
Published as a conference paper at ICLR 2024

PROVABLE AND PRACTICAL: EFFICIENT EX-
PLORATION IN REINFORCEMENT LEARNING VIA
LANGEVIN MONTE CARLO

Haque Ishfaq
⇤

Mila, McGill University
haque.ishfaq@mail.mcgill.ca

Qingfeng Lan*

University of Alberta, Amii
qlan3@ualberta.ca

Pan Xu

Duke University

A. Rupam Mahmood

University of Alberta
CIFAR AI Chair, Amii

Doina Precup

Mila, McGill University
Google DeepMind

Anima Anandkumar

California Institute of Technology, Nvidia

Kamyar Azizzadenesheli

Nvidia

ABSTRACT

We present a scalable and effective exploration strategy based on Thompson sam-
pling for reinforcement learning (RL). One of the key shortcomings of existing
Thompson sampling algorithms is the need to perform a Gaussian approximation
of the posterior distribution, which is not a good surrogate in most practical set-
tings. We instead directly sample the Q function from its posterior distribution,
by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo
(MCMC) method. Our method only needs to perform noisy gradient descent up-
dates to learn the exact posterior distribution of the Q function, which makes our
approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for
the proposed method and demonstrate that, in the linear Markov decision process
(linear MDP) setting, it has a regret bound of eO(d3/2H3/2

p
T), where d is the

dimension of the feature mapping, H is the planning horizon, and T is the total
number of steps. We apply this approach to deep RL, by using Adam optimizer
to perform gradient updates. Our approach achieves better or similar results com-
pared with state-of-the-art deep RL algorithms on several challenging exploration
tasks from the Atari57 suite.1

1 INTRODUCTION

Balancing exploration with exploitation is a fundamental problem in reinforcement learning (RL)
(Sutton and Barto, 2018). Numerous exploration algorithms have been proposed (Jaksch et al.,
2010; Osband and Van Roy, 2017; Ostrovski et al., 2017; Azizzadenesheli et al., 2018; Jin et al.,
2018). However, there is a big discrepancy between provably efficient algorithms, which are typ-
ically limited to tabular or linear MDPs with a focus on achieving tighter regret bound, and more
heuristic-based algorithms for exploration in deep RL, which scale well but have no guarantees.

A generic and widely used solution to the exploration-exploitation dilemma is the use of optimism
in the face of uncertainty (OFU) (Auer et al., 2002). Most works of this type inject optimism
through bonuses added to the rewards or estimated Q functions (Jaksch et al., 2010; Azar et al., 2017;
Jin et al., 2018; 2020). These bonuses, which are typically decreasing functions of counts on the
number of visits of state-action pairs, allow the agent to build upper confidence bounds (UCBs) on
the optimal Q functions and act greedily with respect to them. While UCB-based methods provide
strong theoretical guarantees in tabular and linear settings, they often perform poorly in practice

⇤Equal contribution
1Our code is available at https://github.com/hmishfaq/LMC-LSVI

1

https://github.com/hmishfaq/LMC-LSVI

Published as a conference paper at ICLR 2024

(Osband et al., 2013; Osband and Van Roy, 2017). Generalizations to non-tabular and non-linear
settings have also been explored (Bellemare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017;
Burda et al., 2018).

Inspired by the well-known Thompson sampling (Thompson, 1933) for multi-armed bandits, another
line of work proposes posterior sampling for RL (PSRL) (Osband et al., 2013; Agrawal and Jia,
2017), which maintains a posterior distribution over the MDP model parameters of the problem
at hand. At the beginning of each episode, PSRL samples new parameters from this posterior,
solves the sampled MDP, and follows its optimal policy until the end of the episode. However,
generating exact posterior samples is only tractable in simple environments, such as tabular MDPs
where Dirichlet priors can be used over transition probability distribution. Another closely related
algorithm is randomized least-square value iteration (RLSVI), which induces exploration through
noisy value iteration (Osband et al., 2016a; Russo, 2019; Ishfaq et al., 2021). Concretely, Gaussian
noise is added to the reward before applying the Bellman update. This results in a Q function
estimate that is equal to an empirical Bellman update with added Gaussian noise, which can be seen
as approximating the posterior distribution of the Q function using a Gaussian distribution. However,
in practical problems, Gaussian distributions may not be a good approximation of the true posterior
of the Q function. Moreover, choosing an appropriate variance is an onerous task; and unless the
features are fixed, the incremental computation of the posterior distribution is not possible.

Algorithms based on Langevin dynamics are widely used for training neural networks in Bayesian
settings (Welling and Teh, 2011). For instance, by adding a small amount of exogenous noise,
Langevin Monte Carlo (LMC) provides regularization and allows quantifying the degree of un-
certainty on the parameters of the function approximator. Furthermore, the celebrated stochastic
gradient descent, resembles a Langevin process (Cheng et al., 2020). Despite its huge influence in
Bayesian deep learning, the application of LMC in sequential decision making problems is relatively
unexplored. Mazumdar et al. (2020) proposed an LMC-based approximate Thompson sampling al-
gorithm that achieves optimal instance-dependent regret for the multi-armed bandit (MAB) problem.
Recently, Xu et al. (2022) used LMC to approximately sample model parameters from the poste-
rior distribution in contextual bandits and showed that their approach can achieve the same regret
bound as the best Thompson sampling algorithms for linear contextual bandits. Motivated by the
success of the LMC approach in bandit problems, in this paper, we study the use of LMC to approx-
imate the posterior distribution of the Q function, and thus provide an exploration approach which
is principled, maintains the simplicity and scalability of LMC, and can be easily applied in deep RL
algorithms.

Main contributions. We propose a practical and efficient online RL algorithm, Langevin Monte
Carlo Least-Squares Value Iteration (LMC-LSVI), which simply performs noisy gradient descent
updates to induce exploration. LMC-LSVI is easily implementable and can be used in high-
dimensional RL tasks, such as image-based control. Along with providing empirical evaluation
in the RiverSwim environment and simulated linear MDPs, we prove that LMC-LSVI achieves a
eO(d3/2H3/2

p
T) regret in the linear MDP setting, where d is the dimension of the feature mapping,

H is the planning horizon, and T is the total number of steps. This bound provides the best possible
dependency on d and H for any known randomized algorithms and achieves sublinear regret in T .

Because preconditioned Langevin algorithms (Li et al., 2016) can avoid pathological curvature prob-
lems and saddle points in the optimization landscape, we also propose Adam Langevin Monte Carlo
Deep Q-Network (Adam LMCDQN), a preconditioned variant of LMC-LSVI based on the Adam
optimizer (Kingma and Ba, 2014). In experiments on both N -chain (Osband et al., 2016b) and chal-
lenging Atari environments (Bellemare et al., 2013) that require deep exploration, Adam LMCDQN
performs similarly or better than state-of-the-art exploration approaches in deep RL.

Unlike many other provably efficient algorithms with function approximations (Yang and Wang,
2020; Cai et al., 2020; Zanette et al., 2020a; Xu and Gu, 2020; Wu et al., 2020; Ayoub et al., 2020;
Zanette et al., 2020b; Zhou et al., 2021; He et al., 2023), LMC-LSVI can easily be extended to deep
RL settings (Adam LMCDQN). We emphasize that such unification of theory and practice is rare
(Feng et al., 2021; Kitamura et al., 2023; Liu et al., 2023) in the current literature of both theoretical
RL and deep RL.

2

Published as a conference paper at ICLR 2024

2 PRELIMINARY

Notation. For any positive integer n, we denote the set {1, 2, . . . , n} by [n]. For any set A, h·, ·iA
denotes the inner product over set A. � and ↵ represent element-wise vector product and division
respectively. For function growth, we use eO(·), ignoring poly-logarithmic factors.

We consider an episodic discrete-time Markov decision process (MDP) of the form (S,A, H,P, r)
where S is the state space, A is the action space, H is the episode length, P = {Ph}

H

h=1 are the state
transition probability distributions, and r = {rh}

H

h=1 are the reward functions. Moreover, for each
h 2 [H], Ph(· | x, a) denotes the transition kernel at step h 2 [H], which defines a non-stationary
environment. rh : S ⇥ A ! [0, 1] is the deterministic reward function at step h.2 A policy ⇡ is
a collection of H functions {⇡h : S ! A}h2[H] where ⇡h(x) is the action that the agent takes in
state x at the h-th step in the episode. Moreover, for each h 2 [H], we define the value function
V ⇡

h
: S ! R as the expected value of cumulative rewards received under policy ⇡ when starting

from an arbitrary state xh = x at the h-th time step. In particular, we have

V ⇡

h
(x) = E⇡

⇥P
H

h0=h
rh0(xh0 , ah0)

��xh = x
⇤
.

Similarly, we define the action-value function (or the Q function) Q⇡

h
: S ⇥A! R as the expected

value of cumulative rewards given the current state and action where the agent follows policy ⇡
afterwards. Concretely,

Q⇡

h
(x, a) = E⇡

⇥P
H

h0=h
rh0(xh0 , ah0)

��xh = x, ah = a
⇤
.

We denote V ⇤
h
(x) = V ⇡

⇤

h
(x) and Q⇤

h
(x, a) = Q⇡

⇤

h
(x, a) where ⇡⇤ is the optimal policy. To simplify

notation, we denote [PhVh+1](x, a) = Ex0⇠Ph(· | x,a)Vh+1(x0). Thus, we write the Bellman equation
associated with a policy ⇡ as

Q⇡

h
(x, a) = (rh + PhV

⇡

h+1)(x, a), V ⇡

h
(x) = Q⇡

h
(x,⇡h(x)), V ⇡

H+1(x) = 0. (1)

Similarly, the Bellman optimality equation is

Q⇤
h
(x, a) = (rh + PhV

⇤
h+1)(x, a), V ⇤

h
(x) = Q⇤

h
(x,⇡⇤

h
(x)), V ⇤

H+1(x) = 0. (2)

The agent interacts with the environment for K episodes with the aim of learning the optimal policy.
At the beginning of each episode k, an adversary picks the initial state xk

1 , and the agent chooses a
policy ⇡k. We measure the suboptimality of an agent by the total regret defined as

Regret(K) =
P

K

k=1

⇥
V ⇤
1 (x

k

1)� V ⇡
k

1 (xk

1)
⇤
.

Langevin Monte Carlo (LMC). LMC is an iterative algorithm (Rossky et al., 1978; Roberts and
Stramer, 2002; Neal et al., 2011), which adds isotropic Gaussian noise to the gradient descent update
at each step:

wk+1 = wk � ⌘krL(wk) +
p
2⌘k��1✏k, (3)

where L(w) is the objective function, ⌘k is the step-size parameter, � is the inverse temperature
parameter, and ✏k is an isotropic Gaussian random vector in Rd. Under certain assumptions, the
LMC update will generate a Markov chain whose distribution converges to a target distribution /
exp(��L(w)) (Roberts and Tweedie, 1996; Bakry et al., 2014). In practice, one can also replace the
true gradient rL(wk) with some stochastic gradient estimators, resulting in the famous stochastic
gradient Langevin dynamics (SGLD) (Welling and Teh, 2011) algorithm.

3 LANGEVIN MONTE CARLO FOR REINFORCEMENT LEARNING

In this section, we propose Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI), as
shown in Algorithm 1. Assume we have collected data trajectories in the first k � 1 episodes as
{(x⌧

1 , a
⌧

1 , r(x
⌧

1 , a
⌧

1), . . . , x
⌧

H
, a⌧

H
, r(x⌧

H
, a⌧

H
))}k�1

⌧=1. To estimate the Q function for stage h at the
k-th episode of the learning process, we define the following loss function:

Lk

h
(wh) =

P
k�1
⌧=1

⇥
rh(x⌧

h
, a⌧

h
) + maxa2A Qk

h+1(x
⌧

h+1, a)�Q(wh;�(x⌧

h
, a⌧

h
))
⇤2

+ �kwhk
2, (4)

2We study the deterministic reward functions for notational simplicity. Our results can be easily generalized
to the case when rewards are stochastic.

3

Published as a conference paper at ICLR 2024

where �(·, ·) is a feature vector of the corresponding state-action pair and Q(wh;�(x⌧

h
, a⌧

h
)) denotes

any possible approximation of the Q function that is parameterized by wh and takes �(x⌧

h
, a⌧

h
) as

input. At stage h, we perform noisy gradient descent on Lk

h
(·) for Jk times as shown in Algorithm 1,

where Jk is also referred to as the update number for episode k. Note that the LMC-LSVI algorithm
displayed here is a generic one, which works for all types of function approximation of the Q func-
tion. Similar to the specification of Langevin Monte Carlo Thompson Sampling (LMCTS) to linear
bandits, generalized linear bandits, and neural contextual bandits (Xu et al., 2022), we can also de-
rive different variants of LMC-LSVI for different types of function approximations by replacing the
functions Q(wh;�(x⌧

h
, a⌧

h
)) and the loss function Lk

h
(wh).

In this paper, we will derive the theoretical analysis of LMC-LSVI under linear function approx-
imations. In particular, when the function approximation of the Q function is linear, the model
approximation of the Q function, denoted by Qk

h
in Line 11 of Algorithm 1 becomes

Qk

h
(·, ·) min{�(·, ·)>wk,Jk

h
, H � h+ 1}+. (5)

Denoting V k

h+1(·) = maxa2A Qk

h+1(·, a), we have rLk

h
(wh) = 2(⇤k

h
wh � bk

h
), where

⇤k

h
=

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)> + �I and bk

h
=

k�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V k

h+1(x
⌧

h+1)
⇤
�(x⌧

h
, a⌧

h
). (6)

By setting rLk

h
(wh) = 0, we get the minimizer of Lk

h
as bwk

h
= (⇤k

h
)�1bk

h
.

We can prove that the iterate wk,Jk

h
in Equation (5) follows the following Gaussian distribution.

Proposition 3.1. The parameter wk,Jk

h
used in episode k of Algorithm 1 follows a Gaussian distri-

bution N (µk,Jk

h
,⌃k,Jk

h
), with mean and covariance matrix:

µk,Jk

h
= AJk

k
. . . AJ1

1 w1,0
h

+
kX

i=1

AJk
k

. . . AJi+1

i+1

�
I �AJi

i

�
bwi

h
,

⌃k,Jk

h
=

kX

i=1

1

�i

AJk
k

. . . AJi+1

i+1

�
I �A2Ji

i

� �
⇤i

h

��1
(I +Ai)

�1 AJi+1

i+1 . . . AJk
k
,

where Ai = I � 2⌘i⇤i

h
for i 2 [k].

Proposition 3.1 shows that in linear setting the parameter wk,Jk

h
follows a tractable distribution. This

allows us to provide a high probability bound for the parameter wk,Jk

h
in Lemma B.3, which is then

used in Lemma B.7 to show that the estimated Qk

h
function is optimistic with high probability.

We note that the parameter update in Algorithm 1 is presented as a full gradient descent step plus
an isotropic noise for the purpose of theoretical analysis in Section 4. However, in practice, one can
use a stochastic gradient (Welling and Teh, 2011; Zou et al., 2021) or a variance-reduced stochastic
gradient (Dubey et al., 2016; Xu et al., 2018; Zou et al., 2018; 2019) of the loss function Lk

h
(wk,j�1

h
)

to improve the sample efficiency of LMC-LSVI .

4 THEORETICAL ANALYSIS

We now provide a regret analysis of LMC-LSVI under the linear MDP setting (Jin et al., 2020; Yang
and Wang, 2020; 2019). First, we formally define a linear MDP.
Definition 4.1 (Linear MDP). A linear MDP is an MDP (S,A, H,P, r) with a feature � : S⇥A!

Rd, if for any h 2 [H], there exist d unknown (signed) measures µh = (µ(1)
h

, µ(1)
h

, . . . , µ(d)
h

) over S

and an unknown vector ✓h 2 Rd, such that for any (x, a) 2 S ⇥A, we have

Ph(· | x, a) = h�(x, a), µh(·)i and rh(x, a) = h�(x, a), ✓hi.

Without loss of generality, we assume k�(x, a)k2  1 for all (x, a) 2 S ⇥ A, and
max{kµh(S)k2, k✓hk2} 

p
d for all h 2 [H].

4

Published as a conference paper at ICLR 2024

Algorithm 1 Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI)

1: Input: step sizes {⌘k > 0}k�1, inverse temperature {�k}k�1, loss function Lk(w)
2: Initialize w1,0

h
= 0 for h 2 [H], J0 = 0

3: for episode k = 1, 2, . . . ,K do

4: Receive the initial state sk1
5: for step h = H,H � 1, . . . , 1 do

6: wk,0
h

= w
k�1,Jk�1

h

7: for j = 1, . . . , Jk do

8: ✏k,j
h
⇠ N (0, I)

9: wk,j

h
= wk,j�1

h
� ⌘krLk

h
(wk,j�1

h
) +

q
2⌘k�

�1
k

✏k,j
h

10: end for

11: Qk

h
(·, ·) min{Q(wk,Jk

h
;�(·, ·)), H � h+ 1}+

12: V k

h
(·) maxa2A Qk

h
(·, a)

13: end for

14: for step h = 1, 2, . . . , H do

15: Take action ak
h
 argmax

a2A Qk

h
(sk

h
, a), observe reward rk

h
(sk

h
, ak

h
) and next state sk

h+1
16: end for

17: end for

We refer the readers to Wang et al. (2020), Lattimore et al. (2020), and Van Roy and Dong (2019)
for related discussions on such a linear representation. Next, we introduce our main theorem.

