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A B S T R A C T

In the work of Colliander et al. (2020) a minimal lattice model was constructed describing the transfer of

energy to high frequencies in the defocusing nonlinear Schrödinger equation. In the present work, we present

a systematic study of the coherent structures, both standing and traveling, that arise in the context of this

model. We find that the nonlinearly dispersive nature of the model is responsible for standing waves in the

form of discrete compactons. On the other hand, analysis of the dynamical features of the simplest nontrivial

variant of the model, namely the dimer case, yields both solutions where the intensity is trapped in a single

site and solutions where the intensity moves between the two sites, which suggests the possibility of moving

excitations in larger lattices. Such excitations are also suggested by the dynamical evolution associated with

modulational instability. Our numerical computations confirm this expectation, and we systematically construct

such traveling states as exact solutions in lattices of varying size, as well as explore their stability. A remarkable

feature of these traveling lattice waves is that they are of ‘‘antidark’’ type, i.e., they are mounted on top of a

non-vanishing background. These studies shed light on the existence, stability and dynamics of such standing

and traveling states in 1 + 1 dimensions, and pave the way for exploration of corresponding configurations in
higher dimensions.

1. Introduction

Lattice nonlinear dynamical systems are of wide interest in a diverse

array of physical applications [1–3]. Some typical recent examples

include, but are not limited to, the evolution of light beams in arrays of

optical waveguides [4], the study of mean-field atomic Bose–Einstein

condensates (BECs) in the presence of optical lattice external poten-

tials [5], and the propagation of traveling, breathing or shock waves

in nonlinear metamaterials such as granular crystals [6–8]. Similar

structures have been analyzed in models and experiments of electrical

circuits [9], in micromechanical cantilever arrays [10], and in super-

conducting Josephson junction lattices [11,12], as well as argued to be

present during the denaturation of the DNA double strand [13].

Arguably, one of the most prototypical models that has arisen in the

context of the interplay of dispersion (diffraction) on a lattice and non-

linearity is the discrete nonlinear Schrödinger (DNLS) equation [3,14].

This model has been central in the theoretical analysis and significant
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experimental developments associated with discrete solitons in op-

tics [15]. Moreover, it has played a role in unveiling instabilities (both

theoretically [16] and experimentally [17]), as well as intriguing dy-

namical behavior (such as coherent perfect absorption [18]) in atomic

BECs. Finally, its role cannot be understated as a quintessential model

within mathematical physics [19], at the intersection of integrable and

non-integrable variants of the continuum NLS equation [20].

While the DNLS equation is characterized by linear dispersion and

explores its interplay with nonlinearity, there are reasons to examine

the scenario where dispersion is purely nonlinear (and does not have

a linear component). For instance, in the work of [21], motivated

by the complicated nonlinearities associated with Frenkel excitons

in [22], bright discrete compactons were studied, and the results were

subsequently extended to encompass some exact results, including

ones regarding moving discrete states in such models [23]. However,

the focus and motivation of the present work is different. It stems
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Fig. 1. Colormap of intensity |𝑢𝑗 |2 for evolution of (1) in 𝑡. Horizontal axis is 𝑡, vertical axis is lattice index 𝑗. Initial condition is 𝑢𝑗 = 𝑐𝑗 𝑒
𝑖𝑗𝜙, where 𝑐𝑗 is a piecewise linear ramp

from 0 to 1 and back, defined by 𝑢𝑗 = 2𝑗∕𝑁 for 0 ≤ 𝑗 ≤ 𝑁∕2 and 𝑢𝑗 = 2 − 2𝑗∕𝑁 for 𝑁∕2 ≤ 𝑗 ≤ 𝑁 . 𝜙 = 𝜋∕4 (left) and 𝜙 = 𝜋∕2 (right). 𝑁 = 80 lattice sites, 𝑑 = 0.25. The time
evolution is performed using the Dormand-Prince integrator, implemented in Matlab by means of the ode45 function.

instead from a fundamental study regarding energy cascades in models

of turbulence, which arise from considerations in the context of the

defocusing NLS equation [24]. The latter considers a suitably modified

notion of a ‘‘lattice node’’ as representing a group of wavenumbers in

the Fourier space formulation of the original problem. In this setting,

a minimal model of lattice dynamics was developed in order to offer

insights regarding the transfer of energy to high frequencies.

The minimal model of [24] has spurred considerable further activ-

ity in its own right, including dynamical simulations illustrating the

existence of cascades in the model [25], the exploration of the connec-

tion with Burgers equation (notably towards the study of rarefaction

waves [26]), a consideration of the continuum limit of the model [27],

as well as a comparative study of integrators of such a model [28].

A notable associated question, however, remains in identifying the

principal ‘‘vehicle’’ enabling the cascades within this model.

In the present work, motivated by all of the above interconnected

factors — namely the broad interest in nonlinear lattice models, the

special features of this model such as its lack of linear dispersion

(and hence potential for compactly supported states), and its nontrivial

appeal as a minimal model for transfer of energy across wavenumbers

— we revisit this prototypical nonlinearly dispersive setting. After

setting the stage and reviewing some basic properties of the model in

Section 2, we proceed to briefly examine its modulational instability

in Section 3, identifying already at that level the potential for both

localized and propagating states. We then corroborate this expectation

through the identification of stationary compactly supported states in

Section 4, accompanied by the study of their spectral stability. In

Section 5, we start to explore the dynamics of the system via the

simplest nontrivial case thereof, namely that of two lattice nodes,

i.e., the nonlinearly dispersive dimer. We revisit the important ‘‘slider’’

states earlier identified in [24], but importantly we showcase their

sensitivity as separatrices in the full system dynamics which we are able

to completely characterize with exact, analytical solutions and illustrate

with a two-dimensional phase portrait involving relevant dynamical

variables. Finally, this complete understanding of the dimer case, and,

in particular, the presence of states wherein the intensity is transferred

between the two sites, prompts us to explore genuinely traveling states

in progressively larger lattices in Section 6. We also examine the stabil-

ity of the associated waveforms. Section 7 summarizes our findings and

presents a number of directions for future studies. We briefly comment

on the continuum limit of the model in an appendix.

2. Model

The model we will be considering here is the fully nonlinear lattice

differential equation

𝑖𝑢̇𝑗 + 𝑑(𝑢2
𝑗−1 + 𝑢2

𝑗+1)𝑢𝑗 − |𝑢𝑗 |2𝑢𝑗 = 0, (1)

where 𝑢𝑗 ∈ C and 𝑑 > 0 quantifies the nonlinear nearest neighbor
coupling. (See section 2 of [24] for a derivation of this model, which is

equation (2.15) in that reference with 𝑑 = 2.) The present exploration
of solutions to (1) is motivated by timestepping experiments showing

the appearance and breakdown of a diverse array of coherent structures

which exist in different parts of the lattice; see Fig. 1 for a pertinent

illustration. Examples suggested by the figure include traveling solu-

tions (Fig. 1, left, starting around 𝑡 = 8 and 𝑗 = 50, the intensity moves
to lower 𝑗), ‘‘breather’’ solutions (Fig. 1, left, the intensity alternates

regularly between sites 41 and 42 starting around 𝑡 = 40) and stationary
solutions (Fig. 1, right, the intensity is constant at site 46 starting

around 𝑡 = 20).
Eq. (1) is Hamiltonian, with conserved energy given by

𝐻(𝑢) =
∑
𝑗

(1
4
|𝑢𝑗 |4 − 𝑑

4

(
𝑢
2
𝑗 𝑢

2
𝑗−1 + 𝑢2𝑗 𝑢

2
𝑗−1

))
, (2)

which follows from translation symmetry of (1) in 𝑡. By the Cauchy–

Schwarz inequality,

1 − 2𝑑
4

∑
𝑗

|𝑢𝑗 |4 ≤ 𝐻(𝑢) ≤ 1 + 2𝑑
4

∑
𝑗

|𝑢𝑗 |4,
which implies, in particular, that the Hamiltonian is coercive if 𝑑 ∈
(0, 1∕2) (it is then equivalent to the 𝓁4 norm); we will see that it is

useful to think of this case as defocusing. The power of the solution

(squared 𝓁2 norm)

𝑃 (𝑢) = ‖𝑢‖2
𝓁2

=
∑
𝑗

|𝑢𝑗 |2
is also conserved, which follows from the gauge symmetry 𝑢 ↦ 𝑒𝑖𝜃𝑢

of (1). In addition, the model is invariant under the transformation

𝑢 ↦ 𝑎𝑢, 𝑡 ↦ 𝑎3𝑡, for a real constant 𝑎. As a consequence, scaling

the amplitude of the solution does not qualitatively affect the solution

but merely speeds up or slows down its time evolution. Finally, some

‘‘staggering transforms’’ act in an interesting way on the equation. The

transform 𝑢𝑗 ↦ 𝜖𝑗𝑢𝑗 , where 𝜖𝑗 = ±1, leaves the equation invariant. The
transform 𝑢𝑗 ↦ 𝑖𝑗𝑢𝑗 amounts to flipping the sign of 𝑑, which shows

that the case 𝑑 < 0 is included in our analysis, thus we can take 𝑑 > 0
without loss of generality.
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Defining the density matrix elements by

𝜌𝑗𝑘 = 𝑢𝑗𝑢𝑘, (3)

the evolution equation for 𝜌𝑗𝑘 is given by

𝑑

𝑑𝑡
𝜌𝑗𝑘 = 𝑖

[
𝑑
(
𝜌𝑗−1,𝑗𝜌𝑗−1,𝑘 + 𝜌𝑗+1,𝑗𝜌𝑗+1,𝑘 − 𝜌𝑗,𝑘−1𝜌𝑘,𝑘−1 − 𝜌𝑗,𝑘+1𝜌𝑗,𝑘+1

)
+
(
𝜌𝑘𝑘 − 𝜌𝑗𝑗

)
𝜌𝑗𝑘

]
.

(4)

The intensity at lattice site 𝑗 is given by 𝜌𝑗𝑗 = |𝑢𝑗 |2, which has evolution
𝑑

𝑑𝑡
𝜌𝑗𝑗 = 𝑖𝑑

(
𝜌2
𝑗−1,𝑗 + 𝜌2

𝑗+1,𝑗 − 𝜌2
𝑗,𝑗−1 − 𝜌2

𝑗,𝑗+1

)
= −2𝑑Im

(
𝜌2
𝑗−1,𝑗 + 𝜌2

𝑗+1,𝑗

)
,

(5)

where we used the fact that 𝜌𝑗𝑘 = 𝜌𝑘𝑗 . We can also separate real and

imaginary parts by writing 𝑢𝑗 = 𝑎𝑗 + 𝑖𝑏𝑗 for real 𝑎𝑗 and 𝑏𝑗 . Eq. (1) can

then be written as

𝑑

𝑑𝑡

(
𝑎𝑗
𝑏𝑗

)
=

⎛⎜⎜⎜⎜⎝
(𝑎2
𝑗
+ 𝑏2

𝑗
)𝑏𝑗 − 2𝑑𝑎𝑗 (𝑎𝑗−1𝑏𝑗−1 + 𝑎𝑗+1𝑏𝑗+1)

+𝑑𝑏𝑗 (𝑎2𝑗−1 + 𝑎2
𝑗+1 − 𝑏2

𝑗−1 − 𝑏2
𝑗+1)

−(𝑎2
𝑗
+ 𝑏2

𝑗
)𝑎𝑗 + 2𝑑𝑏𝑗 (𝑎𝑗−1𝑏𝑗−1 + 𝑎𝑗+1𝑏𝑗+1)

+𝑑𝑎𝑗 (𝑎2𝑗−1 + 𝑎2
𝑗+1 − 𝑏2

𝑗−1 − 𝑏2
𝑗+1)

⎞⎟⎟⎟⎟⎠
.

This form of the equation is useful for numerical analysis, as well as for

the linear stability analysis in Section 4.5 below.

