Topological Photonics:
A Mathematical Perspective

Ross Parker and Alejandro Aceves

1. Introduction

Topological photonics is a framework that follows both
condensed matter physics and topology. It refers to de-
signing the guiding properties of the propagating medium
(e.g., a photonic crystal or a waveguide lattice) in such a
way that the transport of electromagnetic energy is real-
ized in unique, robust, and sometimes unexpected ways.
Consider a simple thought experiment: imagine first the
two-dimensional wave equation on a square domain, and
assume homogeneous Dirichlet boundary conditions. We
know that the accessible modes extend in periodic form
throughout the whole domain and, in time, waves can
propagate in all directions. This behavior is in response
to the inherent symmetries of the medium. Imagine in-
stead that we engineer the medium in such a way that all
the energy concentrates in the boundary of the medium
and propagates in only one direction. (In the language of
optics, this would be seen as inhibiting back reflection and
making the bulk medium act like an insulator).

Typically, in describing a photonic system, we refer to
physical quantities such as frequency, wave vector, polar-
ization, and dispersion. Instead, in the relatively new field
of topological photonics, the term “topology” refers to a
property of a photonic material that characterizes global
behavior of the wavefunctions on their entire dispersion
map; most importantly, this property takes quantized val-
ues. Think of this as characterizing the “genus” of an ob-
ject, like a doughnut, with the “object” being described
in wave vector space rather than in physical space. There
are analogues in photonics to the topological fact that con-
tinuous deformations will not change the genus of an ob-
ject. As an example, photonic topological insulators that
are designed using artificial materials can support topo-
logically nontrivial unidirectional states of light. These
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states are characterized by a particular “genus-like” num-
ber. Since this number is quantized, this unidirectional
property will be robust to perturbations in the underlying
photonic structure.

Photonics research often parallels or aims at explaining
phenomena in other physical contexts. Bose-Einstein con-
densation in condensed matter physics is governed by the
Gross-Pitaevskii equation, which is identical to the nonlin-
ear Schrodinger equation that governs intense laser beam
propagation in a dielectric medium such as air. In the
quantum realm, nontrivial states of two-dimensional mat-
ter (e.g., a periodic lattice of atoms) with broken time-
reversal symmetry can have the property that the bulk is
an insulator while states (modes) exist that carry current
along the sample edges without dissipation. The character-
istic “genus-like” integer is called the Chern number (see
section 3 for an example), which arises out of topological
properties of the material’s band structure (see the discus-
sion in section 2 and section 3 below).

In photonic crystals, a periodic variation of the di-
electric properties of the medium affects photons in the
same manner as solids modulate electrons (with the caveat
that photons are bosons, while electrons are fermions).
The question is whether the topological features are repli-
cated in the analogous photonic system. In two foun-
dational papers by Haldane and Raghu [HRO8, RHO0S8],
the authors highlight the photonics analogue to quantum
properties. They demonstrate the ingredients necessary
to create a “one-way waveguide” which exhibits proper-
ties similar to the Quantum Hall Effect. While the model
in [HRO8] has not been experimentally realized, it moti-
vated further work by Wang, Chong, Joannopoulos, and
Soljaci¢, in which they first predicted the existence of edge
states in a magneto-optical crystal in the microwave regime
[WCJS08] and then demonstrated these experimentally
[WCJS09]. Experiments by Rechtsman et al. [RZP*13]
found topological edge states without the need for an exter-
nal magnetic field by using a photonic crystal comprising
helical waveguides.

Since then, the field of topological photonics has ma-
tured and continues to be very active, both in theory and
experiments, as well as in the linear and nonlinear regimes.
While we have briefly discussed its origins, it is not our
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Figure 1. Top: schematic of SSH model, unit cell (a,,b,) in
dotted box. Coupling constant is ¢; within unit cell, and ¢,
between unit cells. Bottom: reciprocal lattice, first BZ [-7, 7]
shown in red.

purpose to give a detailed history of the field (for this pur-
pose, we point the interested reader to the review articles
[JS14, LCG*22]). Instead, we will focus our discussion
on three prototypical examples: the one-dimensional Su-
Schrieffer-Heeger model, the two-dimensional Haldane
model, and the model of a photonic Floquet topological
insulator from [RZP*13]. We hope that this article high-
lights why this is a fertile area for mathematicians to ex-
plore and contribute to with their expertise.

