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The pretty good measurement is a fundamental analytical tool in quantum information
theory, giving a method for inferring the classical label that identifies a quantum state
chosen probabilistically from an ensemble. Identifying and constructing the pretty good
measurement for the class of bosonic Gaussian states is of immediate practical rele-
vance in quantum information processing tasks. Holevo recently showed that the pretty
good measurement for a bosonic Gaussian ensemble is a bosonic Gaussian measurement
that attains the accessible information of the ensemble [IEEE Trans. Inf. Theory 66(9)
(2020) 5634]. In this paper, we provide an alternate proof of Gaussianity of the pretty
good measurement for a Gaussian ensemble of multimode bosonic states, with a focus
on establishing an explicit and efficiently computable Gaussian description of the mea-
surement. We also compute an explicit form of the mean square error of the pretty good
measurement, which is relevant when using it for parameter estimation.

Generalizing the pretty good measurement is a quantum instrument, called the
pretty good instrument. We prove that the post-measurement state of the pretty good
instrument is a faithful Gaussian state if the input state is a faithful Gaussian state whose
covariance matrix satisfies a certain condition. Combined with our previous finding for
the pretty good measurement and provided that the same condition holds, it follows that
the expected output state is a faithful Gaussian state as well. In this case, we compute
an explicit Gaussian description of the post-measurement and expected output states.
Our findings imply that the pretty good instrument for bosonic Gaussian ensembles is
no longer merely an analytical tool, but that it can also be implemented experimentally
in quantum optics laboratories.

Keywords: Pretty good measurement; pretty good instrument; bosonic Gaussian ensem-
ble; Gaussian measurement; exponential quadratic forms; mean square error.

1. Introduction

Quantum measurement is a fundamental component of quantum mechanics, giv-
ing a method for guessing the classical label that identifies the state of a quantum
system prepared from an ensemble of states with a known a priori probability dis-
tribution.” " It has important applications in quantum communication,* quantum
key distribution,'® and quantum cryptography'!'2; more generally, it is the basic
way that we read out classical information encoded into quantum states.

The extraction of information from a finite-dimensional quantum system pre-
pared in one of finitely many quantum states has been well studied in the past
several decades.1*%813:14 A measurement for such systems, with an expected error
probability not more than twice the optimal error probability,'® was independently
identified by several authors'®16-18 (see also Ref. 19). Known as the pretty good mea-
surement or the square-root measurement, it is a commonly considered measurement
and analytical tool in quantum information theory.?? 3 Recently, a quantum algo-
rithm was proposed for implementing the pretty good measurement for an ensemble
of quantum states in discrete-variable systems.3! The pretty good measurement for

2440010-2



Int. J. Quantum Inform. Downloaded from www.worldscientific.com

by TSINGHUA UNIVERSITY on 08/05/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Pretty good measurement for bosonic Gaussian ensembles

any ensemble of quantum states has a canonical mathematical construction which
also makes it a valid measurement for continuous-variable (CV) systems.?332 In
his work on the classical capacity and accessible information of a bosonic Gaus-
sian ensemble,?? Holevo showed that the pretty good measurement of a Gaussian
ensemble of multimode bosonic Gaussian states is a Gaussian measurement that
attains the accessible information of the ensemble.

In this paper, we provide a comprehensive study of the pretty good measurement
for bosonic Gaussian ensembles, as well as its generalization, the pretty good instru-
ment. We begin by furnishing an alternate proof of the Gaussianity of the pretty
good measurement for a bosonic Gaussian ensemble, together with an explicit and
efficiently computable Gaussian description of the measurement. We additionally
compute an explicit form of the mean square error for this measurement. Next,
we study the pretty good instrument, which is the quantum instrument general-
izing the pretty good measurement of the ensemble (see Remark 14 of Ref. 33).
We prove that the post-measurement state of the pretty good instrument corre-
sponding to a faithful Gaussian state, under a certain condition on the covariance
matrix, is a faithful Gaussian state. Combined with our previous finding for the
pretty good measurement and provided that the same condition holds, it follows
that the expected output state is a faithful Gaussian state as well. In this case,
we also compute an explicit Gaussian description of both the post-measurement
and expected output states. With all of these findings in place, the pretty good
instrument for multimode bosonic systems is no longer merely an analytical tool
for theoretical derivations in quantum information, but it can also be implemented
experimentally in quantum optics laboratories.

Our paper is organized as follows. Section 2 reviews some definitions and the
basic theory of CV quantum systems and bosonic Gaussian states. In Sec. 3, we
set up the notations of a bosonic Gaussian ensemble and state two of our main
results, Theorem 1 on the Gaussianity of the pretty good measurement and its
explicit form, and Theorem 2 on the mean square error of the measurement. We
then study the pretty good instrument in Sec. 4, stating our finding in Theorem 3.
Appendix A through Appendix G contain detailed calculations and proofs that
support the aforementioned results.

2. Background
2.1. Quantum states and quantum channels

A CV quantum system is associated with an infinite-dimensional, separable Hilbert
space ‘H over the complex field C. A quantum state of the system is given by a
density operator p, which is a self-adjoint, positive semidefinite operator of unit
trace acting on H. Let D(H) denote the set of density operators and B(H) the
space of bounded linear operators acting on H. A quantum channel ®, between
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two CV systems represented by Hilbert spaces H and IC, is a completely positive,
trace-preserving linear map from B(H) to B(K). In particular, for all p € D(H), we
have ®(p) € D(K).