The system (1) can be posed either on the full integer lattice or on

a finite lattice comprising 𝑁 nodes. Since Eq. (1) can be written as

𝑢̇𝑗 = 𝑖
[
𝑑(𝑢2

𝑗−1 + 𝑢2
𝑗+1) − 𝑢2𝑗

]
𝑢𝑗 , (6)

it follows that if 𝑢𝑗 (0) = 0, then 𝑢𝑗 (𝑡) = 0 for all 𝑡 > 0. If the initial data
on the full integer lattice is nonzero only at a finite number of lattice

sites, the system is equivalent to one on a finite lattice. In other words,

intensity cannot spread to sites which are initialized to 0 (or bypass

these sites), which is a feature fundamentally different from the linear

dispersion case.

3. Modulational instability

We now turn to an analysis of modulational instability (MI) in the

model, in order to further motivate the wave features which we will

subsequently explore. Plane wave solutions of (1) can be found of the

form

𝑢𝑗 (𝑡) = 𝐵𝑒𝑖(𝑘𝑗−𝜔𝑡),

with 𝑘 ∈ [−𝜋, 𝜋]. Substituting this into Eq. (1), these plane waves satisfy
the dispersion relation

𝜔 = |𝐵|2(1 − 2𝑑 cos(2𝑘)).

To understand the stability of such plane waves, we perturb according

to

𝑢𝑗 (𝑡) = 𝐵𝑒𝑖(𝑘𝑗−𝜔𝑡)(1 + 𝑎𝑗 (𝑡)).

Linearizing in 𝑎𝑗 (and using the dispersion relation) leads to the equa-

tion

−𝑖𝜕𝑡𝑎𝑗 = 𝜔(𝑎𝑗 − 𝑎𝑗 ) + |𝐵|2(−2𝑎𝑗 + 2𝑑𝑒2𝑖𝑘𝑎𝑗+1 + 2𝑑𝑒−2𝑖𝑘𝑎𝑗−1).

Taking the Fourier transform normalized as

𝑎(𝜃) =
∑

𝑎𝑗𝑒
−𝑖𝜃𝑗 ,

with 𝜃 ∈ [0, 2𝜋] being the wavenumber of the perturbation, this

becomes

−𝑖𝜕𝑡𝑎(𝜃) = 𝜔(𝑎(𝜃) − 𝑎(−𝜃)) + |𝐵|2(−2 + 4𝑑 cos(2𝑘 + 𝜃))𝑎(𝜃).

This can be written as the vector equation

−𝑖𝜕𝑡𝐴 = 𝑀𝐴,

with 𝐴 = 𝑎(𝜃)∕ 𝑎(−𝜃) and

𝑀 =
(|𝐵|2(−2 + 4𝑑 cos(2𝑘 + 𝜃)) + 𝜔 −𝜔

𝜔 −|𝐵|2(−2 + 4𝑑 cos(2𝑘 − 𝜃)) + 𝜔

)
.

(7)

Stability is then equivalent to the matrix 𝑀 having real eigenvalues,

or, in other words,

(cos(2𝑘+𝜃)+cos(2𝑘−𝜃)−2 cos(2𝑘))(−1+𝑑 cos(2𝑘+𝜃)+𝑑 cos(2𝑘−𝜃)) > 0. (8)

Using standard trigonometric identities, this criterion simplifies to

ℎ(𝜃) = 2 cos(2𝑘)(cos 𝜃 − 1)(2𝑑 cos(2𝑘) cos 𝜃 − 1) > 0, (9)

which is quadratic in cos 𝜃 for fixed 𝑑 and 𝑘. Eq. (9) always has a root

at 𝜃 = 0; for |2𝑑 cos(2𝑘)| ≥ 1, it has an additional pair of roots at

𝜃 = ±arccos
(

1
2𝑑 cos(2𝑘)

)
.

Given the dependence of these expressions on cos 𝜃, we can restrict the
discussion (by mirror symmetry) to 𝜃 > 0 hereafter.

As an example, the left panel of Fig. 2 plots ℎ(𝜃) from (9) vs. 𝜃

for 𝑘 = 𝜋∕8. (The specific wavenumber is chosen so that the periodic
boundary conditions on a lattice of size 𝑁 = 256 nodes are satisfied.)
The roots of ℎ(𝜃) are at 0 and ±𝜋∕4, thus ℎ(𝜃) is negative for 𝜋∕4 < 𝜃 < 0
and 0 < 𝜃 < 𝜋∕4, which is the MI region. Compare the evolution of
the two perturbations in the center panel of Fig. 2; the perturbation

with 𝜃 = 𝜋∕6 (solid blue line) is within the MI region and grows

exponentially, in contrast to the perturbation with 𝜃 = 𝜋∕2 (dotted
orange line), which is outside the MI region and thus does not grow.

A colormap showing regions of MI in the (𝜃, 𝑘) plane is shown in the
right panel of Fig. 2; the color indicates the growth rate of MI, as

given by the maximal imaginary part of the eigenvalues of (7). Two

interesting observations here are as follows. First, MI is not always (and

in particular is not for 𝑘 = 0) a long-wavelength instability with a band
starting at 𝜃 = 0, as is typically the case in NLS models. Second, there
are regions of modulationally stable wavenumbers 𝑘.

Colormaps showing the evolution of MI for all lattice sites are

shown in Fig. 3; comparison of these to the evolution plots in Fig. 1

suggests that MI plays a significant role in the dynamics of this system.

Importantly, the astute reader can discern a number of both standing

and moving waves in the pattern that results from the MI. It is to

these coherent structures that we now turn in more detail in what

follows.

4. Standing waves: Compactons

The first nonlinear structures of interest are compactons, which are

standing waves supported on a finite set of 𝑁 adjacent lattice sites.

(These also appear in different nonlinearly dispersive DNLS variants in,

e.g., [21–23], as discussed earlier.) Standing waves are solutions of the

form

𝑢𝑗 = 𝑐𝑗𝑒
−𝑖𝜔𝑡, (10)

with frequency 𝜔 and amplitudes 𝑐𝑗 . Although these amplitudes are

traditionally real (as in, for example, the DNLS equation), we will see

below that there is a class of solutions (the staggered compactons)

where this is not the case.

4.1. Real compactons

Real compactons are solutions of the form (10), where all the 𝑐𝑗 are

taken to be real. In this case, substituting (10) into (1) and simplifying,

we obtain the standing wave equation

𝑑(𝑐2
𝑗−1 + 𝑐2

𝑗+1)𝑐𝑗 − 𝑐3𝑗 + 𝜔𝑐𝑗 = 0. (11)
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Fig. 2. Left: plot of ℎ(𝜃) from (9) vs. 𝜃 for 𝑘 = 𝜋∕8. Center: Evolution of the perturbation of plane wave using the initial condition 𝑢𝑗 (0) = 𝐵𝑒𝑖𝑘𝑗 (1 + 𝜖𝑒−𝑖𝜃𝑗 ) with 𝜖 = 0.0001 and
𝐵 = 1∕4 for 𝑘 = 𝜋∕8. The time evolution is performed using the Dormand-Prince integrator, implemented in Matlab by means of the ode45 function. Right: Regions of MI in the

(𝜃, 𝑘) plane; intensity of colormap is maximum imaginary part of matrix 𝑀 from (7). The plot can be extended to negative 𝜃 and 𝑘 by symmetry. 𝑑 = 1 for all plots.

Fig. 3. Evolution of perturbation of a plane wave using initial condition 𝑢𝑗 (0) = 𝐵𝑒𝑖𝑘𝑗 (1 + 𝜖𝑒−𝑖𝜃𝑗 ) with 𝜖 = 0.0001 and 𝐵 = 1∕4 for 𝑘 = 𝜋∕8, 𝜃 = 𝜋∕6 (left) and 𝑘 = 𝜋∕2, 𝜃 = 𝜋∕6
(right). For all plots, 𝑁 = 256 lattice nodes with periodic boundary conditions and 𝑑 = 1. The time evolution is performed using the Dormand-Prince integrator, implemented in
Matlab by means of the ode45 function.

For a compacton comprising 𝑁 sites labeled 𝑐1 to 𝑐𝑁 , since 𝑐𝑗 ≠ 0 for
all 𝑗, we can divide equation (11) by 𝑐𝑗 to obtain

⎛⎜⎜⎜⎜⎜⎜⎝

1 −𝑑
−𝑑 1 −𝑑

−𝑑 1 −𝑑
⋱ ⋱ ⋱

−𝑑 1 −𝑑
−𝑑 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐21

𝑐22

𝑐23

⋮

𝑐2
𝑁−1

𝑐2
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

𝜔

𝜔

𝜔

⋮
𝜔

𝜔

⎞⎟⎟⎟⎟⎟⎟⎠
, (12)

which is linear in the square amplitudes 𝑐2
𝑗
and can be solved by row

reduction. Although (12) has a unique solution whenever the matrix

is nonsingular, this solution is only valid if 𝑐2
𝑗
> 0 for all 𝑗, since we

are taking the amplitudes 𝑐𝑗 to be real. See Fig. 4 for representative

compacton solutions. We note that we can take either the positive or

the negative root for each amplitude 𝑐𝑗 .

For 𝑁 = 1, the compacton is a single-site standing wave 𝑢1 = 𝑐1𝑒
−𝑖𝜔𝑡,

with 𝑐1 = ±
√
𝜔. For 𝑁 = 2, 3, 4, and 5, solving this linear system yields

the solutions from Table 1. For fixed 𝜔 > 0, the norm of these solutions

blows up as 𝑑 approaches 1, 1∕
√
2, (

√
5−1)∕2, and 1∕

√
3 (respectively)

from below; the matrix in (12) is singular at these values of 𝑑. For a

given 𝜔, a compacton solution exists only if all of the square amplitudes

𝑐2
𝑗
are positive (see the intervals of existence in Table 1); this depends

on whether 𝜔 > 0 or 𝜔 < 0. For example, for 𝑁 = 2, a real compacton
exists on (0, 1) for 𝜔 > 0 and on (1,∞) for 𝜔 < 0. Interestingly, the
2-site compacton is spectrally stable on both of these intervals. (See

Section 4.5.1 below for further discussion of stability; we note here that

spectral stability does not change at the existence thresholds in Table 1

where the norm of the solution blows up.)

For 𝑁 = 2 and 𝑁 = 3, the matrix in (12) is only singular at

the values of 𝑑 already discussed. For 𝑁 ≥ 4, however, the matrix is
singular at other values of 𝑑. For example, when 𝑁 = 4, the matrix is

singular when 𝑑 = (
√
5+1)∕2. At this value of 𝑑, the solution in Table 1

exists but is not unique; we can add any multiple of the kernel vector

(𝑑, 1,−1,−𝑑) to obtain another solution. The case when𝑁 = 5 is similar.
The matrix in (12) is singular when 𝑑 = 1, in which case we can add any
multiple of the kernel vector (1, 1, 0,−1,−1) to get another solution. (See
Section 4.5.1 below for a discussion on how spectral stability changes

at these singular points.) In addition, for 𝑁 = 5, real compactons do not
exist when 𝑑 > (1 +

√
5)∕2, since, in that case, 𝑐21 and 𝑐22 have opposite

signs for all 𝜔. For larger 𝑁 , analytic computation of exact solutions is

less straightforward. Numerical computations strongly suggest that real

compactons of all sizes 𝑁 exist for 0 < 𝑑 < 1∕2 (see, in addition, the
discussion below). Existence results for compactons for 𝑑 outside this

interval are more complicated due the requirement that all the 𝑐2
𝑗
> 0.

(The blue filled circles in Fig. 6 indicate which compactons exist for

a few values of 𝑑 > 1∕2.) Finally, we note that the real compacton
solutions are characterized by a plateau in the center of the solution.

For 0 < 𝑑 < 1∕2, the height of this plateau approaches

𝑐2 = 𝜔

1 − 2𝑑
(13)

for large 𝑁 , which is found by taking 𝑐𝑗 = 𝑐𝑗−1 = 𝑐𝑗+1 = 𝑐 in Eq. (11)

and solving for 𝑐.