Theorem 4.2. Let � = 1 in Equation (4), 1p
�k

= eO(H
p
d) in Algorithm 1, and � 2 (1

2
p
2e⇡

, 1). For
any k 2 [K], let the learning rate ⌘k = 1/(4�max(⇤k

h
)), the update number Jk = 2k log(4HKd)

where k = �max(⇤k

h
)/�min(⇤k

h
) is the condition number of ⇤k

h
. Under Definition 4.1, the regret

of Algorithm 1 satisfies
Regret(K) = eO(d3/2H3/2

p

T),

with probability at least 1� �.

We compare the regret bound of our algorithm with the state-of-the-art results in the literature of
theoretical reinforcement learning in Table 1. Compared to the lower bound ⌦(dH

p
T) proved in

Zhou et al. (2021), our regret bound is worse off by a factor of
p
dH under the linear MDP setting.

However, the gap of
p
d in worst-case regret between UCB and TS-based methods is a long standing

open problem, even in a simpler setting of linear bandit (Hamidi and Bayati, 2020). When converted
to linear bandits by setting H = 1, our regret bound matches that of LMCTS (Xu et al., 2022) and
the best-known regret upper bound for LinTS from Agrawal and Goyal (2013) and Abeille and
Lazaric (2017).
Remark 4.3. In Theorem 4.2, we require that the failure probability � > 1

2
p
2e⇡

. However, in
frequentist regret analysis it is desirable that the regret bound holds for arbitrarily small failure
probability. This arises from Lemma B.7, where we get an optimistic estimation with a constant
probability. However, this result can be improved by using optimistic reward sampling scheme pro-
posed in Ishfaq et al. (2021). Concretely, we can generate M estimates for Q function {Qk,m

h
}m2[M]

through maintaining M samples of w: {wk,Jk,m

h
}m2[M]. Then, we can make an optimistic estimate

of Q function by setting Qk

h
(·, ·) = min{maxm2[M]{Q

k,m

h
(·, ·)}, H�h+1}. We provide the regret

analysis for this approach, whose proof essentially follows the same steps as in that of Theorem 4.2,
in Appendix D. However, for the simplicity of the algorithm design, we use the currently proposed
algorithm.

5 DEEP Q-NETWORK WITH LMC EXPLORATION

In this section, we investigate the case where deep Q-networks (DQNs) (Mnih et al., 2015) are
used, which is used as the backbone of many deep RL algorithms and prevalent in real-world RL
applications due to its scalability and implementation ease.

5

Published as a conference paper at ICLR 2024

Table 1: Regret upper bound for episodic, non-stationary, linear MDPs. Here, computational
tractability refers to the ability of a computational problem to be solved in a reasonable amount
of time using a feasible amount of computational resources.

ComputationalAlgorithm Regret Exploration Tractability
LSVI-UCB (Jin et al., 2020) eO(d3/2H3/2

p
T) UCB Yes

OPT-RLSVI (Zanette et al., 2020a) eO(d2H2
p
T) TS Yes

ELEANOR (Zanette et al., 2020b) eO(dH3/2
p
T) Optimism No

LSVI-PHE (Ishfaq et al., 2021) eO(d3/2H3/2
p
T) TS Yes

LMC-LSVI (this paper) eO(d3/2H3/2
p
T) LMC Yes

While LMC and SGLD have been shown to converge to the true posterior under idealized settings
(Chen et al., 2015; Teh et al., 2016; Dalalyan, 2017), in practice, most deep neural networks often
exhibit pathological curvature and saddle points (Dauphin et al., 2014), which render the first-order
gradient-based algorithms inefficient, such as SGLD. To mitigate this issue, Li et al. (2016) proposed
RMSprop (Tieleman et al., 2012) based preconditioned SGLD. Similarly, Kim et al. (2022) proposed
Adam based adaptive SGLD algorithm, where an adaptively adjusted bias term is included in the
drift function to enhance escape from saddle points and accelerate the convergence in the presence
of pathological curvatures.

Similarly, in sequential decision problems, there have been studies that show that deep RL algo-
rithms suffer from training instability due to the usage of deep neural networks (Sinha et al., 2020;
Ota et al., 2021; Sullivan et al., 2022). Henderson et al. (2018) empirically analyzed the effects
of different adaptive gradient descent optimizers on the performance of deep RL algorithms and
suggest that while being sensitive to the learning rate, RMSProp or Adam (Kingma and Ba, 2014)
provides the best performance overall. Moreover, even though the original DQN algorithm (Mnih
et al., 2015) used RMSProp optimizer with Huber loss, Ceron and Castro (2021) showed that Adam
optimizer with mean-squared error (MSE) loss provides overwhelmingly superior performance.

Motivated by these developments both in the sampling community and the deep RL community, we
now endow DQN-style algorithms (Mnih et al., 2015) with Langevin Monte Carlo. In particular, we
propose Adam Langevin Monte Carlo Deep Q-Network (Adam LMCDQN) in Algorithm 2, where
we replace LMC in Algorithm 1 with the Adam SGLD (aSGLD) (Kim et al., 2022) algorithm in
learning the posterior distribution.

In Algorithm 2, reLk

h
(w) denotes an estimate of rLk

h
(w) based on one mini-batch of data sam-

pled from the replay buffer. ↵1 and ↵2 are smoothing factors for the first and second moments of
stochastic gradients, respectively. a is the bias factor and �1 is a small constant added to avoid
zero-divisors. Here, vk,j

h
can be viewed as an approximator of the true second-moment matrix

E(reLk

h
(wk,j�1

h
)reLk

h
(wk,j�1

h
)>) and the bias term mk,j�1

h
↵

q
vk,j�1
h

+ �11 can be viewed as the
rescaled momentum which is isotropic near stationary points. Similar to Adam, the bias term, with
an appropriate choice of the bias factor a, is expected to guide the sampler to converge to a global
optimal region quickly.

6 EXPERIMENTS

In this section, we present an empirical evaluation of Adam LMCDQN . For the empirical evaluation
of LMC-LSVI in the RiverSwim environment (Strehl and Littman, 2008; Osband et al., 2013) and
simulated linear MDPs, we refer the reader to Appendix F.1. First, we consider a hard exploration
problem and demonstrate the ability of deep exploration for our algorithm. We then proceed to
experiments with 8 hard Atari games, showing that Adam LMCDQN is able to outperform several
strong baselines. Note that for implementation simplicity, in the following experiments, we set all
the update numbers Jk and the inverse temperature values �k to be the same number for all k 2 [K].
We also emphasize that even though in Theorem 4.2, we specify a theoretical value for Jk, as we
show in this section, in practice, a small value for Jk (we use Jk = 4 for N-Chain and Jk = 1 for

6

Published as a conference paper at ICLR 2024

Algorithm 2 Adam LMCDQN

1: Input: step sizes {⌘k > 0}k�1, inverse temperature {�k}k�1, smoothing factors ↵1 and ↵2, bias
factor a, loss function Lk(w).

2: Initialize w1,0
h

from appropriate distribution for h 2 [H], J0 = 0, m1,0
h

= 0 and v1,0
h

= 0 for
h 2 [H] and k 2 [K].

3: for episode k = 1, 2, . . . ,K do

4: Receive the initial state sk1 .
5: for step h = H,H � 1, . . . , 1 do

6: wk,0
h

= w
k�1,Jk�1

h
,mk,0

h
= m

k�1,Jk�1

h
, vk,0

h
= v

k�1,Jk�1

h

7: for j = 1, . . . , Jk do

8: ✏k,j
h
⇠ N (0, I)

9: wk,j

h
= wk,j�1

h
� ⌘k

⇣
reLk

h
(wk,j�1

h
) + amk,j�1

h
↵

q
vk,j�1
h

+ �11
⌘
+
q

2⌘k�
�1
k

✏k,j
h

10: mk,j

h
= ↵1m

k,j�1
h

+ (1� ↵1)reLk

h
(wk,j�1

h
)

11: vk,j
h

= ↵2v
k,j�1
h

+ (1� ↵2)reLk

h
(wk,j�1

h
)�reLk

h
(wk,j�1

h
)

12: end for

13: Qk

h
(·, ·) Q(wk,Jk

h
;�(·, ·))

14: V k

h
(·) maxa2A Qk

h
(·, a)

15: end for

16: for step h = 1, 2, . . . , H do

17: Take action ak
h
 argmax

a2A Qk

h
(sk

h
, a), observe reward rk

h
(sk

h
, ak

h
) and next state sk

h+1.
18: end for

19: end for

Atari) can yield good performance for our algorithm. We also emphasize that in our implementation
of Adam LMCDQN we use fixed values of ↵1 = 0.9, ↵2 = 0.99, and �1 = 10�8 instead of tuning
them.
Remark 6.1. We note that in our experiments in this section, as baselines, we use commonly used
algorithms from deep RL literature as opposed to methods presented in Table 1. This is because
while these methods are provably efficient under linear MDP settings, in most cases, it is not clear
how to scale them to deep RL settings. More precisely, these methods assume that a good feature
is known in advance and Q values can be approximated as a linear function over this feature. If the
provided feature is not good and fixed, the empirical performance of these methods is often poor.
For example, LSVI-UCB (Jin et al., 2020) computes UCB bonus function of the form k�(s, a)k⇤�1 ,
where ⇤ 2 Rd⇥d is the empirical feature covariance matrix. When we update the feature over
iterations in deep RL, the computational complexity of LSVI-UCB becomes unbearable as it needs
to repeatedly compute the feature covariance matrix to update the bonus function. In the same vein,
while estimating the Q function, OPT-RSLVI (Zanette et al., 2020a) needs to rely on the feature
norm with respect to the inverse covariance matrix. Lastly, even though LSVI-PHE (Ishfaq et al.,
2021) is computationally implementable in deep RL settings, it requires sampling independent and
identically distributed (i.i.d.) noise for the whole history every time to perturb the reward, which
appears to be computationally burdensome in most practical settings.

6.1 DEMONSTRATION OF DEEP EXPLORATION

We first conduct experiments in N -Chain (Osband et al., 2016b) to show that Adam LMCDQN is
able to perform deep exploration. The environment consists of a chain of N states, namely
s1, s2, . . . , sN . The agent always starts in state s2, from where it can either move left or right.
The agent receives a small reward r = 0.001 in state s1 and a larger reward r = 1 in state sN . The
horizon length is N + 9, so the optimal return is 10. Please refer to Appendix F.2 for a depiction of
the environment.

In our experiments, we consider N to be 25, 50, 75, or 100. For each chain length, we train different
algorithms for 105 steps across 20 seeds. We use DQN (Mnih et al., 2015), Bootstrapped DQN
(Osband et al., 2016b) and Noisy-Net (Fortunato et al., 2017) as the baseline algorithms. We use
DQN with ✏-greedy exploration strategy, where ✏ decays linearly from 1.0 to 0.01 for the first 1, 000

7

Published as a conference paper at ICLR 2024

training steps and then is fixed as 0.01. For evaluation, we set ✏ = 0 in DQN. We measure the
performance of each algorithm in each run by the mean return of the last 10 evaluation episodes.
For all algorithms, we sweep the learning rate and pick the one with the best performance. For
Adam LMCDQN , we sweep a and �k in small ranges. For more details, please check Appendix F.2.

�	 	� �	 ���
�

�

�

�

�

��

��

��
 !

��

���

����������
����"���
��� � ����������

Figure 1: A comparison of Adam LMCDQN and
other baselines in N -chain with different chain
lengths N . All results are averaged over 20 runs
and the shaded areas represent standard errors. As
N increases, the exploration hardness increases.

In Figure 1, we show the performance of Adam
LMCDQN and the baseline methods under dif-
ferent chain lengths. The solid lines repre-
sent the averaged return over 20 random seeds
and the shaded areas represent standard er-
rors. Note that for Adam LMCDQN , we set
Jk = 4 for all chain lengths. As N in-
creases, the hardness of exploration increases,
and Adam LMCDQN is able to maintain high
performance while the performance of other
baselines especially Bootstrapped DQN and
Noisy-Net drop quickly. Clearly, Adam LM-
CDQN achieves significantly more robust per-
formance than other baselines as N increases,
showing its deep exploration ability.

6.2 EVALUATION IN ATARI GAMES

To further evaluate our algorithm, we conduct
experiments in Atari games (Bellemare et al., 2013). Specifically, 8 visually complicated hard ex-
ploration games (Taiga et al., 2019) are selected, including Alien, Freeway, Gravitar, H.E.R.O., Pit-
fall, Qbert, Solaris, and Venture. Among these games, Alien, H.E.R.O., and Qbert are dense reward
environments, while Freeway, Gravitar, Pitfall, Solaris, and Venture are sparse reward environments,
according to Taiga et al. (2019).

Main Results. We consider 7 baselines: Double DQN (Van Hasselt et al., 2016), Prioritized DQN
(Schaul et al., 2015), C51 (Bellemare et al., 2017), QR-DQN (Dabney et al., 2018a), IQN (Dabney
et al., 2018b), Bootstrapped DQN (Osband et al., 2016b) and Noisy-Net (Fortunato et al., 2017).
Since a large Jk greatly increases training time, we set Jk = 1 in Adam LMCDQN so that all exper-
iments can be finished in a reasonable time. We also incorporate the double Q trick (Van Hasselt,
2010; Van Hasselt et al., 2016), which is shown to slightly boost performance. We train Adam
LMCDQN for 50M frames (i.e., 12.5M steps) and summarize results across over 5 random seeds.
Please check Appendix F.3.1 for more details about the training and hyper-parameters settings.

In Figure 2, we present the learning curves of all methods in 8 Atari games. The solid lines corre-
spond to the median performance over 5 random seeds, while the shaded areas represent 90% con-
fidence intervals. Overall, the results show that our algorithm Adam LMCDQN is quite competitive
compared to the baseline algorithms. In particular, Adam LMCDQN exhibits a strong advantage
against all other methods in Gravitar and Venture.

Sensitivity Analysis. In Figure 3a, we draw the learning curves of Adam LMCDQN with different
bias factors a in Qbert. The performance of our algorithm is greatly affected by the value of the bias
factor. Overall, by setting a = 0.1, Adam LMCDQN achieves good performance in Qbert as well as
in other Atari games. On the contrary, Adam LMCDQN is less sensitive to the inverse temperature
�k, as shown in Figure 3b.

Ablation Study. In Appendix F.3.2, we also present results for Adam LMCDQN without applying
double Q functions. The performance of Adam LMCDQN is only slightly worse without using dou-
ble Q functions, proving the effectiveness of our approach. Moreover, we implement Langevin DQN
(Dwaracherla and Van Roy, 2020) with double Q functions and compare it with our algorithm Adam
LMCDQN . Empirically, we observed that Adam LMCDQN usually outperforms Langevin DQN in
sparse-reward hard-exploration games, while in dense-reward hard-exploration games, Adam LM-
CDQN and Langevin DQN achieve similar performance.

8

Published as a conference paper at ICLR 2024

Figure 2: The return curves of various algorithms in eight Atari tasks over 50 million training
frames. Solid lines correspond to the median performance over 5 random seeds, and the shaded
areas correspond to 90% confidence interval.

� �� 	�
� �� ��
����������������

�

	���

����

���

����

�����

�	���

�����

�
���

��
��

��

����
���
�����
������
�������

(a) Different bias factor a in Adam LMCDQN

� �� �� 	�
� ��
����������������

�

����

�����

�����

�����

�����

	����

	����

��
��

��

�������

������

�������

������

�������

�������

�����

(b) Different temperatures �k in Adam LMCDQN

Figure 3: (a) A comparison of Adam LMCDQN with different bias factor a in Qbert. Solid lines
correspond to the average performance over 5 random seeds, and shaded areas correspond to stan-
dard errors. The performance of Adam LMCDQN is greatly affected by the value of the bias factor.
(b) A comparison of Adam LMCDQN with different values of inverse temperature parameter �k in
Qbert. Adam LMCDQN is not very sensitive to inverse temperature �k.