2. SSH Model

The Su-Schrieffer-Heeger (SSH) model [SSH79], is the sim-
plest lattice model that exhibits topological features. It was
devised to describe the electrical conductivity in a doped
polyacetylene polymer chain. The lattice comprises re-
peating, two-node unit cells, where the couplings within
and between unit cells are given by t; and ¢,, respectively
(Figure 1, top). The optical analogue is a linear lattice
of waveguides in which the nearest-neighbor couplings
are staggered (this can be implemented, e.g., by altering
the physical spacings between the fibers). Mathematically,
the SSH model can be described by the discrete nonlinear
Schrédinger equation

ia, + tib, + trb, 1 +¥|ayl*a, =0 .
ib, + tia, + t,a,41 + 7|bu|*b, =0, (1)
where (a,, b,,) is the nth unit cell, and y > 0 is the strength
of the cubic nonlinearity. (A rigorous mathematical deriva-
tion can be found in [AC22]).

Our analysis follows that of [AOP16, Chapter 1] and
[AC22, Section 8]. The topological features of the opti-
cal SSH model can be understood by studying the linear
model (y = 0). As a first step, we look for plane wave so-
lutions of the form

o)

where 4 is the frequency and k is the wavenumber. Equa-
tion (2) is periodic in k with period 27, since w(k+2mr) =
wi(k) for any integer m. The points {2mz : m € Z} define
another linear lattice, which is called the reciprocal lattice
(Figure 1, bottom). The first Brillouin zone (BZ) is the set
of points closer to the origin than any other point of the
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Figure 2. Left: band structure of the SSH model for 0 < t, < t;

(top) and 0 < t; < t, (bottom). Right: circle in the complex
plane traced counterclockwise by h(k) for k € [-7, 7].
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reciprocal lattice, which in this case is the interval [—7, 7].
Due to the 27-periodicity, the BZ is topologically equiva-
lent to the unit circle S*.

Substituting the ansatz (2) into (1) and simplifying,
we obtain the k-dependent eigenvalue problem H(k)v =
—A(k)v, where v = (a,b)", and H(k) is the Hermitian ma-
trx

H(k)=(h*(zk) hg‘)), h(k) = t; + tye=ik,

Since H(k) is 2z-periodic, we only need to consider k €
[—7, 7], i.e., in the first BZ. We note that since we are posing
the problem on the full integer lattice, k can take any value
in [—7, 7r]. The eigenvalues of H(k) are

A0 = £[h()] =[G + B + 25505k, (3)

which is the dispersion relation A(k)> = |h(k)|? relating
the frequency 4 and the wavenumber k. Each eigenvalue
A(k) is a continuous function of the wavenumber on the
first BZ, and is called a band. Since H(k) is a 2 X 2 matrix,
the SSH model has two bands. All of the bands of the
system form its band structure, which is illustrated in the
left column of Figure 2. (These terms are borrowed from
solid state physics, where the band structure describes the
energy levels that electrons can occupy in a solid).

When t; # t,, there is a space between the upper and
lower bands, which is known as a band gap. This band gap
has size 2A, where A = |t; —t,|. The band gap closes when
t; = t,. Since the eigenvalues (3) are unchanged if #; and
t, are exchanged, it appears at first glance that the cases
t; > t, and t; < t, are identical, i.e., that the problem is
symmetric about t; = t,. Interestingly, this is not the case.
For a complete picture, we need to look at the eigenvectors
of H(k) as well.
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The normalized eigenvectors corresponding to the
eigenvalues +A(k) are given by

L (R - )
wi= (M) =g

Since A(k) is a complex number of unit modulus whose
argument is the same as that of h(k), we can write v, (k) as
ip(k)
v.(k) = L <ie )
\/E 1
_Imh(k) _ tysink
tang = Reh(k) =~ t; +tycosk’

As the wavenumber k varies from —7 to 7= over the BZ, the
complex number h(k) traces a clockwise circle in the com-
plex plane with center (¢;,0) and radius ¢,. This circle en-
closes the origin when t; < t,, but does not when t; > ¢,
(Figure 2, right column). The topological invariant is the
winding number of h(k), which is the number of times
h(k) travels counterclockwise around the origin. We can
see from Figure 2 that

(5)

-1 <t
Ind;,(0) = P
0 t >t

(6)

where a winding number of —1 represents a single clock-
wise trip around the origin. (The winding number is un-
defined if t; = t,).

The same topological information can be obtained in a
different way by computing a quantity known as the Berry
phase [Ber84]| (also known as the Zak phase [Zak89] in
1D). Intuitively, the Berry phase is the phase angle accu-
mulated by a complex vector, e.g., one of the eigenvec-
tors v, (k), around a closed contour in k-space. We will
take a brief digression to discuss these concepts, following
[AOP16, Chapter 2] and [Van18, Chapter 3], before com-
puting them for the SSH model.

