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Abstract: The inverse design of meta-optics has received much attention in recent years.
In this paper, we propose a GPU-friendly inverse design framework based on improved
eigendecomposition-free rigorous diffraction interface theory, which offers up to 16.2× speedup
over the traditional inverse design based on rigorous coupled-wave analysis. We further improve
the framework’s flexibility by introducing a hybrid parameterization combining neural-implicit
and traditional shape optimization. We demonstrate the effectiveness of our framework through
intricate tasks, including the inverse design of reconfigurable free-form meta-atoms.
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1. Introduction

Metalenses and meta-atoms represent a paradigm shift in optical design, yielding devices with
significantly reduced form factors and enhanced performance. Methods of inverse design driven
by specific design goals have been demonstrated to be effective in optimizing high-performance
meta-structures [1,2]. Despite these advancements, the inverse design of meta-atoms poses
significant challenges primarily because of the requirements for high-resolution nanoscale
simulation. Rigorous coupled-wave analysis (RCWA), initially introduced in [3], has gained
prominence for simulating and optimizing meta-atoms as described in [4,5]. Although it is much
faster compared to other fully discretized methods such as finite-difference time-domain (FDTD)
[6], difficulties in parallelization curtail its efficiency because of the iterative eigendecomposition
process [7], which hampers the ability to fully leverage modern computational resources such as
graphics processing units (GPUs) to enhance performance.

The rigorous diffraction interface theory (R-DIT) [8,9] circumvents the eigendecomposition
procedure in RCWA and, therefore, can be easily parallelized. It utilizes the Taylor series to
approximate the matrix exponential and sidesteps the eigendecomposition process completely.
Low-order R-DIT yields accurate results when the thickness is small compared to the wavelength
and dramatically speeds up the computation. [8] By incorporating multiple terms in the Taylor
expansion, R-DIT can adequately describe the photonic response of increasingly thick structures,
as in the regime used in this work to design photonic devices with wavelength-scale thick
meta-atoms.

Building on these insights, we introduce a fully-differentiable inverse design framework based
on the R-DIT algorithm. There are two major contributions in this work: First, by reformulating
the original R-DIT algorithm and implementing it with PyTorch [10], we achieve up to 16.2×
speedup over the traditional inverse design method based on RCWA on GPU. PyTorch also
enables the computation of gradients of meta-atom performance featuring arbitrary design
parameters and is free from extensive mathematical derivations. Secondly, we incorporate a
novel neural network representation [11], which can implicitly encode the shapes of meta-atoms
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for topological optimization, providing a flexible and generalized approach to their design. We
aim to extend the capabilities of our proposed framework to engineer innovative metasurfaces
with multifunctional capabilities. These include but are not limited to actively reconfigurable or
tunable beam deflectors [12,13], and spatiotemporal modulators [14], etc. The inverse design of
such meta-atoms presents a formidable challenge, necessitating the creation of devices that offer
high degrees of design freedom while fulfilling the desired performance on modulated materials
that exhibit a high refractive index contrast. A significant challenge in this endeavor is devising
a method to parameterize meta-atom shapes without restricting them to a limited set of shape
candidates.

In this paper, we start by detailing our improved formalism of the R-DIT algorithm in Section
2. In Section 3, we exemplify an inverse design workflow based on our proposed TorchRDIT
with demonstrations of two use cases, including parameter-constrained and free-form meta-atoms.
Finally, Section 4. presents the benchmarks of the proposed inverse design workflow and
evaluates its performance on both CPU and GPU platforms.

The source code of TorchRDIT has been made publicly available following GNU General
Public License version 3 (GPLv3) [15].

2. Theoretical formulation of rigorous diffraction interface theory

In this section, we derive our improved formalism employed in TorchRDIT, as well as our
previous work [9], based on the scattering matrices method [16] with buffered layers for the
compatibility with existing semi-analytical methods.

2.1. Definition of scattering matrix

We start by defining the scattering matrix of the interested layer i. In this work, we denote a as
incident wave coefficients of the light injecting from surrounding layers into layer i, such as ai−1
and ai+1 shown in Fig. 1(red arrows); similarly, bi−1 and bi+1 (green arrows) serve as the light
transmitted out of layer i. The scattering matrix of layer i, describing its scattered properties, is
bounded by these coefficients and can be formulated as:

⎡⎢⎢⎢⎢⎣
bi−1

bi+1

⎤⎥⎥⎥⎥⎦
= Si

⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦
, where Si =

⎡⎢⎢⎢⎢⎣
Si

11 Si
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. (1)

with multifunctional capabilities. These include but are not limited to actively reconfigurable or
tunable beam deflectors [12, 13], and spatiotemporal modulators [14], etc. The inverse design of
such meta-atoms presents a formidable challenge, necessitating the creation of devices that offer
high degrees of design freedom while fulfilling the desired performance on modulated materials
that exhibit a high refractive index contrast. A significant challenge in this endeavor is devising
a method to parameterize meta-atom shapes without restricting them to a limited set of shape
candidates.