To better understand the solutions of the above linear problem, we

observe first that it suffices to consider the case 𝜔 = 1. Denoting 𝑀

for the matrix in Eq. (12), 𝐱 for the vector (𝑐2
𝑗
) and 𝟏 for the vector

(1,… , 1)⊤, Eq. (12) becomes

𝑀𝐱 = 𝟏.

Since 𝑀 is a tridiagonal Toeplitz matrix, its eigenvalues 𝜆𝑘 and eigen-

vectors 𝐞𝑘 can be computed explicitly (see, for instance [29], page

154):

𝜆𝑘 = 1 − 2𝑑 cos
(

𝑘𝜋

𝑁 + 1

)
, 𝐞𝑘 =

(
sin

(
𝑘𝑗𝜋

𝑁 + 1

))
𝑗=1,…,𝑁

𝑘 = 1…𝑁 .
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Fig. 4. Compacton solutions obtained by solving equation (12) for 𝑁 = 5, 10, 20, and 40. Positive amplitude 𝑐𝑗 is chosen at each site, 𝑑 = 0.25, 𝜔 = 1.

Table 1

Square amplitudes for real compacton solutions for 𝑁 = 2, 3, 4 and 5, together with

intervals of existence for these solutions for 𝜔 > 0 and 𝜔 < 0.
𝑁 Real compacton solution 𝜔 > 0 𝜔 < 0

2 𝑐21 , 𝑐
2
2 = 𝜔

1−𝑑
(0, 1) (1,∞)

3 𝑐21 , 𝑐
2
3 = 𝜔(1+𝑑)

1−2𝑑2 𝑐22 = 𝜔(1+2𝑑)
1−2𝑑2

(
0, 1√

2

) (
1√
2
,∞

)
4 𝑐21 , 𝑐

2
4 = 𝜔

1−𝑑−𝑑2 𝑐22 , 𝑐
2
3 = 𝜔(1+𝑑)

1−𝑑−𝑑2

(
0,

√
5−1
2

) (√
5−1
2

,∞
)

5 𝑐21 , 𝑐
2
5 = 𝜔(1+𝑑−𝑑2 )

1−3𝑑2 𝑐22 , 𝑐
2
4 = 𝜔(1+2𝑑)

1−3𝑑2 𝑐23 = 𝜔(1+𝑑)2

1−3𝑑2

(
0, 1√

3

) (
1√
3
,
√
5+1
2

)

For 𝑑 ∈ (0, 1∕2), the eigenvalues 𝜆𝑘 are positive, and the matrix 𝑀 is

an𝑀-matrix; in particular its inverse has positive entries, so that 𝐱 has
positive entries.

Using trigonometric identities, we can then compute

‖𝐞𝑘‖2 = 𝑁∑
𝑗=1

sin
(

𝑘𝑗𝜋

𝑁 + 1

)2
= 𝑁

2
− 1

2

𝑁∑
𝑗=1

cos
(

2𝑘𝑗𝜋
𝑁 + 1

)
= 𝑁 − 1

2

⟨𝟏, 𝐞𝑘⟩ = 𝑁∑
𝑗=1

sin
(

𝑘𝑗𝜋

𝑁 + 1

)
=

{
0 if 𝑘 even

cotan
(

𝑘𝜋

2(𝑁+1)

)
if 𝑘 odd.

Since 𝑀 is self-adjoint, we can now invert the linear equation through

the formula

𝐱 =
𝑁∑
𝑘=1

1‖𝐞𝑘‖2 ⟨𝟏, 𝐞𝑘⟩𝐞𝑘.
In other words, the coordinates of 𝐱 are given by

𝑥𝓁 = 2
𝑁 − 1

∑
𝑘∈2N−1

1

1 − 2𝑑 cos
(

𝑘𝜋

𝑁+1

) cotan( 𝑘𝜋

2(𝑁 + 1)

)
sin

(
𝑘𝓁𝜋
𝑁 + 1

)
,

We now want to find the limit as 𝑁 → ∞ of this expression, when

𝓁 is away from the extremities; we will assume that 𝓁
𝑁

→ 𝛼 ∈ (0, 1).
In the above sum, the leading contribution is given by small values of

𝑘, due to the singularity at zero of the cotan function. Therefore, it is

legitimate to expand in 𝑘

𝑁
, which gives

𝑥𝓁 ∼ 2
𝑁 − 1

∑
𝑘∈2N−1

1
1 − 2𝑑

2(𝑁 + 1)
𝑘𝜋

sin (𝛼𝑘𝜋)

∼ 4
𝜋(1 − 2𝑑)

∑
𝑘∈2N−1

sin (𝛼𝑘𝜋)
𝑘

.

By the formula for the Fourier series of the sawtooth wave

∞∑
𝑘=1

sin(𝑘𝑥)
𝑘

= 𝜋

2
− 𝑥

2

for 𝑥 ∈ (0, 2𝜋), we obtain for 𝛼 ∈ (0, 𝜋)

𝑥𝓁 ∼ 4
𝜋(1 − 2𝑑)

[∑
𝑘∈N

sin (𝛼𝑘𝜋)
𝑘

−
∑
𝑘∈N

sin (2𝛼𝑘𝜋)
2𝑘

]
= 1

1 − 2𝑑
.

This result suggests, in close correspondence with Fig. 4, that the

compacton solution becomes nearly flat in its center for sufficiently

large 𝑁 .

4.2. The staggered compacton

For solutions supported on 𝑁 sites, where 𝑁 ≥ 2, another standing
wave solution is obtained by using the ansatz

𝑢𝑗 = 𝑖𝑗 𝑐𝑗𝑒
−𝑖𝜔𝑡,

where the 𝑐𝑗 are again real. We call this a staggered compacton, since

there is a phase difference of 𝜋∕2 between each pair of adjacent sites.
Substituting this ansatz into (1) and simplifying, the amplitudes 𝑐𝑗 solve

the equation

− 𝑑(𝑐2
𝑗−1 + 𝑐2

𝑗+1)𝑐𝑗 − 𝑐3𝑗 + 𝜔𝑐𝑗 = 0, (14)

which leads to the linear system

⎛⎜⎜⎜⎜⎜⎜⎝

1 𝑑

𝑑 1 𝑑

𝑑 1 𝑑

⋱ ⋱ ⋱
𝑑 1 𝑑

𝑑 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐21

𝑐22

𝑐23

⋮

𝑐2
𝑁−1

𝑐2
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

𝜔

𝜔

𝜔

⋮
𝜔

𝜔

⎞⎟⎟⎟⎟⎟⎟⎠
. (15)

We note that these are the same equations as those satisfied by the real

compacton, except that 𝑑 has been changed to −𝑑. As with the real
compacton, a solution to (15) is only valid if 𝑐2

𝑗
> 0 for all 𝑗. Staggered
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Fig. 5. Staggered compacton solutions obtained by solving equation (15) for 𝑁 = 5, 10, 20, 40. Positive amplitude at each site, 𝑑 = 0.25, 𝜔 = 1.

Table 2

Square amplitudes for staggered compacton solutions for 𝑁 = 2, 3, 4 and 5, together

with intervals of existence for these solutions for 𝜔 > 0. These four solutions do not
exist for 𝜔 < 0.
𝑁 Staggered compacton solution 𝜔 > 0

2 𝑐21 , 𝑐
2
2 = 𝜔

1+𝑑
(0,∞)

3 𝑐21 , 𝑐
2
3 = 𝜔(1−𝑑)

1−2𝑑2 𝑐22 = 𝜔(1−2𝑑)
1−2𝑑2

(
0, 1

2

)
, (1,∞)

4 𝑐21 , 𝑐
2
4 = 𝜔

1+𝑑−𝑑2 𝑐22 , 𝑐
2
3 = 𝜔(1−𝑑)

1+𝑑−𝑑2 (0, 1)

5 𝑐21 , 𝑐
2
5 = 𝜔(1−𝑑−𝑑2 )

1−3𝑑2 𝑐22 , 𝑐
2
4 = 𝜔(1−2𝑑)

1−3𝑑2 𝑐23 = 𝜔(1−𝑑)2

1−3𝑑2

(
0, 1

2

)

compacton solutions for small 𝑁 are shown in Table 2. Although the

solutions from this table are obtained from those in Table 1 by replacing

𝑑 with −𝑑, their intervals of existence are very different. Of note, for
𝜔 > 0, the 2-site compacton exists for all 𝑑; in particular, its norm does

not blow up for any 𝑑 > 0. As in the real compacton case, numerical
computations suggest that staggered compactons of all sizes 𝑁 exist

for 0 < 𝑑 < 1∕2. Existence results are similarly more complicated
for 𝑑 > 1∕2 (see the orange unfilled circles in Fig. 6, which indicate
staggered compactons that exist for a few values of 𝑑 > 1∕2).

Plots of staggered compactons for the same values of 𝑁 as the real

compactons are shown in Fig. 5. There is an intensity plateau in the

middle of the solution; for large 𝑁 , this plateau approaches

𝑐2 = 𝜔

1 + 2𝑑
(16)

for 0 < 𝑑 < 1∕2. As in the case of the real compacton, this corresponds
to a solution 𝐱 such that

𝑥𝓁 →
1

1 + 2𝑑
as 𝑁 → ∞.

4.3. Mixed compactons

The phase differences between adjacent lattice sites are 0 (or 𝜋, if

negative roots are taken for the 𝑐𝑗) for real compactons and 𝜋∕2 for
staggered compactons. It is possible to construct compactons which

have ‘‘mixed’’ phase differences. For example, for a 3-site compacton,

Table 3
Energy for real compacton solutions for 𝑁 = 2, 3, 4 and 5 as a function of frequency 𝜔

or power of solution 𝑃 . Energy for staggered compactons is found by replacing 𝑑 with

−𝑑. Single-site solution has energy 𝐻 = 𝑃 2∕4.
.

𝑁 Energy (𝐻)

2 𝜔2

2(1−𝑑)
= (1−𝑑)𝑃 2

8

3 (3+4𝑑)𝜔2

4(1−2𝑑2 )
= (1−2𝑑2 )𝑃 2

4(3+4𝑑)

4 (2+𝑑)𝜔2

2(1−𝑑−𝑑2 )
= (1−𝑑−𝑑2 )𝑃 2

8(2+𝑑)

5 (5+8𝑑−𝑑2 )𝜔2

4(1−3𝑑2 )
= (1−3𝑑2 )𝑃 2

4(5+8𝑑−𝑑2 )

we can take the ansatz

𝑢1 = 𝑐1, 𝑢2 = 𝑐2, 𝑢3 = 𝑖𝑐3,

where 𝑐1, 𝑐2, and 𝑐3 are real. A compacton solution is then given by

𝑐21 = 𝜔(1 + 𝑑 − 2𝑑2)
1 − 2𝑑2

, 𝑐22 = 𝜔

1 − 2𝑑2
, 𝑐23 = 𝜔(1 − 𝑑 − 2𝑑2)

1 − 2𝑑2
,

for 0 < 𝑑 < 1∕2 (the square amplitudes 𝑐2
𝑗
are all positive on this

interval). This compacton is unstable. Indeed, numerical computations

suggest that all such compactons are unstable, hence we will not

consider such ‘‘mixed-phase’’ solutions hereafter.

4.4. Energy considerations

The energy (2) of real and staggered compactons as a function of

𝑁 and for various 𝑑 are plotted in Fig. 6 (the power of the solution is

scaled to 1 for all 𝑁). Formulas for the energy of small compactons are
also given in Table 3. For 0 < 𝑑 < 1∕2 and fixed power (exemplified
by Fig. 6, top left), the energy decreases monotonically with increasing

𝑁 , both for real and staggered compactons. The staggered compacton

has higher energy than the real compacton, although this difference

becomes smaller with increasing 𝑁 ; the latter is natural to expect,

as the profile of both compactons asymptotes to a constant near the

center of the respective structure. For all 𝑑, the single-site solution

(compacton with 𝑁 = 1) of power 𝑃 has energy 𝐻 = 𝑃 2∕4, which
is independent of 𝑑. For 0 < 𝑑 < 1, this single-site solution is the
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Fig. 6. Energy 𝐻 for real and staggered compacton solutions scaled so that the power 𝑃 = 1 for all solutions. Coupling parameter 𝑑 = 0.25, 0.75, 1.5, and 2 (top to bottom, left
to right). For 𝑑 > 1∕2, solutions for a particular 𝑁 do not exist if a marker is not shown. Real and staggered compacton solutions obtained by solving equations (12) and (15),

respectively, together with the condition that the square amplitudes 𝑐2
𝑗
> 0 for all 𝑗.