Let v(k) be a normalized eigenvector of H(k). For any
wavenumbers k; and k,, we define the relative phase be-
tween v(k;) and v(k,) by

712 = arg(v(k,), v(ky)), (7)

where arg z is the phase, or argument, of the complex num-
ber z. (We are using the Hermitian inner product (u,v) =
u'v=>Y j ujv;, where the dagger symbol denotes the con-
jugate transpose; the complex conjugation is placed on the
first component to be consistent with the Dirac notation
of quantum mechanics). The relative phase y;, satisfies the
equation

e — (V) V() ®)

[(v(kz), v(k1))|

It is important to note that the eigenvector v(k) is not
unique. In particular, since it is a unit vector, it is spec-
ified only up to multiplication by a constant unit com-

plex number ¢®. The transformation v(k) ~ ev(k) is
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called a gauge transformation. The relative phase y;, is not
invariant under a gauge transformation, since if we take
v(k;) — e’efv(kj), (v(k,), v(ky)) transforms to

(ei%2v(k,), e®rv(ky)) = eC1=8)(v(k,), v(k,)),

thus y1; = 712 + (6, — 62).

We wish to define the change of phase of v(k) in such a
way as to be gauge invariant. To do this, we take a sequence
(ky, ks, ..., ky) of N points in k-space ordered in a loop. We
then define the discrete Berry phase by

y = arg el(riz+r23+--+YnN,1)
= arg ((v(ky), v(k)Xv(ks), v(ky)) -+ (v(ky), v(kn))) ,

which is the phase accumulated by v(k) around the loop.
Unlike the relative phases yj, the Berry phase is gauge
invariant; if we take the gauge transformations v(k;) ~
eeiv(kj), the Berry phase transforms to y + (6; —6,) + (6, —
6;) + -+ + (B — 61), which is equal to y, since all of the
0; cancel. We note that the Berry phase is only unique up
to an integer multiple of 27 unless we take the principal
value of the argument, i.e., restrict arg z to (-, 7].

We now move from discrete to continuous. In partic-
ular, we wish to compute the phase accumulated by v(k)
along a continuous, closed path. For small Ak, let Ay be
the relative phase accumulated between v(k) and v(k + Ak).
Following (8), Ay satisfies the equation

_ (v(k + Ak),v(k))

iA
"= N A ©)

Since Ak is small and v is a unit vector, the denominator
in (9) is approximately 1, thus

A x (v(k + Ak), v(k)).

Expanding both sides in a Taylor series to first order in Ay
and Ak and simplifying, we find that Ay is approximately
given by

. d
Ay = l<v(k), ﬁv(k)> Ak. (10)
We define the Berry connection by
A(k) = l'<v(k) iV(k)> = iv(k)" iV(k) (11)
" dk dk >

which is the coefficient of Ak on the RHS of (10). We then
define the Berry phase to be the integral of Berry connec-
tion around a closed contour C:

y = 95A(k)dk.
e

As in the discrete case, the Berry connection is not gauge
invariant, while the Berry phase is invariant under gauge
transformations (modulo integer multiples of 27).

(12)
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Figure 3. Eigenvalues of B for 0 < t, < t; (top left), t; = t, (top
right), and 0 < t; < t, (bottom left). Edge mode eigenvectors
v = (a,b) for 0 < t; < t, (bottom right); a (solid blue line) and b
(dotted orange line) are either in-phase (top) or out-of-phase
(bottom). N = 25 unit cells with Dirichlet boundary conditions.

Returning to the SSH model, we first compute the Berry
connection using the eigenvector v, (k):

() )
\/E 1 ’ \/5 0

1 !
-3¢/ (K.
We then compute the Berry phase by integrating the Berry
connection from — to 7. This is a closed contour in the

BZ since the endpoints of [—, 7] correspond to the same
point on the unit circle S*. The Berry phase is

A(k)

th <t

1 (" T
r=-3 | ¢tod-
2 ) . 0 >t

which is the change in phase of the eigenvector v, (k) over
the BZ. Since it is a constant multiple of (6), it conveys the
same information as the winding number.

The fundamental topological difference between the
two asymmetric lattice configurations (t; < t, and t; > t,)
becomes evident when we consider a finite lattice. Specif-
ically, we take a lattice comprising 2N waveguides (N unit
cells) with Dirichlet boundary conditions at the two ends
(bp = 0 and ap,q = 0). For the linear system, solutions
are standing waves of the form (a,b)Te™*, where a =
(ay,...,an)and b = (b, ..., byy) represent the a and b sublat-
tices of the system. Substituting this ansatz into (1) yields
the eigenvalue problem Bv = —1v, where v = (a,b)" €
C?N and B is the off-diagonal block matrix