In this paper, we start by detailing our improved formalism of the R-DIT algorithm in Section
2. In Section 3, we exemplify an inverse design workflow based on our proposed TorchRDIT
with demonstrations of two use cases, including parameter-constrained and free-form meta-atoms.
Finally, Section 4 presents the benchmarks of the proposed inverse design workflow and evaluates
its performance on both CPU and GPU platforms.

The source code of TorchRDIT has been made publicly available following GNU General
Public License version 3 (GPLv3) [15].

2. Theoretical Formulation of Rigorous Diffraction Interface Theory

In this section, we derive our improved formalism employed in TorchRDIT, as well as our
previous work [9], based on the scattering matrices method [16] with buffered layers for the
compatibility with existing semi-analytical methods.

2.1. Definition of Scattering Matrix

𝑧0−
ℎ
2

+
ℎ
2

ℎ

Layer 𝑖Layer 𝑖 − 1
(gap layer)

Layer 𝑖 + 1
(gap layer)

𝒂!"# 𝒂!$#

𝒃!"# 𝒃!$#
Ψ! ""#$

Ψ! ""#%&'
Ψ! ""#(&'

Ψ!%) Ψ!()

𝒂!

𝒃!

Fig. 1. Definition of the scattering matrix of layered photonic structures. The
scattering matrix of layer 𝑖 consistent along the 𝑧-direction is bounded by the incident
and transmitted waves from its surrounding layers.
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from layer 𝑖 − 1 to layer 𝑖 + 1. Besides, for the convenience of the derivation of fields inside layer
𝑖, we define a𝑖 as the light at the left interfaces 𝑧 = −ℎ/2 propagating to the center of layer 𝑖, and

Fig. 1. Definition of the scattering matrix of layered photonic structures. The scattering
matrix of layer i consistent along the z-direction is bounded by the incident and transmitted
waves from its surrounding layers.
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i, we define ai as the light at the left interfaces z = −h/2 propagating to the center of layer i, and
bi as the scattered waves at the same interface. It is noteworthy that the choices of positions and
directions of ai and bi do not affect the essence of the scattering matrix, and all field coefficients
at any position inside layer i can be effortlessly derived from the left interface.

To solve the scattering matrix Si in (1), we start from the P − Q form of Maxwell equations
in the Fourier domain. Using the same coordinates shown in Fig. 1, where x − y plane is
the cross-section of the given photonic structures and z̃ = k0z is the normalized longitudinal
coordinate (k0 is the wave number in the free space), the Maxwell equation can be expressed as:

d
dz̃

⎡⎢⎢⎢⎢⎣
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where E⃗x,y is the Fourier components of the tangential electric field E⃗x,y; similarly, H⃗x,y is the
Fourier components of the normalized tangential magnetic field ⃗̃Hx,y = −jη0H⃗x,y (η0 is the free
space impedance). Note that the negative sign convention e−jkz is used throughout this work. The
matrices P̂ and Q̂ are block matrices formed by the distributions of permittivity and permeability
at the cross-section of layer i, formulated as 3) and (4) below:

P̂ =

⎡⎢⎢⎢⎢⎣
Kx [[εr]]−1 Ky [[µr]] − Kx [[εr]]−1 Kx
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, (3)
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Ky [[µr]]−1 Ky − [[εr]] −Ky [[µr]]−1 Kx

⎤⎥⎥⎥⎥⎦
, (4)

where Kx and Ky are diagonal matrices describing the wave vectors in Fourier domain; assuming
only isotropic materials are discussed in the text, [[εr]] and [[µr]] are Toeplitz matrices computed
from the permittivity and permeability distribution of the specified layer.

Following the same procedure in [16], the solution of the field inside the layer i can then be
computed to a form as the following:
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, (5)

where Wi, Vi represent the eigen-vectors of the electric and magnetic coefficients, respectively,
and Xi = exp(−Γk0h) is the matrix exponential of the eigen-values Γ2. Instead of directly solving
this eigen-problem as in RCWA, we propose R-DIT to calculate the scattering matrix shown in
the next section.

2.2. Rigorous diffraction interface theory

The general idea of R-DIT is to analytically expand the fields at the center of the optically thin
layer (z = 0) at its two boundaries (z = ±h/2) by using Taylor Expansion, which builds up the
boundary conditions with expanded formulas. It has been illustrated that with enough order of
Taylor series, it can compute structures whose thickness is close to half wavelength [8]. In this
work, we define the order of the Taylor series used in the R-DIT algorithm as R-DIT order.
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We first formulate the Taylor series of the tangential electric and magnetic fields. The Fourier
coefficients in (2) can be interpreted as follows:

E⃗x,y(z̃ + δ̃) =
∞∑︂

n=0

1
n!

