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Phonons, as quantized vibrational modes in crystalline materials, play a crucial role in determining a wide range of
physical properties, such as thermal and electrical conductivity, making their study a cornerstone in materials science.
In this study, we present a simple yet effective strategy for deep learning harmonic phonons in crystalline solids by
leveraging existing phonon databases and state-of-the-art machine learning techniques. The key of our method lies in
transforming existing phonon datasets, primarily represented in interatomic force constants, into a force-displacement
representation suitable for training machine learning universal interatomic potentials. By applying our approach to
one of the largest phonon databases publicly available, we demonstrate that the resultant machine learning universal
harmonic interatomic potential not only accurately predicts full harmonic phonon spectra but also calculates key ther-
modynamic properties with remarkable precision. Furthermore, the restriction to a harmonic potential energy surface
in our model provides a way of assessing uncertainty in machine learning predictions of vibrational properties, essential
for guiding further improvements and applications in materials science.

All materials are made up of atoms, which vibrate ubiq-
uitously, even at absolute zero temperature, due to quantum
effects. When present in periodic solids, these vibrations can
be quantized as quasiparticles, known as phonons. The study
of phonons is an integral part of solid-state physics and ma-
terials science, as they play an essential role in many phys-
ical properties of materials, including thermodynamic stabil-
ity, thermal conductivity, and electric conductivity1. Specifi-
cally, concerning the fundamental thermodynamic properties,
phonons are vital for materials’ finite-temperature character-
istics, such as thermal expansion, heat capacity, free energy,
and lattice stability. Phonons also serve as a gene govern-
ing energy transfer in solids, manifested in lattice heat trans-
fer1,2. Furthermore, when coupled with other quasiparticles,
e.g., electrons, phonons can strongly modulate carrier conduc-
tivity and give rise to conventional superconductivity3. How-
ever, the properties of the materials currently contained in ex-
isting databases4–6 are limited to those obtained by relatively
simple ground state calculations – formation energies, elec-
tronic band-gaps, and -structures, etc. – with no dynamical
information such as phonons. The most extensive collection to
date of vibrational properties contains only several thousands
of compounds7,8, which are focused on the harmonic vibra-
tional properties. This poses a crucial limitation regarding the
prediction of materials at ambient or higher temperatures.

Data-driven, or machine learning (ML), approaches are be-
coming a method of choice for materials design, discovery,
and property prediction, thanks to their extraordinary capabil-
ity of modeling complex composition-structure-property map-
ping in materials9,10. Consequently, efforts are now being
devoted to developing ML models encoded with vibrational
properties to overcome the challenge due to the scarcity of
data. The promising applications of ML approaches to model-
ing phonons fall into two categories. The first category high-
lights ML models that use either hand-crafted descriptors or
learned representations to directly predict phonon properties,
such as vibrational frequency, density-of-states (DOS), and vi-

brational free energy, or incorporate such information implic-
itly when predicting materials stability without resorting to
constructing interatomic potential11–14. For example. Chen et

al.12 employed the Euclidean neural network to directly pre-
dict phonon DOS using a training set of about 1000 examples
with over 64 atom types. By capturing full crystal symme-
try, their model reproduces key features of experimental data
and even generalizes to materials with unseen elements. Sim-
ilar results are demonstrated by Gurunathan et al.14 using the
atomistic line graph neural network (ALIGNN) on a signif-
icantly expanded database composed of over 14000 phonon
spectra computed at the Brillouin center. In another study,
Nguyen et al.13 used deep graph neural networks to predict
lattice vibrational frequencies. Despite displaying low trans-
ferability across different structure types, their model implies
the capability of deep graph neural networks to learn to predict
lattice vibrational frequency when sufficient training samples
are available.