7 CONCLUSION AND FUTURE WORK

We proposed the LMC-LSVI algorithm for reinforcement learning that uses Langevin Monte Carlo
to directly sample a Q function from the posterior distribution with arbitrary precision. LMC-LSVI
achieves the best-available regret bound for randomized algorithms in the linear MDP setting. Fur-
thermore, we proposed Adam LMCDQN, a practical variant of LMC-LSVI, that demonstrates com-
petitive empirical performance in challenging exploration tasks. There are several avenues for future
research. It would be interesting to explore if one can improve the suboptimal dependence on H for
randomized algorithms. Extending the current results to more practical and general settings (Zhang
et al., 2022; Ouhamma et al., 2023; Weisz et al., 2023) is also an exciting future direction. On
the empirical side, it would be interesting to see whether LMC based approaches can be used in
continuous control tasks for efficient exploration.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the Canada CIFAR AI Chairs program, the Reinforcement
Learning and Artificial Intelligence (RLAI) laboratory, the Alberta Machine Intelligence Institute
(Amii), Mila - Quebec Artificial Intelligence Institute, the Natural Sciences and Engineering Re-

9

Published as a conference paper at ICLR 2024

search Council (NSERC) of Canada, the US National Science Foundation (DMS-2323112) and the
Whitehead Scholars Program at the Duke University School of Medicine. The authors would like to
thank Vikranth Dwaracherla, Sehwan Kim, and Fabian Pedregosa for their helpful discussions. The
authors would also like to thank Ziniu Li for giving great advice about Atari experiments.

REFERENCES

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
(p. 1.)

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010. (p. 1.)

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforce-
ment learning? In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 2701–2710. JMLR. org, 2017. (pp. 1 and 2.)

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration
with neural density models. In International conference on machine learning, pages 2721–2730.
PMLR, 2017. (pp. 1 and 2.)

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In 2018 Information Theory and Applications Workshop (ITA),
pages 1–9. IEEE, 2018. (p. 1.)

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? In Advances in Neural Information Processing Systems, 2018. (p. 1.)

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002. (p. 1.)

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 263–272. JMLR. org, 2017. (p. 1.)

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020. (pp. 1, 4, 6, 7, 39, 40, 42, and 43.)

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pages 3003–3011,
2013. (pp. 2, 6, 18, 42, and 43.)

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016. (p. 2.)

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in neural information processing systems, 30, 2017. (p.
2.)

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018. (p. 2.)

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. (p. 2.)

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-
case regret bounds. In Advances in Neural Information Processing Systems, pages 1184–1194,
2017. (p. 2.)

10

Published as a conference paper at ICLR 2024

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In International Conference on Machine Learning, pages 2377–2386. PMLR,
2016a. (pp. 2 and 18.)

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In Ad-
vances in Neural Information Processing Systems, pages 14410–14420, 2019. (pp. 2 and 18.)

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, pages 4607–4616. PMLR,
2021. (pp. 2, 5, 6, 7, 18, 35, 40, 42, and 43.)

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–
688, 2011. (pp. 2, 3, 4, and 18.)

Xiang Cheng, Dong Yin, Peter Bartlett, and Michael Jordan. Stochastic gradient and langevin
processes. In International Conference on Machine Learning, pages 1810–1819. PMLR, 2020.
(p. 2.)

Eric Mazumdar, Aldo Pacchiano, Yian Ma, Michael Jordan, and Peter Bartlett. On approximate
thompson sampling with langevin algorithms. In International Conference on Machine Learning,
pages 6797–6807. PMLR, 2020. (p. 2.)

Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anand-
kumar. Langevin monte carlo for contextual bandits. In International Conference on Machine
Learning, pages 24830–24850. PMLR, 2022. (pp. 2, 4, and 5.)

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
gradient langevin dynamics for deep neural networks. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016. (pp. 2 and 6.)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. (pp. 2, 6, and 18.)

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016b. (pp. 2, 7, 8,
18, 43, and 44.)

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013. (pp. 2 and 8.)

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pages 10746–10756. PMLR,
2020. (pp. 2 and 4.)

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy opti-
mization. In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.
(pp. 2, 20, 42, and 43.)

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Confer-
ence on Artificial Intelligence and Statistics, pages 1954–1964. PMLR, 2020a. (pp. 2, 6, 7, 18,
and 43.)

Pan Xu and Quanquan Gu. A finite-time analysis of q-learning with neural network function approx-
imation. In International Conference on Machine Learning, pages 10555–10565. PMLR, 2020.
(p. 2.)

Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Advances in Neural Information Processing Systems, 33:17617–17628,
2020. (p. 2.)

11

Published as a conference paper at ICLR 2024

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pages
463–474. PMLR, 2020. (p. 2.)

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near op-
timal policies with low inherent bellman error. In International Conference on Machine Learning,
pages 10978–10989. PMLR, 2020b. (pp. 2 and 6.)

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learn-
ing for linear mixture markov decision processes. In Conference on Learning Theory, pages
4532–4576. PMLR, 2021. (pp. 2 and 5.)

Jiafan He, Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement
learning for linear markov decision processes. In International Conference on Machine Learning,
pages 12790–12822. PMLR, 2023. (p. 2.)

Fei Feng, Wotao Yin, Alekh Agarwal, and Lin Yang. Provably correct optimization and exploration
with non-linear policies. In International Conference on Machine Learning, pages 3263–3273.
PMLR, 2021. (p. 2.)

Toshinori Kitamura, Tadashi Kozuno, Yunhao Tang, Nino Vieillard, Michal Valko, Wenhao Yang,
Jincheng Mei, Pierre Ménard, Mohammad Gheshlaghi Azar, Rémi Munos, et al. Regulariza-
tion and variance-weighted regression achieves minimax optimality in linear mdps: Theory and
practice. arXiv preprint arXiv:2305.13185, 2023. (p. 2.)

Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang,
and Zhaoran Wang. Maximize to explore: One objective function fusing estimation, planning,
and exploration. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
(p. 2.)

Peter J Rossky, Jimmie D Doll, and Harold L Friedman. Brownian dynamics as smart monte carlo
simulation. The Journal of Chemical Physics, 69(10):4628–4633, 1978. (p. 3.)

Gareth O Roberts and Osnat Stramer. Langevin diffusions and metropolis-hastings algorithms.
Methodology and computing in applied probability, 4(4):337–357, 2002. (p. 3.)

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011. (p. 3.)

Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, pages 341–363, 1996. (p. 3.)

Dominique Bakry, Ivan Gentil, Michel Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014. (p. 3.)

Difan Zou, Pan Xu, and Quanquan Gu. Faster convergence of stochastic gradient langevin dynamics
for non-log-concave sampling. In Uncertainty in Artificial Intelligence, pages 1152–1162. PMLR,
2021. (p. 4.)

Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos, Alexander J
Smola, and Eric P Xing. Variance reduction in stochastic gradient langevin dynamics. Advances
in neural information processing systems, 29, 2016. (p. 4.)

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynam-
ics based algorithms for nonconvex optimization. Advances in Neural Information Processing
Systems, 31, 2018. (p. 4.)

Difan Zou, Pan Xu, and Quanquan Gu. Subsampled stochastic variance-reduced gradient langevin
dynamics. In International Conference on Uncertainty in Artificial Intelligence, 2018. (p. 4.)

Difan Zou, Pan Xu, and Quanquan Gu. Sampling from non-log-concave distributions via variance-
reduced gradient langevin dynamics. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pages 2936–2945. PMLR, 2019. (p. 4.)

12

Published as a conference paper at ICLR 2024

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pages 6995–7004. PMLR, 2019. (p. 4.)

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33, 2020. (p. 5.)

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020. (p. 5.)

Benjamin Van Roy and Shi Dong. Comments on the du-kakade-wang-yang lower bounds. arXiv
preprint arXiv:1911.07910, 2019. (p. 5.)

Nima Hamidi and Mohsen Bayati. On worst-case regret of linear thompson sampling. arXiv preprint
arXiv:2006.06790, 2020. (p. 5.)

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In International Conference on Machine Learning, pages 127–135, 2013. (p. 5.)

Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In Artificial Intelligence
and Statistics, pages 176–184. PMLR, 2017. (p. 5.)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015. (pp. 5, 6, 7,
and 44.)

Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gradient mcmc
algorithms with high-order integrators. Advances in neural information processing systems, 28,
2015. (p. 6.)

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations for
stochastic gradient langevin dynamics. Journal of Machine Learning Research, 17, 2016. (p. 6.)

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):
651–676, 2017. (p. 6.)

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. Advances in neural information processing systems, 27, 2014. (p. 6.)

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012. (p. 6.)

Sehwan Kim, Qifan Song, and Faming Liang. Stochastic gradient langevin dynamics with adaptive
drifts. Journal of statistical computation and simulation, 92(2):318–336, 2022. (pp. 6 and 18.)

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense
architectures in reinforcement learning. arXiv preprint arXiv:2010.09163, 2020. (p. 6.)

Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. arXiv preprint arXiv:2102.07920, 2021. (p. 6.)

Ryan Sullivan, Justin K Terry, Benjamin Black, and John P Dickerson. Cliff diving: Exploring
reward surfaces in reinforcement learning environments. arXiv preprint arXiv:2205.07015, 2022.
(p. 6.)

Peter Henderson, Joshua Romoff, and Joelle Pineau. Where did my optimum go?: An em-
pirical analysis of gradient descent optimization in policy gradient methods. arXiv preprint
arXiv:1810.02525, 2018. (p. 6.)

13

Published as a conference paper at ICLR 2024

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
ful and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, pages 1373–1383. PMLR, 2021. (p. 6.)

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.
(pp. 6 and 42.)

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017. (pp. 7, 8, and 18.)

Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare. On
bonus based exploration methods in the arcade learning environment. In International Conference
on Learning Representations, 2019. (p. 8.)

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, 2016. (pp. 8 and 18.)

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015. (p. 8.)

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449–458. PMLR, 2017. (p.
8.)

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2018a. (p. 8.)

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pages
1096–1105. PMLR, 2018b. (p. 8.)

Hado Van Hasselt. Double q-learning. Advances in neural information processing systems, 23,
2010. (p. 8.)

Vikranth Dwaracherla and Benjamin Van Roy. Langevin dqn. arXiv preprint arXiv:2002.07282,
2020. (pp. 8, 18, and 45.)

Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonzalez, Dale Schuurmans, and Bo Dai.
Making linear mdps practical via contrastive representation learning. In International Conference
on Machine Learning, pages 26447–26466. PMLR, 2022. (p. 9.)

Reda Ouhamma, Debabrota Basu, and Odalric Maillard. Bilinear exponential family of mdps: fre-
quentist regret bound with tractable exploration & planning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 37, pages 9336–9344, 2023. (p. 9.)

Gellért Weisz, András György, and Csaba Szepesvari. Online RL in Linearly q⇡-Realizable MDPs
Is as Easy as in Linear MDPs If You Learn What to Ignore. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. (p. 9.)

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pages
943–950, 2000. (p. 18.)

Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon Shaolei Du. Near-optimal ran-
domized exploration for tabular markov decision processes. In Advances in Neural Information
Processing Systems, 2022. (p. 18.)

Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. Hyperdqn: A randomized
exploration method for deep reinforcement learning. In International Conference on Learning
Representations, 2021. (p. 18.)

14

Published as a conference paper at ICLR 2024

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018. (p. 18.)

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018. (p. 18.)

Nikki Lijing Kuang, Ming Yin, Mengdi Wang, Yu-Xiang Wang, and Yian Ma. Posterior sampling
with delayed feedback for reinforcement learning with linear function approximation. Advances
in Neural Information Processing Systems, 36, 2024. (p. 18.)

Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient model-free
posterior sampling method for episodic reinforcement learning. Advances in Neural Information
Processing Systems, 34:12040–12051, 2021. (p. 18.)

Tong Zhang. Feel-good thompson sampling for contextual bandits and reinforcement learning. SIAM
Journal on Mathematics of Data Science, 4(2):834–857, 2022. (p. 18.)

Daniil Tiapkin, Denis Belomestny, Éric Moulines, Alexey Naumov, Sergey Samsonov, Yunhao
Tang, Michal Valko, and Pierre Ménard. From dirichlet to rubin: Optimistic exploration in rl
without bonuses. In International Conference on Machine Learning, pages 21380–21431. PMLR,
2022. (p. 18.)

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019a. (p. 18.)

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. In International Conference on Learning Representations, 2019b. (p. 18.)

Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55. US Government printing office, 1964. (p. 39.)

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011. (p. 40.)

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012. (p. 40.)

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018. (p. 40.)

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal
of Machine Learning Research, 2022. (p. 44.)

John Quan and Georg Ostrovski. DQN Zoo: Reference implementations of DQN-based agents,
2020. URL http://github.com/deepmind/dqn_zoo. (p. 44.)

15

http://github.com/deepmind/dqn_zoo

Published as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Preliminary 3

3 Langevin Monte Carlo for Reinforcement Learning 3

4 Theoretical Analysis 4

5 Deep Q-Network with LMC Exploration 5

6 Experiments 6

6.1 Demonstration of Deep Exploration . 7

6.2 Evaluation in Atari Games . 8

7 Conclusion and Future Work 9

A Related Work 18

B Proof of the Regret Bound of LMC-LSVI 19

B.1 Supporting Lemmas . 19

B.2 Regret Analysis . 20

C Proof of Supporting Lemmas 22

C.1 Proof of Proposition B.1 . 22

C.2 Proof of Lemma B.3 . 23

C.3 Proof of Lemma B.4 . 30

C.4 Proof of Lemma B.5 . 30

C.5 Proof of Lemma B.6 . 32

C.6 Proof of Lemma B.7 . 33

D Removing the interval constraint on � in Theorem 4.2 35

D.1 Multi-Sampling LMC-LSVI . 35

D.2 Supporting Lemmas . 36

D.3 Regret Analysis of MS-LMC-LSVI . 38

E Auxiliary Lemmas 39

E.1 Gaussian Concentration . 39

E.2 Inequalities for summations . 39

E.3 Linear Algebra Lemmas . 40

E.4 Covering numbers and self-normalized processes 40

F Experiment Details 42

16

Published as a conference paper at ICLR 2024

F.1 Experiments for LMC-LSVI . 42

F.1.1 Randomly generated linear MDPs . 42

F.1.2 The RiverSwim environment . 43

F.2 N -Chain . 43

F.3 Atari . 44

F.3.1 Experiment Setup . 44

F.3.2 Additional Results . 45

17

Published as a conference paper at ICLR 2024

A RELATED WORK

Posterior Sampling in Reinforcement Learning. Our work is closely related to a line of work
that uses posterior sampling, i.e., Thompson sampling in RL (Strens, 2000). Osband et al. (2016a),
Russo (2019) and Xiong et al. (2022) propose randomized least-squares value iteration (RLSVI)
with frequentist regret analysis under tabular MDP setting. RLSVI carefully injects tuned random
noise into the value function in order to induce exploration. Recently, Zanette et al. (2020a) and
Ishfaq et al. (2021) extended RLSVI to the linear setting. While RLSVI enjoys favorable regret
bound under tabular and linear settings, it can only be applied when a good feature is known and
fixed during training, making it impractical for deep RL (Li et al., 2021). Osband et al. (2016b;
2018) addressed this issue by training an ensemble of randomly initialized neural networks and
viewing them as approximate posterior samples of Q functions. However, training an ensemble
of neural networks is computationally prohibitive. Another line of work directly injects noise to
parameters (Fortunato et al., 2017; Plappert et al., 2018). Noisy-Net (Fortunato et al., 2017) learns
noisy parameters using gradient descent, whereas Plappert et al. (2018) added constant Gaussian
noise to the parameters of the neural network. However, Noisy-Net is not ensured to approximate
the posterior distribution (Fortunato et al., 2017). Proposed by Dwaracherla and Van Roy (2020),
Langevin DQN is the closest algorithm to our work. Even though Langevin DQN is also inspired by
SGLD (Welling and Teh, 2011), Dwaracherla and Van Roy (2020) did not provide any theoretical
study nor regret bound for their algorithm under any setting. In a concurrent work, Kuang et al.
(2024) studied linear MDP with delayed feedback, where they also used an LMC-based posterior
sampling algorithm, which theoretically resembles similarity to part of our theoretical study with no
deep RL variant studied.

A recently proposed model-free posterior sampling algorithm is Conditional Posterior Sampling
(CPS) algorithm (Dann et al., 2021). Similar to Feel-Good Thompson Sampling proposed in (Zhang,
2022), CPS considers an opimistic prior term which helps with initial exploration. However, the
proposed posterior formulation in CPS does not allow computationally tractable sampling. Another
recently proposed algorithm Bayes-UCBVI (Tiapkin et al., 2022) uses the quantile of a Q-value
function posterior as UCBs on the optimal Q-value functions which can be thought of as a determin-
istic version of PSRL (Osband et al., 2013). While Bayes-UCBVI is extendable to deep RL, it does
not have any theory for the function approximation case and their analysis only works in the tabular
setting. Even for Bayes-UCBVI to work in deep RL, it needs a well-chosen posterior, and sampling
from the posterior is not addressed in their algorithm. Moreover, the Atari experiment in Tiapkin
et al. (2022) only shows average comparison against Bootstrapped DQN (Osband et al., 2016b) and
Double DQN (Van Hasselt et al., 2016) across all 57 games. However, in-average comparison across
57 games is not a sufficient demonstration of the utility of Bayes-UCBVI, especially when it comes
to hard exploration tasks.