51
0 B
B=(B(-)r 0"), By=|t {1

An intuitive understanding of the difference between
the two cases can be gained by considering the two extreme
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configurations, where one of the coupling constants is set
to 0. If t; > 0 and ¢, = 0, the lattice comprises N inde-
pendent dimers with internal coupling constant t;. The
eigenvalues of B are +t;, each with multiplicity N. On the
other hand, if t; = 0 and t, > 0, the lattice instead com-
prises N — 1 independent dimers (staggered from the ones
in the previous case) with internal coupling constant ¢,, as
well as two unconnected nodes at the ends of the lattice. In
addition to eigenvalues at +t,, each with multiplicity N—1,
the matrix B has two eigenvalues at 0. The eigenvectors cor-
responding to these zero eigenvalues are (1,0, ..,0)T and
(0,...,0,1)T. These are called edge modes, since they are
localized at the ends of the lattice.

Since B is a 2N X 2N matrix, its spectrum is a discrete
set of 2N eigenvalues, as opposed to the two continuous
bands of eigenvalues found from the dispersion relation
in the infinite lattice case. The eigenvalues of B are shown
in Figure 3 for0 <t, <ty,t; =t,,and 0 < t; < t,. The two
asymmetric configurations contain a “gap,” which closes
when t; = t,. This eigenvalue gap is analogous to the band
gap in the infinite lattice case. When 0 < t, < t;, there
are no eigenvalues in this gap, and all of the eigenvectors
are nonlocalized. When 0 < t; < t,, however, there are
two eigenvalues close to (but not exactly at) 0 which lie
within this gap (these eigenvalues approach 0 in the limit
N — ). As in the case where t; = 0, these eigenvalues
correspond to edge modes, since a and b are localized to
the left and right edges of the lattice, respectively (Figure 3,
bottom right). All of the remaining modes are nonlocal-
ized.

Finally, we briefly comment on what occurs when a cu-
bic nonlinearity (y > 0) is present (see [MS21] for a more
thorough treatment). Standing wave solutions of the form
(a,b)Te ™ solve the equation Bv + v + Av = 0, where
v = (ay,...,an, by, ..., by). Numerical continuation exper-
iments show that the edge modes from the linear model
persist for small y.

3. Haldane Model

We now turn to a two-dimensional model. We start with
a honeycomb lattice (Figure 4), which is constructed from
a two-site unit cell, with sites labeled a and b. These unit
cells tile the plane periodically along the two primitive lat-

tice vectors v; = G, g) and v, = (3,—?) to obtain a
hexagonal lattice. We note that the a-sites and b-sites form
two offset, triangular sublattices. This structure is similar
to that of the material graphene, which is a hexagonal lat-
tice constructed entirely from carbon atoms. The spatial lo-
cation of a unit cell is specified by the vector r,, = mv,+nv,,
where n = (m,n) € 7Z2. Tt is therefore natural to in-
dex the unit cells by the vector n; the locations of the lat-
tice sites a,, and b, in unit cell n are r,, and r, + (1,0),
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respectively. Each node in the honeycomb lattice is
connected to its three nearest neighbors with coupling
strength t; > 0, which is a coupling between sublattices.
The directions of the nearest-neighbor (NN) couplings are

given by the vectors §; = (%,—g , 0y = <%,73>, and

83 = —(8; + 8,) = (—1,0), which are depicted in Figure 4.
The resulting linear model can be written as

iy +1 ) by =0,  iby+1 Y ay =0,

13
(m) (m) (13)

where the angle brackets indicate that the sum is taken over
nearest neighbors. The system (13) obeys time-reversal
symmetry, i.e., is invariant under the transformation ¢t —
=, (an’ bn) = (afv b;)

The Haldane model [Hal88] adds two more terms to
the honeycomb model. We will see that this results in a
band gap in the spectrum, similar to what occurs in the
SSH model with unequal couplings. First, the Haldane
model has an on-site energy term of magnitude ¢,, which
takes opposite signs on the a and b sublattices. In addi-
tion, there is an imaginary, next-nearest neighbor (NNN)
coupling term with strength it,. (In the original Haldane
model, this coupling term has the complex strength t,e'?;
we take ¢ = 7/2 here for simplicity). Each node is cou-
pled to its six next-nearest neighbors, which is a coupling
within sublattices. These couplings are staggered so that
there is no net flux into or out of a single lattice site. The
directions of the next-nearest neighbor couplings are given
by the vectors §; = vy, 8, = —v,, and 85 = v,—v; (Figure 4).
Using this notation, the linear model for the Haldane lat-
tice is

iy + loln + 1 ) by ity Y @y =0
(m) {m)

iby — toby + 11 Y, G £ ity Y by =0,
(m) (m)

(14)

where the double angle brackets indicate that the sum is
taken over next-nearest neighbors. The signs of the NNN
couplings are indicated by the arrows in Figure 4, where
outward and inward pointing arrows denote couplings of
+it, and —it,, respectively. The arrangement of the arrows
in two staggered, counterclockwise triangles ensures no net
flux results from the NNN term. Time-reversal symmetry is
broken when ¢, # 0, but is unaffected by the on-site term
to.