d(n)

dz̃n E⃗x,y
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2
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2
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where δ̃ = k0δ is the normalized length on z direction. Substituting z̃ + δ̃ = 0 into the left-hand
side and δ̃ = ±h̃/2 to the right-hand side of (6), (7) separately, the Fourier series of the fields at
the center expanded at the two boundaries of the layer can be formulated to the following two
boundary conditions:
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for simplicity, here we reduce T̂(1) and T̂(2) to:

T̂(1) =
⎡⎢⎢⎢⎢⎣
A B
C D

⎤⎥⎥⎥⎥⎦
, T̂(2) =

⎡⎢⎢⎢⎢⎣
A −B
−C D

⎤⎥⎥⎥⎥⎦
. (10)

The fields at the two boundaries given in (8) and (9) can be written as the fields of the surrounding
layers Ψi−1 and Ψi+1 (shown in Fig. 1). In this work, we construct each layer to be solved as a
layer surrounded by two gap layers (layers i − 1 and i + 1) with zero thickness, and then relate all
solved layers by the Redheffer star product [16–18]. Under these circumstances, (8) and (9) can
be further rewritten as:

⎡⎢⎢⎢⎢⎣
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where W0 and V0 are eigen-vectors of the gap layers which can be easily derived analytically
[16].

Combining (11) and (12), we can obtain the scattering matrix of layer i after a few derivation
steps as follows:

Si
11 = Si

22 =
1
2
[M1 − M2],

Si
12 = Si

21 =
1
2
[M1 +M2],

M1 = (−CW0 − DV0)−1(CW0 − DV0),
M2 = (AW0 + BV0)−1(AW0 − BV0) .

(13)

To conclude, our proposed derivation of the R-DIT algorithm greatly simplifies the computations
of the scattering matrices, requiring only basic matrix operations such as multiplication and



Research Article Vol. 32, No. 8 / 8 Apr 2024 / Optics Express 13990

inversion. Since the Taylor approximation is used, the approximation error can be estimated from
the R-DIT order and the thickness of the interested layer (See Supplement 1 Section 1 for more
analysis on the convergence and error estimations of our proposed R-DIT algorithm).

3. Inverse design workflows and numerical results

In this section, we begin by elucidating the inverse design workflow incorporating our proposed
TorchRDIT. To exemplify this, we present case studies including the inverse design of meta-
atoms with parameter constraints and the creation of meta-atoms with a free-form structure.

Fig. 2 shows the schematic of the workflow, where TorchRDIT functions as a differentiable
electromagnetic solver here, taking patterns of meta-atoms as pixelated matrices. Here, we
utilize topology optimization techniques [19–21] to construct the permittivity distributions of our
devices from a density matrix ρi ∈ [0, 1] as follows:

εr,i = ε
i
r,min + ρi · (εi

r,max − εi
r,min), (14)

where εi
r,min and εi

r,max are user defined values according to the materials of layer i. When
implementing this workflow with PyTorch, ρi is initialized as a tensor variable in PyTorch, and
all the operations on it are tracked by torch.autograd, which is the automatic differentiation
engine of PyTorch [10].

3. Inverse Design Workflows and Numerical Results
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TorchRDIT. To exemplify this, we present case studies including the inverse design of meta-
atoms with parameter constraints and the creation of meta-atoms with a free-form structure.
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Fig. 2. Inverse design workflows. The proposed workflow constructs computational
graphs that transition from initial input vectors to a user-defined loss function utilizing
the PyTorch framework, enabling a seamless end-to-end optimization process. In the
process of generating optical geometries for resolution, the approach is divided into
two kinds: (a) design parameters are initially synthesized by a neural network and then
form the geometries by topology operations; (b) for the representation of free-form
geometries, a neural network with sinusoidal activation, known as SIREN [11], is
employed. These generated geometries, alongside their associated computational graphs,
are subsequently fed into TorchRDIT and optimized through iterative minimization
of the loss calculated from the electromagnetic responses obtained. This iterative
process is designed to converge on the optimally designed geometries that align with
the predefined objectives.
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3.1. Inverse Design of Structures Constrained by Parameters

To illustrate the efficacy of TorchRDIT in the inverse design of geometries bound by parameters,
we construct a model of Huygens meta-atoms operating at a wavelength, 𝜆0 = 5.2 𝜇m, with a
periodicity of 𝑝 = 2.5 𝜇m, on the PbTe-CaF2 structures as characterized in [22]. Within this
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PyTorch framework, enabling a seamless end-to-end optimization process. In the process
of generating optical geometries for resolution, the approach is divided into two kinds: (a)
design parameters are initially synthesized by a neural network and then form the geometries
by topology operations; (b) for the representation of free-form geometries, a neural network
with sinusoidal activation, known as SIREN[11], is employed. These generated geometries,
alongside their associated computational graphs, are subsequently fed into TorchRDIT and
optimized through iterative minimization of the loss calculated from the electromagnetic
responses obtained. This iterative process is designed to converge on the optimally designed
geometries that align with the predefined objectives.
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3.1. Inverse design of structures constrained by parameters