2.2. Quantum ensembles and measurements

A quantum ensemble, denoted by {(p(x), px)}zecm, consists of a probability density
function p(x) on the parameter space IT with an underlying measure 7(dx) and a
measurable family of quantum states p,, in D(H). For example, the parameter space
IT can be R™ associated with the Lebesgue measure. A quantum measurement is
given by a positive operator-valued measure (POVM). It is a family of self-adjoint,
positive semidefinite operators {E; },cm satisfying

/Hw(dx)Ex =1, (1)

where I is the identity operator acting on the underlying Hilbert space. If the quan-
tum system that is being measured is prepared in the state p, then the probability
density ¢(x) for the measurement outcome x is given by the Born rule:

q(z) = Tr[E.p], «€ll (2)

The construction of the pretty good measurement associated with a given ensem-
ble of quantum states is as follows. Let p be the average state of the ensemble
given by

pi= /H r(d2)p(x)p, (3)

where the integral exists in the strong sense of the Banach space of trace-class
operators.3? The family of operators {E, }.en defined by

B, =p(x)p 2 pep? (4)

is the associated pretty good measurement and well defined if every F, is a bounded
operator. In this case, the fact that {E,},en is a POVM can be seen from the
fact that each F, is positive semi-definite and from the following completeness
condition:

/H m(dx)Ey = /H n(dx)p(x)p~pap™ % = pF ( /H 7T(dff);n(:ﬂ)pm> p-

=

2.3. Quantum instrument

Let {M_}zem be a collection of completely positive and trace nonincreasing maps,
such that the map [ 7w(dz)M, is trace preserving, i.e. a quantum channel. The
collection { M, }em is called a quantum instrument and is the most general way
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of describing both the classical outcome of a measurement in addition to the post-
measurement state.*3436 If the input state is 7, then the probability density for
observing the outcome z is given by Tr[M,,(7)], and the post-measurement state is
given by My (7)/ Tr[M(7)]. A quantum instrument is thus a generalization of a
quantum measurement in the sense that it records both the measurement outcome
and the post-measurement state. Associated with a POVM {E, }.en is a quantum
instrument, given by the collection { K, (-) K|} em, where E, = K[ K, for all 2 € II.

2.4. Bosonic Gaussian states

We briefly recall some mathematical definitions and basic results on quantum Gaus-
sian states that will be useful in the development of the paper (see Refs. 37-39 for
reviews). An n-mode CV quantum system is described by a density operator acting
on a tensor-product Hilbert space

=@M, (6)

with each H; being an infinite-dimensional separable Hilbert space over C. Associ-
ated with the jth mode are the position- and momentum-quadrature (self-adjoint)
operators, denoted by £; and p;, which satisfy the canonical commutation relations
(CCR):

[Z;,pr] = ihd; forall j,ke{l,...,n}. (7)

Here [#;,pr] = &,;pr — Pr¥; denotes the commutator of #; and pg, ¢ the imagi-
nary unit, & the reduced Planck’s constant h/27 and §,  the Kronecker delta. In
our treatment of CV systems, we set i = 1. Let 7 denote the following vector of
canonical operators:

Fi=(F1,. .y Pon)t = (21,1 - Ty Pn) - (8)

Let [#,7T] denote the 2n x 2n matrix whose (j, k)th element is given by [#;, 7). The
CCR can be represented in matrix form as
1
; (9)

-1 0

and [,, is the n x n identity matrix. An n-mode faithful Gaussian state p can be
written as

[7,77] =iQ, where Q =1, ®

1 ~
p= Z, exp[—H,|,

H,:= %(f — 1) Hy(F —1,), (10)

Z, = 1/det([V, +1Q]/2),

where H » is the quadratic Hamiltonian operator of the state, H, is a 2n x 2n real
positive-definite matrix that we refer to as the Hamiltonian matrix, r, € R®" is
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equal to the mean vector of the state r, = (), = Tr[rp|, and V,, is the 2n x 2n
positive-definite covariance matrix whose (j, k)th element is given by

Voljw = Te{(F = 1p);, (7 = rp)i}pl. (11)

Here {a, lA)} = ab+ba denotes the anticommutator of the two operators a and b. The
covariance matrix V, of a faithful Gaussian state p satisfies the following uncertainty
principle:

V, 4iQ > 0. (12)

We shall use the following relation from Lemma 10 of Ref. 40 on the covariance
matrix of a faithful Gaussian state:

V, —iQ = /1 + (V,Q)2V,(V, +iQ) "V, /T + (QV,)~2. (13)

The matrices H, and V, are related as follows*1:42;

H, = 2iQarcoth(V,i2),

(14)
V, = coth(iQH,/2)i2,
where
coth(z) = i7
el‘ _— e—l‘
) . (15)
T+
h(z) = =1 .
arcoth(z) 5 n(x 1)
Let W, = —V,iQ2. The relations in (14) give the following well-known Cayley
transforms*344:
w,—1
OH,) = 2L
eXp[Z P] Wp +I7
(16)
W I + exp[iQH,]
P T —expliQH,)’
where we have used the notation % = AB™! for invertible matrices A and B.
Define a unitary operator D(r) for r € R?" as
D(r) = exp[irT Q7). (17)

This is also known as a Weyl displacement operator. Its inverse is given by ﬁ(r)T =
ﬁ(—r). The displacement operator shifts the mean of a Gaussian state p by r; i.e.
the mean vector of D(r)fpD(r) is T, + 7. The covariance matrix of the state does
not change by the action of a displacement operator.

2440010-6
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2.5. Gausstan measurements

The measurement corresponding to the POVM

{ﬁb(_ym)f)mb(ym)} o ) (18)

where p,, is a fixed n-mode Gaussian state with zero mean vector and a generic
covariance matrix V;,, is a Gaussian measurement. As such, the following equality
holds:

I— ﬁ /R Ay D(=ym)pun D). (19)

9

This measurement is also known as general-dyne detection,?” as it represents a

general form for a Gaussian measurement.

