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Abstract—In this paper, we develop a scheme to partition
a one- or multi-dimensional consecutive integer number set
into multiple identical, possibly rotated, subsets. The proposed
technique first exploits one-dimensional nested subsets, and the
results are extended to achieve two- and multi-subset partitioning
as well as in two- and multi-dimensional spaces. The number
of consecutive lags in each case is examined. The results are
useful to various sensing and communication applications, and
sparse step-frequency waveform design for range estimation in
automotive radar is demonstrated as an example.

Index Terms—integer set partition, multi-dimensional parti-
tion, sparse array, sparse waveform design, automotive radar

I. INTRODUCTION

The design and processing using sparse sensor arrays and
sparse waveforms are a classical problem for effective system
implementation with a lower complexity [1-4]. Nevertheless,
the last decade witnessed significant interests and advancement
in this direction [5-14]. This is motivated by the strong
demands to pursue enhanced sensing capability, improved
sensing accuracy, and increased communication capacity with
a low complexity. Such progress was made possible due to the
recent advancements in sparsity-based processing and convex
optimization tools, such as compressive sensing and structured
matrix completion [15-25].

In this context, sparse arrays and sparse waveforms are
designed for a single user or a single platform to achieve the
desired sensing performance subject to the complexity and
cost constraints. In this paper, we consider the co-design of
multiple sparse arrays or waveforms as a partition problem
of a consecutive set, i.e., dividing a one-dimensional (1-D)
or multi-dimensional (M-D) consecutive space into two or
multiple non-overlapping subsets so that these subsets can
be assigned to different users or platforms, or are used for
different purposes, such as different functions in a multi-
functional radar system.

Traditional array processing and spectral analyses often
assume uniform space- and time-domain sampling as a result
of Nyquist sampling. As such, the obtained data set are 1-
D or M-D consecutive discrete sets. As sparse arrays and
waveforms become more commonly used for effective data
sampling and processing, various situations arise in which
multiple sparse arrays and waveforms are designed as non-
overlapping subsets of a consecutive integer set. For example,
in random sparse step-frequency waveform design [26, 27],
designing multiple non-overlapping step frequency sets would
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allow multiple radars to effectively share the entire spectrum
band without mutual interference. Multiple frequency-diverse
array (FDA) radars may use different sparse frequencies
to achieve high range resolution with reduced interference
[28, 29]. In massive multiple-input multiple-output (MIMO)
systems, hybrid analog-digital systems may divide an array
into multiple non-overlapping subarrays, and analog beam-
forming is implemented in each subarray [30, 31]. Other appli-
cations include staggered synthetic aperture radar (SAR) using
low-complexity sampling and inverse SAR (ISAR) exploiting
sparse frequency bands and sparse apertures [32, 33]. Radar
slow-times can also be partitioned into multiple subsets to be
used by coordinated radar systems [34].

The focus of this paper is partitioning a full set into
multiple identical, possibly rotated subsets, and each subset
has consecutive different lags. Identical partition is desired
for each subset to provide the same quality of service. In
some problems, such as the the aforementioned analog beam-
forming problem in a massive MIMO system, such structure
would allow shared optimization among different subsets so
that the optimization can be simplified. On the other hand,
consecutive lags often make the subsequent signal processing
more convenient and enable desired sensing performance, e.g.,
with low sidelobe levels. We adopt the simple nested con-
figurations, which naturally partition a consecutive linear set
into two identical but mirrored sparse segments. This concept
is then extended into a two-dimensional (2-D) configuration
to form four identical subsets. More general extensions to
other dimensions and multi-subset partitioning are discussed.
Sparse step-frequency waveform design for range estimation
in automotive radar is demonstrated as an example.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). (-)T denotes the vector transpose,
and vec(-) represents the vectorization operation that turns a
matrix into a vector by stacking all columns on top of one
another. M| denotes the cardinality of set M, ® and | re-
spectively denote the Kronecker product and union operators.

