k|x1:t, e) is
invariant as in Equation 2.

In order to enforce SO(2)-equivariance for fθ, the following proposition describes how the mean

and covariance matrix for a 2-D Gaussian transforms under a rotation of R2.

Proposition 2 (SO(2) equivariance of multivariate Gaussian) Given multivariate normal distri-
bution N (μ,Σ) over R2 with probability density function pμ,Σ and g ∈ SO(2), then N (gμ, gΣgT )
is also a multivariate normal distribution and pgμ,gΣgT (v) = pμ,Σ(g

−1v) for all v ∈ R2.

To ensure the covariance matrix of fθ is positive-definite and symmetric, i.e. Σ ∈ PosDefSym2(R),
we make use of the following fact:

Proposition 3 (Equivariant maps constructing positive-definite symmetric matrices) The map

ϕ : GL2(R) → PosDefSym2(R), M �→ MMT (3)

is surjective and equivariant. That is, for g ∈ SO(2) we have

ϕ(gM) = gϕ(M)gT . (4)

Moreover, ϕ admits a one-sided inverse which is also equivariant,

ψ : PosDefSym2(R) → GL2(R), Σ �→ QΛ
1
2 (5)

where QΛQT is the eigendecomposition of Σ and Q is orthogonal. Together, ϕ(ψ(Σ)) = Σ.

As a consequence of Proposition 2 and Proposition 3, we can ensure that the predicted distribution

transforms correctly under equivariance by (1) predicting an intermediate matrix M for covariance,

and (2) constraining f̃θ to be equivariant with respect to the action in Equation 4.

μj+1,Mj+1 = f̃θ(μj−k:j ,Mj−k:j , e), Σj+1 = Mj+1M
T
j+1 (6)

In this case, SO(2) acts by transforming the the columns of M independently as vectors in R2. Thus

the data (μ
(i)
j ,Σ

(i)
j ) for each agent and time step is comprised of 3 copies of the standard representa-

tion ρ1 as defined in Section 3. Given this SO(2) action, we can enforce SO(2)-equivariance in the

neural network f̃θ. Implementation details of of the equivariant layers are provided in Appendix B.

4.3. Dynamics Integration (dyna)

Instead of predicting the position directly, PECCO outputs a Gaussian distribution over velocity as

N (μv,j ,Σv,j). More specifically, it predicts (μv,j ,Mv,j) at each time step and the covariance matrix

Σv,j is calculated as in Proposition 3. However, we want to obtain the uncertainty over position as

Σx,j and perform autoregressive forecasting. We leverage dynamics integration to propagate the

uncertainty from velocity to position.

Assuming that all agents in the system can be approximated as linear discrete time dynamics

xj+1 = xj +Δt · vj , we can obtain the uncertainty of predicted position Σx,j+1 by

Σx,j+1 = Σx,j + (Δt)2Σv,j + 2Δt · cov(xj , vj).
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We assume that the cross covariance matrix cov(xj , vj) is zero for simplicity following previous

works (Salzmann et al., 2020). During training, gradients are calculated after entire trajectory is

predicted autoregressively. A consequence of the additive uncertainty setup is that it enforces the

uncertainty to grow monotonically over time, creating a “cone of uncertainty”.

5. Experiments

We show that our model produces accurate and more calibrated probabilistic forecast compared

to baseline models on one synthetic and two real world trajectory prediction datasets: interacting

particles, autonomous vehicle, and pedestrian movement.

5.1. Baselines

• LSTM-NLL (variation of Alahi et al. (2016)): An encoder-decoder LSTM model that predicts

the mean and variance of a Gaussian distribution, optimizing likelihood of data. We also train

a version with random rotation data augmentation LSTM-aug.

• CtsConv (Ummenhofer et al., 2019): Continuous convolution over point cloud data for

trajectory prediction, a non-equivariant counterpart of PECCO. CtsConv-aug is trained

with a data augmentation step where we randomly rotate the scenes.

• Multiple Futures Prediction (MFP) (Tang and Salakhutdinov, 2019): A encoder-

decoder model for multimodal probabilistic trajectory forecasts.

• Trajectron++ (Salzmann et al., 2020): State-of-the-art probabilistic trajectory prediction

model with graph representation of agent interactions and conditional VAE architecture.

5.2. Evaluation Metrics.

• Minimum Average/Final Displacement Error (minADE6, minFDE6): average l2 displacement

error over k steps, or average displacement of the final step, between predicted and ground

truth trajectories. We report the minimum over 6 samples for probabilistic models.

• Negative Log Likelihood (NLL): NLL of ground truth trajectories under predicted distributions.

• Energy Score (ES) (Gneiting and Raftery, 2007): a proper scoring rule to measure calibration

and sharpness of the predicted distribution P . The energy score for a distribution P and the

ground truth data x is defined as: ES(P, x) = EX∼P ‖X − x‖ − 1
2EX,X′∼P ‖X −X ′‖. Here

X and X ′ are independent samples from P .