Fig. 7. Left: Energy difference between real compacton of size 𝑁 and real compacton of size 2 vs. 𝑑. Right: size of real compacton of minimum energy (selected only from among

compactons of sizes from 𝑁 = 1 to 𝑁 = 10) vs. 𝑑. All solutions scaled so that power 𝑃 = 1. The value of 𝑁 selected for the given 𝑑 corresponds to the spatial extent of the ground

state of the system.

energy maximum. The energy of the two-site staggered compacton is

(1+𝑑)𝑃 2∕8, which increases with increasing 𝑑, and surpasses the energy
of the single site solution at 𝑑 = 1. For 𝑑 > 1, the two-site staggered
compacton is the energy maximum, implying that it is stable for 𝑑 > 1
(see Section 4.5.2 below). Numerical computations indicate that these

solutions (single site solution if 𝑑 < 1 and two-site staggered compacton
if 𝑑 > 1) maximize the Hamiltonian 𝐻 over all vectors in 𝓁2, under

the constraint that the power 𝑃 is fixed. Since 𝐻 and 𝑃 are conserved

quantities of the system, this implies that both are stable in the sense

of Lyapunov (for the appropriate value of 𝑑). Note that the growth

mechanism exhibited in [24] exploits the instability of the single site

solution, which follows from the value 𝑑 = 2.
For 𝑑 > 1∕2, numerical computations suggest that the energy

minimizer is the real compacton of a finite size (which depends on

𝑑). See the left panel of Fig. 7 for a plot of the energies of real

compactons of sizes 𝑁 = 3, 4, 5 and 6 vs. 𝑑 (for ease of visualization,
the vertical axis actually plots the energy difference with the 2-site

real compacton). This is further confirmed by performing a constrained

minimization using Matlab’s fmincon function, with fixed power as

the sole constraint; we note that we do not restrict ourselves to standing

wave solutions. For 𝑑 = 0.75, 1.5, and 2, the energy minimizer is

the real compacton comprising 𝑁 = 6, 4, and 3 sites, respectively.1
Numerical computations suggest that as 𝑑 is increased, the size of the

1 We learned from Jeremy Marzuola that the minimality of the 3-site

compacton can be established rigorously if 𝑑 = 2. This result will be published
in a forthcoming article.
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compacton that minimizes the energy also decreases. Specifically, the

energy minimizer becomes the 𝑁 = 4 real compacton at 𝑑 = 1 and
then finally the 𝑁 = 3 real compacton at 𝑑 = (1 +

√
5)∕2 (see Fig. 7,

right panel). Conversely, as 𝑑 approaches 1/2 from above, the size

of the compacton with minimum energy increases. We note that the

numerical minimization is performed on a finite lattice (𝑁 = 10 in
the right panel of Fig. 7). As 𝑑 approaches 1/2 from above, the size

of the compacton with minimum energy monotonically approaches 10,

which is the maximum allowable size. Repeating the experiment with

a lattice size of 20, the compacton with minimum energy approaches

20 as 𝑑 decreases to 1/2. We hypothesize that if this restriction were

removed, i.e., if we were considering the full integer lattice, the size

of the compacton with minimum energy would approach infinity as 𝑑

decreases to 1/2.

4.5. Linearization and stability

Linearizing about a standing wave of the form (𝑎𝑗 + 𝑖𝑏𝑗 )𝑒−𝑖𝜔𝑡, where
𝑎𝑗 and 𝑏𝑗 are real, we obtain the eigenvalue problem(

𝐿̃− 𝐿−

−𝐿+ −𝐿̃+

)(
𝑣𝑗
𝑤𝑗

)
= 𝜆

(
𝑣𝑗
𝑤𝑗

)
, (17)

where

𝐿̃−𝑣𝑗 = 2[𝑎𝑗𝑏𝑗 − 𝑑(𝑎𝑗−1𝑏𝑗−1 + 𝑎𝑗+1𝑏𝑗+1)]𝑣𝑗
+ 2𝑑[(𝑎𝑗−1𝑏𝑗 − 𝑎𝑗𝑏𝑗−1)𝑣𝑗−1 + (𝑎𝑗+1𝑏𝑗 − 𝑎𝑗𝑏𝑗+1)𝑣𝑗+1]

𝐿−𝑤𝑗 = [(𝑎2𝑗 + 3𝑏2𝑗 ) + 𝑑(𝑎2
𝑗−1 + 𝑎2

𝑗+1 − 𝑏2
𝑗−1 − 𝑏2

𝑗+1) − 𝜔]𝑤𝑗

− 2𝑑[(𝑎𝑗−1𝑎𝑗 + 𝑏𝑗−1𝑏𝑗 )𝑤𝑗−1 + (𝑎𝑗+1𝑎𝑗 + 𝑏𝑗+1𝑏𝑗 )𝑤𝑗+1]
𝐿+𝑣𝑗 = [(3𝑎2𝑗 + 𝑏2𝑗 ) − 𝑑(𝑎2

𝑗−1 + 𝑎2
𝑗+1 − 𝑏2

𝑗−1 − 𝑏2
𝑗+1) − 𝜔]𝑣𝑗

− 2𝑑[(𝑎𝑗−1𝑎𝑗 + 𝑏𝑗−1𝑏𝑗 )𝑣𝑗−1 + (𝑎𝑗+1𝑎𝑗 + 𝑏𝑗+1𝑏𝑗 )𝑣𝑗+1]

𝐿̃+𝑤𝑗 = 2[𝑎𝑗𝑏𝑗 − 𝑑(𝑎𝑗−1𝑏𝑗−1 + 𝑎𝑗+1𝑏𝑗+1)]𝑤𝑗

− 2𝑑[(𝑎𝑗−1𝑏𝑗 − 𝑎𝑗𝑏𝑗−1)𝑤𝑗−1 + (𝑎𝑗+1𝑏𝑗 − 𝑎𝑗𝑏𝑗+1)𝑤𝑗+1].

(18)

For both the real and the staggered compacton, these linear operators

simplify significantly. We treat these two cases separately below.

4.5.1. Real compactons

For a compacton solution 𝑐𝑗𝑒
−𝑖𝜔𝑡 where the amplitudes 𝑐𝑗 are real,

the linear operators 𝐿̃± are 0, thus the eigenvalue problem becomes(
0 𝐿−

−𝐿+ 0

)(
𝑣𝑗
𝑤𝑗

)
= 𝜆

(
𝑣𝑗
𝑤𝑗

)
, (19)

where

𝐿−𝑤𝑗 = (𝑐2𝑗 + 𝑑(𝑐2
𝑗+1 + 𝑐2

𝑗−1) − 𝜔)𝑤𝑗 − 2𝑑𝑐𝑗 (𝑐𝑗+1𝑤𝑗+1 + 𝑐𝑗−1𝑤𝑗−1)

𝐿+𝑣𝑗 = (3𝑐2𝑗 − 𝑑(𝑐2
𝑗+1 + 𝑐2

𝑗−1) − 𝜔)𝑣𝑗 − 2𝑑𝑐𝑗 (𝑐𝑗+1𝑣𝑗+1 + 𝑐𝑗−1𝑣𝑗−1).

Since 𝑑(𝑐2
𝑗−1 + 𝑐2

𝑗+1) = 𝑐2
𝑗
− 𝜔 from Eq. (12), we can rewrite 𝐿− and 𝐿+

as

𝐿−𝑤𝑗 = 2(𝑐2𝑗 − 𝜔)𝑤𝑗 − 2𝑑𝑐𝑗 (𝑐𝑗+1𝑤𝑗+1 + 𝑐𝑗−1𝑤𝑗−1)

𝐿+𝑣𝑗 = 2𝑐2𝑗 𝑣𝑗 − 2𝑑𝑐𝑗 (𝑐𝑗+1𝑣𝑗+1 + 𝑐𝑗−1𝑣𝑗−1),

from which it follows that 𝐿− = 𝐿+ − 2𝜔𝐼 . Furthermore, if we let
𝑀 be the matrix in Eq. (12), 𝐿+ = 2diag(𝑐)𝑀 diag(𝑐), where diag(𝑐)
is the diagonal matrix with the amplitudes 𝑐𝑗 on the diagonal. The

eigenvalues 𝜆 do not depend on whether we take the positive or

negative root for 𝑐𝑗 . To see this, if 𝐿
+ is the matrix associated with a

compacton with all positive amplitudes, and 𝐿+
𝑗
is the matrix associated

with the same compacton, except the amplitude 𝑐𝑗 of site 𝑗 is negative,

then 𝐿+
𝑗

= 𝐴𝐿+𝐴, where 𝐴 is the self-invertible matrix formed by

changing the 𝑗th diagonal element of the identity matrix to −1.
Since the eigenvalue problem (19) can be written as 𝐿−𝐿+𝑣 = −𝜆2𝑣,

and the matrix 𝐿−𝐿+ = (𝐿+ − 2𝜔𝐼)𝐿+ is symmetric, the eigenvalues

of 𝐿−𝐿+ are real, which implies that the eigenvalues 𝜆 come in pairs

which are either real or purely imaginary. For all 𝑁 , there is an

eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1 at

the origin due to the gauge symmetry of the system. For 𝑁 = 1,
this double eigenvalue at 0 is the only eigenvalue, thus the single-

site compacton solution is spectrally stable. For 𝑁 = 2, there is an
additional pair of eigenvalues on the imaginary axis at

𝜆 = ±2𝜔
√
2𝑑(1 + 𝑑)
1 − 𝑑

𝑖.

Since these are imaginary for both 0 < 𝑑 < 1 and 𝑑 > 1 (and for all
𝜔), the 2-site real compacton is spectrally stable. Perturbations of the

2-site real compacton yield oscillatory states which remain close to the

unperturbed compacton (see Section 5.1, in particular Fig. 11).

Exact formulas for eigenvalues are less straightforward to obtain

(and present) for 𝑁 ≥ 3. For 0 < 𝑑 < 1∕2, numerical computations
strongly suggest that for a compacton of size 𝑁 , all of the nonzero

eigenvalues are purely imaginary. This implies that real compactons of

all sizes are spectrally stable in the parameter range 0 < 𝑑 < 1∕2. For
values of 𝑑 outside that range, we provide further details in the case

of small compactons in what follows. Numerical computations suggest

that the 3-site real compacton is spectrally stable for all 𝑑 > 0 and all 𝜔
for which it exists (see Table 1). Similarly, computations suggest that

the 4-site real compacton is spectrally stable for 𝑑 ∈
(
0,

√
5+1
2

)
, and

the 5-site real compacton is spectrally stable for 𝑑 ∈ (0, 1). Stability
is lost at the right endpoints of these intervals as a pair of imaginary

eigenvalues collides at the origin and becomes real. We note that these

endpoints coincide precisely with the additional values of 𝑑 at which

the matrix in (12) is singular (see Section 4.1 above).