As in the SSH model, the first step is to compute the
band structure, which is found by looking for plane wave
solutions to (14) of the form

R

where k = (ky, k) is the wave vector. As in the one-
dimensional case, we restrict ourselves to a bounded re-

(15)
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V2
Figure 4. Schematic of the Haldane lattice. Rhombus is unit
cell with sites a and b. Primitive lattice vectors v; and v,.
Nearest neighbor coupling vectors &;, §,, and J5.
Next-nearest neighbor coupling vectors 5'1, 5&, and 5&.

gion in k-space, since w(k) is periodic in k. Specifically,
w(k + r*) = w(k), where r* is called a reciprocal lattice
vector. To determine the reciprocal lattice vectors, we note
that w(k + r*) = w(k) if and only if

elkm — ei(k+r*)»rn — eik-rneir*»rn‘

This implies thate’™ ™ =1, i.e, r* -1, = m(r* -v;)+n(r*-v,)
is an integer multiple of 27z. To satisfy this criterion, we
take r* = [;v] + [,v} for integers [; and [,, where

2 i=]j
0 i#].

The points r* define another lattice, which is called
the reciprocal lattice, and its periodicity is given by the
primitive reciprocal lattice vectors vi and v;. For a two-

dimensional lattice, vi and v; can be computed in terms
of the primitive lattice vectors v; and v, using the formulas

. 27Qv, 27Qv, Q=<o —1)
1 0/

Vi vy - Qvy’ vy Qvy’
2?7[(1,\/5) and vi =
2?ﬂ(l, —\/5). The first BZ is the set of points closer to the
origin than any other point of the reciprocal lattice (out-
lined hexagon in Figure 5, top left). This is the Voronoi
cell around the origin, which is a unit cell of the reciprocal
lattice. Equivalently, the first BZ is the thombus spanned
by the reciprocal lattice vectors vi and vj. Since opposite
sides of this rhombus are identified due to periodicity, the

first BZ has the topology of a torus.
Substituting the ansatz (15) into (14) and simplifying,
we obtain the k-dependent eigenvalue problem H(k)v =

—A(k)v, where

(o= f R
H(k)‘<°h*<k> —to+f(k)>

h(k) = t; ) e, f(k) =21, ) sin (k- 5}).
J J

1

V>-k 'Vj = 27l'5ij =[

vy =

For the honeycomb lattice, vi =

We note that h(—k) = h*(k) and f(-k) = —f(k). Since
H(k) is periodic in k along the reciprocal lattice vectors, we
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Figure 5. Top left: reciprocal lattice for Haldane model (blue
dots). Red arrows are primitive reciprocal lattice vectors vj
and v3. Outlined hexagon is first BZ, which is equivalent to
rhombus. T is the origin of the reciprocal lattice, K and K’ are
the two Dirac points, and M is the midpoint of the Dirac
points. Band structure of Haldane model for t, =0, t, = 0 (top
right), to =0, t, = 0.1 (bottom left), and t, = 0.3, £, = 0.1
(bottom right), following piecewise linear path
r-K'-M-K-TinBZt; =1.

only need to compute the eigenvalues of H(k) over the first
BZ. The eigenvalues of H(k) give us the two bands +A(k),
where

Ak) = \/Ih(k)l2 + (to — f(K))%.

The corresponding normalized eigenvectors are

1 <i/1(k) + g(k))
V220G £ gy \ - R
g(k) = to — f(K).

Plots of the band structure of the Haldane model for sev-
eral parameter configurations are shown in Figure 5. (As is
typically done, e.g., in [HRO08, Figure 1], the bands are plot-
ted following a piecewise linear path in the BZ). The eigen-
value A(k) has six minima, which are called Dirac points.
These are located at the corners of the hexagonal BZ (Fig-
ure 5, top left). We label the two Dirac points with k,, > 0

2 1 , 2 1
K and K’ are not equivalent in the BZ, since they are not re-
lated by translation through reciprocal lattice vectors. (The
remaining Dirac points are equivalent to either K or K').
Near the Dirac points, the bands are called Dirac cones,
since, to leading order, they are linear in k. At the Dirac
points,

AK) = |to+3V30],  AK) =|to—3v/38|.