• Coverage: The empirical estimate of probability of the true value lying in the predicted interval,

defined in equation 1. We report the coverage of 90% quantile of the predicted Gaussian. The

prediction is more calibrated if the coverage is closer to 90%.

5.3. Datasets.

The particle dataset is a synthetic dataset of 5 particles interacting in spring dynamics (Kipf et al.,

2018) with dynamics noise. The models predict 20 time steps given 30 steps as input. The Argoverse

autonomous vehicle motion forecasting (Chang et al., 2019) is a widely used vehicle trajectory

prediction benchmark. The task is to predict 3 second trajectories based on all vehicle history in

the past 2 seconds recorded at 10Hz. TrajNet++ (Sadeghian et al., 2018) is a popular pedestrian

7
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Model minADE6 ↓ minFDE6 ↓ NLL↓ ES ↓ Cov@1s(%) Cov@2s Cov@3s

Argoverse

LSTM-NLL 1.64 ± .05 4.17 ± .10 3.07 ± .08 2.31 ± .54 8.8 ± 0.7 8.5 ± 0.7 7.0 ± 0.8

LSTM-NLL-aug 1.61 ± .02 4.15 ± .08 2.78 ± .03 1.99 ± .46 10.1 ± 1.5 10.5 ± 1.0 9.8 ± 1.9

CtsConv-NLL 1.74 ± .03 4.43 ± .06 29.1 ± 2.2 6.71 ± .70 6.3 ± 2.2 0.02 ± .01 0.01 ± .01

CtsConv-NLL-aug 1.66 ± .02 4.23 ± .06 11.81 ± .01 5.10 ± .35 11.9 ± 2.1 1.7 ± 0.5 0.02 ± .01

Trajectron++ 1.83 ± .02 3.85 ± .07 2.48 ± .27 3.92 ± .61 45.5 ± 5.3 37.6 ± 3.2 34.9 ± 2.5

MFP 1.53 ± .04 3.77 ± .06 3.56 ± .02 2.33 ± .21 51.3 ± 5.1 33.0 ± 4.9 8.3 ± 4.8

PECCO 1.39 ± .02 3.41 ± .03 4.26 ± 0.1 1.54 ± .16 74.9 ± 0.6 78.6 ± 2.8 84.5 ± 2.9

TrajNet++

LSTM-NLL-aug 0.85 ± .02 1.64 ± .03 2.78 ± .02 -0.28 ± .09 29.0 ± 4.3 23.2 ± 4.2 23.7± 3.9

CtsCov-NLL 1.08 ± .02 2.36 ± .09 5.33 ± .08 1.67 ± .13 43.8 ± 10.6 20.7 ± 5.2 12.2 ± 6.7

CtsCov-NLL-aug 0.92 ± .01 1.76 ± .03 6.74 ± .21 1.42 ± .11 62.1 ± 3.3 36.3 ± 4.9 34.1 ± 5.8

Trajectron++ 1.14 ± .03 2.31 ± .05 2.83 ± .12 0.98 ± .17 50.2 ± 2.2 45.8 ± 3.5 32.9 ± 3.5

MFP 0.85 ± .02 1.70 ± .04 2.20 ± .04 0.67 ± .08 79.1 ± 4.3 32.5 ± 3.1 22.8 ± 3.2

PECCO 0.59 ± .12 1.06 ± .17 2.37 ± .04 -0.73 ± .10 80.8 ± 4.5 85.9 ± 2.3 94.5 ± 3.0

Table 2: Performance comparison on benchmark datasets Argoverse and TrajNet++. Cov@ks(%)

refers to coverage at the k second mark; prediction is more calibrated if closer to 90%. PECCO is

more accurate and calibrated compared to non-equivariant baseline models.

(a) LSTM (b) CstConv (c) PECCO

Figure 3: Comparison of prediction results between baselines. The solid lines are input timesteps to

the models, the dotted lines ground truth, and the circles the 90% confidence regions. We can see

that PECCO achieves accurate results while maintaining good coverage.

trajectory benchmark with a focus on agent-agent interaction scenarios. The task is to predict 12

time steps for agents given 9. We refer the reader to Appendix D.1 for data and training details.

5.4. Experimental Results

Model MSE ↓ NLL↓ ES ↓
LSTM .016 -1.61 1.041

CtsConv .010 -0.81 0.667

PECCO .004 -0.83 0.467

Table 1: PECCO outperforms base-

line models in all metrics on the syn-

thetic particles dataset.

Particles dataset. We present experimental result for the

synthetic particle dataset in Table 1. We visualize a test sam-

ple in Figure 3 to qualitatively illustrate PECCO’s improved

accuracy and calibration.

Argoverse and TrajNet++. Table 2 presents experimental

results on two benchmark datasets. PECCO achieves better

regression accuracy compared to non-equivariant baseline in

terms of minADE and minFDE, with a notable 9% improve-

8
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(a) LSTM-NLL (b) CtsConv-NLL (c) MFP (d) PECCO

Figure 4: Comparison of uncertainty predicted at a lane change. Red trajectories are the agent of

interest in the same scenario. Note how the LSTM predicted uncertainty explodes after a few time

steps, while CtsConv and MFP has overconfident distributions. PECCO is able to model possibility

of both staying and lane change.