II. TWO-SUBSET 1-D PARTITIONING

Let Q ={1,---, N} be a 1-D set containing N continuous
integers between 1 and N, where N is assumed to be an even
integer. Our objective is to partition QQ into G > 2 subsets,
ie., Q = Q1 U---UQg. We require that these subsets have
identical, possibly rotated, patterns, and each subset, Qg, g9 =
1,---, G, has consecutive difference lags which are desired to
be as long as possible. In this paper, we consider a nested
structure-based approach for systematical partitioning of 1-D
or M-D partitioning, where the number of subsets in each
dimension is an integer power of 2 (e.g., 2¥ for some integer
K>1).
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Fig. 1: Three partitioning schemes of an 8-element set.
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Fig. 2: Difference lags of the three partitioning schemes. Both
subsets in each partitioning scheme share same difference lags.

A. Example of a 1-D Set Case

We start with a simple example where an 8-element con-
secutive set Q = {1,---,8} is portioned into G = 2 subsets.
Fig. 1 depicts three possible patterns, which we respectively
refer to as interleaved, localized, and nested. For the three
partitions, the partitioning patterns are shown in Table I. It is
clear that, for all three partitioning patterns, Q; and Qo are
identical (interleaved and localized) or mirrored (nested).

The difference lag set for the gth subset is denoted as
Zg={z]z=u—v,u€Qq4veQy}. (D

Fig. 2 shows the weight functions (number of occurrences)
of the difference lags computed from these three pairs of
subsets. For each pair, only one plot is shown because the
two subsets result in identical difference lags. The interleaved

TABLE I: EXAMPLE OF 8-ELEMENT 1-D PARTITIONING

Subset 1 Q1 Subset 2 Q2
Interleaved {1,3,5,7} {2,4,6,8}
Localized {1,2,3,4} {5,6,7,8}
Nested {1,2,4,6} {3,5,7,8}

partitioning uses a uniform undersampling pattern, thus lead-
ing to equally spaced gaps in the difference lags and causing
alias. On the other hand, the localized partitioning provides
consecutive lags, but the lags only extend between —3 and
3. The nested partitioning scheme becomes a preferred choice
because it provides consecutive lags between —5 and 5.

B. General Rule for Two-Subset Partitioning

For two-subset partitioning, the first nested subset generally
consists of two consecutive elements 1 and 2 as the inner
group, followed by an arbitrary number of outer group ele-
ments separated by 2. Denoting the number of outer group
elements as N > 1, the total number of elements in the first
nested subset is |Q;| = N + 2, located at

Q ={1,2,4,6,---,2N,2N + 2}. )

Similarly, the |Q2] = N + 2 elements of the second nested
subset is located at

QQ = {3a57"'a
Both subarrays obtain consecutive difference lags between

—2N — 1 and 2N + 1. As such, the consecutive set Q is
given as

Q:Q1UQ2:{17273a“'7

which has M = 2N + 4 elements. It is clear that any
consecutive integer set with an even number of elements can
be partitioned into such nested subsets.

For the convenience of presentation in the sequel, we
express the sets Q as all one vector ¢ = 1(an44)x1, and
define the following (2N 4 4) x 1 masking vectors for subsets

Qla@2:

2N —1,2N +1,2N +3,2N +4}.  (3)

2N +3,2N +4}, (4

1, if ke Q,

0, if k ¢ Q,, )

my(k) :{
forg=1,2.

III. MULTI-DIMENSIONAL PARTITIONING

In this section, we extend the two-subset 1-D partitioning
results, discussed in Section II, into an M-D partitioning
scenario, illustrated using the example of 2-D case. Consider a
2-D consecutive integer set Q of dimension M x M2 in the
first (x) and second (y) directions, where M O = oN[I 44
and MP = 2N + 4. Note that N > 1 and NI > 1
may take different values. We form a corresponding matrix
Q = 1y pg020-

Following the same nested F titioning as described in
Section II, we denote Qg and Q; as the gth nested subsets in
the x- and y-directions, respectively, and their corresponding
masking vectors are expressed as

1, fke@
mé”](]g) = { 0 llf 1 ¢ Q[n] (6)

for n € {1,2} and g € {1,2}.
Now we form four 2-D subsets based on the outer product

of mg] and m[ I as g1 and go each takes a value of 1 or 2.