To illustrate the efficacy of TorchRDIT in the inverse design of geometries bound by parameters,
we construct a model of Huygens meta-atoms operating at a wavelength, λ0 = 5.2 µm, with a
periodicity of p = 2.5 µm, on the PbTe-CaF2 structures as characterized in [22]. Within this
framework, we specify four distinct shape categories as depicted in Fig. 3(a), all maintaining a
consistent PbTe layer height of 650 nm. The primary objective is to inverse design meta-devices
that achieve our predetermined phase targets and boast transmission efficiencies surpassing the
0.6 threshold. Following the process flow illustrated in Fig. 2(a), we consequently establish our
loss function as follows:

L = − txn

|txn | exp (−jϕtarget)∗ · w1 + LMSE(Trnx, 1) · w2, (15)

where the first term is tasked with calculating the discrepancy between the phase of the transmitted
x-polarized electric fields txn, and the user-stipulated target phase ϕtarget, expressed in radians; the
second term assesses the deviation (where LMSE symbolizes the mean squared error) between
the transmission efficiency for x-polarization Trnx and the desired efficiency. These two loss
functions are moderated by two individual weights, w1, w2, offering the capacity to adjust them
as part of the hyperparameters within the operational workflow. For this demonstration, we
maintain the truncated Fourier modes on a 21 × 21 scale and set the R-DIT order to 15.

Fig. 3(d) illustrates all inversely optimized meta-atoms spanning the phase from 0 to 2π and
achieving transmission efficiencies in excess of 0.6. A significant proportion of the devices attains
efficiencies that exceed 0.75. By amalgamating diverse geometric forms, our proposed framework
also successfully addresses the issue of low-efficiency gaps, as previously highlighted in the study
by [22]. Crucially, the workflow we propose can autonomously generate these outcomes within a
span of one thousand iterations for each meta-atom, as evidenced in Fig. 3(c). This convergence
rate is notably expeditious when juxtaposed with the conventional manual/empirical design
techniques. Furthermore, the neural network at the core of this workflow operates effectively
without requiring a pre-training phase using any dataset.

3.2. Inverse design of reconfigurable free-form mata-atoms

This section focuses on the application of free-form meta-atoms to realize sophisticated function-
alities, specifically utilizing optical phase change materials (O-PCMs). The choice of O-PCMs is
strategic, as they amplify the capability of dynamically modulating light while preserving their
slim profile. We aim to conceptualize a reconfigurable transmitting beam-deflector operating at a
central wavelength of λ0 = 4 µm based on Ge2Sb2Se4Te1 (GSST) for its ability to facilitate the
reversible transition between amorphous and crystalline states through electrical control. This
transition yields a significant refractive index contrast, thus enabling versatile optical devices
with dynamic responses [23,24].

3.2.1. Definition of the loss function

The challenge of designing reonfigurable/tunable optical devices with high efficacy has tradi-
tionally been formidable using conventional optimization methods. However, this challenge is
adeptly overcome by our proposed inverse design workflows, as illustrated in Fig. 2. We postulate
the functionality of this particular meta-atom, with a focus on the transverse magnetic (TM)
mode (x-polarized) diffraction along the x-axis, to encompass two states: (1) in the amorphous
state of GSST, it should direct the normal incident light towards the +1 order diffraction, while
concurrently minimizing the energy directed into the -1 and 0 diffraction orders; (2) in the
crystalline state, it aims to minimize the transmitted energies at the operating wavelength across
the -1, 0, and +1 diffraction orders.
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Fig. 3. Schematics and optimized results of parameter constrained devices.
To demonstrate the case of parameter-constrained devices, we define four types of
geometries illustrated in (a). (b) shows a 3D structure of an H-shape PbTe meta-atom
array on the PbTe-CaF2 substrate. The PbTe layer are model with a two-layer model
(𝑛top = 4.8; 𝑛bottom = 5.4, 𝑘bottom = 0.01) as in [22], and 𝑛CaF2=1.4 for the substrate.
The simulated transmission efficiencies and phases using TorchRDIT (marked as
solid lines with filled plus markers) and CST Microwave Studio (marked as hollow
squares) are shown in (d). (c) illustrates the number of iterations cost when each
device is optimized. Insets of (d): Grid view of the inverse designed shapes of PbTe
meta-atoms (See Supplement 1 Section 2 for the dimension of each meta-atom).

subsequently articulate our loss function accordingly:

Lsum =LMSE (𝑻𝐴, (+1,0) , 1) · 𝑤1 + LMSE (𝑻𝐴, (0,0) , 0) · 𝑤2+
(𝑻𝐴, (0,0) − 𝑻𝐴, (+1,0) ) · 𝑤3 + (𝑻𝐴, (−1,0) − 𝑻𝐴, (+1,0) ) · 𝑤4+
LMSE (𝑻𝐶, (+1,0) , 0) · 𝑤5 + LMSE (𝑻𝐶, (0,0) , 0) · 𝑤6 ,

(16)

where 𝑻𝐴, (𝑥,0) and 𝑻𝐶, (𝑥,0) correspond to the transmitted power levels in the amorphous and
crystalline states, respectively, for the 𝑥th order of diffraction; The term 𝑤𝑖 (𝑖 = 1, 2, ..., 6) denotes
the weights assigned to each loss term. Notably, the third and fourth terms in (16) have the
potential to yield negative values. Consequently, the scalar loss values derived from the function
are not bounded as positive and vary according to the assigned weights.