4.5.2. Staggered compactons

The staggered compacton alternates between sites which are real

and sites which are purely imaginary, thus all terms of the form 𝑎𝑗𝑏𝑗 ,

𝑎𝑗𝑎𝑗−1, 𝑎𝑗𝑎𝑗+1, 𝑏𝑗𝑏𝑗−1, and 𝑏𝑗𝑏𝑗+1 are 0, which reduces the four linear

operators in (18) to

𝐿̃−𝑣𝑗 = 2𝑑[(𝑎𝑗−1𝑏𝑗 − 𝑎𝑗𝑏𝑗−1)𝑣𝑗−1 + (𝑎𝑗+1𝑏𝑗 − 𝑎𝑗𝑏𝑗+1)𝑣𝑗+1]
𝐿−𝑤𝑗 = [(𝑎2𝑗 + 3𝑏2𝑗 ) + 𝑑(𝑎2

𝑗−1 + 𝑎2
𝑗+1 − 𝑏2

𝑗−1 − 𝑏2
𝑗+1) − 𝜔]𝑤𝑗

𝐿+𝑣𝑗 = [(3𝑎2𝑗 + 𝑏2𝑗 ) − 𝑑(𝑎2
𝑗−1 + 𝑎2

𝑗+1 − 𝑏2
𝑗−1 − 𝑏2

𝑗+1) − 𝜔]𝑣𝑗
𝐿̃+𝑤𝑗 = −2𝑑[(𝑎𝑗−1𝑏𝑗 − 𝑎𝑗𝑏𝑗−1)𝑤𝑗−1 + (𝑎𝑗+1𝑏𝑗 − 𝑎𝑗𝑏𝑗+1)𝑤𝑗+1].

(20)

We note that for the staggered compacton, 𝐿̃+ = −𝐿̃−, and that both

𝐿+ and 𝐿− are diagonal. As with the real compactons, there is an

eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1 at

the origin due to the gauge symmetry of the system. For 𝑁 = 2, there
is an additional pair of eigenvalues at

𝜆 = ±2𝜔
√
2𝑑(1 − 𝑑)
1 + 𝑑

, (21)

which are real when 0 < 𝑑 < 1, implying instability, and purely

imaginary when 𝑑 > 1, implying spectral stability. A bifurcation occurs
at 𝑑 = 1, when the pair of real eigenvalues collides at the origin and
moves onto the imaginary axis. The nature of this bifuration and the

behavior of perturbations to the 2-site staggered compacton can be fully

understood using the phase plane analysis in Section 5.1, noting that

the bifurcation there occurs for 𝑑 = 1∕2, rather than for 𝑑 = 1, due to
different boundary conditions. The staggered compacton corresponds

to the fixed point at (𝑝, 𝜙) = (0, 𝜋∕2) in Fig. 11, where 𝑝 = |𝑢2|2 − |𝑢1|2
and 𝜙 is the phase difference between 𝑢2 and 𝑢1 (see Section 5 below

for details).

For 𝑁 ≥ 3, numerical computations strongly suggest that for

staggered compactons with coupling parameter 0 < 𝑑 < 1∕2, all of
the nonzero eigenvalues are real, thus all staggered compactons are all

unstable in that parameter regime. This instability is sufficiently strong

that it can be demonstrated using numerical evolution experiments

from unperturbed initial conditions (Fig. 8). In general, these structures

break down and do not tend towards or oscillate about any stable



R. Parker et al.

Fig. 8. Colormap of square intensity |𝑢𝑛|2 of unperturbed staggered compactons with 𝑁 = 5 (left) and 𝑁 = 50 (right). 𝜔 = 1, 𝑑 = 0.2. Vertical axis is lattice site. The time evolution
is performed using the Dormand-Prince integrator, implemented in Matlab by means of the ode45 function.

coherent structure. For example, for large 𝑁 (right panel of Fig. 8),

the staggered compacton solution breaks down into smaller structures

similar to those seen in Fig. 1. For small staggered compactons (𝑁 =
3 and 𝑁 = 4) and particular values of 𝑑, however, the staggered

compacton appears to decay into a coherent periodic orbit (Fig. 9), but

this behavior appears to be uncommon. For 𝑁 = 3, the periodic orbit in
the left of Fig. 9 has the symmetry 𝑢3 = −𝑢1, and the system (1) reduces

to the pair of equations with asymmetric coupling terms

𝑖𝑢̇1 + 𝑑𝑢22𝑢1 − |𝑢1|2𝑢1 = 0
𝑖𝑢̇2 + 2𝑑𝑢21𝑢2 − |𝑢2|2𝑢2 = 0.

(22)

For 𝑁 = 4, the periodic orbit in the right of Fig. 9 has the symmetry
𝑢3 = 𝑖𝑢2 and 𝑢4 = −𝑖𝑢1, and the system reduces to the pair of equations

with asymmetric nonlinear terms

𝑖𝑢̇1 + 𝑑𝑢22𝑢1 − |𝑢1|2𝑢1 = 0
𝑖𝑢̇2 + 𝑑𝑢21𝑢2 − (1 + 𝑑)|𝑢2|2𝑢2 = 0.

(23)

Compare both of these cases to Eq. (24) below for the symmetric dimer.

Phase portraits of these periodic orbits are shown in the bottom panels

of Fig. 9, where 𝑝 = |𝑢2|2 − |𝑢1|2 and 𝜙 is the phase difference between

𝑢2 and 𝑢1 (see also Section 5.1 below).

5. Dynamical considerations: the dimer case

Next, we look at solutions in which the intensity moves along the

lattice. It turns out that a useful starting point is the dimer (two-site

solution) on a periodic lattice:

𝑖𝑢̇1 + 2𝑑𝑢22𝑢1 − |𝑢1|2𝑢1 = 0
𝑖𝑢̇2 + 2𝑑𝑢21𝑢2 − |𝑢2|2𝑢2 = 0.

(24)

Note that if we take Dirichlet instead of periodic boundary conditions

on the lattice, we replace 𝑑 with 𝑑∕2 in (24). Numerical evolution

experiments show that if one site is initialized to high intensity and the

other to low intensity, optical intensity moves periodically between the

two sites if 𝑑 > 1∕2, but remains confined to the initial sites if 𝑑 < 1∕2
(see Fig. 10). This suggests that a bifurcation occurs at 𝑑 = 1∕2, which
we will explore in detail in the following subsections.

5.1. Phase plane analysis

We start by constructing a phase portrait for the dimer system.

Although the evolution of (24) occurs in a four-dimensional phase space

comprising the real and imaginary parts of 𝑢1 and 𝑢2 (or, equivalently,

the amplitude and phase of 𝑢1 and 𝑢2), we can reduce it to a two-

dimensional dynamical system using the conservation of power and the

gauge invariance of the system. To do this, we fix a power 𝑃 , which will

remain invariant as 𝑡 evolves. Writing 𝑢1 = 𝑟1𝑒
𝑖𝜃1 and 𝑢2 = 𝑟2𝑒

𝑖𝜃2 , we

recast the system in the two dynamical variables

𝑝 = 𝑟22 − 𝑟21, 𝜙 = 𝜃2 − 𝜃1, (25)

where 𝑝 and 𝜙 are the intensity difference and phase difference, respec-

tively, between 𝑢1 and 𝑢2. Substituting the expressions for 𝑢1 and 𝑢2 into

(24) and simplifying, we derive the following dynamical system for 𝑝

and 𝜙:

𝑝̇ = 2𝑑(𝑃 2 − 𝑝2) sin 2𝜙
𝜙̇ = −𝑝(1 + 2𝑑 cos 2𝜙),

(26)

where 𝑝 ∈ [−𝑃 , 𝑃 ] and 𝜙 ∈ (−𝜋, 𝜋). The system is Hamiltonian, with

conserved quantity 𝐻 given by

𝐻(𝑝, 𝜙) = 1
2
𝑝2 − 𝑑(𝑃 2 − 𝑝2) cos 2𝜙, (27)

and it can be written in standard Hamiltonian form as

𝑑𝑝

𝑑𝑡
= 𝜕𝐻

𝜕𝜙
,

𝑑𝜙

𝑑𝑡
= − 𝜕𝐻

𝜕𝑝
.

The system (26) has Z2 symmetry, i.e., is invariant under the transfor-

mation (𝑝, 𝜙) ↦ (−𝑝,−𝜙). This can also be seen from the Hamiltonian

(27) by noting that 𝐻(−𝑝,−𝜙) = 𝐻(𝑝, 𝜙). Eq. (26) is also reversible,
i.e., is invariant under the transformation 𝑡 ↦ −𝑡, 𝜙 ↦ −𝜙. The sets
𝑃± = {(𝑝, 𝜙) ∶ 𝑝 = ±𝑃 } are invariant sets, since 𝜙̇ = 0 on 𝑃±. In

terms of the original system (24), the sets 𝑃± represent the case where

the intensity is completely confined to one site and thus is zero at the

other site; the phase difference 𝜙 in this situation is not physically

meaningful.

We will first describe the equilibria of the system, where the angular

variable is considered modulo 𝜋. For stability analysis, linearization

about an equilibrium point (𝑝, 𝜙) yields the 2 × 2 Jacobian matrix(
−4𝑑𝑝 sin 2𝜙 4𝑑(𝑃 2 − 𝑝2)

−1 − 2𝑑 cos 2𝜙 4𝑑𝑝 sin 2𝜙

)
.

Eq. (26) always has equilibria at (0, 0) and (0,±𝜋∕2) (blue dots in the left
and right panels of Fig. 11), which correspond to the real compacton

and the staggered compacton, respectively. These are the only equilib-

ria for 0 < 𝑑 < 1∕2. The equilibrium at (0, 0) has a pair of eigenvalues
𝜆 = ±2𝑖𝑃

√
𝑑(1 + 2𝑑). Since these are always imaginary, this equilibrium

is a linear center (and, in fact, is a nonlinear center, since the system

is Hamiltonian). The equilibria at (0,±𝜋∕2) have a pair of eigenvalues
𝜆 = ±2𝑃

√
𝑑(1 − 2𝑑), which are real for 0 < 𝑑 < 1∕2 and imaginary for

𝑑 > 1∕2. These equilibria are saddle points for 0 < 𝑑 < 1∕2 and linear
centers for 𝑑 > 1∕2. Stability of these equilibria changes at 𝑑 = 1∕2,
when the pair of real eigenvalues collides at the origin and moves

onto the imaginary axis. (We note that if we take Dirichlet boundary

conditions, where 𝑑 is replaced with 𝑑∕2, this bifurcation takes place at
𝑑 = 1, which is consistent with Section 4.5). The bifurcation at 𝑑 = 1∕2
is a degenerate Hamiltonian pitchfork bifurcation. At 𝑑 = 1∕2, there
are two continuous lines of equilibria (blue lines in Fig. 11, center)

which are given by (𝑝,±𝜋∕2) for 𝑝 ∈ [−𝑃 , 𝑃 ]. The center points of these
lines are the equilibria at (0,±𝜋∕2). For 𝑑 < 1∕2, the line of equilibria
opens up into heteroclinic orbits (Fig. 11, left). For 𝑑 > 1∕2, the line of
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Fig. 9. Top: colormap of square intensity |𝑢𝑛|2 of unperturbed staggered compactons. Vertical axis is lattice site. Middle: square intensity vs. 𝑡 of these solutions. Bottom: phase
portraits corresponding to periodic orbits from the middle plots; 𝑝 = |𝑢2|2 − |𝑢1|2, and 𝜙 is the phase difference between 𝑢2 and 𝑢1. A ‘‘near-corner’’ occurs at the top and bottom

of these periodic orbits as they pass very close to a saddle point equilibrium (compare to left panel of Fig. 11). Left: 𝑁 = 3, 𝑢3 = −𝑢1 in periodic orbit. Right: 𝑁 = 4, 𝑢3 = 𝑖𝑢2 and

𝑢4 = −𝑖𝑢1 in periodic orbit. 𝑑 = 0.21, 𝜔 = 1. The time evolution is performed using the Dormand-Prince integrator, implemented in Matlab by means of the ode45 function.

Fig. 10. Evolution of dimer Eq. (24) on periodic lattice with initial conditions 𝑢1(0) = 0.02, 𝑢2(0) = 1. Coupling parameter 𝑑 = 0.49 (left), 𝑑 = 0.51 (right). One can clearly discern
the self-trapping transition occurring at 𝑑 = 1∕2. The time evolution is performed using the Dormand-Prince integrator, implemented in Matlab by means of the ode45 function.