Comparison to Dwaracherla and Van Roy (2020). Here we provide a detailed comparison of
Langevin DQN (Dwaracherla and Van Roy, 2020) and our work. On the algorithmic side, at each
time step, Langevin DQN performs only one gradient update, while we perform multiple (i.e., Jk)
noisy gradient updates, as shown in Algorithm 1 and Algorithm 2. This is a crucial difference
as a large enough value for Jk allows us to learn the exact posterior distribution of the parame-
ters {wh}h2[H] up to high precision. Moreover, they also proposed to use preconditioned SGLD
optimizer which is starkly different from our Adam LMCDQN . Their optimizer is more akin to
a heuristic variant of the original Adam optimizer (Kingma and Ba, 2014) with a Gaussian noise
term added to the gradient term. Moreover, they do not use any temperature parameter in the noise
term. On the contrary, Adam LMCDQN is inspired by Adam SGLD (Kim et al., 2022), which
enjoys convergence guarantees in the supervised learning setting. Overall, the design of Adam LM-
CDQN is heavily inspired from the theoretical study of LMC-LSVI and Adam SGLD (Kim et al.,
2022). Lastly, while Dwaracherla and Van Roy (2020) provided some empirical study in the tabular
deep sea environment (Osband et al., 2019a;b), they did not perform any experiment in challenging
pixel-based environment (e.g., Atari). We conducted a comparison in such environments in Ap-
pendix F.3.2. Empirically, we observed that Adam LMCDQN usually outperforms Langevin DQN
in sparse-reward hard-exploration games, such as Gravitar, Solaris, and Venture; while in dense-
reward hard-exploration games such as Alien, H.E.R.O and Qbert, Adam LMCDQN and Langevin
DQN achieve similar performance.

18

Published as a conference paper at ICLR 2024

B PROOF OF THE REGRET BOUND OF LMC-LSVI

Additional Notation. For any set A, h·, ·iA denotes the inner product over set A. For a vector
x 2 Rd, kxk2 =

p

x>x is the Euclidean norm of x. For a matrix V 2 Rm⇥n, we denote the
operator norm and Frobenius norm by kV k2 and kV kF respectively. For a positive definite matrix
V 2 Rd⇥d and a vector x 2 Rd, we denote kxkV =

p

x>V x.

B.1 SUPPORTING LEMMAS

Before deriving the regret bound of LMC-LSVI , we first outline the necessary technical lemmas
that are helpful in our regret analysis. The first result below shows that the parameter obtained from
LMC follows a Gaussian distribution.
Proposition B.1. The parameter wk,Jk

h
used in episode k of Algorithm 1 follows a Gaussian distri-

bution N (µk,Jk

h
,⌃k,Jk

h
), where the mean vector and the covariance matrix are defined as

µk,Jk

h
= AJk

k
. . . AJ1

1 w1,0
h

+
kX

i=1

AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘
bwi

h
, (7)

⌃k,Jk

h
=

kX

i=1

1

�i

AJk
k

. . . AJi+1

i+1

⇣
I �A2Ji

i

⌘ �
⇤i

h

��1
(I +Ai)

�1 AJi+1

i+1 . . . AJk
k
, (8)

where Ai = I � 2⌘i⇤i

h
for i 2 [k].

Definition B.2 (Model prediction error). For any (k, h) 2 [K]⇥[H], we define the model prediction
error associated with the reward rh,

lk
h
(x, a) = rh(x, a) + PhV

k

h+1(x, a)�Qk

h
(x, a).

Lemma B.3. Let � = 1 in Algorithm 1. For any (k, h) 2 [K]⇥ [H], we have

���wk,Jk

h

���
2


16

3
Hd
p

K +

s
2K

3�K�
d3/2 := B�,

with probability at least 1� �.
Lemma B.4. Let � = 1 in Algorithm 1. For any fixed 0 < � < 1, with probability 1 � �, we have
for all (k, h) 2 [K]⇥ [H],

�����

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
�����
(⇤k

h)
�1

 3H
p

d

"
1

2
log(K + 1) + log

2
p
2KB�/2

H

!
+ log

2

�

#1/2

,

where B� = 16
3 Hd

p
K +

q
2K

3�K�
d3/2.

Lemma B.5. Let � = 1 in Algorithm 1. Define the following event

E(K,H, �)

=

⇢���(x, a)> bwk

h
� rh(x, a)� PhV

k

h+1(x, a)
��  5H

p

dC�k�(x, a)k(⇤k
h)

�1 ,

8(h, k) 2 [H]⇥ [K] and 8(x, a) 2 S ⇥A

�
, (9)

where we denote C� =
h
1
2 log(K + 1) + log

⇣
2
p
2KB�/2

H

⌘
+ log 2

�

i1/2
and B� is defined in

Lemma B.4. Then we have P(E(K,H, �)) � 1� �.

19

Published as a conference paper at ICLR 2024

Lemma B.6 (Error bound). Let � = 1 in Algorithm 1. For any � 2 (0, 1) conditioned on the event
E(K,H, �), for all (h, k) 2 [H]⇥ [K] and (x, a) 2 S⇥A, with probability at least 1� �2, we have

�lk
h
(x, a) 

5H
p

dC� + 5

s
2d log (1/�)

3�K

+ 4/3

!
k�(x, a)k(⇤k

h)
�1 , (10)

where C� is defined in Lemma B.5.
Lemma B.7 (Optimism). Let � = 1 in Algorithm 1. Conditioned on the event E(K,H, �), for all
(h, k) 2 [H]⇥ [K] and (x, a) 2 S ⇥A, with probability at least 1

2
p
2e⇡

, we have

lk
h
(x, a)  0. (11)

B.2 REGRET ANALYSIS

We first restate the main theorem as follows.
Theorem B.8. Let � = 1 in (4), 1

�k
= eO(H

p
d) in Algorithm 1 and � 2 (1

2
p
2e⇡

, 1). For any
k 2 [K], let the learning rate ⌘k = 1/(4�max(⇤k

h
)), the update number Jk = 2k log(4HKd)

where k = �max(⇤k

h
)/�min(⇤k

h
) is the condition number of ⇤k

h
. Under Definition 4.1, the regret

of Algorithm 1 satisfies
Regret(K) = eO(d3/2H3/2

p

T),

with probability at least 1� �.

Proof of Theorem B.8. By Lemma 4.2 in Cai et al. (2020), it holds that

Regret(T) =
KX

k=1

⇣
V ⇤
1 (x

k

1)� V ⇡
k

1 (xk

1)
⌘

=
KX

k=1

HX

t=1

E⇡⇤
⇥
hQk

h
(xh, ·),⇡

⇤
h
(· | xh)� ⇡k

h
(· | xh)i

��x1 = xk

1

⇤

| {z }
(i)

+
KX

k=1

HX

t=1

D
k

h

| {z }
(ii)

+
KX

k=1

HX

t=1

M
k

h

| {z }
(iii)

+
KX

k=1

HX

h=1

�
E⇡⇤

⇥
lk
h
(xh, ah) | x1 = xk

1

⇤
� lk

h
(xk

h
, ak

h
)
�

| {z }
(iv)

, (12)

where D
k

h
and M

k

h
are defined as

D
k

h
:= h(Qk

h
�Q⇡

k

h
)(xk

h
, ·),⇡k

h
(·, xk

h
)i � (Qk

h
�Q⇡

k

h
)(xk

h
, ak

h
), (13)

M
k

h
:= Ph((V

k

h+1 � V ⇡
k

h+1))(x
k

h
, ak

h
)� (V k

h+1 � V ⇡
k

h+1)(x
k

h
). (14)

Next, we will bound the above terms respectively.

Bounding Term (i): For the policy ⇡k

h
at time step h of episode k, we will prove that

KX

k=1

HX

h=1

E⇡⇤ [hQk

h
(xh, ·),⇡

⇤
h
(· | xh)� ⇡k

h
(· | xh)i | x1 = xk

1]  0. (15)

To this end, note that ⇡k

h
acts greedily with respect to action-value function Qk

h
. If ⇡k

h
= ⇡⇤

h
, then the

difference ⇡⇤
h
(· | xh)�⇡k

h
(· | xh) is 0. Otherwise, the difference is negative since ⇡k

h
is deterministic

with respect to Qk

h
. Concretely, ⇡k

h
takes a value of 1 where ⇡⇤

h
would take a value of 0. Moreover,

Qk

h
would have the greatest value at the state-action pair where ⇡k

h
equals 1. This completes the

proof.

Bounding Terms (ii) and (iii): From (5), note that we truncate Qk

h
to the range [0, H�h+1]. This

implies for any (h, k) 2 [K] ⇥ [H], we have |D
k

h
|  2H . Moreover, E[Dk

h
|F

k

h
] = 0, where F

k

h

20

Published as a conference paper at ICLR 2024

is a corresponding filtration. Thus, D
k

h
is a martingale difference sequence. So, applying Azuma-

Hoeffding inequality, we have with probability 1� �/3,
KX

k=1

HX

h=1

D
k

h


p
2H2T log(3/�),

where T = KH . Similarly, we can show that M
k

h
is a martingale difference sequence. Applying

Azuma-Hoeffding inequality, we have with probability 1� �/3,
KX

k=1

HX

h=1

M
k

h


p
2H2T log(3/�).

Therefore, by applying union bound, we have that for any � > 0, with probability 1� 2�/3, it holds
that

KX

k=1

HX

h=1

D
k

h
+

KX

k=1

HX

h=1

M
k

h
 2

p
2H2T log(3/�), (16)

where T = KH .

Bounding Term (iv):

Suppose the event E(K,H, �0) holds. by union bound, with probability 1� (�02 + 1
2
p
2e⇡

), we have,
KX

k=1

HX

h=1

�
E⇡⇤ [lk

h
(xh, ah) | x1 = xk

1]� lk
h
(xk

h
, ak

h
)
�



KX

k=1

HX

h=1

�lk
h
(xk

h
, ak

h
)



KX

k=1

HX

h=1

5H
p

dC�0 + 5

s
2d log (1/�0)

3�K

+ 4/3

!
k�(xk

h
, ak

h
)k(⇤k

h)
�1

=

5H
p

dC�0 + 5

s
2d log (1/�0)

3�K

+ 4/3

!
KX

k=1

HX

h=1

k�(xk

h
, ak

h
)k(⇤k

h)
�1



5H
p

dC�0 + 5

s
2d log (1/�0)

3�K

+ 4/3

!
HX

h=1

p

K

KX

k=1

k�(xk

h
, ak

h
)k2(⇤k

h)
�1

!1/2



5H
p

dC�0 + 5

s
2d log (1/�0)

3�K

+ 4/3

!
H
p

2dK log(1 +K)

=

5H
p

dC�0 + 5

s
2d log (1/�0)

3�K

+ 4/3

!
p

2dHT log(1 +K)

= eO(d3/2H3/2
p

T).

Here the first, the second, and the third inequalities follow from Lemma B.7, Lemma B.6 and the
Cauchy-Schwarz inequality respectively. The last inequality follows from Lemma E.4 The last
equality follows from 1p

�K
= 10H

p
dC�0 +

8
3 which we defined in Lemma B.7.

By Lemma B.5, the event E(K,H, �0) occurs with probability 1 � �0. Thus, by union bound, the
event E(K,H, �0) occurs and it holds that

KX

k=1

HX

h=1

�
E⇡⇤ [lk

h
(xh, ah) | x1 = xk

1]� lk
h
(xk

h
, ak

h
)
�
 eO(d3/2H3/2

p

T)

with probability at least (1� (�0 + �02 + 1
2
p
2e⇡

)). Since � 2 (0, 1), setting �0 = �/6, we have

1� (�0 + �02 +
1

2
p
2e⇡

) � 1�
�

3
�

1

2
p
2e⇡

.

21

Published as a conference paper at ICLR 2024

The martingale inequalities from Equation (16) occur with probability 1 � 2�/3. By Equation (15)
and applying union bound, we get that the final regret bound is eO(d3/2H3/2

p
T) with probability at

least 1� (� + 1
2
p
2e⇡

). In other words, the regret bound holds with probability at least 1� � where
� 2 (1

2
p
2e⇡

, 1).

C PROOF OF SUPPORTING LEMMAS

In this section, we provide the proofs of the lemmas that we used in the regret analysis of LMC-
LSVI in the previous section.

C.1 PROOF OF PROPOSITION B.1

Proof of Proposition B.1. First note that for linear MDP, we have

rLk

h
(wk

h
) = 2(⇤k

h
wk

h
� bk

h
).

The update rule is:

wk,j

h
= wk,j�1

h
� ⌘krL

k

h
(wk,j�1

h
) +

q
2⌘k�

�1
k

✏k,j
h

,

which leads to

wk,Jk

h
= wk,Jk�1

h
� 2⌘k

⇣
⇤k

h
wk,Jk�1

h
� bk

h

⌘
+
q

2⌘k�
�1
k

✏k,Jk

h

=
�
I � 2⌘k⇤

k

h

�
wk,Jk�1

h
+ 2⌘kb

k

h
+
q
2⌘k�

�1
k

✏k,Jk

h

=
�
I � 2⌘k⇤

k

h

�Jk
wk,0

h
+

Jk�1X

l=0

�
I � 2⌘k⇤

k

h

�l
✓
2⌘kb

k

h
+
q

2⌘k�
�1
k

✏k,Jk�l

h

◆

=
�
I � 2⌘k⇤

k

h

�Jk
wk,0

h
+ 2⌘k

Jk�1X

l=0

�
I � 2⌘k⇤

k

h

�l
bk
h
+
q
2⌘k�

�1
k

Jk�1X

l=0

�
I � 2⌘k⇤

k

h

�l
✏k,Jk�l

h
.

Note that in Line 6 of Algorithm 1, we warm-start from previous episode and set wk,0
h

= w
k�1,Jk�1

h
.

Denoting Ai = I � 2⌘i⇤i

h
, we note that Ai is symmetric. Moreover, when the step size is chosen

such that 0 < ⌘i < 1/(2�max(⇤i

h
)), Ai satisfies I � Ai � 0. Therefore, we further have

wk,Jk

h
= AJk

k
w

k�1,Jk�1

h
+ 2⌘k

Jk�1X

l=0

Al

k
⇤k

h
bwk

h
+
q

2⌘k�
�1
k

Jk�1X

l=0

Al

k
✏k,Jk�l

h

= AJk
k
w

k�1,Jk�1

h
+ (I �Ak)

�
A0

k
+A1

k
+ . . .+AJk�1

k

�
bwk

h
+
q

2⌘k�
�1
k

Jk�1X

l=0

Al

k
✏k,Jk�l

h

= AJk
k
w

k�1,Jk�1

h
+
�
I �AJk

k

�
bwk

h
+
q

2⌘k�
�1
k

Jk�1X

l=0

Al

k
✏k,Jk�l

h

= AJk
k

. . . AJ1
1 w1,0

h
+

kX

i=1

AJk
k

. . . AJi+1

i+1

�
I �AJi

i

�
bwi

h
+

kX

i=1

q
2⌘i�

�1
i

AJk
k

. . . AJi+1

i+1

Ji�1X

l=0

Al

i
✏i,Ji�l

h
,

where in the first equality we used bk
h
= ⇤k

h
bwk

h
, in the second equality we used the definition of ⇤k

h
,

and in the third equality we used the fact that I + A + . . . + An�1 = (I � An)(I � A)�1. We
recall a property of multivariate Gaussian distribution: if ✏ ⇠ N (0, Id⇥d), then we have A✏ + µ ⇠
N (µ,AAT) for any A 2 Rd⇥d and µ 2 Rd. This implies wk,Jk

h
follows the Gaussian distribution

N (µk,Jk

h
,⌃k,Jk

h
), where

µk,Jk

h
= AJk

k
. . . AJ1

1 w1,0
h

+
kX

i=1

AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘
bwi

h
. (17)

22

Published as a conference paper at ICLR 2024

We now derive the covariance matrix ⌃k,Jk

h
. For a fixed i, denote Mi =

q
2⌘i�

�1
i

AJk
k

. . . AJi+1

i+1 .
Then we have,

Mi

Ji�1X

l=0

Al

i
✏i,Ji�l

h
=

Ji�1X

l=0

MiA
l

i
✏i,Ji�l

h
⇠ N

0,

Ji�1X

l=0

MiA
l

i
(MiA

l

i
)>
!
⇠ N

0,Mi

Ji�1X

l=0

A2l
i

!
M>

i

!
.

Thus we further have

⌃k,Jk

h
=

kX

i=1

Mi

Ji�1X

l=0

A2l
i

!
M>

i

=
kX

i=1

2⌘i�
�1
i

AJk
k

. . . AJi+1

i+1

Ji�1X

l=0

A2l
i

!
AJi+1

i+1 . . . AJk
k

=
kX

i=1

2⌘i�
�1
i

AJk
k

. . . AJi+1

i+1

�
I �A2Ji

i

� �
I �A2

i

��1
AJi+1

i+1 . . . AJk
k

=
kX

i=1

1

�i

AJk
k

. . . AJi+1

i+1

�
I �A2Ji

i

��
⇤i

h

��1
(I +Ai)

�1AJi+1

i+1 . . . AJk
k
.

This completes the proof.