Although possibilities exist to define an extensive array of loss terms to closely align the
inversely designed behaviors with the predefined conditions, imposing such strict constraints

Fig. 3. Schematics and optimized results of parameter constrained devices. To
demonstrate the case of parameter-constrained devices, we define four types of geometries
illustrated in (a). (b) shows a 3D structure of an H-shape PbTe meta-atom array on the
PbTe-CaF2 substrate. The PbTe layer are model with a two-layer model (ntop = 4.8; nbottom =
5.4, kbottom = 0.01) as in [22], and nCaF2=1.4 for the substrate. The simulated transmission
efficiencies and phases using TorchRDIT (marked as solid lines with filled plus markers)
and CST Microwave Studio (marked as hollow squares) are shown in (d). (c) illustrates the
number of iterations cost when each device is optimized. Insets of (d): Grid view of the
inverse designed shapes of PbTe meta-atoms (See Supplement 1 Section 2 for the dimension
of each meta-atom).

Given that our consideration is limited to x-directional diffraction, we can simplify our
geometries by enforcing a symmetry constraint about the x-axis and reducing the Ly dimension
to eliminate y-directional diffraction. Using the operational parameters defined above, we
subsequently articulate our loss function accordingly:

Lsum =LMSE(TA,(+1,0), 1) · w1 + LMSE(TA,(0,0), 0) · w2+

(TA,(0,0) − TA,(+1,0)) · w3 + (TA,(−1,0) − TA,(+1,0)) · w4+

LMSE(TC,(+1,0), 0) · w5 + LMSE(TC,(0,0), 0) · w6,
(16)

where TA,(x,0) and TC,(x,0) correspond to the transmitted power levels in the amorphous and
crystalline states, respectively, for the xth order of diffraction; The term wi (i = 1, 2, . . . , 6)
denotes the weights assigned to each loss term. Notably, the third and fourth terms in (16) have
the potential to yield negative values. Consequently, the scalar loss values derived from the
function are not bounded as positive and vary according to the assigned weights.

https://doi.org/10.6084/m9.figshare.25470523
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Although possibilities exist to define an extensive array of loss terms to closely align the
inversely designed behaviors with the predefined conditions, imposing such strict constraints
can instead complicate the optimization process. Specifically, stringent bounds may hinder the
convergence of the optimization algorithm and necessitate an increase in hyperparameters, which
would then require more extensive manual tuning workloads.

3.2.2. Implicit neural representations of free-form geometries

In this work, we use neural networks to implicitly represent the geometries of the free-form
meta-atoms, as shown in Fig. 2(b). Unlike classical image processing models that treat geometries
as discrete pixels with certain resolutions [25], implicit neural networks map arbitrary spatial
coordinates to a level set function, which is then binarized into fabricable permittivity distribution.
Here, we use sinusoidal representation networks (SIREN) [11] to perform this mapping. We
establish an implicit representation that intakes 64 × 64 uniformly sampled spatial coordinates
(x = (x, y)) and outputs the corresponding density distributions (ρi = Φi(xi)) as described in
(14). In this work, we use a SIREN with 16 hidden layers with 6 hidden features of each. The
frequency factors are set to 12 for the first and hidden layers. Specifically, TorchRDIT manages
the mapping between the implicit representation Φi and the loss function Lsum(Φi), thereby
facilitating the optimization of the topological forms to meet the defined requirements.

Beyond the matrices defining the geometries, TorchRDIT can also treat additional simulation
parameters as differentiable entities, which extends the flexibility of the design process to
encompass a broader set of physical attributes, such as the layer thicknesses illustrated in Fig. 2(b).
Within this context, the parameters h1, h2, and h3 are identified as variables subject to optimization.
Following a similar topology optimization method, we define the thickness as follows:

hi = hi
min + θi · (hi

max − hi
min), (17)

where hi
max and hi

min are defined by users, and θi ∈ [0, 1] are vectors tracked and updated iteratively
by PyTorch.

3.2.3. Results

Adhering to the inverse design workflow delineated in Fig. 2(b), which utilizes identical spatial
modes and orders discussed in the preceding section, we successfully optimized a meta-atom
aligning with our defined goals. A graphical representation of this optimized meta-atom is
sketched in Fig. 4(c) and (d). Moreover, the simulated spectral response of this meta-atom
covering from 3 µm to 5 µm is shown in Fig. 5. It provides insight into the optical performance
of the meta-atom across the specified range.