We denote the resulting subset as

= mfy (mfl)" U
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Fig. 3: Example of 2-D partitioning with N[ = 2 and N2 =
3. Black color indicates selection of elements.
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Fig. 4: Lag weights of the 2-D partitioning example.

where g1 € {1,2} and g2 € {1,2}. Because they are derived
from the 1-D nested partitioning scheme, it is straightforward
to confirm that the difference lags of each subset is consecutive
in [-2NW —1: 2N 41, 2N —1:2NP] 4 1),

Fig. 3 shows an example of 2-D partitioning with NI = 2
and NI = 3, or equivalently M"] = 8 and M = 10. In this
example, the element positions in each direction is shown in
Table II, and the difference lags of each subset form a continue
setin [—5: 5, —7: 7]. All the four subsets share the same lag
weights that are depicted in Fig. 4. Note in this figure that the
minimum value is 1, implying that all lags are filled.

Such nested partitioning strategies can be extended into high
dimensions in a straightforward manner.

IV. SUPER-NESTED PARTITIONING

In the above 1-D and M-D partitioning, the number of
subsets in each dimension is limited to two. In this section, we
generalize the result to allow 2K subsets in each dimension,
where K > 1 may take different values for each dimension.

TABLE II: EXAMPLE OF 2-D PARTITIONING

Subset 1 Q! Subset 2 QY
{172’ 47 6} {37 5? 77 8}

{1,2,4,6,8} {3,5,7,9,10}

x-direction 2
y-direction 1

Fig. 5: Example of four-subset 1-D partitioning. Black color
indicate presence of elements.
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Fig. 6: Difference lags of the four-subset 1-D partitioning.

Consider the vectorization of the 2-D partitioning problem
considered in Section III. Vectorizing M, ,, becomes an
MUMP % 1 vector

mgl,gz = VeC(Mgl,gz) =My, & My,, (®)

where g1 € {1,2} and g5 € {1,2}.

This super-nested partitioning scheme exploits two layers
of nested partitioning to obtain four subsets. The total num-
ber of elements in the full set is (2N + 4)(2NP + 4),
and the number of elements in each of the four subsets
is (N 4+ 2)(NP + 2). The yielding difference lags are
consecutive between — (2N 4 4)§2N[2] +1) — (2N 4 1)
and (2N +4)(2NBl + 1) 4 (2N 1),

Corresponding to the 2-D partitioning example depicted in
Section III, the four super-nested subsets are depicted in Fig.
5, and their common lag weights are shown in Fig. 6. Each
subset has 20 elements, and the maximum lag in this case is
61.

Such super-nested partitioning approach can be easily ex-
tended to additional layers of Kronecker products in (8). Such
results can also be used to construct 2-D and M-D partitioning
by applying the super-nested subsets in Section III.

V. SIMULATION RESULTS

We demonstrate the proposed subset partitioning approach
using an example that aims to perform unambiguous range
estimation in an automotive radar. In this example, the fre-
quency bandwidth is partitioned into multiple non-overlapping
step-frequency subsets, thereby allowing multiple radar units
to operate without mutual interference.

A step-frequency radar uses an equally spaced step-
frequency waveform, where the available bandwidth B is
divided into N; frequency bins with a step frequency fa =
B/Ny. As such, the frequency of the nsth frequency bin is
given as:

fn = fO + (Tl,f - l)an

where f is the base frequency. The synthetic range resolution
obtained by coherently processing the return signal from a

’I’Lf:1,2,"',Nf, (9)
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target corresponding to these Ny pulses is given as AR =
¢/(2B), and the maximum unambiguous range is given as
Riax = ¢/(2fa).

Consider a radar system with a signal bandwidth of B =
200 MHz, which is divided into Ny = 400 step frequencies,
rendering the step frequency to be fa = 0.5 MHz. When
all the step frequencies are used by a single radar, the range
resolution is AR = 0.75 m, and the maximum unambiguous
range is Rpyax = 300 m.

Now we partition the 400 step frequencies into 4 orthogonal
subsets. When the 1-D interleaved partitioning method is used,
the maximum frequency span is approximately unchanged,
but the step frequency will be increased to 4fo = 2 MHz,
thereby compromising the unambiguous range to 75 m. On
the other hand, when the localized partitioning method is
used, the step frequency and, subsequently, the unambiguous
range are unchanged, but the bandwidth each waveform can
use is reduced to only one-quarter of the full bandwidth, thus
compromising the range resolution to 3 m.