3. Pretty Good Measurement for Gaussian States and Mean
Square Error

Let {(p(z), px)}zer2n be an ensemble of Gaussian states, such that the state p, is
defined as follows:

pe = D(—Lx)poD(Lzx), (20)

where pq is a fixed n-mode faithful Gaussian state, and L is a 2n x 2n real invertible
matrix. Additionally, p(x) is a Gaussian probability density function with a mean
vector 1 € R?™ and a 2n x 2n real positive-definite covariance matrix X:

p(z) = !

(2m)"Vdet X

We can say that the ensemble {(p(z), px)}zer2n 18 a quantum generalization of the

exp —%(x — )N — ). (21)

normal location model, well known in classical estimation theory (see Example 1.1
of Ref. 45). Note that the mean vector r,, and covariance matrix V,, of p, are
given by

Tpy =Tpo + L, V, =V,. (22)

The average state p of the ensemble is also a faithful Gaussian state, and its mean
vector and covariance matrix are given by (see Sec. 5.3.2 of Ref. 39):

Tp="po + Ly, V, =V, +2LELT. (23)

The following theorem states that the pretty good measurement associated with
the Gaussian ensemble is a Gaussian measurement, and it also provides an explicit
expression for it.

Theorem 1. Let {(p(z),ps)}eecrzn be a Gaussian ensemble such that p, =
D(—Lax)poD(Lx), where pg is a fized n-mode faithful Gaussian state, L is a 2n x 2n
real invertible matriz, and p(x) is a Gaussian probability density function with mean
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vector p € R?™ and 2n x 2n real positive-definite covariance matriz X. The pretty
good measurement { E,},cren associated with the Gaussian ensemble is a Gaussian
measurement. Its explicit Gaussian description is as follows:

Eode — @bm)aﬁ(ym, (24)

where o is an n-mode faithful Gaussian state with zero mean vector and covariance
matriz V, given by

1
O (A VA LN BT A R ES

and the measurement outcome y is related to the ensemble parameter x by

1
y=rp+ 2V I+ (V) 2V,L TSz — p). (26)

Proof. The proof is given in Appendix C. O

We now investigate the mean square error of the pretty good measurement for
estimating the parameter of the ensemble. Let X be a random variable over R2"
with the probability density px (z) = p(x), so that it represents the true value of the

classical label of the ensemble. Also, let X be a random variable taking values in R?"
given by the outcomes of the pretty good measurement. The conditional probability
density of X for given X = z is given by the Born rule p}ax(ﬂx) = Tr[E,pz] =
Tr[p(2)p~ 2 pap™ 2 pz). The mean square error of the pretty good measurement is
defined as the expected value of ||X — X||2:

E[|X — X|P] = / / dz dilz — 7%y, (2, 7)
]RQn RQ"

_ / dr die — #|?px (@)pg (). (27)
R2n JR2n

In the following theorem, we provide an exact expression for the mean square error
of the pretty good measurement.

Theorem 2. The mean square error of the pretty good measurement associated
with the Gaussian ensemble described in Theorem 1 is

~ -1
E[|X — X||?] = 2Tr{(1 - 22LTV;1( I+ (V,,Q)—?) L) z] (28)
Proof. See Appendix D for a proof. O

4. Pretty Good Instrument for Gaussian States

The quantum instrument associated with the pretty good measurement is called
the pretty good instrument (see Remark 14 of Ref. 33). For the Gaussian ensemble

2440010-8
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{(p(x), pz)}werzn, it is defined as the following collection of completely positive,
trace nonincreasing maps:

{m = p(@)p ™ Prp™ 2l P} pemon. (29)
We emphasize that for every input state 7, the operator p}c/ 2p_1/ 27'/)_1/ 2 pglc/ % is trace
class. This follows because pglg/ 2 p~ /2 is a bounded operator, which is a consequence

of the fact that the max-relative entropy of p, and p is finite, since V,, < V. See
Theorem 24 of Ref. 40. We are interested in the probability density function t(x)
for observing outcome z

tx) = Telp(a)pl/2p~ "/ 2rp~1/2pY/?), (30)

the post-measurement state

1/2 _ _ 1/2
p()ps*p=2rp= 2/ (31)
t(x) ’
and the expected output state of the associated quantum channel
o [ da pla)pl/2em 2y 2l (32)

R2n
The following theorem states that both the post-measurement state and the
expected output state of the instrument are Gaussian if the input state 7 is faithful
Gaussian satisfying V. < V. Its proof is given in Appendix E.

Theorem 3. For the pretty good instrument corresponding to the Gaussian ensem-
ble described in Theorem 1, if the input state T is a faithful Gaussian state satisfying
Vi < V,, then the post-measurement state is a faithful Gaussian state and is given by

/ —1/2p910/2

2 _
p~27p

p(x)ps = D(—2)p1D(2). (33)

1/2 1/2
Tr[p(x)pm/ P_l/QTP_l/QPz/ ]
In the above, p7 is a faithful Gaussian state with mean vector

Tor = 7/'p“i’JGJE)(T"r 77/.9)7 (34)

and covariance matriz

Vp7 = Vpo —\/ I+ (VpUQ)_QVPO (V5 + Vpo)_lvpo \/ I+ (QVPO)_27 (35)
Vo L+ (V) 2V, (V, = Vo) TV [T+ (QV,) 72,

Js = [T+ (V,Q) 72V, (V, = V;) 7,

where

Vs :

Jo = I+ (VPOQ)izvvpo (VB + VPO)717
1
Jr = 2(I — JG)LzLTV,;l( I+ (V,,Q)*Q) .

2440010-9
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The variable z is related to x by

2= Jp T+ (V,Q) 2V, LTS (2 — p)/2. (37)

In this case, the expected output state T of the corresponding quantum channel (32)
is also a faithful Gaussian state, with mean vector and covariance matriz given by
r: = 1p + Jr(rr — 1)),

(38)
Vi =V, + Jo[Vr + Vo) JZ

where V is given by (25) in Theorem 1.