Fig. 5(a) illustrates the optimized response in TM mode: (1) the engineered meta-atom directs
approximately 60% of energy into the +1 diffraction order while effectively suppressing other
mode transmissions; (2) the bandwidth corresponding to the +1 order diffraction extends to
approximately 1 µm. On the flip side, although we have not imposed specific constraints on the
transverse electric (TE) mode behaviors, its TE spectrum also indicates a higher transmission at
the +1 order diffraction in the amorphous state (see Fig. 5(c), (d)).

The discrepancies observed in the simulation outcomes between TorchRDIT and S4, as
illustrated in Fig. 5, are attributable to boundary extraction and edge smoothing procedures, which
are necessary when translating the pixelated patterns TorchRDIT generated into polygonal
shapes compatible with S4. The current geometrical matrices utilized in TorchRDIT have a
resolution of 64×64. An enhancement in the resolution within TorchRDITwould be conducive
to minimizing the mismatch between the simulated results of the two systems, thereby yielding a
more accurate representation of the meta-atom’s performance as predicted by the simulation.
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can instead complicate the optimization process. Specifically, stringent bounds may hinder the
convergence of the optimization algorithm and necessitate an increase in hyperparameters, which
would then require more extensive manual tuning workloads.

3.2.2. Implicit Neural Representations of Free-Form Geometries

In this work, we use neural networks to implicitly represent the geometries of the free-form
meta-atoms, as shown in Fig. 2(b). Unlike classical image processing models that treat geometries
as discrete pixels with certain resolutions [25], implicit neural networks map arbitrary spatial
coordinates to a level set function, which is then binarized into fabricable permittivity distribution.
Here, we use sinusoidal representation networks (SIREN) [11] to perform this mapping. We
establish an implicit representation that intakes 64 × 64 uniformly sampled spatial coordinates
(x = (𝑥, 𝑦)) and outputs the corresponding density distributions (𝜌𝑖 = Φ𝑖 (x𝑖)) as described in
(14). In this work, we use a SIREN with 16 hidden layers with 6 hidden features of each. The
frequency factors are set to 12 for the first and hidden layers. Specifically, TorchRDIT manages
the mapping between the implicit representation Φ𝑖 and the loss function Lsum (Φ𝑖), thereby
facilitating the optimization of the topological forms to meet the defined requirements.

Beyond the matrices defining the geometries, TorchRDIT can also treat additional simulation
parameters as differentiable entities, which extends the flexibility of the design process to
encompass a broader set of physical attributes, such as the layer thicknesses illustrated in Fig.
2(b). Within this context, the parameters ℎ1, ℎ2, and ℎ3 are identified as variables subject to
optimization. Following a similar topology optimization method, we define the thickness as
follows:

ℎ𝑖 = ℎ𝑖min + 𝜃𝑖 · (ℎ𝑖max − ℎ𝑖min) , (17)

where ℎ𝑖max and ℎ𝑖min are defined by users, and 𝜃𝑖 ∈ [0, 1] are vectors tracked and updated
iteratively by PyTorch.
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Fig. 4. Structures and materials of the GSST meta-atoms. (a) illustrates the device
configuration we use for the beam deflector. The protective SiN𝑥 layer covers the GSST
meta-atom resting on the doped-silicon heater. The permittivity profiles of GSST and
the doped-silicon are shown in (b). The permittivity profiles of Si, SiO2, and SiN𝑥 are
offered by [26], [27, 28] and [29] respectively. (c) and (d) present the top view and 3D
perspective of the optimized meta-atom. (Thickness: ℎ0 = 1.70 𝜇𝑚, ℎ1 = 87.7 𝑛𝑚,
ℎ2 = 3.20 𝜇𝑚 and ℎ3 = 0.33 𝜇𝑚; Dimensions: 𝐿𝑥 = 4.25 𝜇𝑚 and 𝐿𝑦 = 1.8 𝜇𝑚).

3.2.3. Results

Adhering to the inverse design workflow delineated in Fig. 2(b), which utilizes identical spatial
modes and orders discussed in the preceding section, we successfully optimized a meta-atom
aligning with our defined goals. A graphical representation of this optimized meta-atom is

Fig. 4. Structures and materials of the GSST meta-atoms. (a) illustrates the device
configuration we use for the beam deflector. The protective SiNx layer covers the GSST
meta-atom resting on the doped-silicon heater. The permittivity profiles of GSST and the
doped-silicon are shown in (b). The permittivity profiles of Si, SiO2, and SiNx are offered
by [26], [27,28] and [29] respectively. (c) and (d) present the top view and 3D perspective
of the optimized meta-atom. (Thickness: h0 = 1.70 µm, h1 = 87.7 nm, h2 = 3.20 µm and
h3 = 0.33 µm; Dimensions: Lx = 4.25 µm and Ly = 1.8 µm).

sketched in Fig. 4 (c) and (d). Moreover, the simulated spectral response of this meta-atom
covering from 3 𝜇m to 5 𝜇m is shown in Fig. 5. It provides insight into the optical performance
of the meta-atom across the specified range.
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Fig. 5. Simulated results of the optimized meta-atom in Fig. 4. Utilizing the
TorchRDIT, we conduct simulations on the optimized meta-atom and validate the
simulations with the assistance of S4, an open-source software package for electromag-
netic analysis [30], with a maximum spatial mode of 400. (a), (b) show the simulated
TM mode (x-polarized) spectrum under amorphous and crystalline states, and (c), (d)
present the TE mode (y-polarized) results.