Another category of ML approaches to modeling phonons
relies on directly constructing machine learning interatomic
potential (MLIP). The key idea is to learn the statistical re-
lation between structure and potential energy without knowl-
edge about the relevant interactions. Recent advances lead
to an extensive collection of MLIPs, including kernel-based
learning approaches and artificial neural networks, such as
Behler-Parrinello neural network potentials (NNP)15, Gaus-
sian approximation potentials (GAP)16, and moment tensor
potentials (MTP)17. Most recently, deep learning representa-
tions using graph neural networks (GNNs) have been lever-
aged to develop machine learning universal interatomic po-
tentials (MLUIPs) for arbitrary chemical species and struc-
tures. Specific realizations include but are not limited to,
the crystal graph convolutional neural networks (CGCNN)18,
the graph convolution network with continuous-filter con-
volutional layers (SchNet)19, the directional message pass-
ing neural network (DimeNet)20, and the geometric mes-
sage passing neural network (GemNet)21. Particularly, the
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FIG. 1. A schematic showing the conversions between different representations for describing interatomic interactions. (a) Interatomic force
constants (IFCs) representation, wherein atoms and IFCs are indicated by solid spheres and springs, respectively; (b) force-displacement (FD)
representation, wherein dashed circles and solid spheres are used to denote equilibrium and displaced atom positions, respectively; (c) Graph
neural networks (GNNs) representation, wherein crystal structures are represented by graphs with atoms as nodes and bonds between atoms
as edges.

material graph with three-body interactions neural network
(M3GNet)22 model, which has been trained on density func-
tional theory (DFT)23,24 crystal structure relaxations from
the Materials Project4, demonstrates the potential to directly
predict harmonic phonon dispersions. However, the accu-
racy of the M3GNet model is compromised despite covering
broad chemistry, showing relatively large deviations of about
one Thz for averaged phonon frequencies when compared to
DFT22.

Applying these MLUIPs to directly modeling phonons is
appealing. Meanwhile, challenges arise when one aims to
train highly accurate MLUIPs due to the limitations of avail-
able training datasets. For example, the DFT crystal structure
relaxations used to train the M3GNet model consist of only
small unit/primitive cells and suffer from relatively low DFT
convergence criteria, typically used for constructing large ma-
terials databases. Therefore, the resultant MLUIPs are intrin-
sically unreliable in yielding longer-range interatomic inter-
actions and accurate forces, which are crucial to converge
phonon calculations. To overcome these limitations, in this
letter, we propose a strategy to leverage existing phonon
databases and convert these databases into a proper form
suitable for training MLUIPs. This is inspired by phonon
databases usually being constructed from high-quality DFT
calculations of supercell structures, which can better capture
the longer-range interatomic interactions and exhibit accurate
forces. Afterward, we focus on constructing a specific form of
MLUIPs: a machine learning universal harmonic interatomic
potential (MLUHIP) to deep learning phonons. We show that
such a restriction of the potential energy surface to the har-
monic form not only enables efficient model parameterization
but also provides physics-inspired uncertain quantification for
phonon predictions.

The key of our proposed strategy relies on conversions
among different representations for describing interatomic in-
teractions. For example, as shown in Fig. 1(a), existing
phonon databases typically adopt an interatomic force con-
stants (IFCs) representations. In contrast, a rather different
representation, for example, graph neural networks (GNNs),
is used by MLUIPs, as shown in Fig. 1(c). To bridge the
gap between the IFCs and GNNs representation, we propose

to create an intermediate force-displacement (FD) represen-
tation, shown in Fig. 1(b). The conversion between different
representations can be achieved as follows: the IFCs represen-
tation can be converted into the FD representation by taking
the tensor product of IFCs and random atomic displacements,
while the back conversion can be achieved by fitting IFCs us-
ing FD dataset, for instance, via the Compressive Sensing Lat-
tice Dynamics (CSLD) approach25,26. Meanwhile, the con-
version between the FD and the GNNs representations can
be realized by training GNNs-based MLUIPs and conducting
predictions. Note that when the IFCs are limited to the sec-
ond order, as in this study, a harmonic version of GNNs-based
MLUIP (i.e., MLUHIP) will be pursued.