C.2 PROOF OF LEMMA B.3

Before presenting the proof, we first need to prove the following two technical lemmas.
Lemma C.1. For any (k, h) 2 [K]⇥ [H], we have

k bwk

h
k  2H

p
kd/�.

Proof of Lemma C.1. We have

k bwk

h
k =

�����
�
⇤k

h

��1
k�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V k

h+1(x
⌧

h+1)
⇤
· �(s⌧

h
, a⌧

h
)

�����


1
p
�

p
k � 1

k�1X

⌧=1

��⇥rh(x⌧

h
, a⌧

h
) + V k

h+1(x
⌧

h+1)
⇤
· �(x⌧

h
, a⌧

h
)
��2
(⇤k

h)
�1

!1/2


2H
p
�

p
k � 1

k�1X

⌧=1

k�(x⌧

h
, a⌧

h
)k2(⇤k

h)
�1

!1/2

 2H
p
kd/�,

where the first inequality follows from Lemma E.5, the second inequality is due to 0  V k

h
 H

and the reward function being bounded by 1, and the last inequality follows from Lemma E.3.

Lemma C.2. Let � = 1 in Algorithm 1. For any (h, k) 2 [H]⇥ [K] and (x, a) 2 S ⇥A, we have

����(x, a)>wk,Jk

h
� �(x, a)> bwk

h

��� 

5

s
2d log (1/�)

3�K

+
4

3

!
k�(x, a)k(⇤k

h)
�1 ,

with probability at least 1� �2.

Proof of Lemma C.2. By the triangle inequality, we have
����(x, a)>wk,Jk

h
� �(x, a)> bwk

h

��� 
����(x, a)>

⇣
wk,Jk

h
� µk,Jk

h

⌘���+
����(x, a)>

⇣
µk,Jk

h
� bwk

h

⌘��� . (18)

23

Published as a conference paper at ICLR 2024

Bounding the term

����(x, a)>
⇣
wk,Jk

h
� µk,Jk

h

⌘���: we have
����(x, a)>

⇣
wk,Jk

h
� µk,Jk

h

⌘��� 
�����(x, a)

>
⇣
⌃k,Jk

h

⌘1/2
����
2

����
⇣
⌃k,Jk

h

⌘�1/2 ⇣
wk,Jk

h
� µk,Jk

h

⌘����
2

.

Since wk,Jk

h
⇠ N (µk,Jk

h
,⌃k,Jk

h
), we have

⇣
⌃k,Jk

h

⌘�1/2 ⇣
wk,Jk

h
� µk,Jk

h

⌘
⇠ N (0, Id⇥d). Thus, we

have
P
✓����

⇣
⌃k,Jk

h

⌘�1/2 ⇣
wk,Jk

h
� µk,Jk

h

⌘����
2

�

p
4d log (1/�)

◆
 �2. (19)

When we choose ⌘k  1/(4�max(⇤k

h
)) for all k, we have

1

2
I < Ak = I � 2⌘k⇤

k

h
<
�
1� 2⌘k�min(⇤

k

h
)
�
I,

3

2
I < I +Ak = 2I � 2⌘k⇤

k

h
< 2I.

(20)

Also note that Ak and (⇤k

h
)�1 commute. Therefore, we have

A2Jk
k

�
⇤k

h

��1
=
�
I � 2⌘k⇤

k

h

�
. . .

�
I � 2⌘k⇤

k

h

� �
I � 2⌘k⇤

k

h

� �
⇤k

h

��1

=
�
I � 2⌘k⇤

k

h

�
. . .

�
I � 2⌘k⇤

k

h

� �
⇤k

h

��1 �
I � 2⌘k⇤

k

h

�

= AJk
k

�
⇤k

h

��1
AJk

k
.

(21)

Recall the definition of ⌃k,Jk

h
. Then

�(x, a)>⌃k,Jk

h
�(x, a)

=
kX

i=1

1

�i

�(x, a)>AJk
k

. . . AJi+1

i+1

�
I �A2Ji

� �
⇤i

h

��1
(I +Ai)

�1 AJi+1

i+1 . . . AJk
k
�(x, a)


2

3�i

kX

i=1

�(x, a)>AJk
k

. . . AJi+1

i+1

⇣�
⇤i

h

��1
�AJk

k

�
⇤i

h

��1
AJk

k

⌘
AJi+1

i+1 . . . AJk
k
�(x, a)

=
2

3�K

kX

i=1

�(x, a)>AJk
k

. . . AJi+1

i+1

⇣�
⇤i

h

��1
�
�
⇤i+1
h

��1
⌘
AJi+1

i+1 . . . AJk
k
�(x, a)

�
2

3�K

�(x, a)>AJk
k

. . . AJ1
1

�
⇤1
h

��1
AJ1

1 . . . AJk
k
�(x, a) +

2

3�K

�(x, a)>
�
⇤k

h

��1
�(x, a),

where the first inequality is due to (20) and the last equality is due to setting �i = �K for all i 2 [K].
By Sherman-Morrison formula and (6), we have

�
⇤i

h

��1
�
�
⇤i+1
h

��1
=
�
⇤i

h

��1
�
�
⇤i

h
+ �(xi

h
, ai

h
)�(xi

h
, ai

h
)>
��1

=

�
⇤i

h

��1
�(xi

h
, ai

h
)�(xi

h
, ai

h
)>

�
⇤i

h

��1

1 + k�(xi

h
, ai

h
)k2

(⇤i
h)

�1

.

This implies

�(x, a)>AJk
k

. . . AJi+1

i+1

⇣�
⇤i

h

��1
�
�
⇤i+1
h

��1
⌘
AJi+1

i+1 . . . AJk
k
�(x, a)

= �(x, a)>AJk
k

. . . AJi+1

i+1

�
⇤i

h

��1
�(xi

h
, ai

h
)�(xi

h
, ai

h
)>

�
⇤i

h

��1

1 + k�(xi

h
, ai

h
)k2

(⇤i
h)

�1

AJi+1

i+1 . . . AJk
k
�(x, a)



⇣
�(x, a)>AJk

k
. . . AJi+1

i+1

�
⇤i

h

��1
�(xi

h
, ai

h
)
⌘2



���AJk
k

. . . AJi+1

i+1

�
⇤i

h

��1/2
�(x, a)

���
2

2
·

���
�
⇤i

h

��1/2
�(xi

h
, ai

h
)
���
2

2



kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘2Jj ���(xi

h
, ai

h
)
��2
(⇤i

h)
�1 k�(x, a)k

2
(⇤i

h)
�1 ,

24

Published as a conference paper at ICLR 2024

where the last inequality is due to (20). So, we have

�(x, a)>⌃k,Jk

h
�(x, a) 

2

3�K

kX

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘2Jj ���(xi

h
, ai

h
)
��2
(⇤i

h)
�1 k�(x, a)k

2
(⇤i

h)
�1

+
2

3�K

k�(x, a)k2(⇤k
h)

�1 .

Using the inequality
p
a2 + b2  a+ b for a, b > 0, we thus get

k�(x, a)k
⌃

k,Jk
h


r
2

3�K

k�(x, a)k(⇤k

h)
�1+

kX

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj ���(xi

h
, ai

h
)
��
(⇤i

h)
�1 k�(x, a)k(⇤i

h)
�1

!

(22)
Let’s denote the R.H.S. of (22) as bgk

h
(�(x, a)).

Therefore, it holds that

P
⇣����(x, a)>wk,Jk

h
� �(x, a)>µk,Jk

h

��� � 2bgk
h
(�(x, a))

p
d log (1/�)

⌘

 P
⇣����(x, a)>wk,Jk

h
� �(x, a)>µk,Jk

h

��� � 2
p

d log (1/�)k�(x, a)k
⌃

k,Jk
h

⌘

 P
✓�����(x, a)

>
⇣
⌃k,Jk

h

⌘1/2
����
2

����
⇣
⌃k,Jk

h

⌘�1/2 ⇣
wk,Jk

h
� µk,Jk

h

⌘����
2

� 2
p

d log (1/�)k�(x, a)k
⌃

k,Jk
h

◆

 �2,
(23)

where the last inequality follows from (19).

Bounding the term �(x, a)>
⇣
µk,Jk

h
� bwk

h

⌘
: Recall that,

µk,Jk

h
= AJk

k
. . . AJ1

1 w1,0
h

+
kX

i=1

AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘
bwi

h

= AJk
k

. . . AJ1
1 w1,0

h
+

k�1X

i=1

AJk
k

. . . AJi+1

i+1

�
bwi

h
� bwi+1

h

�
�AJk

k
. . . AJ1

1 bw1
h
+ bwk

h

= AJk
k

. . . AJ1
1

⇣
w1,0

h
� bw1

h

⌘
+

k�1X

i=1

AJk
k

. . . AJi+1

i+1

�
bwi

h
� bwi+1

h

�
+ bwk

h
.

This implies that

�(x, a)>
⇣
µk,Jk

h
� bwk

h

⌘
= �(x, a)>AJk

k
. . . AJ1

1

⇣
w1,0

h
� bw1

h

⌘

| {z }
I1

+�(x, a)>
k�1X

i=1

AJk
k

. . . AJi+1

i+1

�
bwi

h
� bwi+1

h

�

| {z }
I2

(24)

25

Published as a conference paper at ICLR 2024

In Algorithm 1, we choose w1,0
h

= 0 and bw1
h
= (⇤1

h
)�1b1

h
= 0. Thus we have, I1 = 0. Using

inequalities in (20) and Lemma C.1, we have

I2 

������(x, a)
>

k�1X

i=1

AJk
k

. . . AJi+1

i+1

�
bwi

h
� bwi+1

h

�
�����

=

�����

k�1X

i=1

�(x, a)>AJk
k

. . . AJi+1

i+1

�
bwi

h
� bwi+1

h

�
�����



k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

k�(x, a)k2k bwi

h
� bwi+1

h
k2



k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

k�(x, a)k2
�
k bwi

h
k2 + k bwi+1

h
k2

�



k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

k�(x, a)k2
⇣
2H

p
id/�+ 2H

p
(i+ 1)d/�

⌘

 4H
p
Kd/�

k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

k�(x, a)k2.

So, it holds that

�(x, a)>
⇣
µk,Jk

h
� bwk

h

⌘
 4H

p
Kd/�

k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

k�(x, a)k2. (25)

Substituting (23) and (25) into (18), we get with probability at least 1� �2,
����(x, a)>wk,Jk

h
� �(x, a)> bwk

h

���

 4H
p
Kd/�

k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

k�(x, a)k2 + 2

s
2d log (1/�)

3�K

k�(x, a)k(⇤k
h)

�1

+ 2

s
2d log (1/�)

3�K

kX

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj ���(xi

h
, ai

h
)
��
(⇤i

h)
�1 k�(x, a)k(⇤i

h)
�1 .

(26)

Let’s denote the R.H.S. of (26) as Q. Recall that, for any j 2 [K], we require ⌘j  1/(4�max(⇤
j

h
)).

Choosing ⌘j = 1/(4�max(⇤
j

h
)) yields

⇣
1� 2⌘j�min(⇤

j

h
)
⌘Jj

= (1� 1/(2j))
Jj ,

where j = �max(⇤
j

h
)/�min(⇤

j

h
). In order to have (1 � 1/(2j))Jj < ✏, we need to pick Jj such

that

Jj �
log (1/✏)

log
⇣

1
1�1/(2j)

⌘ .

Now we use the well-known fact that e�x > 1 � x for 0 < x < 1. Since 1/(2j)  1/2, we
have log (1/(1� 1/2j)) � 1/2j . Thus, it suffices to set Jj � 2j log (1/✏) to ensure (1 �
1/2j)Jj  ✏. Also, note that since ⇤i

h
> I , we have 1 � k�(x, a)k2 � k�(x, a)k(⇤i

h)
�1 . Setting

26

Published as a conference paper at ICLR 2024

✏ = 1/(4HKd) and � = 1, we obtain

Q 
k�1X

i=1

✏k�i4H

r
Kd

�
k�(x, a)k2 + 2

s
2d log (1/�)

3�K

k�(x, a)k(⇤k

h)
�1 +

k�1X

i=1

✏k�i
k�(x, a)k2

!



k�1X

i=1

✏k�i4H

r
Kd

�

p

kk�(x, a)k(⇤k
h)

�1

+ 2

s
2d log (1/�)

3�K

k�(x, a)k(⇤k

h)
�1 +

k�1X

i=1

✏k�i
p

kk�(x, a)k(⇤k
h)

�1

!



k�1X

i=1

✏k�i�1
k�(x, a)k(⇤k

h)
�1 + 2

s
2d log (1/�)

3�K

k�(x, a)k(⇤k

h)
�1 +

k�1X

i=1

✏k�i�1
k�(x, a)k(⇤k

h)
�1

!



5

s
2d log (1/�)

3�K

+
4

3

!
k�(x, a)k(⇤k

h)
�1 ,

where the second inequality is due to k�(x, a)k(⇤k
h)

�1 � 1/
p
kk�(x, a)k2 and the fourth inequality

is due to
P

k�1
i=1 ✏k�i�1 =

P
k�2
i=0 ✏i < 1/(1� ✏)  4/3. So, we have

P
 ����(x, a)>wk,Jk

h
� �(x, a)> bwk

h

��� 

5

s
2d log (1/�)

3�K

+
4

3

!
k�(x, a)k(⇤k

h)
�1

!

� P
⇣����(x, a)>wk,Jk

h
� �(x, a)> bwk

h

���  Q
⌘

� 1� �2.

This completes the proof.

Proof of Lemma B.3. From Proposition B.1, we know wk,Jk

h
follows Gaussian distribution

N (µk,Jk

h
,⌃k,Jk

h
). Thus we can write,

���wk,Jk

h

���
2
=
���µk,Jk

h
+ ⇠k,Jk

h

���
2


���µk,Jk

h

���
2
+
���⇠k,Jk

h

���
2
,

where ⇠k,Jk

h
⇠ N (0,⌃k,Jk

h
).

Bounding kµk,Jk

h
k2: From Proposition B.1, we have,

���µk,Jk

h

���
2
=

�����A
Jk
k

. . . AJ1
1 w1,0

h
+

kX

i=1

AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘
bwi

h

�����
2



kX

i=1

���AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘
bwi

h

���
2
,

27

Published as a conference paper at ICLR 2024

where the inequality follows from the fact that we set w1,0
h

= 0 in Algorithm 1 and triangle inequal-
ity. Denoting the Frobenius of a matrix X by kXkF , we have

kX

i=1

���AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘
bwi

h

���
2



kX

i=1

���AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘���
F

�� bwi

h

��
2

 2H

r
Kd

�

kX

i=1

���AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘���
F

 2H

r
Kd

�

kX

i=1

p

d
���AJk

k
. . . AJi+1

i+1

⇣
I �AJi

i

⌘���
2

 2Hd

r
K

�

kX

i=1

kAkk
Jk

2 . . . kAi+1k
Ji+1

2

���
⇣
I �AJi

i

⌘���
2

 2Hd

r
K

�

kX

i=1

kY

j=i+1

⇣
1� 2⌘j�min(⇤

j

h
)
⌘Jj

⇣
kIk2 + kA

Ji
i
k2

⌘

 2Hd

r
K

�

kX

i=1

kY

j=i+1

⇣
1� 2⌘j�min(⇤

j

h
)
⌘Jj

⇣
kIk2 + kAik

Ji
2

⌘

 2Hd

r
K

�

kX

i=1

kY

j=i+1

⇣
1� 2⌘j�min(⇤

j

h
)
⌘Jj

⇣
1 +

�
1� 2⌘i�min(⇤

i

h
)
�Ji

⌘

 2Hd

r
K

�

kX

i=1

kY

j=i+1

⇣
1� 2⌘j�min(⇤

j

h
)
⌘Jj

+
kY

j=i

⇣
1� 2⌘j�min(⇤

j

h
)
⌘Jj

!
,

where the second inequality is from Lemma C.1, the third inequality is due to the fact that
rank(AJk

k
. . . AJi+1

i+1 (I � AJi
i
))  d, the fourth one uses the submultiplicativity of matrix norm,

and the fifth one is from Lemma E.6 and (20).

As in Lemma C.2, setting Jj � 2j log (1/✏) where j = �max(⇤
j

h
)/�min(⇤

j

h
) and ✏ =

1/(4HKd), � = 1, we further get
kX

i=1

���AJk
k

. . . AJi+1

i+1

⇣
I �AJi

i

⌘
bwi

h

���
2
 2Hd

r
K

�

kX

i=1

�
✏k�i + ✏k�i+1

�

 4Hd

r
K

�

1X

i=0

✏i

= 4Hd

r
K

�

✓
1

1� ✏

◆

 4Hd

r
K

�
·
4

3

=
16

3
Hd

r
K

�
.

Thus, setting � = 1, we have

kµk,Jk

h
k2 

16

3
Hd
p

K.

Bounding k⇠k,Jk

h
k2: Since ⇠k,Jk

h
⇠ N (0,⌃k,Jk

h
), using Lemma E.1, we have

P
 ���⇠k,Jk

h

���
2


r
1

�
Tr

⇣
⌃k,Jk

h

⌘!
� 1� �.