It follows from (17) that there is no band gap when ¢, = 0
and t, = 0 (Figure 5, top right). Fort, = 0 and t, > 0,

(16)

vi(k) =

>. The Dirac points

(17)
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there is a band gap of size 64/3t, (Figure 5, bottom left).
The Dirac cones at both K and K’ touch when t, = 0. For
fixed t, > 0and t, > 0, the behavior at the two Dirac points
is no longer symmetric (Figure 5, bottom right). It follows
from (17) that A(K) > 0, thus the Dirac cones at K can
never touch. The Dirac cones at K’, however, touch when
t, = t;, where t5 = to/3\/3. Therefore, there is a band gap
forboth 0 < t, < t5 and ¢, > t;, and the band gap closes
when t, = t;. The closure of the band gap corresponds to
a topological transition, which we will discuss below.

To understand what is occurring topologically, we will
extend the concepts we discussed in section 2 from one
to two dimensions (for a more rigorous treatment, see
[AOP16] and [Van18]). Let v(k) be a normalized eigen-
vector of H(k). As in the one-dimensional case, we are in-
terested in how the phase of v(k) changes along a closed
path in the BZ. For any k; and k,, we define the relative
phase between v(k;) and v(k,) by

712 = arg(v(ky), v(ky)). (18)

Analogous to equation (11), we define the Berry connec-
tion A = (A, A,y) by

A®K) = iv(k) D v(K), (19)

where Dv(k) is the Jacobian matrix for v(k). The Berry
phase is the integral of the Berry connection around a
closed contour € in k-space:

y = ¢A(k) - dk.
(&4

Using Stokes’s theorem (i.e., Green’s theorem in two di-
mensions), we can write the Berry phase as

Y= f Q(k)ds,
s
where S is the region in the plane enclosed by €, and
Q(k) = 0,Ay — 9yA,
is called the Berry potential. Evaluating the derivatives in

(22) and using the equivalence of mixed partials, we can
also write the Berry potential as

Q(k) = —2Im ([akxv(k)]Takyv(k)).

(20)

(21)

(22)

(23)

The topological quantity of interest is the integral of the
Berry connection around the boundary of the first BZ. By
the Chern theorem (see, for example, [Nak90], as well as
the intuitive explanation below), this is an integer multiple
of 27. We then define the Chern number of v(k) by

1 1
C=— AKk) - dk = — Qk)ds, 24
zﬂgéﬂz ® Zﬂfm ® (24)

which is an integer.
We will use a numerical method to compute the Chern
number [FHSO5]. We first choose a mesh size N, and then

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 999



discretize the first BZ (rhombus in Figure 5, top left) using
the (N + 1)? points

m., n_,

km,n = NVI + ]T]VE

The discretized grid comprises N*> thombus-shaped pla-

quettes B, ,, with corners ky, ,, Kpy1.00 Kpyp1n41, and

Ky 1. Let y,'ﬂ:;l", be the relative phase between v(k,, ,,)
and v(kp, /). Then the discrete Berry phase around the
boundary of the BZ is defined by

yN—argeXp[ ( z ym+10+ Z }/Nn+1

m,n=20,1,...,N.

~ ~ (25)
N 0,
+ Z yr’:11+1,N + Z yo,rrll+1)]’
m=0 n=0

where the subscript N denotes the mesh size. Instead
of computing this, which involves the sum of 4N gauge-
dependent relative phases, we will take the sum of the dis-
crete Berry phases around each plaquette [AOP16, Chapter

2.1.3]. The discrete Berry phase around B,, ,, is given by
By = argexp [i(vin" + vmain ™!
(26)

m,n+1
+ Vmiint1 T Vm n+1>]

where we take the principal value of the argument, i.e., take
E,.,, € (—m, m]. Taking the product of the Berry phases F,,,,
for all N? plaquettes,

H elfmn = exp(

m,n=0

> il

m,n=0

(27)

m+1l,n+1
m+1 n

—eXp< Z [Vm+1n

m,n=0
m,n+1
+ Vm+1 n+1 + Vi n+1])

Consider an internal edge of the mesh connecting the
points k, , and ks ,,». This edge appears in exactly two
adjacent plaquettes, but in opposite orientations, which
implies that the sum on the RHS of (27) contains the rel-
ative phases y,’,'f,’n"

and )/m, each exactly once. Since the

’r
.. . " . . m'.n
Hermitian inner product is conjugate-symmetric, ym,, =
¥, thus the relative phase contributions from all in-
ternal edges cancel. This implies that the exponents on the

RHS of equations (25) and (27) are the same, i.e.,

N-1
e''N =exp| i Z Eun s
m,n=0

from which it follows that the discrete Berry phase yy and

(28)

the plaquette sum ZZ_;:O E,,,, are equal, modulo an inte-
ger multiple of 27.
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an-1 by_1

as b3

ap by

Figure 6. Ribbon of Haldane lattice with armchair edges on
top and bottom, infinite in horizontal direction. Unit cell
enclosed in dotted lines.