Fig. 7 shows the estimated range profiles using different
step frequency patterns where three point targets are located
at ranges 227 m, 230 m, and 232 m. In each subplot, the
top panel shows the range profile with the full range between
0 m and 300 m, and the bottom panel shows the enlarged
result for range between 220 m and 240 m. Fig. 7(a) shows
an aliased result obtained from an interleaved step frequency
pattern, whereas Fig. 7(b) shows the unresolved result obtained
from the localized step frequency pattern.

We propose the use of the super-nested 1-D partitioning
scheme, described in Section IV, and each subset utilizes 100
step frequencies. We use NI = N2 = 8 to construct the
partitioning pattern, and the resulting partitioning patterns are
shown in Fig. 8. In this case, the step frequency and thus the
unambiguous range remain the same as fao = 0.5 MHz and
Ryax = 300 m. On the other hand, the maximum frequency
span of each waveform is 357 step frequencies, rendering the
range resolution to be 0.84 m, which is only a 12% degradation
from the original range resolution when all step frequencies
are used.

Figs. 7(c) through 7(f) show the results obtained from the
proposed four partitioned patterns, where 50 time samples
are used to compute the correlation lags, and the targets are
assumed to generate uncorrelated data samples. It is observed
that the three targets are resolved without alias, and all four
partitioned patterns yield similar performance.

VI. CONCLUSION

In this paper, we developed a scheme to partition a one-
or multi-dimensional consecutive integer number set into
multiple identical, possibly rotated, subsets. The usefulness
was demonstrated using an example of sparse step-frequency
waveform design for range estimation in an automotive radar.
Such partitioning schemes are considered useful in various
sensing and communication applications where sparse arrays
and sparse waveforms are designed to share sensor and wave-
form resources by different platforms and functions.



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

(15]
[16]

(17]

(18]

VII. REFERENCES

A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans.
Antennas Propagat., vol. 16, no. 2, pp. 172-175, March 1968.

R. T. Hoctor and S. A. Kassam, “The unifying role of the
co-array in aperture synthesis for coherent and incoherent
imaging,” Proc. IEEE, vol. 78, no. 4, pp. 735-752, April 1990.

X.-G. Xia and G. Wang, “Phase unwrapping and a robust
Chinese remainder theorem,” IEEE Signal Process. Lett., vol.
14, pp. 247-250, April 2007.

X. Li, Y. Zhang, and M. G. Amin, “Multifrequency-based range
estimation of RFID tags,” in Proc. IEEE Int. Conf. RFID,
Orlando, FL, April 2009, pp. 147-154.

P. P. Vaidyanathan, and P. Pal, “Sparse sensing with co-prime
samplers and arrays,” IEEE Trans. Signal Process., vol. 59, no.
2, pp. 573-586, Feb. 2011.

P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach
to array processing with enhanced degrees of freedom,” IEEE
Trans. Signal Process., vol. 58, no. 8, pp. 4167-4181, Aug.
2010.

S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime
array configurations for direction-of-arrival estimation,” IEEE
Trans. Signal Process., vol. 63, no. 6, pp. 1377-1390, March
2015.

C. L. Liu and P. P. Vaidyanathan, “Super nested arrays: Linear
sparse arrays with reduced mutual coupling—Part I: Fundamen-
tals,” IEEE Trans. Signal Process., vol. 64, no. 15, pp. 3997—
4012, Aug. 2016.

A. Ahmed, Y. D. Zhang, and B. Himed, “Effective nested array
design for fourth-order cumulant-based DOA estimation,” in
Proc. IEEE Radar Conf. (RadarConf), Seattle, WA, May 2017,
pp. 998-1002.

J. Liu, Y. Zhang, Y. Lu, S. Ren, and S. Cao, “Augmented nested
arrays with enhanced DOF and reduced mutual coupling,” IEEE
Trans. Signal Process., vol. 65, no. 21, pp. 5549-5563, Nov.
2017.

S. Qin, Y. D. Zhang, M. G. Amin, and B. Himed, “DOA
estimation exploiting a uniform linear array with multiple co-
prime frequencies,” Signal Process., vol. 130, pp. 3746, Jan.
2017.

Z. Zheng, W. Wang, Y. Kong and Y. D. Zhang, “MISC Array:
A new sparse array design achieving increased degrees of
freedom and reduced mutual coupling effect,” IEEE Trans.
Signal Process., vol. 67, no. 7, pp. 1728-1741, April 2019.