28

Published as a conference paper at ICLR 2024

Recall from Proposition B.1, that

⌃k,Jk

h
=

kX

i=1

1

�i

AJk
k

. . . AJi+1

i+1

⇣
I �A2Ji

i

⌘ �
⇤i

h

��1
(I +Ai)

�1 AJi+1

i+1 . . . AJk
k
.

Thus,

Tr
⇣
⌃k,Jk

h

⌘
=

kX

i=1

1

�i

Tr
⇣
AJk

k
. . . AJi+1

i+1

⇣
I �A2Ji

i

⌘ �
⇤i

h

��1
(I +Ai)

�1 AJi+1

i+1 . . . AJk
k

⌘



kX

i=1

1

�i

Tr
⇣
AJk

k

⌘
. . .Tr

⇣
AJi+1

i+1

⌘
Tr

⇣
I �A2Ji

i

⌘
Tr

⇣�
⇤i

h

��1
⌘
Tr

⇣
(I +Ai)

�1
⌘

⇥ Tr
⇣
AJi+1

i+1

⌘
. . .Tr

⇣
AJk

k

⌘
,

where we used Lemma E.7. Note that if matrix A and B are positive definite matrix such that
A > B > 0, then Tr(A) > Tr(B). Also, recall from (20) that, when ⌘k  1/(4�max(⇤k

h
)) for all

k, we have
1

2
I < Ak = I � 2⌘k⇤

k

h
<
�
1� 2⌘k�min(⇤

k

h
)
�
I,

3

2
I < I +Ak = 2I � 2⌘k⇤

k

h
< 2I.

So, we have AJi
i

<
�
1� 2⌘k�min(⇤k

h
)
�Jj I and

Tr
⇣
AJi

i

⌘
 Tr

⇣�
1� 2⌘k�min(⇤

k

h
)
�Jj

I
⌘

 d
�
1� 2⌘k�min(⇤

k

h
)
�Jj

 d✏

=
d

4HKd
 1,

where third inequality follows from the fact that in Lemma C.2, we chose Jj such that⇣
1� 2⌘j�min(⇤

j

h
)
⌘Jj

 ✏ and the first equality follows from the choice of ✏ = 1/(4HKd). Simi-

larly, we have I �A2Ji
i

<
�
1� 1

22Ji

�
I and thus,

Tr
⇣
I �A2Ji

i

⌘


✓
1�

1

22Ji

◆
d < d.

Likewise, using (I +Ai)�1


2
3I , we have

Tr
�
(I +Ai)

�1
�


2

3
d.

Finally, note that all eigenvalues of ⇤i

h
are greater than or equal to 1, which implies all eigenvalues of

(⇤i

h
)�1 are less than or equal to 1. Since the trace of a matrix is equal to the sum of its eigenvalues,

we have
Tr

�
(⇤i

h
)�1

�
 d · 1 = d.

Using the above observations and the choice of �i = �K for all i 2 [K], we have

Tr
⇣
⌃k,Jk

h

⌘


KX

i=1

1

�k

·
2

3
· d3 =

2

3�K

Kd3.

Thus we have

P
✓���⇠k,Jk

h

���
2


r
1

�
·

2

3�K

Kd3
◆
� P

 ���⇠k,Jk

h

���
2


r
1

�
Tr

⇣
⌃k,Jk

h

⌘!
� 1� �.

29

Published as a conference paper at ICLR 2024

So, with probability at least 1� �, we have

���wk,Jk

h

���
2


16

3
Hd
p

K +

s
2K

3�K�
d3/2,

which completes the proof.

C.3 PROOF OF LEMMA B.4

Proof of Lemma B.4. Applying Lemma B.3, with probability 1� �/2, we have

���wk,Jk

h

���
2


16

3
Hd
p

K +

s
4K

3�K�
d3/2 := B�/2. (27)

Now, considering the function class V := {min{maxa2A �(·, a)>w,H} : kwk2  B�/2} and
combining Lemma E.8 and Lemma E.10, we have that for any " > 0 and � > 0, with probability at
least 1� �/2,

�����

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
�����
(⇤k

h)
�1



✓
4H2


d

2
log

✓
k + �

�

◆
+ d log

✓
B�/2

"

◆
+ log

2

�

�
+

8k2"2

�

◆1/2

 2H


d

2
log

✓
k + �

�

◆
+ d log

✓
B�/2

"

◆
+ log

2

�

�1/2
+

2
p
2k"
p
�

. (28)

Setting � = 1, " = H

2
p
2k

, we get

�����

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
�����
(⇤k

h)
�1

 2H
p

d

"
1

2
log(k + 1) + log

B�/2

H

2
p
2k

!
+ log

2

�

#1/2

+H

 3H
p

d

"
1

2
log(K + 1) + log

2
p
2KB�/2

H

!
+ log

2

�

#1/2

. (29)

with probability 1 � �/2. Now combining (27) and (29) through a union bound, we obtain the
stated result.

C.4 PROOF OF LEMMA B.5

Proof of Lemma B.5. We denote the inner product over S by h·, ·iS . Using Definition 4.1, we have

PhV
k

h+1(x, a) = �(x, a)>hµh, V
k

h+1iS

= �(x, a)>
�
⇤k

h

��1
⇤k

h
hµh, V

k

h+1iS

= �(x, a)>
�
⇤k

h

��1

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)> + �I

!
hµh, V

k

h+1iS

= �(x, a)>
�
⇤k

h

��1

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)(PhV

k

h+1)(x
⌧

h
, a⌧

h
) + �Ihµh, V

k

h+1iS

!
.

(30)

30

Published as a conference paper at ICLR 2024

Using (30) we obtain,

�(x, a)> bwk

h
� rh(x, a)� PhV

k

h+1(x, a)

= �(x, a)>
�
⇤k

h

��1
k�1X

⌧=1

⇥
rh(x

⌧

h
, a⌧

h
) + V k

h+1(x
⌧

h+1)
⇤
· �(x⌧

h
, a⌧

h
)� rh(x, a)

� �(x, a)>
�
⇤k

h

��1

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)(PhV

k

h+1)(x
⌧

h
, a⌧

h
) + �Ihµh, V

k

h+1iS

!

= �(x, a)>(⇤k

h
)�1

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
!

| {z }
(i)

+ �(x, a)>(⇤k

h
)�1

k�1X

⌧=1

rh(x
⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)

!
� rh(x, a)

| {z }
(ii)

� ��(x, a)>(⇤k

h
)�1
hµh, V

k

h+1iS| {z }
(iii)

. (31)

We now provide an upper bound for each of the terms in (31).

Term(i). Using Cauchy-Schwarz inequality and Lemma B.4, with probability at least 1��, we have

�(x, a)>(⇤k

h
)�1

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
!



�����

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PV k

h+1(x
⌧

h
, a⌧

h
)
⇤
�����
(⇤k

h)
�1

k�(x, a)k(⇤k
h)

�1

 3H
p

d

"
1

2
log(K + 1) + log

2
p
2KB�/2

H

!
+ log

2

�

#1/2

k�(x, a)k(⇤k
h)

�1 . (32)

Term (ii). First note that,

�(x, a)>(⇤k

h
)�1

k�1X

⌧=1

rh(x
⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)

!
� rh(x, a)

= �(x, a)>(⇤k

h
)�1

k�1X

⌧=1

rh(x
⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)

!
� �(x, a)>✓h

= �(x, a)>(⇤k

h
)�1

k�1X

⌧=1

rh(x
⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)� ⇤k

h
✓h

!

= �(x, a)>(⇤k

h
)�1

k�1X

⌧=1

rh(x
⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)�

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)>✓h � �I✓h

!

= �(x, a)>(⇤k

h
)�1

k�1X

⌧=1

rh(x
⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)�

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)rh(x

⌧

h
, a⌧

h
)� �I✓h

!

= ���(x, a)>(⇤k

h
)�1✓h. (33)

31

Published as a conference paper at ICLR 2024

Here we used the definition rh(x, a) = h�(x, a), ✓hi from Definition 4.1. Applying Cauchy-
Schwarz inequality, we further get,

���(x, a)>(⇤k

h
)�1✓h  �k�(x, a)k(⇤k

h)
�1k✓hk(⇤k

h)
�1



p

�k�(x, a)k(⇤k
h)

�1k✓hk2



p

�dk�(x, a)k(⇤k
h)

�1 .

(34)

Here we used the observation that the largest eigenvalue of (⇤k

h
)�1 is at most 1/� and k✓hk2 

p
d

from Definition 4.1. Combining (33) and (34), we get,

�(x, a)>(⇤k

h
)�1

k�1X

⌧=1

rh(x
⌧

h
, a⌧

h
)�(x⌧

h
, a⌧

h
)

!
� rh(x, a) 

p

�dk�(x, a)k(⇤k
h)

�1 . (35)

Term(iii). Applying Cauchy-Schwarz inequality, we get,

��(x, a)>(⇤k

h
)�1
hµh, V

k

h+1iS  �k�(x, a)k(⇤k
h)

�1khµh, V
k

h+1iSk(⇤k
h)

�1



p

�k�(x, a)k(⇤k
h)

�1khµh, V
k

h+1iSk2



p

�k�(x, a)k(⇤k
h)

�1

dX

⌧=1

kµ⌧

h
k
2
1

! 1
2

kV k

h+1k1

 H
p

�dk�(x, a)k(⇤k
h)

�1 ,

(36)

where the the last inequality follows from
P

d

⌧=1 kµ
⌧

h
k
2
1  d in Definition 4.1. Combining (32), (35)

and (36), and letting � = 1, we get, with probability at least 1� �
���(x, a)> bwk

h
� rh(x, a)� PhV

k

h+1(x, a)
��



0

@3H
p

d

"
1

2
log(K + 1) + log

2
p
2KB�/2

H

!
+ log

2

�

#1/2

+
p

�d+H
p

�d

1

A k�(x, a)k(⇤k
h)

�1

 5H
p

d

"
1

2
log(K + 1) + log

2
p
2KB�/2

H

!
+ log

2

�

#1/2

k�(x, a)k(⇤k
h)

�1

= 5H
p

dC� k�(x, a)k(⇤k
h)

�1 ,

where we denote C� =
h
1
2 log(K + 1) + log

⇣
2
p
2KB�/2

H

⌘
+ log 2

�

i1/2
.

C.5 PROOF OF LEMMA B.6

Proof of Lemma B.6. First note that,

�lk
h
(x, a) = Qk

h
(x, a)� rh(x, a)� PhV

k

h+1(x, a)

= min{�(x, a)>wk,Jk

h
, H � h+ 1}� rh(x, a)� PhV

k

h+1(x, a)

 �(x, a)>wk,Jk

h
� rh(x, a)� PhV

k

h+1(x, a)

= �(x, a)>wk,Jk

h
� �(x, a)> bwk

h
+ �(x, a)> bwk

h
� rh(x, a)� PhV

k

h+1(x, a)



����(x, a)>wk,Jk

h
� �(x, a)> bwk

h

���
| {z }

(i)

+
���(x, a)> bwk

h
� rh(x, a)� PhV

k

h+1(x, a)
��

| {z }
(ii)

.

Applying Lemma C.2, for any (h, k) 2 [H]⇥ [K] and (x, a) 2 S ⇥A, we have

����(x, a)>wk,Jk

h
� �(x, a)> bwk

h

��� 

5

s
2d log (1/�)

3�K

+
4

3

!
k�(x, a)k(⇤k

h)
�1 ,

32

Published as a conference paper at ICLR 2024

with probability at least 1� �2.

From Lemma B.5, conditioned on the event E(K,H, �), for all (h, k) 2 [H] ⇥ [K] and (x, a) 2
S ⇥A, we have

���(x, a)> bwk

h
� rh(x, a)� PhV

k

h+1(x, a)
��  5H

p

dC�k�(x, a)k(⇤k
h)

�1 .

So, with probability 1� �2,

�lk
h
(x, a)  (i) + (ii)



5H
p

dC� + 5

s
2d log (1/�)

3�K

+ 4/3

!
k�(x, a)k(⇤k

h)
�1 .

This completes the proof.

C.6 PROOF OF LEMMA B.7

Proof of Lemma B.7. We want to show Qk

h
(x, a) � rh(x, a) + PhV k

h+1(x, a) with high probability.
Recall that Qk

h
(x, a) = min{�(x, a)>wk,Jk

h
, H�h+1}. Also note that rh(x, a)+PhV k

h+1(x, a) 

H � h + 1. Thus, when �(x, a)>wk,Jk

h
� H � h + 1, we trivially have Qk

h
(x, a) � rh(x, a) +

PhV k

h+1(x, a). So, we now consider the case, when �(x, a)>wk,Jk

h
 H�h+1 and thus Qk

h
(x, a) =

�(x, a)>wk,Jk

h
.

Based on the mean and covariance matrix defined in Proposition B.1, we have that �(x, a)>wk,Jk

h

follows the distribution N (�(x, a)>µk,Jk

h
,�(x, a)>⌃k,Jk

h
�(x, a)).

Define, Zk =
rh(x,a)+PhV

k
h+1(x,a)��(x,a)>µ

k,Jk
hq

�(x,a)>⌃
k,Jk
h �(x,a)

. When |Zk| < 1, by Lemma E.2, we have

P
⇣
�(x, a)>wk,Jk

h
� rh(x, a) + PhV

k

h+1(x, a)
⌘

= P

0

@�(x, a)>wk,Jk

h
� �(x, a)>µk,Jk

hq
�(x, a)>⌃k,Jk

h
�(x, a)

�
rh(x, a) + PhV k

h+1(x, a)� �(x, a)>µk,Jk

hq
�(x, a)>⌃k,Jk

h
�(x, a)

1

A

�
1

2
p
2⇡

exp (�Z2
k
/2)

�
1

2
p
2e⇡

.

We now show that |Zk| < 1 under the event E(K,H, �). First note that by triangle inequality, we
have

���rh(x, a) + PhV
k

h+1(x, a)� �(x, a)>µk,Jk

h

���


��rh(x, a) + PhV

k

h+1(x, a)� �(x, a)> bwk

h

��+
����(x, a)> bwk

h
� �(x, a)>µk,Jk

h

��� .

By definition of the event E(K,H, �) from Lemma B.5, we have,
��rh(x, a) + PhV

k

h+1(x, a)� �(x, a)> bwk

h

��  5H
p

dC�k�(x, a)k(⇤k
h)

�1 ,

From (25), we have

����(x, a)> bwk

h
� �(x, a)>µk,Jk

h

���  4H
p

Kd/�
k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

k�(x, a)k2.

33

Published as a conference paper at ICLR 2024

As in proof of Lemma C.2, setting ⌘j = 1/(4�max(⇤
j

h
)), Jj � 2j log(1/✏), we have for all

j 2 [K],
⇣
1� 2⌘j�min

⇣
⇤j

h

⌘⌘Jj

 ✏. Setting ✏ = 1/(4HKD), we have,

����(x, a)> bwk

h
� �(x, a)>µk,Jk

h

���  4H
p

Kd
k�1X

i=1

✏k�i
k�(x, a)k2



k�1X

i=1

✏k�i�1 1

4HKd
4H
p

Kd
p

Kk�(x, a)k(⇤k
h)

�1



k�1X

i=1

✏k�i�1
k�(x, a)k(⇤k

h)
�1



k�2X

i=0

✏ik�(x, a)k(⇤k
h)

�1


1

1� ✏
k�(x, a)k(⇤k

h)
�1


4

3
k�(x, a)k(⇤k

h)
�1 .