5. Conclusion

One of the main findings of our work is a mathematically explicit Gaussian descrip-
tion of the pretty good measurement for an ensemble of multimode bosonic Gaus-
sian states parameterized over R?". Furthermore, we have given a closed form of
the mean square error for such a measurement. These results should be useful in
experiments related to Bayesian quantum estimation tasks with Gaussian states,
in which the goal is to estimate the vector z in (20) by means of a measurement.
Indeed, since the pretty good measurement in this case is a Gaussian measurement,
the experimental demands of implementing this measurement are far less than if
it were not. Another finding of our work is a mathematically explicit Gaussian
description of the post-measurement state, as well as the expected output state, of
the pretty good instrument corresponding to a faithful Gaussian state 7 under the
condition V; < V,, where p is the average state of the ensemble.

Going forward from here, it is an important open question to remove the need for
the technical condition V; <V, in Theorem 3 in order to establish that the pretty
good instrument in (29) is a Gaussian instrument. We suspect that this condition is
not needed. It would also be interesting to make a more explicit connection between
the findings presented here and the earlier results of Ref. 46 for the Gaussian Petz
recovery map, given that, in the finite-dimensional case, the pretty good instrument
is known to be a special case of the Petz recovery map, as discussed in Remark 14
of Ref. 33.
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Appendix A. The Golden Rule for Manipulating Exponential
Quadratic Forms

We briefly recall the golden rule for manipulating products of exponential quadratic
forms, which we use repeatedly in the paper. For more details, see Appendix A of
Ref. 46 and references therein. Let H ; be any inhomogeneous quadratic operator
of the form

Hj = ST QX; + isT O + Saj, (A.1)

such that X; is a 2n x 2n complex matrix with Q.X; symmetric, s; € C?" and
a; € C. Define a matrix M;(X}, s;,a;) corresponding to the operator H; as

0 579" a
X]' Sj|- (AQ)
0 0

Mj = M]-(Xj7sj7aj) =

o O

Its exponential is given by

I—expl-X,;] \" X; —sinh X
1 (76){10[ j]sj> or aj—|—szQ7] Skl I

X; XJZ J
exp|M,| = exp|X;| —1 , (A3
[ J] 0 exp[Xj] [)(7{]‘8]' ( )
J
0 0 1

where I is the 2n X 2n identity matrix and sinh(z) = (e* — e™*)/2. Given two
operators Hy; and Hs, suppose there exists an operator Hj3 satisfying

exp[H;]exp[Hz] = exp|H3) (A.4)

which lies in the Lie algebra generated by H, and H,. The golden rule refers to the
one-to-one correspondence between the operator Hs and its corresponding matrix
M3 satisfying

exp[M;|exp[Maz] = exp[M3]. (A.5)

It is easier to solve (A.5) for M3 using the exponential form (A.3) and basic algebraic
manipulations.

2440010-11
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Appendix B. The Mean Square Formula for Multidimensional
Gaussian Distributions

Let g : R™ — R be a Gaussian probability density function with a mean vector
n € R™ and an m x m real positive-definite covariance matrix I':
1

9 = GmF vaeT

The density function g satisfies the relation

exp —%(m—n)TF_l(x—n) . (B.1)

/ dz|z — y|l’9(z) = |n —y||> + TrT  for all y € R™. (B.2)

We call (B.2) the mean square formula for multidimensional Gaussian distributions.
It can be easily proved using the following properties: for all 1 <i,57 < m,

/ dz z;9(x) = n;,
" (B.3)

A dz(z; —ni)(w; —nj)g(x) = Ty

See Chap. 2 of Ref. 47 for a detailed treatment of integrals involving multidimen-
sional Gaussian densities.

Appendix C. Proof of Theorem 1

Using the representation of Gaussian states in (10), we can rewrite the pretty good
measurement as

By = P(x)ZpZ;ol eXP[ﬁp/Q]eXp[*ﬁpz]EXP[ﬁp/Q]~ (C.1)

Here we used the fact that the covariance matrix of p, is the same as that of py so
that Z,, = Z,,. The golden rule, described in Appendix A, guarantees that there
exists an operator Hy of the form

Hy = %fTQX4f +isTQR + %a4 (C.2)
that satisfies

eXp[pr/Q]exp[—I:Ip ]eXp[fAIp/Q] = exp[Hy). (C.3)

T

The matrix X4, vector s4 and scalar a4 in (C.2) can be obtained as follows. Let My
be the matrix corresponding to the operator Hy given by (A.2):

0 sTQT ay
M4 =10 X4 Sq - (04)
0 0 0

2440010-12
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Write the operators H, and H,, in the standard form (A.1):

i ) o ) P
H, = §TT(—ZH;))T + ””;:)F(ZHP)T + 5(_WpTHPTP)’

. : (C.5)
i, = %fT(—ino)f +irT (iHp, )P + %(—ir;ﬂHmrm),
and let M, and M, be the corresponding matrices given by (A.2):
[0 fir?;Hp fir?;Hprp
M,= 10 QH, iQH,r, |,
0 0 0
} (C.6)

0 —iri H,, —z'rgz H,rp,
M, = |0 iQH, iQOH,7,,
0 0 0

The golden rule implies that the matrices M,, M, and M, satisfy
exp[M,/2]exp[—M,, lexp[M,/2] = exp[Ma]. (C.7)