To evaluate the feasibility of our strategy for deep learning
harmonic phonons, we developed a GNNs-based MLUHIP to
model harmonic phonons in crystalline solids. We used one of
the largest phonon databases, i.e., the phonon database at Ky-
oto University8, to generate the FD training dataset for GNNs-
based MLUHIP models. We chose this database because it
contains DFT calculations of harmonic phonons for approxi-
mately 10000 inorganic solid compounds. These compounds
cover a broad spectrum of chemistries and structures. Specif-
ically, there are in total 81 chemical elements across the pe-
riodic table included in these compounds, and the resultant
elemental distributions are detailed in Fig. 2(a). The corre-
sponding crystal structures also display a diverse distribution
of symmetries, as indicated by the various space group num-
bers in Fig. 2(b). It is worth noting that it is crucial to attain
such a diverse dataset in order to develop an ML model that is
potentially applicable to solids across the periodic table.

Next, we prepared a broad dataset for training a GNNs-
based MLUHIP with the following procedures. First, we
carefully screened all and down-selected compounds whose
squared phonon frequencies are all non-negative to ensure dy-
namical stability. This step ensures that the compounds enter-
ing the training dataset are all dynamically stable, thus mak-
ing the harmonic phonon approximation valid. This screening
leads to a total number of 8229 compounds out of the orig-
inal dataset. Second, since the calculated harmonic phonon
for each compound in the original dataset is represented us-
ing IFCs, we then converted the IFCs representation to the
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FIG. 2. (a) A map of the frequencies of elements contained in the phonon database across the periodic table, covering 81 elements in total. (b)
Distribution of symmetries (space group numbers) of the compounds in the database. (c) A table summarizing the information of the generated
force-displacement dataset. (d) Predicted forces using our MLUHIP model compared with the exact harmonic forces computed using the
harmonic interatomic force constants for the testing dataset.

FD representation by randomly perturbing atoms around their
equilibrium positions, as illustrated in Fig. 1(b). Specifically,
we used the quantum covariance matrix to generate random
atomic displacements at 300 K following the phonon dis-
persion27,28 (see supplemental material). This approach is
superior to an alternative method based on small displace-
ments (≈ 0.01 Å). It is because the latter fails to account for
temperature- and atom-dependent displacements. In order to
obtain a comprehensive force-displacement dataset, we gen-
erate random atomic displacements for each compound over
100 supercell configurations, whose sizes are consistent with
the supercell used for DFT phonon calculations. This re-
sults in an enormous dataset consisting of about 80 million
atoms and 240 million force components, as summarized in
Fig. 2(c). Finally, we randomly split the dataset into a train-
ing dataset, which contains 7829 compounds, out of which
411 compounds are selected for validation, and an additional
testing dataset consisting of 400 compounds. Note that we
split the force-displacement dataset by compounds instead of
supercell configurations so there is no overlap between the
compounds used for training and testing, thus ensuring more
stringent criteria for validating the resultant ML models.

To train a GNNs-based MLUHIP using the constructed FD
dataset, we employed the Directional Message Passing Neural
Network (DimeNet) model. DimeNet was initially introduced
by Gasteiger et al.20 to embed directional information be-
tween different atoms in a molecular or crystal during the mes-
sage passing. This strategy has been shown to significantly
improve the accuracy of predictions for molecular properties
and use in molecular dynamics simulations. We used an im-
proved version of DimeNet, i.e., DimeNet++29, for the model
training to balance accuracy and efficiency. Moreover, we
took advantage of an existing implementation of DimeNet++
in the Open Catalyst Project (OCP)30, which implements var-
ious kinds of MLUIP algorithms for different tasks and pro-
vides optimized parameters for training MLUIP models de-
pending on the size of the dataset. Considering that our dataset
contains more than 10 million atoms and our task is to predict
forces given structures, we adopted a model specification for
a complex dataset as provided by the OCP (see supplemen-
tal material). The model was then trained by minimizing the