So, we have
���rh(x, a) + PhV

k

h+1(x, a)� �(x, a)>µk,Jk

h

��� 
✓
5H
p

dC� +
4

3

◆
k�(x, a)k(⇤k

h)
�1 . (37)

Now, recall the definition of ⌃k,Jk

h
from Proposition B.1:

�(x, a)>⌃k,Jk

h
�(x, a)

=
kX

i=1

1

�i

�(x, a)>AJk
k

. . . AJi+1

i+1

�
I �A2Ji

� �
⇤i

h

��1
(I +Ai)

�1 AJi+1

i+1 . . . AJk
k
�(x, a)

�

kX

i=1

1

2�i

�(x, a)>AJk
k

. . . AJi+1

i+1

�
I �A2Ji

� �
⇤i

h

��1
AJi+1

i+1 . . . AJk
k
�(x, a),

where we used the fact that 1
2I < (I + Ak)�1. Recall that in (21), we showed A2Jk

k

�
⇤k

h

��1
=

AJk
k

�
⇤k

h

��1
AJk

k
. So,

�(x, a)>⌃k,Jk

h
�(x, a)

�

kX

i=1

1

2�i

�(x, a)>AJk
k

. . . AJi+1

i+1

⇣�
⇤i

h

��1
�AJk

k

�
⇤i

h

��1
AJk

k

⌘
AJi+1

i+1 . . . AJk
k
�(x, a)

=
1

2�K

k�1X

i=1

�(x, a)>AJk
k

. . . AJi+1

i+1

�
(⇤i

h
)�1
� (⇤i+1

h
)�1

�
AJi+1

i+1 . . . AJk
k
�(x, a)

�
1

2�K

�(x, a)>AJk
k

. . . AJ1
1 (⇤1

h
)�1AJ1

1 . . . AJk
k
�(x, a) +

1

2�K

�(x, a)>(⇤k

h
)�1�(x, a),

where we used the choice of �i = �K for all i 2 [K]. By Sherman-Morrison formula and (6), we
have

�
⇤i

h

��1
�
�
⇤i+1
h

��1
=
�
⇤i

h

��1
�
�
⇤i

h
+ �(xi

h
, ai

h
)�(xi

h
, ai

h
)>
��1

=

�
⇤i

h

��1
�(xi

h
, ai

h
)�(xi

h
, ai

h
)>

�
⇤i

h

��1

1 + k�(xi

h
, ai

h
)k2

(⇤i
h)

�1

,

34

Published as a conference paper at ICLR 2024

which implies
����(x, a)>AJk

k
. . . AJi+1

i+1

�
(⇤i

h
)�1
� (⇤i+1

h
)�1

�
AJi+1

i+1 . . . AJk
k
�(x, a)

���

=

������(x, a)
>AJk

k
. . . AJi+1

i+1

�
⇤i

h

��1
�(xi

h
, ai

h
)�(xi

h
, ai

h
)>

�
⇤i

h

��1

1 + k�(xi

h
, ai

h
)k2

(⇤i
h)

�1

AJi+1

i+1 . . . AJk
k
�(x, a)

�����



⇣
�(x, a)>AJk

k
. . . AJi+1

i+1 (⇤i

h
)�1�(xi

h
, ai

h
)
⌘2



���AJk
k

. . . AJi+1

i+1 (⇤i

h
)�1/2�(x, a)

���
2

2

���(⇤i

h
)�1/2�(xi

h
, ai

h
)
���
2

2



kY

j=i+1

⇣
1� 2⌘j�min(⇤

j

h
)
⌘2Jj

k�(xi

h
, ai

h
)k2(⇤i

h)
�1k�(x, a)k

2
(⇤i

h)
�1 ,

where we used 0 < 1/i  k�(x, a)k(⇤i
h)

�1  1. Therefore, we have

�(x, a)>⌃k,Jk

h
�(x, a)

�
1

2�K

k�(x, a)k2(⇤k
h)

�1 �
1

2�K

kY

i=1

�
1� 2⌘i�min(⇤

i

h
)
�2Ji
k�(x, a)k2(⇤1

h)
�1

�
1

2�K

k�1X

i=1

kY

j=i+1

⇣
1� 2⌘j�min(⇤

j

h
)
⌘2Jj

k�(xi

h
, ai

h
)k2(⇤i

h)
�1k�(x, a)k

2
(⇤i

h)
�1 .

Similar to the proof of Lemma C.2, when we choose Jj � j log(3
p
k), we have

k�(x, a)k
⌃

k,Jk
h
�

1

2
p
�K

k�(x, a)k(⇤k

h)
�1 �

k�(x, a)k2

(3
p
k)k

�

k�1X

i=1

1

(
p
3k)k�i

k�(x, a)k2

!

�
1

2
p
�K

✓
k�(x, a)k(⇤k

h)
�1 �

1

3
p
k
k�(x, a)k2 �

1

6
p
k
k�(x, a)k2

◆

�
1

2
p
�K

k�(x, a)k(⇤k
h)

�1 ,

(38)

where we used the fact that �min((⇤k

h
)�1) � 1/k. Therefore, according to (37) and (38), it holds

that

|Zk| =

������
rh(x, a) + PhV k

h+1(x, a)� �(x, a)>µk,Jk

hq
�(x, a)>⌃k,Jk

h
�(x, a)

������


5H
p
dC� +

4
3

1
2
p
�K

,

(39)

which implies |Zk| < 1 when 1p
�K

= 10H
p
dC� +

8
3 .

D REMOVING THE INTERVAL CONSTRAINT ON � IN THEOREM 4.2

As discussed in Remark 4.3, one shortcoming of Theorem 4.2 is that it requires the failure probability
� to be in the interval (1

2
p
2e⇡

, 1). However, in frequentist regret analysis it is desirable that the regret
bound holds for arbitrarily small failure probability. Motivated from optimistic reward sampling
scheme proposed in (Ishfaq et al., 2021), below we propose a modification of LMC-LSVI for which
we have the same regret bound that holds with probability 1 � � for any � 2 (0, 1). We call this
version of the algorithm MS-LMC-LSVI where MS stands for multi-sampling.

D.1 MULTI-SAMPLING LMC-LSVI

Multi-Sampling LMC-LSVI follows the same algorithm as in LMC-LSVI (Algorithm 1) with one
difference. In Algorithm 1, we maintain one parameterization wh for each step h 2 [H]. After

35

Published as a conference paper at ICLR 2024

performing noisy gradient descent on this parameter Jk times in Line 7 to 10, we use this perturbed
parameter to define our estimated Q function in Line 11. We follow exactly the same procedure
in MS-LMC-LSVI but instead of maintaining one estimate of Q function, we generate M esti-
mates for Q function {Qk,m

h
}m2[M] through maintaining M samples of w: {wk,Jk,m

h
}m2[M] where

Qk,m

h
(·, ·) = �(·, ·)>wk,Jk,m

h
and {w1,0,m

h
}m2[M] are intialized as zero vector. Then, we can make

an optimistic estimate of Q function by setting the following

Qk

h
(·, ·) = min

n
max
m2[M]

{Qk,m

h
(·, ·)}, H � h+ 1

o
. (40)

D.2 SUPPORTING LEMMAS

First, we outline the supporting lemmas required for the regret analysis of MS-LMC-LSVI.
Lemma D.1. Let � = 1 in (4). For any (k, h) 2 [K]⇥ [H] and m 2 [M], we have

���wk,Jk,m

h

���
2


16

3
Hd
p

K +

s
2K

3�K�
d3/2 := B�,

with probability at least 1� �.

Proof of Lemma D.1. The proof is identical to that of Lemma B.3.

Lemma D.2. Let � = 1 in (4). For any fixed 0 < � < 1, with probability 1 � �, we have for all
(k, h) 2 [K]⇥ [H],

�����

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
�����
(⇤k

h)
�1

 3H
p

d

"
1

2
log(K + 1) +M log

2
p
2KB�/(2M)

H

!
+ log

2

�

#1/2

,

where B� = 16
3 Hd

p
K +

q
2K

3�K�
d3/2.

Proof of Lemma D.2. Applying Lemma D.1 and applying union bound over all m, with probability
1� �/2, for all m 2 [M], we have

���wk,Jk,m

h

���
2


16

3
Hd
p

K +

s
4MK

3�K�
d3/2 := B�/(2M) (41)

Similar to the proof of Lemma B.4, considering the function class V :=
{maxa2A min

�
maxm2[M] �(·, a)

>wm, H

: 8m 2 [M], kwm
k2  B�/(2M)} and combin-

ing Lemma E.8 and Lemma E.11, we have that for any " > 0 and � > 0, with probability at least
1� �/2,

�����

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
�����
(⇤k

h)
�1

 2H


d

2
log

✓
k + �

�

◆
+ dM log

✓
B�/(2M)

"

◆
+ log

2

�

�1/2
+

2
p
2k"
p
�

. (42)

As in the proof of Lemma B.4, setting � = 1, " = H

2
p
2k

, we get
�����

k�1X

⌧=1

�(x⌧

h
, a⌧

h
)
⇥
V k

h+1(x
⌧

h+1)� PhV
k

h+1(x
⌧

h
, a⌧

h
)
⇤
�����
(⇤k

h)
�1

 3H
p

d

"
1

2
log(K + 1) +M log

2
p
2KB�/(2M)

H

!
+ log

2

�

#1/2

. (43)

with probability 1� �/2. Applying union bound completes the proof.

36

Published as a conference paper at ICLR 2024

Lemma D.3. Let � = 1 in (4). Define the following event

E(K,H,M, �)

=

⇢���(x, a)> bwk

h
� rh(x, a)� PhV

k

h+1(x, a)
��  5H

p

dC�,Mk�(x, a)k(⇤k
h)

�1 ,

8(h, k) 2 [H]⇥ [K] and 8(x, a) 2 S ⇥A

�
, (44)

where we denote C�,M =
h
1
2 log(K + 1) +M log

⇣
2
p
2KB�/(2M)

H

⌘
+ log 2

�

i1/2
and B� is defined

in Lemma D.2. Then we have P(E(K,H,M, �)) � 1� �.

Proof of Lemma D.3. The proof is exactly the same as that of Lemma B.5. We just need to replace
Lemma B.4 with Lemma D.2 when it is used.

Lemma D.4 (Error bound). Let � = 1 in (4). For any � 2 (0, 1) conditioned on the event
E(K,H,M, �), for all (h, k) 2 [H]⇥ [K] and (x, a) 2 S ⇥A, with probability at least 1� �2, we
have

�lk
h
(x, a) 

5H
p

dC� + 5

s
2d log (1/�)

3�K

+ 4/3

!
k�(x, a)k(⇤k

h)
�1 , (45)

where C�,M is defined in Lemma D.3.

Proof of Lemma D.4. The proof is exactly the same as that of Lemma B.6. We just need to replace
Lemma B.5 with Lemma D.3 when it is used.

Lemma D.5 (Optimism). Let � = 1 in (4) and M = log(HK/�)/ log(1/(1� c)) where c = 1
2
p
2e⇡

and � 2 (0, 1). Conditioned on the event E(K,H,M, �), for all (h, k) 2 [H] ⇥ [K] and (x, a) 2
S ⇥A, with probability at least 1� �, we have

lk
h
(x, a)  0. (46)

Proof of Lemma D.5. We have Qk

h
(x, a) = H � h+1, when maxm2[M] Q

k,m

h
(x, a) � H � h+1,

and we trivially have lk
h
(x, a)  0.

Now, we consider the case, when Qk

h
(x, a) = maxm2[M] Q

k,m

h
. Using the exact same proof steps

as done in Lemma B.7, we can first show that for any (k, h) 2 [K]⇥ [H] and any m 2 [M]

P
⇣
Qk,m

h
(x, a) � rh(x, a) + PhV

k

h+1(x, a)
⌘
�

1

2
p
2e⇡

, (47)

where Qk,m

h
= �(x, a)>wk,Jk,m

h
.

Note that

P
�
lk
h
(x, a)  0, 8(x, a) 2 S ⇥A

�

= P
�
Qk

h
(x, a) � rh(x, a) + PhV

k

h+1(x, a), 8(x, a) 2 S ⇥A
�

= 1� P
�
9(x, a) 2 S ⇥A : Qk

h
(x, a)  rh(x, a) + PhV

k

h+1(x, a)
�

(48)

37

Published as a conference paper at ICLR 2024

Now,

P
�
9(x, a) 2 S ⇥A : Qk

h
(x, a)  rh(x, a) + PhV

k

h+1(x, a)
�

= P
✓
9(x, a) 2 S ⇥A : max

m2[M]
Qk,m

h
(x, a)  rh(x, a) + PhV

k

h+1(x, a)

◆

= P
⇣
9(x, a) 2 S ⇥A : 8m 2 [M], Qk,m

h
(x, a)  rh(x, a) + PhV

k

h+1(x, a)
⌘

 P
⇣
8m 2 [M], 9(xm, am) 2 S ⇥A : Qk,m

h
(xm, am)  rh(xm, am) + PhV

k

h+1(xm, am)
⌘

=
MY

m=1

P
⇣
9(x, a) 2 S ⇥A : Qk,m

h
(x, a)  rh(x, a) + PhV

k

h+1(x, a)
⌘

=
MY

m=1

⇣
1� P

⇣
Qk,m

h
(x, a) � rh(x, a) + PhV

k

h+1(x, a), 8(x, a) 2 S ⇥A

⌘⌘



✓
1�

1

2
p
2e⇡

◆M

:=
�

HK
,

where the last inequality follows from (47).

Thus, from (48), we have

P
�
lk
h
(x, a)  0, 8(x, a) 2 S ⇥A

�
� 1�

�

HK
.

Denoting c = 1
2
p
2e⇡

and solving for M , we have M = log(HK/�)/ log(1/(1� c)).

Applying union bound over h and k, 8(x, a) 2 S ⇥ A and 8(h, k) 2 [H] ⇥ [K],with probability
1� �, we have, lk

h
(x, a)  0. This completes the proof.

D.3 REGRET ANALYSIS OF MS-LMC-LSVI

Theorem D.6. Let � = 1 in (4), 1
�k

= eO(H
p
d). For any k 2 [K], let the learning rate ⌘k =

1/(4�max(⇤k

h
)), the update number Jk = 2k log(4HKd) where k = �max(⇤k

h
)/�min(⇤k

h
) is the

condition number of ⇤k

h
. For any � 2 (0, 1), let M = log(HK/�)/ log(1/(1�c)) where c = 1

2
p
2e⇡

.
Under Definition 4.1, the regret of MS-LMC-LSVI satisfies

Regret(K) = eO(d3/2H3/2
p

T),

with probability at least 1� �.

Proof of Theorem D.6. The proof is essentially same as that of Theorem B.8. The only difference is
in computing the probabilites while applying union bound. Nevertheless, we highlight the key steps.

We use the same regret decomposition from (12). We bound the term (i), (ii) and (iii) in (12) exactly
in the same way as in the proof of Theorem B.8 and thus with probability 1� 2�/3, we have

KX

k=1

HX

h=1

D
k

h
+

KX

k=1

HX

h=1

M
k

h
 2

p
2H2T log(3/�), (49)

Now we bound term (iv) in (12). Suppose the event E(K,H,M, �0) defined in Lemma D.3 holds.
Using Lemma D.4 and Lemma D.5 with union bound, similar to the proof of Theorem B.8, we can
show that with probability 1� (d02 + d0), we have

KX

k=1

HX

h=1

�
E⇡⇤ [lk

h
(xh, ah) | x1 = xk

1]� lk
h
(xk

h
, ak

h
)
�
 eO(d3/2H3/2

p

T). (50)

38

Published as a conference paper at ICLR 2024

By Lemma D.3, the event E(K,H,M, �0) occurs with probability 1� �0. By union bound the event
E(K,H,M, �0) occurs and (50) holds with probability at least 1 � (�02 + �0 + �0). As � 2 (0, 1),
setting �0 = �/9, we have 1� (�02 + �0 + �0) � 1� 3�0 = 1� �/3.

Applying another union bound over the last inequality and the martingale inequalities from (49), we
have, the regret is bounded by eO(d3/2H3/2

p
T) with probability at least 1 � � and this completes

the proof.

E AUXILIARY LEMMAS

E.1 GAUSSIAN CONCENTRATION

In this section, we present some auxiliary technical lemmas that are of general interest instead of
closely related to our problem setting.
Lemma E.1. Given a multivariate normal distribution X ⇠ N (0,⌃d⇥d), we have,

P

kXk2 

r
1

�
Tr(⌃)

!
� 1� �.

Proof of Lemma E.1. From the properties of multivariate Gaussian distribution, X = ⌃1/2⇠ for
⇠ ⇠ N (0, Id⇥d). As ⌃1/2 is symmetric, it can be decomposed as ⌃1/2 = Q⇤Q>, where Q is
orthogonal and ⇤ is diagonal. Hence,

P
�
kXk2  C2

�
= P

⇣
kXk22  C2

⌘
= P

⇣��Q⇤QT ⇠
��2
2
 C2

⌘
= P

⇣��⇤QT ⇠
��2
2
 C2

⌘
,

since orthogonal transformation preserves the norm. Another property of standard Gaussian distri-
bution is that it is spherically symmetric. That is, Q⇠

d
= ⇠ for any orthogonal matrix Q. So,

P
⇣��⇤QT ⇠

��2
2
 C2

⌘
= P

⇣
k⇤⇠k22  C2

⌘
,

as Q> is also orthogonal. Observe that k⇤⇠k22 =
P

d

i=1 �
2
i
⇠2
i

is the sum of the independent �2
1-

distributed variables with E
⇣
k⇤⇠k22

⌘
=

P
d

i=1 �
2
i
= Tr(⇤2) =

P
d

i=1 Var(Xi). From Markov’s
inequality,

P
⇣
k⇤⇠k22  C2

⌘
� 1�

1

C2
· E

⇣
k⇤⇠k22

⌘
.

So,

� =
1

C2
· E

⇣
k⇤⇠k22

⌘
, C =

vuut1

�

dX

i=1

Var(Xi) =

r
1

�
Tr(⌃),

which completes the proof.

Lemma E.2 (Abramowitz and Stegun (1964)). Suppose Z is a Gaussian random variable Z ⇠
N (µ,�2), where � > 0. For 0  z  1, we have

P(Z > µ+ z�) �
1
p
8⇡

e
�z2

2 , P(Z < µ� z�) �
1
p
8⇡

e
�z2

2 .

And for z � 1, we have
e�z

2
/2

2z
p
⇡
 P(|Z � µ| > z�) 

e�z
2
/2

z
p
⇡

.