We know by (A.3) that

[1 7T(I — exp[—iQH,/2])TQT —rT QT sinh(iQH,/2)r,

p
exp[M,/2] = |0 expliQH, /2] (exp[iQH, /2] —I)r, |,
0 0 1
(1 r/:fm (I - eXp[iQHpO])TQT r?x or sinh(iQXH 50 )7,
exp[—M,, ] = |0 exp[—iQ2H ] (exp[—iQ2H .| — D)1y, | 4 (C.8)
10 0 1
[ (T—exp[-X4] \" X, — sinh X4
1 (T54 T a4+ SZQT84
exp|My| = exp|Xy| —1
p[Mi] 0 exp[X4] 7P[Xi] S
0 0 1

Multiply the matrices in the left-hand side of (C.7) using (C.8) and compare it with
exp[My]; with some algebraic manipulations, we get

exp[X4]| = exp[iQH,/2]exp|—iQH,, lexp[iQQH /2],

exp[X4] — T

X, sq = (exp[Xy| — I)r, — exp[iQH,/2](I — exp[—iQH,,]|)(rp, —7p)-

(C.9)
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By applying Proposition 6 of Ref. 40 twice in the first equation of (C.9), we get

Xy = —iQQHy4, where Hy = 2iQarcoth(V4iQ2) and Vj is a 2n x 2n real symmetric
matrix given by

Vi= =V, + /1 + (V,Q)2V,(V, = V) ) Voo /T +
,/ V)2V, LS~ L, T +

We used the relation V, —V,, = 2LYLT in the last equality. Using the covariance
matrix relation (13) for V, in (C.10), we get

Vi+iQ = —(V, —iQ) + /1 + (V,Q) "2V, (V, — V. ) 'V, /T +

(C.10)

= /1 + (V,)72V,[(V, — Vpo) —(V, +iQ)~

> 0. (C.11)

The last inequality follows, since V,, + i€ > 0 implies (V, — V,,,) ™' > (V,, +iQ) 7!
Therefore, Vj is a legitimate covariance matrix of a faithful Gaussian state*®; we
denote by ps the Gaussian state with zero mean vector and covariance matrix
Vor = Va.

Using the relations X4 = —iQQH4 and r,, —r, = L(z — 1) in the second equation
of (C.9), we get

sq = —iQH[r, + (exp[—iQH4] — )" exp[iQH ,/2](exp[—iQH ] — ) L(z — p)].
(C.12)

By applying the Cayley transform (16), we get
sy = —iQH[r, + (W,, — DexpliQH,/2](W,, — I) ' L(z — p)]. (C.13)

By Corollary 4 and the function relation in Eq. (130) of Ref. 40, we get

expliQH, /2] = \/T — W, 2(W, + 1)~ 'W,, (C.14)
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Substituting the above relation in (C.13) gives

$1.= —IQHu[ry + (Wy, = DT = W2 (W, + 1) W,y (Wy, — 1) L — )
= —iQH,

[+ (W, = DN =W Y(T 4+ W)+, (W, = D)7 L — )

= —iQH[ry + (Wy, — DT = Wy )T+ W)L Wy, = D)7 Lz — )]

= —iQ0H,y

(74 Wy = DT = W) =10+ W)= = W, (W, = D7 L — )

= —iQH [y + (Wy, = D\ (I = W)= (1 = W) (W, = 1) Lz = )]
(C.15)
From (C.11), we get

Wpo =TI =/I—- WP_QWP[(WP - Wpo)il - (W, - I)il]Wp I— Wp_2
=y\1- W/TQWP(WP - Wpo)_l[(Wp —1) = (W, = Wy,)]

X (W, = )" W\ /T —W,; 2

=\~ W W (W = W) "Wy = D(W, = I) 7' W\ [T = W2,
(C.16)

By substituting the above expression of W,, — I in (C.15), we get
54 = —iQH, [rp + AT =W, W (W, — W) L(z — u)} = —iQHuy, (C.17)

where

y=rp,+JL(x—p) (C.18)

J =T =W, W, (W, —W,,) ! = VI + (Ve)=2Vp(V, — Vo)™
= /1 + (V,Q)=2V,(2LxLT) " (C.19)

By substituting the values X4y = —iQH, and s4, = —iQH,y in (C.2) and simplifying,
we get

and

. 1 . R 1,
Hy = =5 (7 = )" Ha(7 = y) + 5 (ias + y" Hay). (C.20)
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By substituting (C.20) into (C.3) and then combining with (C.1), we get
1 . 1, .
B = p(0)2, 25 oo | 3(ias + " Hun) | exp | <57 = 97 Hl7 )

= &p(2) 2y 2, 2, D(—y)paD(y), (C.21)

P4 po

where ¢ := exp|(ias + yT Hyy)/2].

In the remainder of the proof, we will establish that & is equal to
(2m)~"(det ¥)"'/2p(x)~!, which will in turn allow us to conclude the final form
of the Gaussian pretty good measurement. By the same arguments as in Proposi-
tion 12 of Ref. 40, applied to the first equation in (C.9), we get

Zp, = \/det([V,,, +i€]/2)

_ \/ det([V, +iQ]/2)det([V,, +i€]/2)

det([Vy = Viol/2)

_ \/ det([V, +iQ]/2)det([V,, +i62]/2)

det L2 det ®
ZPZPU
= C.22
|det L|v/det & ( )
Substituting the value of Z,, into (C.21) gives
()2 -
E—D(—y)paD(y). (C.23)

By= 0%
“ " |det L|Vdet ©
Also, from (C.19) we have

det J = det (/I + (V,Q)~2det V, det(V, — V,,,) "
=det /I — (V,iQ)~2det V, det(V, — V,,) "

= \Jdet[I — (Vi) 1] det[] + (Vi) 1] det V,, det(V], — V)"

— \/det[V, — Q] det V! det[V, + i€2] det V! det V), det(V, — V)"

= \Jdet[V, + iQdet[V,, + iQ]det(2LELT) !
= det([V, +i9]/2)(det L* det X2) !
__ 4
det L2 det Y’
which implies

(C.24)