R. Parker et al.

Fig. 11. Phase portrait of the dynamical system (26) for 𝑑 < 1∕2 (left), 𝑑 = 1∕2 (center), and 𝑑 > 1∕2 (right). The red solid lines in the left panel are the limiting solutions

(42). The blue solid lines in the center panel are lines of equilibria which appear at 𝑑 = 1∕2. The red box in the right panel is the heteroclinic cycle produced by the degenerate
Hamiltonian pitchfork bifurcation at 𝑑 = 1∕2. The top and bottom of the red box are the limiting solutions (46). Equilibrium points in all panels are shown with blue dots. Power

𝑃 = 1, 𝑑 = 0.4, 0.5, and 0.6 (left to right). Trajectories computed using exact formulas derived below.

equilibria opens up into a heteroclinic cycle in the shape of a long, thin

box (red box in Fig. 11, right). The left and right sides of the box arise

from the invariant sets 𝑃±, and the top and bottom arise from the line

of equilibria. The corners of the box are saddle point equilibria located

at (±𝑃 , 𝜙∗), where

cos 2𝜙∗ = − 1
2𝑑

. (28)

A bifurcation diagram indicating the location of the equilibria in the

(𝑝, 𝜙) plane as a function of 𝑑 is shown in Fig. 12.

Full phase portraits of this system for representative values of 𝑑

are shown in Fig. 11, and plots of intensity vs. time for representative

solutions are shown in Fig. 13. Exact solutions for all of the trajectories

in the phase portrait are computed in the subsections that follow. When

0 < 𝑑 < 1∕2 (left panel of Fig. 11), there is a family of concentric
periodic orbits surrounding the equilibrium at the origin (see Fig. 13,

top right, for a representative solution). As these periodic orbits move

further from the origin, they approach a limiting solution, which is a

pair of heteroclinic orbits connecting the saddle points at (0,±𝜋∕2) (red
lines in the left panel of Fig. 11). Solutions on these trajectories (middle

solution of the top row of Fig. 13) approach the saddle points, at which

point the intensities of the two dimer sites are equal. Trajectories on the

left and right sides of the heteroclinic orbits exhibit the self-trapped

dynamics seen in Fig. 10 (see Fig. 13, top left, for a representative

solution). The manifolds of the saddle points at (0,±𝜋∕2) prevent an
orbit with strongly asymmetric initial data from oscillating with a

changing sign of 𝑝.

When 𝑑 > 1∕2 (right panel of Fig. 11), there are periodic orbits
surrounding both the equilibrium at the origin and the equilibria at

(0,±𝜋∕2) (see Fig. 13, bottom right and bottom left, respectively, for

representative solutions). Self-trapped dynamics is no longer possible,

and it should be noted that the degenerate Hamiltonian pitchfork

bifurcation at 𝑑 = 1∕2 is responsible for the change from self-trapped

dynamics (for 𝑑 < 1∕2) to oscillatory behavior (for 𝑑 > 1∕2) observed
in Fig. 10. Both families of periodic orbits meet in limiting solutions,

which are heteroclinic orbits connecting the saddle points at (−𝑃 , 𝜙∗)
and (𝑃 , 𝜙∗), with 𝜙∗ defined in (28) (red horizontal lines in the right

panel of Fig. 11, which are the top and bottom of the heteroclinic cycle,

and correspond to the middle solution in the bottom row of Fig. 13). We

note that 𝜙̇ = 0, i.e., 𝜙 is constant, on these heteroclinic orbits. These

solutions are the sliders in [24]. Their highly unstable nature that has

been observed in our dynamics can be explained by the phase portrait,

since any perturbation (no matter how small) moves the solution onto

one of the nearby periodic orbits. Indeed, depending on the nature of

the perturbation, the resulting orbit may be confined to completely

different regions of phase space, corresponding to very different values

of the relative phase 𝜙.

5.2. Change of variables

In the previous section, we characterized the qualitative behavior

and bifurcations of the dimer system. We will now solve Eq. (24)

exactly by using an appropriate change of variables. The system we

obtain this way is less intuitive than the reduction (26) from the

previous section, but it will allow us to obtain an analytically tractable

solution in terms of Jacobi elliptic functions. The analysis that follows

is an adaptation of the method used in [30,31].

We start by defining the four density matrix elements 𝜌𝑗𝑘 = 𝑢𝑗𝑢𝑘 for

𝑗, 𝑘 = 1, 2. The time evolution of 𝜌𝑗𝑘 is given by

𝜌̇11 = 2𝑖𝑑
(
𝜌221 − 𝜌212

)
𝜌̇12 = 𝑖

(
𝜌22 − 𝜌11

) (
2𝑑𝜌21 + 𝜌12

)
𝜌̇21 = −𝑖

(
𝜌22 − 𝜌11

) (
2𝑑𝜌12 + 𝜌21

)
𝜌̇22 = −2𝑖𝑑

(
𝜌221 − 𝜌212

)
.

(29)

We note that in the degenerate case when one of the sites starts with

zero intensity, e.g., 𝑢2(0) = 0, then 𝜌22(0) = 𝜌12(0) = 𝜌21(0) = 0, from
which it follows that all four time derivatives in (29) are 0 for all 𝑡 ≥ 0.
This implies that 𝑢2(𝑡) = 0 for all 𝑡 > 0, thus we effectively have a single-
site solution instead of a dimer. This is in line with our earlier comment

regarding compactly supported initial data in this system. From here

on, we assume both initial conditions are nonzero.

Next, we define the variables

𝑝 = 𝜌22 − 𝜌11, 𝑞 = 𝑖
(
𝜌12 − 𝜌21

)
, 𝑟 = 𝜌12 + 𝜌21,

𝑠 = (1 − 2𝑑)𝑞2 − (1 + 2𝑑)𝑟2,
(30)

where we note in particular that 𝑝 is the difference in intensity between

the two sites in the dimer (as in the phase plane analysis above). Since

𝑞 = −2 Im𝜌12, 𝑟 = 2Re𝜌12, (31)

all of these quantities are real. We can also write 𝑠 in terms of the

density matrix elements as follows:

𝑠 = (𝑞2 − 𝑟2) − 2𝑑(𝑞2 + 𝑟2)
= −

(
𝜌212 + 𝜌221

)
− 4𝑑𝜌12𝜌21 = −4Re𝜌212 − 8𝑑|𝜌12|2. (32)

Letting

𝑃 = |𝑢1|2 + |𝑢2|2 = 𝜌11 + 𝜌22

be the power of the solution, which is conserved in 𝑡, the intensities at

the two lattice sites can be written in terms of 𝑃 and 𝑝 as

|𝑢1(𝑡)|2 = 1
2
(𝑃 − 𝑝(𝑡)) , |𝑢2(𝑡)|2 = 1

2
(𝑃 + 𝑝(𝑡)) . (33)

We note that |𝑝(𝑡)| ≤ 𝑃 , and since we are not considering the degenerate

case, the inequality will always be strict.

The time derivatives of 𝑝, 𝑞, 𝑟, and 𝑠 are given by

𝑝̇ = 4𝑑𝑞𝑟 𝑞̇ = −𝑝𝑟(1 + 2𝑑)
𝑟̇ = 𝑝𝑞(1 − 2𝑑) 𝑠̇ = 4(4𝑑2 − 1)𝑝𝑞𝑟.

(34)
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Fig. 12. Bifurcation diagram in (𝑑, 𝑝, 𝜙) space for dimer system, plotting the location of equilibrium points in (𝑝, 𝜙) plane as a function of coupling parameter 𝑑. Due to symmetries
of system, diagram is only shown for 𝜙 ≥ 0. Saddle points (unstable) indicated with dotted lines, centers (stable) indicated with solid lines. Blue solid line is line of equilibria

which occurs at 𝑑 = 1∕2. Blue dot at (1∕2, 0, 𝜋∕2) is degenerate Hamiltonian pitchfork bifurcation.

Fig. 13. Representative solutions of dimer. Top row: 𝑑 = 0.4 < 1∕2, corresponding to left panel of Fig. 11. Initial intensity |𝑢1(0)|2 = 0.0225, 0.0286, and 0.04 (increasing from

left to right), and |𝑢2(0)|2 = 1 − |𝑢1(0)|2. Solution in the center panel corresponds to heteroclinic orbit in the left panel of Fig. 11, as well as (42). Bottom row: 𝑑 = 0.6 > 1∕2,
corresponding to right panel of Fig. 11. Initial intensity |𝑢1(0)|2 = |𝑢2(0)|2 = 0.5. Initial phase difference 𝜙 = 1, 1.278, and 1.298 (increasing from left to right). Solution in the

center panel is a slider solution from [24] and corresponds to the heteroclinic orbit (top and bottom of red box) in the right panel of Fig. 11, as well as (46). Total power of

solution is 1 in all cases. Solutions computed using exact formulas derived below.

Since

𝑑

𝑑𝑡

(
𝑝2
)
= 2𝑝𝑝̇ = 8𝑑𝑝𝑞𝑟,

the equation for 𝑠̇ becomes

𝑠̇ = 4𝑑2 − 1
2𝑑

𝑑

𝑑𝑡

(
𝑝2
)
.

We can solve this to obtain

𝑠 = 𝑠0 +
4𝑑2 − 1

2𝑑
(
𝑝2 − 𝑝20

)
, (35)

where 𝑝0 and 𝑠0 are the initial conditions for 𝑝 and 𝑠. Since 𝑝̈ =
4𝑑 (𝑞̇𝑟 + 𝑞𝑟̇) = 4𝑑𝑝𝑠, we obtain the second order differential equation
for 𝑝

𝑝̈ = 4𝑑𝑝
[
𝑠0 +

4𝑑2 − 1
2𝑑

(
𝑝2 − 𝑝20

)]
=
[
4𝑑𝑠0 − 2(4𝑑2 − 1)𝑝20

]
𝑝 + 2(4𝑑2 − 1)𝑝3,

which we write as

𝑝̈ = (𝐴 − 𝐵𝑝20)𝑝 + 𝐵𝑝3, (36)

where

𝐴 = 4𝑑𝑠0, 𝐵 = 2(4𝑑2 − 1).

The two initial conditions are

𝑝0 = 𝑝(0) = 𝜌22(0) − 𝜌11(0)
𝑝̇0 = 𝑝̇(0) = 4𝑑𝑞(0)𝑟(0) = −8𝑑Re𝜌12(0)Im𝜌12(0),

(37)

where the second line follows from (34) and (31).

The solutions for 𝑝(𝑡) will be in terms of Jacobi elliptic functions.
To facilitate this, we look for a solution of the form

𝑝(𝑡) = 𝐶𝑦(𝑇 𝑡 + 𝜙), (38)

where the function 𝑦 will be a Jacobi elliptic function. Making this

substitution and simplifying, Eq. (36) becomes

𝑦̈ =
𝐴 − 𝐵𝑝20

𝑇 2 𝑦 + 𝐵𝐶2

𝑇 2 𝑦3. (39)

5.3. Real initial conditions

We first consider the case where the initial conditions 𝑢1(0) and
𝑢2(0) are both real. These correspond to solutions which start on the
horizontal axis in (26). Using (33), the initial conditions for 𝑞, 𝑟, and 𝑠

are

𝑞(0) = 0, 𝑟(0) =
√
𝑃 2 − 𝑝20, 𝑠(0) = −(1 + 2𝑑)

√
𝑃 2 − 𝑝20,
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from which it follows from (37) that 𝑝̇0 = 0. This in turn implies that
𝜙 = 0 and 𝐶 = 𝑝0 in (38). Eq. (39) then becomes

𝑦̈ = −
2(1 + 2𝑑)(2𝑑𝑃 2 − 𝑝20)

𝑇 2 𝑦 +
2𝑑(4𝑑2 − 1)𝑝20

𝑇 2 𝑦3. (40)

If the two sites have identical initial intensity, i.e., 𝑝0 = 𝑝(0) = 0, then
𝑝(𝑡) = 0 for all 𝑡, which corresponds to the equilibrium at the origin

in (26). Otherwise, the solution is given by

𝑝(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑝0 dn
(√

1 − 4𝑑2 𝑝0𝑡 ;𝑚 = 𝑚0

)
0 < 𝑑 < 1∕2,(

𝑝0
𝑃

)2
>

4𝑑
1+2𝑑

𝑝0 cn

(√
4𝑑(1 + 2𝑑)(𝑃 2 − 𝑝20)𝑡 ;𝑚 = 1

𝑚0

)
0 < 𝑑 < 1∕2,(

𝑝0
𝑃

)2
<

4𝑑
1+2𝑑

𝑝0 cd

(√
(1 + 2𝑑)

(
4𝑑𝑃 2 − (1 + 2𝑑)𝑝20

)
𝑡 ;𝑚 = 𝑚1

)
𝑑 > 1∕2,

(41)

where

𝑚0 =
4𝑑

1 − 2𝑑

[(
𝑃

𝑝0

)2
− 1

]
, 𝑚1 =

(2𝑑 − 1)𝑝20
(2𝑑 − 1)𝑝20 + 4𝑑(𝑃 2 − 𝑝20)

.