force prediction error on the training dataset for 15 epochs,
a number that is consistent with tasks of similar size within
OCP30. The trained model achieves a force prediction mean
absolute error (MAE) of 0.049 eV/Å on the validating dataset
(see supplemental material) and 0.078 eV/Å on the testing
dataset, respectively; the latter is shown in Fig. 2(d). Note that
our testing error is similar to the value of 0.072 eV/Å reported
by the M3GNet model22. The relatively large error in force
prediction may be attributed to several factors, including: (i)
the use of a finite cutoff distance for interatomic interactions,
which may omit relevant contributions from atoms just be-
yond this threshold; (ii) the omission of correlations beyond
three-body interactions29, which can play a significant role in
complex systems; and (iii) the disregard for potential anhar-
monic interactions that become significant with large atomic
displacements. These aspects, among others, could contribute
to discrepancies in predictive accuracy.

While our trained MLUHIP model predicts reasonably ac-
curate forces for unseen compounds, its capability of predict-
ing the full harmonic phonon spectrum needs to be assessed.
To directly compare the predicted and the DFT-calculated
phonons, we utilized CSLD25,26 to extract the IFCs using
the forces predicted by our MLUHIP model for the testing
dataset. We chose not to use the finite displacement ap-
proach implemented in phonon software such as Phonopy31

because it is more sensitive to force errors due to the adopted
small atomic displacements. The resulting IFCs were then
used to construct the dynamical matrix, diagonalized to obtain
phonon frequencies, referred to as ML phonon frequency. As
shown in Fig. 3(a), the ML phonon frequency compares well
with the DFT phonon frequency, achieving an MAE of 0.24
THz (see supplemental material for the comparison of full
phonon dispersions for the testing dataset). These results are
encouraging considering the fact that the ML model has never
seen the compounds in the testing dataset and meanwhile they
exhibit broad distribution of chemistries and structures. Using
the ML phonon frequency, we also computed various thermo-
dynamic properties such as vibrational free energy, vibrational
entropy, and heat capacity. The comparison between ML and
DFT vibrational free energies at 300 K is shown in Fig. 3(b),
showing an MAE of only about 1.45 meV/atom. Such an error
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FIG. 3. Performance of the ML model on a testing dataset containing 400 unseen compounds. (a) Predicted phonon frequencies using our
trained MLHUIP model compared with direct DFT calculations. (b) Predicted vibrational free energy using our trained MLHUIP model
compared with the DFT results at 300 K. (c) Correlation between the harmonic force fitting error (|δF |/F) from CSLD using the forces
predicted by the trained MLHUIP model and the relative error in predicted phonon frequency (|δω|/ω). (d) Mean absolute error (MAE) of
the machine learned free energy (left vertical axis in blue) for the compounds with a given maximum value of |δF |/F . Fraction of the total
400 compounds (right vertical axis in red) for a given maximum value of |δF |/F .

is significantly smaller than previous models14,32 and close to
the criteria of approximately ±1.0 meV/atom for predicting
accurate phase transition temperatures33.

Having validated our MLUHIP model, an important ques-
tion arises concerning the uncertainty estimation when apply-
ing the model to unseen datasets/materials. The capability
of obtaining reliable uncertainty estimation is of great impor-
tance because it can be used to determine whether or not ad-
ditional DFT calculations are required to improve model ac-
curacy or perform active learning. We find that the restric-
tion of potential energy surface to the harmonic order, as re-
flected in our MLUHIP model, naturally leads to an effec-
tive assessment of model uncertainty. This is because any ad-
ditional terms beyond the quadratic form that appear in the
model’s predicted forces could be viewed as model uncer-
tainties. Moreover, such uncertainties can be directly quanti-
fied by estimating the force prediction error when we fit the
FD dataset by truncating at harmonic IFCs. For example,
within the CSLD framework, the relative CSLD force fitting
error (|δF |/F ≡ ||F−Φ