Finally, we use the discrete Berry phase around the BZ
to define the discrete Chern number

1 N-1
Cv=35- 2 Fon (29)
m,n=0

Since the BZ is a torus, opposite boundaries of the BZ are
identified. In particular, this means that opposite external
edges of the mesh are equivalent, e.g., the edge between
ko , and kg ;11 is the same as that between ky , and ky ,41.
Since the two members of each pair of equivalent external
edges appear exactly once, but in opposite orientations, in
the sum on the RHS of (27), the relative phase contribu-
tions from all external edges cancel as well. This implies
that the exponent in (28) is 0, so that yy is an integer mul-
tiple of 277, and Cy is an integer. We can think of the Chern
number C as the limit of Cyy as N - oo, which provides an
intuitive explanation for why the Chern number is integer
valued.

Returning to the Haldane model, we compute the
Chern numbers of the two bands using the above dis-
cretization with N = 100. First, we consider the case when
to = 0. When t, = 0, the Chern numbers of both bands
are 0, and when ¢, > 0, the Chern numbers of the upper
and lower bands are 1 and —1, respectively. When t, > 0,
the Chern number of the upper band is

0 0<t<t;
1 t,>1,

and the Chern number of the lower band has the same
magnitude but opposite sign. The Chern number changes
from 0 to 1 when the band gap closes at t, = t;. This tran-
sition from the nontopological to the topological regime
is analogous to what occurs in the SSH model.

The fundamental difference between the nontopologi-
cal and topological states can be most easily seen in a lat-
tice which is finite in at least one dimension. As in the one-
dimensional case, imposition of a boundary will give rise
to edge modes. The simplest example is a ribbon lattice,
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Figure 7. Band structure for ribbon of Haldane lattice with
armchair edges. Top left: ¢, = 0.25 and ¢, = 0 (nontopological
state). Top right: t5 = 0.25 and t, = 0.2 (topological state). Blue
and red lines are edge modes which connect the upper and
lower bands. Band gap closes at t, = t5 = 0.0481. Bottom:
eigenvector (a,b)" corresponding to the two edge modes
from top right for k = 7/4. N = 40 and t; = 1 in all cases.

which is finite in one direction and infinite in the other.
There are many possible configurations for the edges of the
ribbon (see, for example, [LFR24]), and we note that the
edge mode behavior and properties depend on this choice.
We will use armchair edges for the top and bottom edges
of the ribbon, which are illustrated in Figure 6. The unit
cell of the ribbon (dotted square in Figure 6) comprises N
sites of each type, for a total of 2N sites.

Solutions to the linear system are standing waves of
the form (a,b)Te!®"=10) where a = (aj,..,ay) and b =
(by, ..., by) represent the a and b sublattices of the system.
The wavenumber k runs over the first BZ, which is [-7, 7].
Substituting this ansatz into (14), we obtain the eigen-
value problem Bv = —1v, where v = (a,b)T € C?N, B
is the 2N X 2N block matrix

B <t0 + it, B, (k)

t By (k)
1B (6) ) (30)

—to + it, By (—k)

B; (k) is the N X N tridiagonal matrix whose rows alternate
between (1,1,1) and (1, ¢, 1), and B,(k) is the N X N pen-
tadiagonal, skew-Hermitian matrix whose rows alternate
between (1,—1—e~*,0,14+¢~,-1)and (1, -1 —ei¥,0,1+
ek, —1).

When 0 < t, < t5, there is a band gap, but the system
does not possess any edge modes (Figure 7, top left). This
corresponds to a Chern number of 0 for both bands. As
t, is increased, the band gap closes at t, = 5, and then re-
opens for t, > t;. A topological transition occurs at t, = t;,
which is concurrent with the band gap closure. For t, > 3,
the Chern numbers of the two bands are +1. The resulting
topological state is characterized by the appearance of edge
modes (blue and red lines in Figure 7, top right) which
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connect the upper and lower bands. A plot of the associ-
ated eigenvectors for these edge modes (Figure 7, bottom)
shows that they are indeed localized to the bottom and top
edges of the ribbon.