The functions cn(𝑡;𝑚) and dn(𝑡;𝑚) are the Jacobi elliptic functions with
elliptic parameter 𝑚, and cd(𝑡;𝑚) = cn(𝑡;𝑚)∕dn(𝑡;𝑚). When 𝑑 < 1∕2,
solutions which start with a large difference in initial intensities (𝑝0∕𝑃
close to 1) are in terms of the Jacobi dn function. This function has

small amplitude oscillations that do not cross through 0, which leads

to self-trapping behavior of the dimer (Fig. 13, top left). By contrast,

solutions which start with a small difference in initial intensities (𝑝0∕𝑃
close to 0) are in terms of the Jacobi cn function. This function has large

amplitude oscillations that cross through 0, which leads to oscillatory

behavior of the dimer (Fig. 13, top right). The boundary between these

two regions of qualitatively distinct behavior occurs when
(
𝑝0
𝑃

)2
=

4𝑑
1+2𝑑 . At this point, 𝑚 = 1 in the first and second lines of (41), and
the limiting solution is given by

𝑝(𝑡) = 𝑝0sech
(√

1 − 4𝑑2 𝑝0𝑡
)
, (42)

which are the heteroclinic orbits in the left panel of Fig. 11 and the

middle solution in the top row of Fig. 13.

When 𝑑 = 1∕2, 𝑚 = 0 in the second and third line of (41), and the
limiting solution is

𝑝(𝑡) = 𝑝0 cos
(
2
√
𝑃 2 − 𝑝20 𝑡

)
.

Finally, when 𝑑 > 1∕2, all solutions starting with real initial conditions
are in terms of the Jacobi cd function, which exhibits large-amplitude

oscillations.

5.4. Equal intensity initial conditions

We now consider the case where the initial intensities |𝑢1(0)|2 and|𝑢2(0)|2 are equal, i.e., 𝑝0 = 0. This corresponds to solutions which start
on the vertical axis in (26). If 𝑝0 = 0, then the behavior of the system
depends on 𝑝̇(0). If 𝑝̇0 ≠ 0, the solution 𝑝(𝑡) will not be 0 for all 𝑡 > 0.
Let 𝑢1(0) = 𝑎 and 𝑢2(0) = 𝑎𝑒𝑖𝜃 , where 𝑎 =

√
𝑃∕2 > 0 and 𝜃 ∈ (−𝜋, 𝜋).

Due to the gauge symmetry, we can, without loss of generality, assume

that 𝑎 is real and positive. The initial density matrix elements are given

by

𝜌11(0) = 𝜌22(0) = 𝑎2, 𝜌12(0) = 𝑎2𝑒−𝑖𝜃 , 𝜌21(0) = 𝑎2𝑒𝑖𝜃 ,

and the initial conditions for 𝑝, 𝑞, 𝑟, and 𝑠 are 𝑝(0) = 0 and

𝑞(0) = 𝑃 sin 𝜃, 𝑟(0) = 𝑃 cos 𝜃, 𝑠(0) = −𝑃 2(cos 2𝜃 + 2𝑑),

where we used the formulas from (31) and (32). It follows from (34)

that

𝑝̇(0) = 4𝑑𝑞(0)𝑟(0) = 4𝑑𝑃 2 sin 𝜃 cos 𝜃 = 2𝑑𝑃 2 sin 2𝜃. (43)

If 𝜃 = 0 or 𝜃 = ±𝜋∕2, Eq. (43) implies that 𝑝̇(0) = 0, thus in those
cases we will have 𝑝(𝑡) = 0 for all 𝑡 > 0. These are equilibrium points

of (26), which correspond to the real and the staggered compacton,

respectively. From here on, we will assume that 𝜃 ∉ {0,±𝜋∕2}.
Next, we define the constant 𝐴0 by

𝐴0 = 1 + 2𝑑 cos 2𝜃. (44)

In terms of 𝐴0, the constant 𝐴 is given by

𝐴 = −4𝑑𝑃 2(cos 2𝜃 + 2𝑑) = −2𝑃 2 [𝐴0 + (4𝑑2 − 1)
]
,

thus (36) becomes

𝑝̈ = −2𝑃 2 [𝐴0 + (4𝑑2 − 1)
]
𝑝 + 2(4𝑑2 − 1)𝑝3.

The solution depends on 𝑑 and the sign of 𝐴0. We note that if 𝑑 < 1∕2,
then we will always have 𝐴0 > 0. The solution is given by

𝑝(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑𝑃 sin 2𝜃√
𝐴0𝑑

sd
(
2𝑃
√
𝐴0𝑑 𝑡 ;𝑚 = (1−2𝑑) sin2 𝜃

𝐴0

)
0 < 𝑑 < 1∕2

2𝑃 sin 𝜃
√

𝑑

2𝑑+1 sn
(
2𝑃 cos 𝜃

√
𝑑(2𝑑 + 1) 𝑡 ; 𝑑 > 1∕2, 𝐴0 > 0

𝑚 = 2𝑑−1
2𝑑+1 tan

2 𝜃
)

2𝑃 cos 𝜃
√

𝑑

2𝑑−1 sn
(
2𝑃 sin 𝜃

√
𝑑(2𝑑 − 1) 𝑡 ; 𝑑 > 1∕2, 𝐴0 < 0

𝑚 = 2𝑑+1
2𝑑−1 cot

2 𝜃
)
,

(45)

where sd(𝑡;𝑚) = sn(𝑡;𝑚)∕dn(𝑡;𝑚).
When 𝑑 < 1∕2, all solutions starting with equal intensity conditions

are in terms of the Jacobi sd function, which exhibits large-amplitude

oscillations. (We can see from the left panel of Fig. 11 that self-trapping

behavior is not possible for these initial conditions). When 𝑑 = 1∕2,
𝑚 = 0 in the first and second line of (45), and the limiting solution is

𝑝(𝑡) = 𝑃 sin 𝜃 sin ((2𝑃 cos 𝜃)𝑡) .

When 𝑑 > 1∕2, all periodic solutions are in terms of the Jacobi sn

function, which also exhibits large-amplitude oscillations (left and right

solutions in the bottom row of Fig. 13). In terms of the phase portrait

in Fig. 11, the solutions for 𝐴0 > 0 and 𝐴0 < 0 correspond to

periodic orbits about the equilibria at (0, 0) and (0, 𝜋∕2), respectively.
The limiting solution for 𝑑 > 1∕2 is the boundary between the two
families of periodic orbits in the right panel of Fig. 11. This occurs when

𝐴0 = 0, from which it follows that 𝑚 = 1 in the second and third line
of (45). The limiting solution is given by

𝑝(𝑡) = 𝑃 tanh
(
𝑃
√
4𝑑2 − 1 𝑡

)
, (46)

which corresponds to the heteroclinic orbits (top and bottom of red

box) in the right panel of Fig. 11. Using (33), the intensities at the two

lattice sites are

|𝑢1(𝑡)|2 = 𝑃

1 + 𝑒2𝑃
√
4𝑑2−1𝑡

, |𝑢2(𝑡)|2 = 𝑃

1 + 𝑒−2𝑃
√
4𝑑2−1𝑡

, (47)

which can be seen in the middle solution in the bottom row of Fig. 13.

Taking 𝑃 = 1 and 𝑑 = 1, these are the slider solutions in [24, (3.7)].
Finally, we note that all trajectories in Fig. 11 cross at least one of

the two axes; since this implies that they fall into either the real initial

conditions case or the equal intensity initial conditions case, we do not

need to consider any other cases.

6. Lattice traveling solutions

Motivated by the results we obtained from the dimer that showed

the existence of solutions in which intensity is transferred between the

two sites, we look for solutions in larger lattices in which the intensity

flows unidirectionally along the lattice. In particular, we consider a

lattice of 𝑁 nodes with periodic boundary conditions, i.e., the lattice is

effectively a ring of 𝑁 nodes. We seek a solution in which the bulk of

the intensity starts at the first lattice site at 𝑡 = 0, and then the entire
solution reproduces itself exactly, except shifted one site to the right,



R. Parker et al.

Fig. 14. Colormap showing lattice site intensity (top) and intensity of central lattice site vs. 𝑡 (bottom) for rightward moving solutions on a periodic lattice for lattice sizes

𝑁 = 4, 8, 16, 32. Coupling parameter 𝑑 = 0.6. The time evolution is performed using the Dormand-Prince integrator, implemented in Matlab by means of ode45 function.

at 𝑡 = 1. The choice of 𝑡 = 1 is arbitrary, but can be made without
loss of generality due to the time-amplitude scaling from Section 2.

By symmetry, we can equivalently look for leftward-moving solutions.

Thus we look to solve the boundary value problem

𝑢̇𝑗 = 𝑖
[
𝑑(𝑢2

𝑗−1 + 𝑢2
𝑗+1)𝑢𝑗 − |𝑢𝑗 |2𝑢𝑗] 𝑗 = 1,… , 𝑁

𝑢𝑗+1(1) = 𝑢𝑗 (0),
(48)

where the subscripts are taken mod𝑁 due to the periodic lattice. In

addition, due to the gauge symmetry, we can without loss of generality

take Im 𝑢1(0) = 0. To solve (48) numerically, we use a shooting method,
which we describe in Appendix B. See Fig. 14 for rightward moving

solutions of varying 𝑁 computed numerically using this method. The

solutions at each site are identical, except shifted by an integer time,

thus they all satisfy the advance-delay equation

𝑖𝑢̇(𝑡) + 𝑑(𝑢(𝑡 + 1)2 + 𝑢(𝑡 − 1)2)𝑢(𝑡) − |𝑢(𝑡)|2𝑢(𝑡) = 0 (49)

for 𝑡 ∈ [0, 𝑁] with periodic boundary conditions. Once a solution has
been obtained via a shooting method, (49) is useful for parameter

continuation.

Representative moving solutions for four values of 𝑁 are shown

in the top panel of Fig. 14. Numerical experiments strongly suggest

that these solutions only exist for 𝑑 > 1∕2 (Fig. 15, top left). Although
the intensity profile of these moving solutions for sufficiently large 𝑑

(and 𝑁) is indicative of a localized solution on a constant background

(solid blue line in Fig. 15, top right), a plot of the real and imaginary

parts (Fig. 15, middle left) shows that the background is, in fact,

not constant. As 𝑑 decreases towards 1/2, the difference between the

minimum and maximum intensity decreases (Fig. 15, top right), and

the solution takes the form of oscillations on a constant background

(Fig. 15, middle right). Nevertheless, the relevant oscillation is only

expected to disappear in the limit and is clearly found to persist in

Fig. 15 even close to that limit.