2
Z;
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From (C.23) and (C.25), we get

E, = &p(a)|det[JL]|Vdet = D(—y)psD(y). (C.26)
We have Tr[E,p] = Tr[p~"/?p(2)pp~/?p] = p(x). Using (C.26), we thus get
p(w) = &p()|det[JL]|Vdet S Tr[D(—y)paD(y)pl, (C.27)
which implies
1

= ~ ~ . C.
¢ Qe LIVas S D p)p D) (€29

By the overlap formula for Gaussian states, given in Eq. (4.51) of Ref. 39, we get
Te[D(—y)paD(y)p)
B 1
Vdet([V, +V,1/2)

exp|—

307 W + V12 = 7).
(C.29)

From (C.28), (C.29) and using the relation y = r, + JL(x — p), we thus get

_ /det([Vo, +V,1/2)
 |det[JL]|Vdet &

X exp B(m LI W, + VI L T 2) (2 — u)}

£

_ /(det[JL]) 2 det([V,, +V,]/2)
vdet X

X exp B(m LI W, + VI L T 2) (2 — u)}

_ det(L1TV,, + V,]JJ-TL-T)2)
B VdetS

<exp| (o = WL W VLT e | (c0

From (C.10) and (C.19) and the fact that V,, = V4, we have

1
SLTTTN Y 4 VLT

2
1
= §L_1J_1 I+ (V) 2V, (V, — V:oo)_lvp\/ I+(Qv,)2J 1L

1
= LTV, = V)L

= %L*l(zLZLT)L*T
=3 (C.31)
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Substituting (C.31) into (C.30) gives

£ =exp| 5 — w727 @ — )| = (2m) " (det )~/ p(a) " (C.32)

By substituting the above value of £ into (C.26), we get
_|det[JL]|
t (2
Recall from (C.18) that y = r, + JL(x — p), which implies dy = |det[JL]|dz. We
thus get

D(~y)psD(y). (C.33)

@ﬁ(*y)mﬁ(y)dy. (C.34)

Finally, we make the substitution py — o to arrive at the precise statement given
in Theorem 1.

E, dx =

Appendix D. Proof of Theorem 2
Recall from (27) that we have

BIX -7 = [ [ dedille—alp@pgGlo. O
where pg (Z[x) is the conditional probability density of the random variable X
given that X = z, and it is given by
px|x (Zlz)dE = Tr[Ezp,|di. (D.2)
By Theorem 1, we have
Ezdi = (2r) " D(—3)oD(§)dg, (D.3)

where § = r, + JL(Z — p) and J is given by (C.19). This also gives us the relation
dy = |det[JL]|dZ. By substituting (D.3) into (D.2) we thus get
|det[JL]|

= W Tr[ﬁ(_g)aﬁ@)%]dj- (D-4)

2

p)?\x(ﬂx)d

By the overlap formula for Gaussian states, given in Eq. (4.51) of Ref. 39, and some
simplifying, we have
. . 1 1 =
Tr|D(—y)oD(y)ps] = exp|—=(F — p2)TY 7 HE — pa) |,
D)D) = e 0| 50— )57 )
(D.5)

where
pz = p+ L7 T L — p),
(D.6)

g _ LT Ve 4+ VI T
5 .
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Substituting (D.5) into (D.4) gives
1 @) 'S @ - ) |dE (D)
—————exp|—=(T — Uz T — pg)|dz. .
(2m)"Vdet 2 2

Thus, pg, +(Z|z) is a Gaussian probability density function with mean vector s,

ISX

p)?|x(55|37)d

and covariance matrix . Using the formula discussed in Appendix B, we get
[ il = 3lPog c@le) = s —alf + TS
= (LYWL= D)z — p)|* + Tr 2. (D.8)
Substituting the above value into (D.1) gives

BX - X7 = [ da(l(7T7 L = D = ) + Tr (o)

B /R% da|[(L™'J 'L = I) (@ — w)||°p(x) + Tr E. (D.9)

We note that the matrix L='J 'L — I is invertible, the proof of which is given in
Appendix F. By a change of variable (i.e. z = (L='J 1L — I)(z — p)), we get

E[|X — X||?] = |[det[L~*J 'L — 1]|7!

x/ dz||z)*p(u+ [L7 T 'L =17 2) + Tr S
R2n

:/ dz||z|%q(z) + Tr 3, (D.10)
R27
where ¢(z) is the Gaussian probability density function on R?" with zero mean

vector and covariance matrix (L='J 1L — I)S(L~'J 'L —I)T. Again, by applying
the formula from Appendix B to (D.10), we get

E[X — X|?] = (L' L = DS(L L= DT+ Tr . (D.11)
We simplify 3 given by (D.6) using the relations (23) and (25) as follows:
£ = L1 [V = Vo) 4 T+ (V) 2V, = Vi) Vi [T+ (21)2)
x J7IL=T/2
=—-L'JtLeL gLt

1
+ §L‘1J‘1 I+ (Vo) 72V, (Vy = Vo) TV [T+ (V)72 L7
1
=Lttt 4 iLfl(vp ~V, ) L7T
=Lt Tt 4% (D.12)
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By substituting (D.12) into (D.11), we get
E[|X — X|?] = Te[(L~'J 'L — DXL~ 'L —1)7)
+Te[-L T LT 7T 45
=2TrY - 2Tr[L~ 1T 1LY]
=2Tr[(I - L7'J7'L)x). (D.13)

We obtain the desired expression (28) by resubstituting the value of J in (D.13).