4. Photonic Floquet Topological Insulator

While the Haldane model has not been realized experi-
mentally, it has motivated further theoretical and exper-
imental work in topological photonics. In [RZP*13],
Rechtsman et al. performed experiments with a photonic
crystal array of coupled, helical waveguides arranged in a
honeycomb lattice (as in the Haldane model). The helical
waveguides induce temporal modulation of the photonic
crystal, which breaks time-reversal symmetry and leads
to topological states. We start with the following lattice
model, which is a modification of (13) and can be derived
from Maxwell’s equations (see [AC17, AC22]):

i + 1 3, ~ 0
(m)

ib, +t; ), eRAD (m=m)g =0,
(m)

where the dot denotes differentiation with respect to z,
A(z) = (sin(Qz), — cos(Qz))", and the angle brackets indi-
cate that the sum is taken over nearest neighbors. We point
out that in the photonics setting, the paraxial direction z
is the “time-like” variable. The parameters R and Q repre-
sent the radius of the helical waveguide and its frequency
of rotation, respectively. The unit cells (a,, b,) and posi-
tion vectors r,, are the same as in the Haldane model, and
r, — I is the displacement vector between two unit cells.
Time-reversal symmetry is broken when R # 0, since mak-
ing the transformation z » -z, (a,,b,) ~ (a},b}) and
taking complex conjugates takes R — —R in (31).
We look for solutions of the form

(022) - (22) v
ba(2))  \b(2) ’
where the wave vector k ranges over the first BZ. Unlike the
Haldane model, the system (31) is nonautonomous, i.e.,
it depends on z. As a consequence, the functions a(z) and
b(z) will also depend on z. Substituting this ansatz into

(31) and simplifying, we obtain the linear, k-dependent,
nonautonomous ODE

(31)

(32)

u(z) = iH(z,k)u(z), (33)
where u = (a,b)T,
0 h(z,k)
H(z k) = (h*(z, b o )
(34)

h(Z, k) =t Z e—iA(Z)-5j e—ik-5j,
J

and the §; are the nearest-neighbor coupling vectors from
Figure 4.
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Figure 8. Floquet bands for (33) for R =0 (left) and R =1
(right). Plot shows imaginary part of Floquet exponents over
the first BZ. For both cases, t; =1, Q = 27.

Since the matrix H(z, k) is periodic in z with period
T = 27/Q, it follows from Floquet theory (see, for exam-
ple, [Chi06, Chapter 2.4]) that (33) has solutions of the
form u(z) = v(z)e*, where v(z + T) = v(z), and A is called
a Floquet exponent. To compute the Floquet exponents,
let ®(z) be the fundamental matrix solution for the sys-
tem, so that u(z) = ®(z)u, is the unique solution to (33)
with initial condition u,. Let M = ®(T), which is called
the monodromy matrix. The Floquet multipliers u are the
unique eigenvalues of the monodromy matrix M, and the
Floquet exponents, which are unique modulo 27i/T, are
related to the Floquet multipliers by u = e*T. Since the
two columns of the monodromy matrix are the unique
solutions to (33) at z = T with initial conditions (1,0)"
and (0,1)7, respectively, it is straightforward to compute
the monodromy matrix numerically using a standard ODE
solver. Once we have computed M, we can then calculate
the Floquet multipliers and exponents numerically.

Figure 8 shows the Floquet band structure of the system,
which is obtained by plotting the imaginary part of the Flo-
quet exponents as the wavenumber k varies over the first
BZ (the Floquet exponents are purely imaginary). When
R = 0, there is no band gap, which is expected since the
system reduces to the honeycomb model (13). In this case,
the matrix H(z, k) is constant in z, and the Floquet expo-
nents are the eigenvalues of iH. A band gap opens when
R # 0, which can be seen in the right panel of Figure 8.
This band gap is associated with a topological state, i.e.,
a nonzero Chern number. The Chern number for each
Floquet band can be computed using the corresponding
eigenvector of the monodromy matrix and the numerical
method from the previous section. When R = 0, the Chern
numbers of both bands are 0. For R # 0 and frequency
Q = 27, the Chern numbers of the two bands are 1 and
—1. The edge modes that are a consequence of the non-
trivial Chern number are both predicted theoretically and
demonstrated experimentally in [RZP+13].

5. Conclusions and Future Directions

In this article, our hope is to illustrate by way of examples
the rich mathematics underpinning the study of topologi-
cal photonics. By confining photons with topological pro-
tection, we can generate structures which have applications
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in topological lasers, buffers, and other optical elements.
The signature of these states (e.g., edge modes) is the
presence of band gaps in the frequency versus wavenum-
ber dispersion relation. While there have been many ex-
perimental demonstrations of these concepts, fully three-
dimensional topological photonic bandgaps have not
been achieved to date, which is a very promising direc-
tion. Another exciting emerging field where mathematical
modeling can play an important role is that of quantum
topological photonics. In a quantum setting, the appli-
cation of topological photonics to quantum optics could
help to generate robust quantum light sources and protect
photons from decoherence during photon propagation.
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