E.2 INEQUALITIES FOR SUMMATIONS

Lemma E.3 (Lemma D.1 in Jin et al. (2020)). Let ⇤h = �I +
P

t

i=1 �i�>
i

, where �i 2 Rd and
� > 0. Then it holds that

tX

i=1

�>
i
(⇤h)

�1�i  d.

39

Published as a conference paper at ICLR 2024

Lemma E.4 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Using the same notation as defined in
this paper

KX

k=1

���(sk
h
, ak

h
)
��2
(⇤k

h)
�1  2d log

⇣�+K

�

⌘
.

Lemma E.5 (Lemma D.5 in Ishfaq et al. (2021)). Let A 2 Rd⇥d be a positive definite matrix where
its largest eigenvalue �max(A)  �. Let x1, . . . , xk be k vectors in Rd. Then it holds that

���A
kX

i=1

xi

��� 
p

�k

kX

i=1

kxik
2
A

!1/2

.

E.3 LINEAR ALGEBRA LEMMAS

Lemma E.6. Consider two symmetric positive semidefinite square matrices A and B. If A � B,
then kAk2 � kBk2.

Proof of Lemma E.6. Note that A�B is also positive semidefinite. Now,

kBk2 = sup
kxk=1

x>Bx  sup
kxk=1

�
x>Bx+ x>(A�B)x

�
= sup

kxk=1
x>Ax = kAk2. (51)

This completes the proof.

Lemma E.7 ((Horn and Johnson, 2012)). If A and B are positive semi-definite square matrices of
the same size, then

0  [Tr(AB)]2  Tr(A2) Tr(B2)  [Tr(A)]2[Tr(B)]2.

E.4 COVERING NUMBERS AND SELF-NORMALIZED PROCESSES

Lemma E.8 (Lemma D.4 in Jin et al. (2020)). Let {si}1i=1 be a stochastic process on state space
S with corresponding filtration {Fi}

1
i=1. Let {�i}

1
i=1 be an Rd-valued stochastic process where

�i 2 Fi�1, and k�ik  1. Let ⇤k = �I +
P

k

i=1 �i�>
i

. Then for any � > 0, with probability at
least 1� �, for all k � 0, and any V 2 V with sup

s2S |V (s)|  H , we have

���
kX

i=1

�i

�
V (si)� E[V (si) | Fi�1]

 ���
2

⇤�1
k

 4H2
hd
2
log

⇣k + �

�

⌘
+ log

N"

�

i
+

8k2✏2

�
,

where N" is the "-covering number of V with respect to the distance dist(V, V 0) = sup
s2S |V (s)�

V 0(s)|.

Lemma E.9 (Covering number of Euclidean ball, Vershynin (2018)). For any " > 0, the "-covering
number, N", of the Euclidean ball of radius B > 0 in Rd satisfies

N" 

⇣
1 +

2B

"

⌘d



⇣3B
"

⌘d

.

Lemma E.10. Let V denote a class of functions mapping from S to R with the following parametric
form

V (·) = min

⇢
max
a2A

�(·, a)>w,H

�
,

where the parameter w satisifies kwk  B and for all (x, a) 2 S ⇥A, we have k�(x, a)k  1. Let
NV," be the "-covering number of V with respect to the distance dist(V, V 0) = sup

x
|V (x)�V 0(x)|.

Then
logNV,"  d log (1 + 2B/")  d log (3B/").

40

Published as a conference paper at ICLR 2024

Proof of Lemma E.10. Consider any two functions V1, V2 2 V with parameters w1 and w2 respec-
tively. Since both min{·, H} and maxa are contraction maps, we have

dist(V1, V2)  sup
x,a

���(x, a)>w1 � �(x, a)>w2

��

 sup
�:k�k1

���>w1 � �>w2

��

= sup
�:k�k1

���>(w1 � w2)
��

 sup
�:k�k1

k�k2kw1 � w2k2

 kw1 � w2k,

(52)

Let Nw," denote the "-covering number of {w 2 Rd
| kwk  B}. Then, Lemma E.9 implies

Nw," 

⇣
1 +

2B

"

⌘d



⇣3B
"

⌘d

.

Let Cw," be an "-cover of {w 2 Rd
| kwk  B}. For any V1 2 V , there exists w2 2 Cw," such that

V2 parameterized by w2 satisfies dist(V1, V2)  ". Thus, we have,

logNV,"  logNw,"  d log(1 + 2B/")  d log(3B/"),

which concludes the proof.

Lemma E.11. Let V denote a class of functions mapping from S to R with the following parametric
form

V (·) = max
a2A

min

⇢
max
m2[M]

�(·, a)>wm, H

�
,

where the parameter wm satisifies kwm
k  B for all m 2 [M], and for all (x, a) 2 S ⇥ A,

we have k�(x, a)k  1. Let NV," be the "-covering number of V with respect to the distance
dist(V, V 0) = sup

x
|V (x)� V 0(x)|. Then

logNV,"  dM log (1 + 2B/")  dM log (3B/").

Proof of Lemma E.11. The proof is analogous to that of Lemma E.10. We provide the detailed proof
for completenes.

Consider any two functions V1, V2 2 V with

V1 = max
a2A

min

⇢
max
m2[M]

�(·, a)>wm

1 , H

�

and

V2 = max
a2A

min

⇢
max
m2[M]

�(·, a)>wm

2 , H

�
.

Since both min{·, H} and maxa are contraction maps, we have

dist(V1, V2)  sup
x,a

�� max
m2[M]

�(x, a)>wm

1 � max
m2[M]

�(x, a)>wm

2

��

 sup
�:k�k1

�� max
m2[M]

�>wm

1 � max
m2[M]

�>wm

2

��

 sup
�:k�k1

max
m2[M]

k�k2kw
m

1 � wm

2 k2

 max
m2[M]

kwm

1 � wm

2 k2,

(53)

41

Published as a conference paper at ICLR 2024

0 1 2 3 4 5 6
Training Episodes ⇥102

0

10

20

30

40

50
Ep

is
od

e
R

et
ur

n

Random MDPs: best run

OPPO
LSVI-PHE
LMC-LSVI
LSVI-UCB

Figure 4: Comparison of LMC-LSVI, OPPO (Cai et al., 2020), LSVI-UCB (Jin et al., 2020) and
LSVI-PHE (Ishfaq et al., 2021) in randomly generated non-stationary linearly parameterized MDPs
with 10 states, 4 actions, horizon length H = 100 and a sparse transition matrix.

For any m 2 [M], let C
m be an "-cover of {wm

2 Rd
| kwm

k  B} with respect to the 2-norm.
By Lemma E.9, we know,

|C
m

| 

⇣
1 +

2B

"

⌘d



⇣3B
"

⌘d

.

It holds that NV," 
Q

M

m=1 |C
m

|. Thus, we have,

logNV,"  log
MY

m=1

|C
m

|  dM log(1 + 2B/")  dM log(3B/"),

which concludes the proof.

F EXPERIMENT DETAILS

In this section, first, we provide experiments for LMC-LSVI in randomly generated linear MDPs and
the riverswim environment (Strehl and Littman, 2008; Osband et al., 2013) and compare it against
provably efficient algorithms designed for linear MDPs. Then, we provide more implementation
details about experiments in N -Chain and Atari games. In total, all experiments (including hyper-
parameter tuning) took about 2 GPU (V100) years and 20 CPU years.

F.1 EXPERIMENTS FOR LMC-LSVI

F.1.1 RANDOMLY GENERATED LINEAR MDPS

In this section, we use randomly generated non-stationary and linearly parameterized MDPs with
10 states, 4 actions, horizon length of H = 100 and a spares transition matrix. As a training setup,
we use 4 randomly generated linear MDPs. For each MDP, we use 5 seeds for a total of 20 runs
per hyperparameter combination. In Figure 4, we compare our proposed LMC-LSVI against OPPO
(Cai et al., 2020), LSVI-UCB (Jin et al., 2020) and LSVI-PHE (Ishfaq et al., 2021).

42

Published as a conference paper at ICLR 2024

F.1.2 THE RIVERSWIM ENVIRONMENT

In the Riverswim environment, there are N states which are lined up in a chain. Figure 5 depicts
the case when N = 6. The agent begins in the leftmost state s1 and in each state can take one of
the two actions – “left” or “right”. Swimming to the left, with the current, deterministically moves
the agent to the left while swimming to the right against the current often fails. The optimal policy
is to swim to the right and reach to the rightmost state sN . Thus, deep exploration is required to
obtain the optimal policy in this environment. We experiment with the variant of RiverSwim where
N = 12 and H = 40. We use LSVI-UCB (Jin et al., 2020), LSVI-PHE (Ishfaq et al., 2021), OPPO
(Cai et al., 2020) and OPT-RLSVI (Zanette et al., 2020a) as baselines. As shown in Figure 6a, LMC-
LSVI achieves similar performace to LSVI-UCB and outperforms other baselines. Figure 6b shows
the performance of LMC-LSVI as we vary the update number Jk. As we see, even with a relatively
small value of Jk, LMC-LSVI manages to learn a near-optimal policy quickly.

Figure 5: The 6 state RiverSwim environment from Osband et al. (2013). Here, state s1 has a
small reward while state s6 has a large reward. The dotted arrows represent the action “left” and
deterministically move the agent to the left. The continuous arrows denote the action “right” and
move the agent to the right with a relatively high probability. This action represents swimming
against the current, hence the name RiverSwim.

F.2 N -CHAIN

There are two kinds of input features �1hot(st) = (1{x = st}) and �therm(st) = (1{x  st}) in
{0, 1}N . Osband et al. (2016b) found that �therm(st) has lightly better generalization. So following
Osband et al. (2016b), we use �therm(st) as the input features.

For both DQN and Adam LMCDQN , the Q function is parameterized with a multi-layer perceptron
(MLP). The size of the hidden layers in the MLP is [32, 32], and ReLU is used as the activation
function. Both algorithms are trained for 105 steps with an experience replay buffer of size 104.
We measure the performance of each algorithm by the mean return of the last 10 test episodes. The
mini-batch size is 32, and we update the target network for every 100 steps. The discount factor
� = 0.99.

DQN is optimized by Adam, and we do a hyper-parameter sweep for the learning rate with grid
search. Adam LMCDQN is optimized by Adam SGLD with ↵1 = 0.9, ↵2 = 0.99, and �1 =
10�8. For Adam LMCDQN , besides the learning rate, we also sweep the bias factor a, the inverse
temperature �k, and the update number Jk. We list the details of all swept hyper-parameters in Table
2.

Table 2: The swept hyper-parameter in N -Chain.

HYPER-PARAMETER VALUES

LEARNING RATE ⌘k {10�1 , 3⇥ 10�2 , 10�2 , 3⇥ 10�3 , 10�3 , 3⇥ 10�4 , 10�4
}

BIAS FACTOR a {1.0, 0.1, 0.01}
TEMPERATURE �k {1016 , 1014 , 1012 , 1010 , 108}
UPDATE NUMBER Jk {1, 4, 16, 32 }

43

Published as a conference paper at ICLR 2024

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ⇥104

0

2

4

6

8

Ep
is

od
e

R
et

ur
n

Riverswim12: best run

Baseline
LSVI-PHE
LMC-LSVI
LSVI-UCB
OPPO
OPT-RLSVI

(a) Episode returns for best runs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Episodes ⇥104

0

1

2

3

4

5

6

7

8

Ep
is

od
e

R
et

ur
n

Riverswim12 - LMC-LSVI:

Baseline
Jk = 1

Jk = 4
Jk = 8

Jk = 16

(b) Episode returns for different Jk

Figure 6: Experiment in the Riverswim environment [Strehl & Littman, 2008] with chain length 12.
(a) Mean episode returns for best runs, after hyperparameter optimization. (b) Mean episode returns
for different values of Jk in LMC-LSVI.

Figure 7: N-Chain environment Osband et al. (2016b).

F.3 ATARI

F.3.1 EXPERIMENT SETUP

We implement DQN, Bootstrapped DQN, Noisy-Net and Adam LMCDQN with tianshou framework
(Weng et al., 2022). For the other five baseline algorithms, we take the results from DQN Zoo (Quan
and Ostrovski, 2020)3. Both DQN and Adam LMCDQN use the same network structure, following
the same observation process as in Mnih et al. (2015). To be specific, the observation is 4 stacked
frames and is reshaped to (4, 84, 84). The raw reward is clipped to {�1, 0,+1} for training, but the
test performance is based on the raw reward signals.

Unless mentioned explicitly, we use most of the default hyper-parameters from tianshou’s DQN 4.
For each task, there is just one training environment to reduce the exploration effect of training in
multiple environments. There are 5 test environments for a robust evaluation. The mini-batch size
is 32. The buffer size is 1M . The discount factor is 0.99.

For DQN, we use the ✏-greedy exploration strategy, where ✏ decays linearly from 1.0 to 0.01 for the
first 1M training steps and then is fixed as 0.05. During the test, we set ✏ = 0. The DQN agent is
optimized by Adam with a fixed learning rate 10�4.

For our algorithm Adam LMCDQN , since a large Jk significantly increases training time, so we set
Jk = 1 so that all experiments can be finished in a reasonable time. The Adam LMCDQN agent is
optimized by Adam SGLD with learning rate ⌘k = 10�4, ↵1 = 0.9, ↵2 = 0.99, and �1 = 10�8.
We do a hyper-parameter sweep for the bias factor a and the inverse temperature �k, as listed in
Table 3

3https://github.com/deepmind/dqn_zoo/blob/master/results.tar.gz
4https://github.com/thu-ml/tianshou/blob/master/examples/atari/atari_

dqn.py

44

https://github.com/deepmind/dqn_zoo/blob/master/results.tar.gz
https://github.com/thu-ml/tianshou/blob/master/examples/atari/atari_dqn.py
https://github.com/thu-ml/tianshou/blob/master/examples/atari/atari_dqn.py

Published as a conference paper at ICLR 2024

Table 3: The swept hyper-parameter in Atari games.

HYPER-PARAMETER VALUES

BIAS FACTOR a {1.0, 0.1, 0.01}
TEMPERATURE �k {1016, 1014, 1012}

F.3.2 ADDITIONAL RESULTS

Our implementation of Adam LMCDQN applies double Q networks by default. In Figure 8, we
compare the performance of Adam LMCDQN with and without applying double Q functions. The
performance of Adam LMCDQN is only slightly worse without using double Q functions, prov-
ing the effectiveness of our approach. Similarly, there is no significant performance difference for
Langevin DQN (Dwaracherla and Van Roy, 2020) with and without double Q functions, as shown
in Figure 9.

Figure 8: The return curves of Adam LMCDQN in Atari over 50 million training frames, with and
without double Q functions. Solid lines correspond to the median performance over 5 random seeds,
while shaded areas correspond to 90% confidence interval. The performance of Adam LMCDQN is
only slightly worse without using double Q functions, proving the effectiveness of our approach.

Figure 9: The return curves of Langevin DQN in Atari over 50 million training frames, with and
without double Q functions. Solid lines correspond to the median performance over 5 random seeds,
while shaded areas correspond to 90% confidence interval. There is no significant performance
improvement by applying double Q functions in Langevin DQN.

Moreover, we also compare Langevin DQN with our algorithm Adam LMCDQN in Figure 10. Both
algorithms incorporate the double Q trick by default. Overall, Adam LMCDQN usually outperforms
Langevin DQN in sparse-reward hard-exploration games, such as Gravitar, Solaris, and Venture,

45

Published as a conference paper at ICLR 2024

while in dense-reward hard-exploration games, such as Alien, H.E.R.O and Qbert, Adam LMCDQN
and Langevin DQN achieve similar performance.

Figure 10: The return curves of Adam LMCDQN and Langevin DQN in Atari over 50 million
training frames. Solid lines correspond to the median performance over 5 random seeds, while
shaded areas correspond to 90% confidence interval.

46

	Introduction
	Preliminary
	Langevin Monte Carlo for Reinforcement Learning
	Theoretical Analysis
	Deep Q-Network with LMC Exploration
	Experiments
	Demonstration of Deep Exploration
	Evaluation in Atari Games

	Conclusion and Future Work
	Related Work
	Proof of the Regret Bound of LMC-LSVI
	Supporting Lemmas
	Regret Analysis

	Proof of Supporting Lemmas
	Proof of Prop:wgaussian
	Proof of Lemma:bound-2norm-wkjk
	Proof of Lemma:self-normalized-mdp
	Proof of Lemma:what-r-PV
	Proof of lemma:error-bound-on-l
	Proof of lemma:bound-on-l

	Removing the interval constraint on in theorem:main-theorem-main-paper
	Multi-Sampling LMC-LSVI
	Supporting Lemmas
	Regret Analysis of MS-LMC-LSVI

	Auxiliary Lemmas
	Gaussian Concentration
	Inequalities for summations
	Linear Algebra Lemmas
	Covering numbers and self-normalized processes

	Experiment Details
	Experiments for LMC-LSVI
	Randomly generated linear MDPs
	The RiverSwim environment

	N-Chain
	Atari
	Experiment Setup
	Additional Results