CS
u||2/||F||2, wherein F are predicted

forces by an MLUHIP model, u are random atomic displace-
ments, and Φ

CS are fitted harmonic IFCs) can be used to in-
dicate the model uncertainty, for instance, the error in pre-
dicted phonon frequency. Indeed, Fig. 3(c) shows that there
is a strong correlation between |δF |/F and the relative error
in predicted phonon frequency (|δω|/ω). Such a strong cor-
relation can also be found between |δF |/F and the MAE of
the predicted vibrational free energy. Fig. 3(d) shows the cu-
mulative distribution of errors for vibrational free energy as
a function of maximum |δF |/F . It can be inferred that we
can significantly reduce the MAE of predicted vibrational free
energy by downselecting compounds with a given maximum
value of |δF |/F . For instance, by limiting |δF |/F to be about
0.1, corresponding to about half of the total calculated com-
pounds, we achieve a reduced MAE error of only about 1.0
meV/atom for vibrational free energy.

Before closing, we briefly comment on future research di-
rections. Building on the current research, potential work
could explore several promising directions. First, the imple-

mentation of more advanced machine learning models, such
as equivariant neural networks with inherent symmetry34–36,
could potentially enhance the accuracy and generalizability
of phonon predictions. Additionally, an important extension
of this work could involve including anharmonic properties
in our models to account for the significant impact of anhar-
monic effects on the thermal properties of materials, for exam-
ple, via ∆ machine learning37 on top of our harmonic model.
Applying our current machine learning model to a specific,
targeted materials system and employing active learning tech-
niques could further testify and refine its predictive capabil-
ities. Moreover, the application of our approach to complex
materials such as amorphous or disordered solids requires
special attention due to the lack of periodicity in atomic ar-
rangement and the presence of diverse local environments, a
challenge recently has been recognized in predicting atomic-
scale stiffness in an amorphous solid system38. Another cru-
cial area for future research lies in enhancing the efficiency
of the CSLD approach. Improvements in CSLD could expe-
dite the process of extracting interatomic force constants from
ML-predicted forces, thereby streamlining the entire work-
flow from phonon database conversion to practical phonon
spectrum prediction on a large scale.Finally, we envision that
our model is particularly suited for calculating phonons in
complex crystalline materials, where the computational de-
mands are substantial. For small molecule materials with
well-defined interatomic interactions, traditional methods like
molecular dynamics (MD) may serve as a practical alterna-
tive. MD not only provides an efficient solution but also of-
fers the advantage of incorporating anharmonic effects, which
are essential for a comprehensive understanding of material
behaviors.

In conclusion, our study demonstrates a simple yet effec-
tive strategy for deep learning harmonic phonons using ma-
chine learning universal interatomic potential based on graph
neural networks and existing phonon databases. By convert-
ing the interatomic force constants representation from exist-
ing phonon databases into a more machine learning-friendly
force-displacement representation, we could train our model
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on a large and diverse dataset, ensuring its applicability across
various materials. The model’s performance in predicting
harmonic phonon frequencies and fundamental thermody-
namic properties confirms its high accuracy and potential for
widespread application in the field of materials science. Ad-
ditionally, our approach to uncertainty quantification, inherent
in our harmonic potential energy surface model, represents
a significant step forward in the reliable application of ma-
chine learning models to materials beyond those included in
the training dataset. This capability to estimate uncertainty is
crucial for identifying the need for further data refinement or
model improvement, paving the way for more informed and
efficient research in materials design and discovery involving
vibrational properties.

SUPPLEMENTARY MATERIAL

See supplementary material for more detailed descriptions
of the validation of the machine learning model, the compres-
sive sensing lattice dynamics approach, the equation for gen-
erating temperature-dependent atomic displacements, and the
comparison of phonon dispersions for the testing dataset.
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