Appendix E. Proof of Theorem 3
Let 7 be a generic faithful Gaussian state. We have

1/2[)_1/27[)_1/2031/2

P

7) PZ exp|—H,, /2lexp[H, /2)exp|—H,Jexp|H,/2)exp[—H,, /2].  (E.1)

We first combine the product of exponential operators exp[ﬁ 0/2], exp[fﬁT] and

exp[ﬁ »/2]. The golden rule implies that there exists an operator Hs of the form

Hs = éfTQXg,f +isTQF + éa5 (E.2)

that satisfies
eXp[I:IP/Q}eXp[—}AIT]eXp[ﬁp/Q] = exp[ﬁ5]. (E.3)
By similar arguments as in the proof of Theorem 1, we get X5 = —iQQHs5 and

s5 = X5ys5, where

Hjs = 2iQ arcoth(V5i€),

‘/:5 = —Vp + I + (Vpﬂ)izxfp(Vp - V‘r)_lvp I + (QVP)72’

ys =1, + J5(rr — 1)),

T = T+ (1,0 2V, (V= Vo)™

We note that V5 — i€ > 0, whenever V. < V. Indeed, by using the relation
(13), we get

Va— i = —(V, + i) +\/T+ (V) 2V,(V, = Vo) W\ [T+ (1)
=1+ (V,Q)2Vp[(V, - Vo) Tt = (V- Z.Q)il]vp\/ I+ (Qv,)=2. (ES5)

Since V, <V, implies (V, = V;) ™' = (V, —iQ) ™! > 0, we have V5 —i€ > 0. The fact
that V5 is a real matrix such that V5 —i£2 > 0 implies V5 > 0, a proof of which can

(E.4)

be found on p. 58 of Ref. 39. Thus, V5 is a legitimate covariance matrix of a faithful
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Gaussian state. It is also easy to see that ys is a real vector. Now, substituting the
values of X5 and s5 in (E.2) gives

. 1 . R 1,
Hys = *5(7’ - y5)TH5(7’ —ys) + 5(”5 + y5TH5y5). (E.6)

From (E.1), using the relations (E.3) and (E.6), we have

Z 1,
_Zr exp [5(2a5 + y5TH5y5)}

/2,-1/2 —1/2 1/2 _
p Tp p.’/ﬂ ZPOZT

Py

x exp[—H,, /2]exp [%(r —ys) T Hs (7 — y5)} exp[—H,, /2].
(E.7)

Again, by applying the golden rule and arguments similar to those given in the
proof of Theorem 1, we get an operator Hg of the form

Hg = %‘ATQXﬁf + isd Qi + éaﬁ, (E.8)
satisfying
exp[—H,, /2]exp [%(r —ys5) T Hs(F — y5)} exp[—H,, /2] = exp[Hs].  (E.9)
Moreover, we have Xg = —iQ0Hg and s¢ = Xgyg, where

Hg = 2iQ arcoth(V5i02),

Vo = Vo, =/ I+ (VPOQ)_QVpo (V5 + Vpo)_lvpo \/ I+ (QVPO)_27

Yo = 1p, + Jo(ys — 15,),

Jo = \/ I+ (%09)72‘/90(% + vao)il'

The following argument shows that Vg is a legitimate covariance matrix for a
faithful Gaussian state if V. < V,,. By (13), we have

(E.10)

V6 —ifl = \/ I+ (VPOQ)_QVpo [(Vpo + iQ)il - (V5 + Vpo)il]vpo I+ (vao)_Q'
(E.11)

If V; <V, we know that V54142 > 0. This implies (V,, +iQ) ™' — (V5+V,,)~! > 0.
We thus get V5 — Q2 > 0. We also note that yg is a real vector since ys5 is a real
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vector and Jg is a real matrix. Substituting the values of Xg and sg into (E.8) gives

. 1, . 1.
He¢ = *5(7” —y6)" Ho(F — o) + §(za6 +ys Hoyo)- (E.12)

From (E.7), using the relations (E.9) and (E.12), we get

o &7 1, )
py/?pPrpT 2 p ) = g exp| =5 (7 = ys) Ho(7 — ys) |, (E.13)

where f is a scalar given by

1, .
§ = exp [5(3((15 +ag) + ya Hsys + ngGyG):| . (E.14)

In what follows, we will simplify (E.13) to get the desired structure of the
instrument. By (E.13), we get

Do}~ 2 22 = S gL ) — )|t
:% det([Vs +iQ]/2)dz. (E.15)

Also, we have
Te[p(x)py/?p~ " ?rp~ 12 pl/?)dx

= Te[rp~ ' p(x)prp~'/*|da

= (271r)" Tr[rD(—y)oD(y)|dy
det(([?fv 72 P —%(y =) (Ve +Vol/2) 7y —70) [dy,  (B.16)

where y and o are given as in Theorem 1. The first equality follows from the
cyclic property of trace, the second equality follows from (24), and the third equal-
ity follows from the overlap formula for Gaussian states.?® By comparing the two
expressions (E.16) and (E.15), we get

)z, (om)
ZnZ, T a0 A [V S Va2
X exp [—%(y —r ) (Ve +V5]/2) My — rT)} dy. (E.17)

Substituting the above value into (E.13) gives
p(@)py ™ Prp P pl P da

p(y) 1 . T .
EARID) exp {—5 (7 —ye)” He (F — yg)} dy, (E.18)
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where p(y) is the Gaussian probability density function on R?" with the mean
vector r and the covariance matrix (V; +V,)/2. In order to express the exponential
operator in the right-hand side of (E.18) as a function of y, we express yg in terms
of y. Recall from (C.18) that z = L=YJ~1(y — r,) + u, where J is given by (C.19).
So, using the relations r,, = r,, + Lz, r, = r,, + Ly and (E.10), we get

=(I—Jg Tpe + Josys

( )
= (I —Js)(Lx+r,) + J6ys
=T —Jo)[J "y —7p) + L+ 7p] + Joys
=T —Jo)J ty— (I —Jo)J vy + (I — Jo)r, + Joys
= —Jo)J ty— (I - JG)J_lrp + 7, + Jo(ys — yp)- (E.19)