A. Ahmed and Y. D. Zhang, “Generalized non-redundant sparse
array designs,” IEEE Trans. Signal Process., vol. 69, pp. 4580—
4594, Aug. 2021.

S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, “Enhanced
DOA estimation exploiting multi-frequency sparse array,” I[EEE
Trans. Signal Process., vol. 69, pp. 5935-5946, Oct. 2021.

R. Tibshirani, “Regression shrinkage and selection via the
Lasso,” J. Royal Statist. Soc., vol. 58, no. 1, pp. 267-288, 1996.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform.
Theory, vol. 52, no. 4, pp. 1289-1306, April 2006.

J. A. Tropp and A. C. Gilbert, “Signal recovery from partial
information via orthogonal matching pursuit,” IEEE Trans. Info.
Theory, vol. 53, no. 12, pp. 4655-4666, 2007.

E. J. Candes and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21—
30, March 2008.

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

S. Ji, D. Dunson, and L. Carin, “Multi-task compressive sam-
pling,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 92-106,

20009.

Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Complex
multitask Bayesian compressive sensing,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), Florence, Italy,
May 2014.

Y. Li and Y. Chi, “Off-the-grid line spectrum denoising and
estimation with multiple measurement vectors,” IEEE Trans.
Signal Process., vol. 64, no. 5, pp. 1257-1269, March 2016.

C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang,
“Direction-of-arrival estimation for coprime array via virtual
array interpolation,” IEEE Trans. Signal Process., vol. 66, no.
22, pp. 5956-5971, Nov. 2018.

C. Zhou, Y. Gu, Z. Shi, and Y. D. Zhang, “Off-grid direction-
of-arrival estimation using coprime array interpolation,” /IEEE
Signal Process. Lett., vol. 25, no. 11, pp. 1710-1714, Nov.
2018.

A. De Maio, Y. C. Eldar, and A. Haimovich (eds.), Compressed
Sensing in Radar Signal Processing, Cambridge University
Press, 2019.

S. Liu, Z. Mao, Y. D. Zhang, and Y. Huang, “Rank
minimization-based Toeplitz reconstruction for DoA estimation

using coprime array,” IEEE Commun. Lett., vol. 25, no. 7, pp.
2265-2269, July 2021.

K. V. Mishra, S. Mulleti and Y. C. Eldar,
“RaSSteR: Random sparse step-frequency radar,” arXiv,
https://arxiv.org/pdf/2004.05720.pdf, April, 2020.

S. Sun and Y. D. Zhang, “4D automotive radar sensing for
autonomous vehicles: A sparsity-oriented approach,” IEEE J.
Sel. Top. Signal Process., vol. 15, no. 4, pp. 879-891, June
2021.

S. Qin, Y. D. Zhang, M. G. Amin, and F. Gini, “Frequency
diverse coprime arrays with coprime frequency offsets for
multi-target localization,” IEEE J. Sel. Top. Signal Process.,
vol. 11, no. 2, pp. 321-335, March 2017.

Z. Mao, S. Liu, Y. D. Zhang, L. Han, and Y. Huang, “Joint
DoA-range estimation using space-frequency virtual difference
coarray,” IEEE Trans. Signal Process., vol. 70, pp. 25762591,
May 2022.

J. Zhang, W. Liu, C. Gu, S. S. Gao, and Q. Luo, “Robust multi-
beam multiplexing design based on a hybrid beamforming
structure with nearly equal magnitude analogue coefficients,”
in IEEE Trans. Vehi. Tech., vol. 71, no. 5, pp. 5564-5569, May
2022.

J. Zhang, S. Li, L. Jin, W. Liu, and H. C. So, “Multi-beam
multiplexing design with phase-only excitation based on hybrid
beamforming architectures,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), Seoul, Korea, April 2024.

M. Villano, G. Krieger, and A. Moreira, “Staggered SAR: High-
resolution wide-swath imaging by continuous PRI variation,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4462—
4479, July 2014.

G. Xu, B. Zhang, J. Chen, and W. Hong, “Structured low-rank
and sparse method for ISAR imaging with 2-D compressive
sampling,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1—
14, 2022.

L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, “Automotive
FMCW radar with difference co-chirps,” IEEE Trans. Aerosp.
Electron. Syst., vol. 59, no. 6, pp. 8145-8165, Dec. 2023.