Figure 5: With equivariance, PECCO is able to achieve better energy score and NLL with fewer data

samples, compared to its non-equivariant counterpart.

ment in minADE over the the best performing baseline, MFP.

PECCO’s improved probability coverage allows for more diverse sampling and hence can produce

trajectories closer to ground truth.

PECCO’s probabilistic predictions are able to achieve consistently better coverage compared to

other methods whose coverage deteriorates over time. Comparing LSTM-NLL and CtsConv-NLL

with their augmented counterparts, LSTM-NLL-aug and CtsConv-NLL-aug, we can see that data

augmentation through rotation improves both accuracy and calibration. PECCO leverages this

symmetry to improve accuracy, maintain good calibration, and converge faster (Figure 5).

Figure 4 visualizes a typical situation to illustrate this difference. We plot the predicted distribu-

tion at 10, 20, and 30 time steps of prediction (1 time step is 0.1 seconds). We can see the probable

region predicted by LSTM-NLL explodes at timesteps 20 and 30, whereas CtsConv-NLL and MFP

tend to be overconfident in their predictions. PECCO is able to predict a Gaussian that covers both

cases of staying in the lane and changing to the right lane.

5.5. Model Analysis

Comparison with data augmentation and cannonicalization. Data augmentation and cannon-

icalization are popular methods to implicitly exploit symmetry in trajectory data. In Table 4 we

9
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Model minADE6 ↓ minFDE6 ↓ MRS ↓ Cov@1s(%) Cov@2s Cov@3s

Conformal LSTM 2.45 ± 0.09 4.68 ± 0.15 198.1 ± 12.0 90.1 ± 0.1 92.7 ± 0.1 92.8 ± 0.1

Conformal ECCO 1.96 ± 0.06 4.32 ± 0.10 220.9 ± 8.1 90.0 ± 0.1 90.1 ± 0.1 90.0 ± 0.1

PECCO 1.39 ± .02 3.41 ± 0.03 8.52 ± 0.16 74.9 ± 0.2 93.6 ± 0.8 92.5 ± 0.9

Table 3: Comparison with conformal prediction methods on Argoverse dataset. PECCO produces

a parametric distribution with a tighter confidence region (small MRS), whereby achieving better

regression accuracy while maintaining competitive coverage.

compare PECCO to its nonequivariant counterparts with the addition of data augmentation and can-

nonicalization. Equivariance dramatically improves prediction performance in all aspects, especially

calibration.

minA/FDE6 NLL Cov(%)

CtsConv 1.74 / 4.43 29.13 2.2

+cannon 1.66 / 4.28 17.46 4.5

+aug 1.67 / 4.23 11.81 17.1

equivariant 1.39 / 3.41 4.26 87.5

Table 4: Data Augmentation Comparison on the

Argoverse Dataset.

Dynamics Integration Ablation. Dynamic in-

tegration (dyna) introduced in Section 4.3 en-

forces the uncertainty to grow monotonically

over time. As an ablative study, Table 5 show

that PECCO with dynamic integration has much

better calibration compared to if without; for the

Argoverse dataset, the improved calibration also

informs better performance on minADE/FDE.

Comparison with Conformal Prediction. We

compare to two conformal prediction baselines

(Stankevičiūtė et al., 2021) (Appendix C.3 for details) in Table 3. Conformal methods achieve

guaranteed ≥ 90% coverage, but suffer in prediction accuracy due to having to split training data for

calibration. Since conformal prediction does not output a distribution, we use another proper scoring

rule Mean Regional Score (2d extension of mean interval score in Gneiting and Raftery (2007), see

Appendix B) as metric. The conformal regions are much larger (higher MRS), which is less desirable

for downstream decision making tasks.

6. Conclusion

Argoverse minA/FDE6 NLL Cov(%)

no-dyna 1.52 / 3.76 9.72 38.6

dyna 1.39 / 3.41 4.26 87.5
Pedestrian minA/FDE6 NLL Cov(%)

no-dyna 0.72 / 2.12 4.71 39.6

dyna 0.73 / 1.98 2.37 83.7

Table 5: Dynamics Integration (dyna) Ablation:

using dyna encourages the uncertainty to grow

over time and improves coverage.

In this work we propose Probabilistic Equivari-

ant Continuous Convolution (PECCO), a novel

multi-agent probabilistic prediction method for

improving uncertainty quantification. We de-

sign an equivariant neural network under which

the predicted distributions transform correspond-

ingly as inputs are transformed. We introduce the

Energy Score metric to bring attention to the cali-

bration of multivariate probabilistic forecasts. By

leveraging equivariance, PECCO produces more

accurate and calibrated probabilistic forecasts

compared to existing methods on both synthetic

and real-world datasets.
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