By substituting the value of y5 — r, from (E.4) in the above relation, we get

ye = (I — Jg)J 'y + [I — (I - Jg)J_l} rp+ JoJs(rr —1p) = J7(y —r,) + y7,
(E.20)

where J7 is a real matrix and y7 is a real vector, given by

Jr= (I —Jo)J ' =2(I — JG)LELTVp_l( I+ (V,,Q)—Q)il, o)

yr =1, + JeJ5(rr —1p).
From (E.18) and (E.20), we thus get
p(a)py/?pPrp= 2l de = p(y) D(—=J7(y = 7,))pr D(Jz (y — 7,p))dy,  (E.22)

where p7 is a faithful Gaussian state with mean r,, = y; given by (E.21) and
covariance matrix V,, = Vs given by (E.10). We note that J; is invertible, which
is shown in Appendix G. Therefore, a change of variable on the right-hand side of
(E.22) (i.e. 2= J7z(y —1p)) gives

p(@)pl/2p~ 121 p= 2 2dx = G(2) D(—2)pr D(2)dz, (E.23)

where §(z) is a Gaussian density function with mean vector J7(r- —r,) and covari-
ance matrix J;(V, + V,)JZ /2. The variable z is related to = by

z=Jr(y—1p,) = I/ I+ (V,Q)2V,(V,, = V)"  L(z — )
= Ji /I + (V,Q)2V, L7 TS (2 — ) /2. (E.24)

The post-measurement state of the instrument is then obtained from (E.23):

p(@)p*pPrp= 12/

Telp(x)ps/*p=1/2rp =112,/ %)

= D(—z)p7D(z). (E.25)
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To obtain the expected output state f]R2" dxp(x)p}c/zp_1/27/)_1/2/)33/2 that
results from discarding the measurement outcome, consider the following argument.
By integrating on both sides of (E.23), and using the classical mixing formula, given
in Eq. (5.76) of Ref. 39, we get

da p(a)pl/ 2o~ 2ep 2pl2 = [z §(2)D(—2)prD(z) =7, (E.26)
R2n R2n
where 7 is a Gaussian state with mean vector and covariance matrix given by
r: =1, 4+ Jr(rr —7p),
(E.27)
Vi=V,, + J7[V: + V,]JE.
Appendix F. Invertibility of the Matrix L~'J 'L — I

We show that the matrix L=1J~1L — I is invertible, where L is defined in (20) and
J in (C.19). Recall that it is assumed that L is invertible and .J is invertible because
it is a product of invertible matrices. Since L™'\J 1L — I = L=1J~1(I — J)L, it
suffices to show that I — J is invertible. We repeatedly make use of the functional
calculus of matrices: if A is a diagonalizable matrix and X is an invertible matrix,
then f(X 1AX) = X~!f(A)X holds for any continuous function f defined on the
spectrum of A.
From (C.19), we get

I1—J= [Vp — Voo =/ 1 + (VPQVQVP} (Vo= Vﬂo)_l

= [(1- 1+ V) =2)V, = Vo |V, = Vo) (F.1)

which gives

(1= D)V = Vo) = (T =/ T+ (V,2)2)V, = V. (F.2)

By Williamson’s theorem,*® there exists a symplectic matrix S, which by definition
satisfies STQS = Q, such that V, = STDS, where D = A ® I, and A is a diagonal
matrix with positive diagonal elements. We refer to Refs. 50-52 for more details on
Williamson’s theorem. From (F.2), and using the fact SQ = QS~7, we thus get

(I—J)V, V) = (1 I+ (STDSQ)*Q)STDS ~V,
(

I—\/1+ (STDRS=T)=2)STDS ~ V,,

=ST(1—- T+ (DQ)—?)S—TSTDS ~V,
[-VT=D72)DS~V,, (F.3)
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We note here that D > I. Indeed, by applying Williamson’s theorem in condition
(12), we get D + i€ > 0, which is equivalent to D > I. We also have the function
relation, for = > 1,

-1

T
1—V1l—-22)r=—F——=<ua~
( ) 1+vV1—z—2

Using the above function relation in (F.3), and then simplifying further, gives

L (F.4)

(I = J)(V, = Vo) < STD7IS -V,
=(STIDSTT) T~ W,
= (s7tapaTs =t — v,
= (QSTDso)t —v,
= (V071 -V,
=V, 0" -V, (F.5)
Recall that V, > V,,,, which implies V7! < V,-*. From (F.5), we thus get
(I =)V, = V,,) <QV QT — V. (F.6)

The matrix QVp;lQT — V), is negative definite, which follows from Lemma 11 of
Ref. 53. We have thus proved that (I — J)(V, —V,,) < 0. In particular, I — J is an
invertible matrix.

Appendix G. Invertibility of the Matrix J7 from Eq. (36)

To prove that J; = 2(I — Jo)LXLTV, (/T + (V,9)=2)~" from (36) is invertible,
it suffices to show that I — Js is invertible, where Jg is defined in (36). We have
that

(I = J6) (Vs + Vyo) = Vs + Voo — \/ I+ (VPOQ)_QVPO > Voo — \/ I+ (VPUQ)_QVPO'
(G.1)

The last inequality follows because V5 > 0, under the given condition V, > V.
Apply Williamson’s theorem again (as in Appendix F) to get a symplectic matrix
So such that V,, = SE Do So, where Do = Ag® I, and Ay is a diagonal matrix with
positive diagonal elements. By applying similar arguments to (G.1) as developed in

(F.3), we get
(I — Jo)(Vs + V) > ST (I\/IDO‘Q) DoSo > 0. (G.2)

We have thus proved that (I — Jg)(Vs +V,,) is a positive definite matrix. In par-
ticular, I — Jg is invertible.
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