For exactly 𝑑 = 1∕2, any constant state 𝑢𝑗 = 𝐶, 𝑗 = 1,… , 𝑁 , is a

solution to (48). The parameter continuation in the top left of Fig. 15

never reaches this constant limit at 𝑑 = 1∕2, but it does come closer
to it for larger lattice sizes. Furthermore, these solutions appear to

only be spectrally stable (as defined by the Floquet multipliers being

confined to the unit circle) for 𝑑 close to 1/2, i.e., for 1∕2 < 𝑑 < 𝑑∗(𝑁),
where 𝑑∗(𝑁) approaches 1/2 as 𝑁 becomes large. The dynamical

consequences of this can be observed in the lower panels of Fig. 15

for 𝑁 = 5. For 𝑑 < 𝑑∗(5) (bottom left of Fig. 15), the solution remains

coherent for the 25 full periods shown in the figure (one period has

a length in 𝑡 of 5, after which the system has returned exactly to its

starting condition); in fact, numerical experiments show that it remains

coherent for at least 1000 periods. By contrast, for 𝑑 > 𝑑∗(5), the
solution breaks down after approximately 20 periods (Fig. 15, bottom

right).

These findings constitute, in our view, a significant addition to our

understanding of such nonlinearly dispersive models. This is not only

since, to our understanding, they have not been presented previously,

but also because they appear to be central to segments of the dynamics

that emerge in both our ramp (Fig. 1) and in our modulationally

unstable (Fig. 3) dynamical evolutions.

7. Conclusions and future challenges

In the present work, we have revisited an intriguing minimal model

characterized by the interplay of nonlinear dispersion and cubic non-

linearity. The motivation of the model stems from its derivation as a

minimal description for the study of cascades across (groups of) Fourier

modes in the defocusing NLS equation, which constitute the effective

nodes of this lattice, that was initiated in the work of [24]. This study

adds to the wealth of earlier numerical [25,28] and analytical [25,26]

explorations of this model by considering the prototypical nonlinear

excitations thereof and their spectral stability properties, as well as

their associated nonlinear dynamics. We found that the model exhibits

different types of compactly supported nonlinear states, showcased

their ranges of existence, and identified the termination and bifurcation

points of the relevant structures. Both regular (monotonic) and stag-

gered (non-monotonic) states were explored; for 𝑑 < 1∕2, it was found
that the former are spectrally stable, while the latter are spectrally

unstable. We then turned to dynamical considerations and were able

to analytically solve the simplest scenario thereof, namely the two-site

(dimer); in addition, we were able to convert this problem into one
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Fig. 15. Top left: 𝐿2 norm of 𝑢1(𝑡) vs. 𝑑 for periodic lattice with 𝑁 = 5, 10 and 20 sites; spectrally stable (unstable) solutions denoted by solid (dotted) lines. Top right: square
intensities |𝑢1(𝑡)|2 of periodic moving solutions for 𝑁 = 10 and varying 𝑑. Middle: real and imaginary parts of 𝑢1(𝑡) of periodic moving solutions from top left panel for 𝑑 = 0.6 (left)
and 𝑑 = 0.50689 (right). Bottom: colormap of square intensity |𝑢𝑛|2 of evolution of unperturbed moving solutions on a periodic lattice with 𝑁 = 5, 𝑑 = 0.537 (left) and 𝑑 = 0.555
(right). The integrator used is once again the Dormand-Prince one.

involving only two degrees of freedom by using the relevant conserva-

tion laws. The phase portrait of this two-dimensional system captures

the full dynamics of the dimer, explains the relevant bifurcations, and

also sheds light on the subtle non-robustness of the so-called slider

solutions discussed in [24]. This, in turn, prompted us to search for

generalizations of moving solutions in lattices with larger numbers

of nodes, which we were able to identify. The somewhat unexpected

(yet, a posteriori, justified) feature of such solutions was their apparent

(for large lattice sizes) anti-dark nature, i.e., their density profiles that

asymptoted to a constant nonzero value. While the states themselves

are found to be unstable for large lattices, numerical simulations clearly

illustrate their transient role in cascade dynamics and indeed motivate

their direct numerical identification. Moreover we illustrated their

potential stability near the parameter 𝑑 = 1∕2.

This study motivates a wide range of additional questions worth

examining. It might be useful to examine if analytical results can

be extended beyond the dimer setting, e.g., into the trimer case of

𝑁 = 3, also potentially addressing the question of whether variants

of slider states may be found therein. A deeper understanding of

the transient role of the obtained traveling states in the dynamics,

and perhaps even more importantly in the thermodynamics and long

time asymptotics [32], of such nonlinear dispersive models would be

particularly interesting to elucidate. While the relevance of this class

of models as minimal models for turbulence is less evident in higher

dimensions, their potential nonlinear wave patterns in the latter setting

would be quite interesting to explore in their own right, motivated by

the wealth of states accessible to higher dimensional linearly dispersive

models [4]. Lastly, the implications of the present findings for con-

tinuum models of turbulence, while perhaps more removed from the

current work, are certainly relevant to future thought and exploration.
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Appendix A. The continuous limit

The continuous or long wave limit, first considered in [25], is an

important regime for the equation under consideration, and would

deserve an investigation in its own right. We will not carry it out here,

but will simply sketch some of its features. An important connection

with the earlier developments in the present article has to do with the

key value 𝑑 = 1∕2, which arose repeatedly as a turning point. Namely,
if one considers features such as variational properties, modulational

stability, and stability of compactons, it makes sense to think of the

cases 𝑑 < 1∕2 (resp. 𝑑 > 1∕2) as defocusing (resp. focusing). It is an
interesting coincidence that 𝑑 = 1∕2 also corresponds to the only value
of 𝑑 for which the continuous limit asymptotically makes sense, as we

will see below (compare to [25,27,33], which focus on the value 𝑑 = 2).
To investigate the continuous limit, we choose the ansatz

𝑢𝑗 (𝑡) = 𝑢(𝑡, ℎ𝑗),

where 𝑢 is a smooth function, and ℎ > 0 (this is a slight abuse of
notation; from now on, 𝑢 is a function on the real line instead of the

lattice). Expanding in a Taylor series in ℎ, one finds

𝑖𝜕𝑡𝑢 + (2𝑑 − 1)|𝑢|2𝑢 + 2ℎ2𝑑𝑢𝜕𝑥(𝑢𝜕𝑥𝑢) + 𝑂(ℎ3) = 0.

The continuous limit corresponds to the case where

ℎ → 0, 2𝑑 − 1
2ℎ2

→ 𝛼,

where 𝛼 is a real constant (this implies in particular 𝑑 → 1∕2). Upon
rescaling time, the limiting equation is then

𝑖𝜕𝑡𝑢 + 𝛼|𝑢|2𝑢 + 𝑢𝜕𝑥(𝑢𝜕𝑥𝑢) = 0.

A further rescaling enables one to restrict the value of 𝛼 to 𝛼 ∈
{−1, 0, 1}. The Hamiltonian is now

𝐻(𝑢) = 1
2 ∫ |𝑢𝜕𝑥𝑢|2 𝑑𝑥 − 𝛼

4 ∫ |𝑢|4 𝑑𝑥.
We now follow [33] and seek solitary waves of the form

𝑢(𝑡, 𝑥) = 𝑄(𝑥 − 𝑣𝑡)𝑒−𝑖𝑐𝑡,

where the wave profile 𝑄 solves the ODE

𝑐𝑄 − 𝑖𝑣𝑄′ +𝑄(𝑄𝑄′)′ + 𝛼|𝑄|2𝑄 = 0.

Multiplying by 𝑄 and taking the imaginary part, or multiplying by 𝑄′

and taking the real part, one finds the two conservation laws

𝑣

2
|𝑄|2 + Im(|𝑄|2𝑄𝑄′) = 𝜂

− 𝑐|𝑄|2 + |𝑄|2|𝑄′|2 + 𝛼

4
|𝑄|4 = 𝜅,

for constants 𝜂 and 𝜅. In the particular case where 𝜂 = 𝜅 = 0, which
corresponds to localized waves, one finds that 𝑄 = 𝜓𝑒𝑖𝜃 , where 𝜓 and

𝜃 solve the system of equations

𝑐𝜓 = 𝜓(𝜓𝜓 ′)′ + 𝛼𝜓3 (50)

𝜃′ = −𝑣

2
1
𝜓2 . (51)

The equation for 𝜓 can be integrated to give

𝑐𝜓2 = (𝜓𝜓 ′)2 + 𝛼

2
𝜓4 + 𝐶,

for an integration constant 𝐶. If 𝐶 = 0, this can be integrated to give,
up to translation,

𝜓 =
√

2𝑐
𝛼

sin
(√

𝛼

2
(𝑥 − 𝑣𝑡)

)
,

which is valid for 𝛼 = 1 or 𝑑 → 1∕2+. As one can see from the equation

for the phase above, the solution fails to exist when 𝑧 = 𝑥 − 𝑣𝑡 = 𝑛𝜋,

as it creates a singularity in the phase, unless 𝑣 = 0, or the solution is
stationary.

This result can be generalized for when 𝐶 ≠ 0. In that case, let
𝑈 = 𝜓2. Then 𝑈 satisfies the equation

2𝑐𝑈 = (𝑈 ′)2 + 𝛼𝑈2 + 𝐴

for a constant 𝐴. Completing squares and defining𝑊 = 𝑈− 𝑐

𝛼
we arrive

at

(𝑊 ′)2 = −𝛼𝑊 2 +
[(

𝑐

𝛼

)2
− 𝐴

]
.

A solution to this is

𝑈 = 𝑐

𝛼
±
√

𝐵

𝛼
sin(

√
𝛼𝑧 + 𝐶),

for a constant 𝐶, where 𝐵 =
(
𝑐

𝛼

)2
− 𝐴, thus 𝐴 <

(
𝑐

𝛼

)2
. From

the definition of 𝑈 , only solutions that are non-negative are valid,

restricting the choice of 𝐵 so that
√

𝐵

𝛼
<

𝑐

𝛼
. Exploring the potential of

constructing weak solutions out of a single period of these sinusoidal

(static and traveling) waveforms, appropriately glued to a constant

background (in the spirit of the compactons of [34]) would constitute

an interesting direction for future study.

Appendix B. Shooting method

Shooting methods are highly useful techniques for solving boundary

value problems numerically (for a good reference, see Chapter 18.1

of [35]). The shooting method reduces a boundary value problem to an

initial value problem. We then systematically solve the corresponding

initial value problem for different initial conditions until we obtain a

solution which also satisfies the desired boundary conditions.

We use a shooting method to find traveling solutions in the lattice

by solving the boundary value problem (48). First, we define 𝑢(𝑡; 𝑢0) to
be the solution to the corresponding initial value problem

𝑢̇𝑗 = 𝑖
[
𝑑(𝑢2

𝑗−1 + 𝑢2
𝑗+1)𝑢𝑗 − |𝑢𝑗 |2𝑢𝑗] 𝑗 = 1,… , 𝑁 (52)

with initial condition 𝑢0 at 𝑡 = 0. The solution 𝑢(𝑡; 𝑢0) solves the
boundary value problem (48) on 𝑡 ∈ [0, 1] if 𝐹 (𝑢0) = 0, where

𝐹 (𝑢0) = 𝑢(1; 𝑢0) − 𝑅𝑢0, 𝑅 =

⎛⎜⎜⎜⎜⎝
0 1
1 0

⋱ ⋱
1 0

⎞⎟⎟⎟⎟⎠
. (53)



R. Parker et al.

The matrix 𝑅 is responsible for the rightward direction of travel on

the lattice (we can obtain leftward motion by using 𝑅⊤ in place of 𝑅).

We use a standard root-finding method (e.g., the trust-region-dogleg

algorithm, implemented by means of fsolve function in Matlab) to

solve 𝐹 (𝑢0) = 0 for a suitable initial seed. For the initial guess, we use
the vector (1, 𝜖,… , 𝜖)⊤, where 𝜖 is small but nonzero. We cannot take
𝜖 = 0, since sites which start at intensity of 0 will remain at 0 for all 𝑡.
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