Fig. 5(a) illustrates the optimized response in TM mode: (1) the engineered meta-atom directs
approximately 60% of energy into the +1 diffraction order while effectively suppressing other
mode transmissions; (2) the bandwidth corresponding to the +1 order diffraction extends to
approximately 1 𝜇m. On the flip side, although we have not imposed specific constraints on the
transverse electric (TE) mode behaviors, its TE spectrum also indicates a higher transmission at
the +1 order diffraction in the amorphous state (see Fig. 5(c), (d)).

The discrepancies observed in the simulation outcomes between TorchRDIT and S4, as
illustrated in Fig. 5, are attributable to boundary extraction and edge smoothing procedures, which
are necessary when translating the pixelated patterns TorchRDIT generated into polygonal
shapes compatible with S4. The current geometrical matrices utilized in TorchRDIT have a
resolution of 64×64. An enhancement in the resolution within TorchRDITwould be conducive
to minimizing the mismatch between the simulated results of the two systems, thereby yielding a
more accurate representation of the meta-atom’s performance as predicted by the simulation.

4. Benchmark

In this section, we evaluate the single-precision performance of TorchRDIT on the CPU (AMD
Ryzen Threadripper 1950X) and GPU (NVIDIA A100) platforms. For comparative analysis,
we have integrated the differentiable RCWA method [5] into TorchRDIT to ensure that the
respective algorithms compute only layers with inhomogeneous geometries. Furthermore, the
tested photonic structure consists of only one inhomogeneous layer, minimizing the impact of
other simulation stages on the performance evaluation.

Our analysis of TorchRDIT begins with its performance on CPU platforms. The RCWA
algorithm, requiring eigen-decomposition for forward computation, contrasts with R-DIT’s
reliance on matrix multiplications of P̂ and Q̂. Experimentally, R-DIT’s simulation time remains

Fig. 5. Simulated results of the optimized meta-atom in Fig. 4. Utilizing the
TorchRDIT, we conduct simulations on the optimized meta-atom and validate the sim-
ulations with the assistance of S4, an open-source software package for electromagnetic
analysis [30], with a maximum spatial mode of 400. (a), (b) show the simulated TM mode
(x-polarized) spectrum under amorphous and crystalline states, and (c), (d) present the TE
mode (y-polarized) results.

4. Benchmark

In this section, we evaluate the single-precision performance of TorchRDIT on the CPU (AMD
Ryzen Threadripper 1950X) and GPU (NVIDIA A100) platforms. For comparative analysis,
we have integrated the differentiable RCWA method [5] into TorchRDIT to ensure that the
respective algorithms compute only layers with inhomogeneous geometries. Furthermore, the
tested photonic structure consists of only one inhomogeneous layer, minimizing the impact of
other simulation stages on the performance evaluation.
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Our analysis of TorchRDIT begins with its performance on CPU platforms. The RCWA
algorithm, requiring eigen-decomposition for forward computation, contrasts with R-DIT’s
reliance on matrix multiplications of P̂ and Q̂. Experimentally, R-DIT’s simulation time remains
relatively flat as its order increases (see Fig. 6(b)) and achieves a 1.20 times speed-up over
RCWA with high spatial modes and high R-DIT orders (Fig. 6(d)). When it comes to the
backward computation, the R-DIT algorithm performs twice as fast with high spatial modes,
detailed in (Fig. 6(e)) because gradient calculations required by RCWA are impeded by the matrix
solution computations, which become particularly burdensome for large dimensional matrices
[5]. Considering the complete optimization process consisting of both forward and backward
computations, the R-DIT algorithm demonstrates a speed-up ranging from 1.2 to 2.2 times when
compared to the differentiable RCWA algorithm, as evidenced in Fig. 6(f).
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Fig. 6. Benchmark of R-DIT solver on the CPU platform. (a) Simulation time
(per iteration) of the forward and backward computations of the differentiable RCWA.
(b)-(c): The forward computation time (b) and the backward computation time (c)
of R-DIT per iteration. (d)-(f) Speed-up of the forward computations (d), backward
computations (e), and the total computation time (forward+backward) (f) of R-DIT
over RCWA.

relatively flat as its order increases (see Fig. 6(b)) and achieves a 1.20 times speed-up over
RCWA with high spatial modes and high R-DIT orders (Fig. 6(d)). When it comes to the
backward computation, the R-DIT algorithm performs twice as fast with high spatial modes,
detailed in (Fig. 6(e)) because gradient calculations required by RCWA are impeded by the
matrix solution computations, which become particularly burdensome for large dimensional
matrices [5]. Considering the complete optimization process consisting of both forward and
backward computations, the R-DIT algorithm demonstrates a speed-up ranging from 1.2 to 2.2
times when compared to the differentiable RCWA algorithm, as evidenced in Fig. 6(f).

Our evaluation of TorchRDIT’s performance on GPU platforms identifies a critical limitation
with RCWA: eigen-decomposition on PyTorch is CPU-bound, leading to increased computation
time and data transfer delays between the CPU and GPU. As Fig. 6(a) and 7(a) demonstrate,
for high spatial mode simulations, the GPU-executed RCWA can be even slower than its CPU
counterpart. On the other hand, GPUs excel in parallel processing tasks. As the spatial modes
increase, the GPU performance of RCWA is highly restricted due to the large dimensions of the
matrices, resulting in a dramatic peaking of the speed-up of R-DIT as shown in Fig. 7(e). When
considering complete iterations, R-DIT achieves up to a 16.2 speed-up over the RCWA (see Fig.
7(f)), underscoring R-DIT’s superior efficiency and scalability on GPU platforms for high spatial
mode scenarios.

5. Conclusion

In conclusion, our research presented an enhanced R-DIT algorithm that serves as the core of
the proposed differentiable solver TorchRDIT, significantly boosting the inverse design speed.
Through TorchRDIT, we illustrated the inverse design of parameter-determined meta-atoms to
yield high-efficiency Huygens meta-atoms with precise phase control. Furthermore, we have
utilized SIREN to facilitate the design of reconfigurable free-form GSST-based meta-atoms.
Validations were achieved using CST Microwave Studio and S4.

The benchmark results confirmed that the differentiable R-DIT algorithm surpasses the

Fig. 6. Benchmark of R-DIT solver on the CPU platform. (a) Simulation time (per
iteration) of the forward and backward computations of the differentiable RCWA. (b)-(c):
The forward computation time (b) and the backward computation time (c) of R-DIT per
iteration. (d)-(f) Speed-up of the forward computations (d), backward computations (e), and
the total computation time (forward+backward) (f) of R-DIT over RCWA.

Our evaluation of TorchRDIT’s performance on GPU platforms identifies a critical limitation
with RCWA: eigen-decomposition on PyTorch is CPU-bound, leading to increased computation
time and data transfer delays between the CPU and GPU. As Fig. 6(a) and 7(a) demonstrate,
for high spatial mode simulations, the GPU-executed RCWA can be even slower than its CPU
counterpart. On the other hand, GPUs excel in parallel processing tasks. As the spatial modes
increase, the GPU performance of RCWA is highly restricted due to the large dimensions of
the matrices, resulting in a dramatic peaking of the speed-up of R-DIT as shown in Fig. 7(e).
When considering complete iterations, R-DIT achieves up to a 16.2 speed-up over the RCWA
(see Fig. 7(f)), underscoring R-DIT’s superior efficiency and scalability on GPU platforms for
high spatial mode scenarios.
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Fig. 7. Benchmark of R-DIT solver on the GPU platform. (a) Simulation time
(per iteration) of the forward and backward computations of the differentiable RCWA.
(b)-(c): The forward computation time (b) and the backward computation time (c)
of R-DIT per iteration. (d)-(f) Speed-up of the forward computations (d), backward
computations (e), and the total computation time (forward+backward) (f) of R-DIT
over RCWA.

differentiable RCWA speed on both CPU and GPU platforms. Our method effectively bypasses
the complexities of eigendecomposition, enhancing the numerical stability and computational
efficiency, particularly for GPU architectures. Combined with emerging techniques of the
machine learning community and rapidly evolving computing hardware, this work further lays the
foundation for realizing fast inverse design of large-scale, three-dimensional, high-performance
photonic structures with complex functionalities. Meanwhile, both TorchRDIT and the
proposed inverse design workflow contribute to the machine learning community as one form of
a physics-informed neural network (PINN) [31, 32].
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5. Conclusion

In conclusion, our research presented an enhanced R-DIT algorithm that serves as the core of
the proposed differentiable solver TorchRDIT, significantly boosting the inverse design speed.
Through TorchRDIT, we illustrated the inverse design of parameter-determined meta-atoms to
yield high-efficiency Huygens meta-atoms with precise phase control. Furthermore, we have
utilized SIREN to facilitate the design of reconfigurable free-form GSST-based meta-atoms.
Validations were achieved using CST Microwave Studio and S4.

The benchmark results confirmed that the differentiable R-DIT algorithm surpasses the
differentiable RCWA speed on both CPU and GPU platforms. Our method effectively bypasses
the complexities of eigendecomposition, enhancing the numerical stability and computational
efficiency, particularly for GPU architectures. Combined with emerging techniques of the
machine learning community and rapidly evolving computing hardware, this work further lays the
foundation for realizing fast inverse design of large-scale, three-dimensional, high-performance
photonic structures with complex functionalities. Meanwhile, both TorchRDIT and the
proposed inverse design workflow contribute to the machine learning community as one form of
a physics-informed neural network (PINN) [31,32].
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