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The pretty good measurement is a fundamental analytical tool in quantum information
theory, giving a method for inferring the classical label that identifies a quantum state
chosen probabilistically from an ensemble. Identifying and constructing the pretty good
measurement for the class of bosonic Gaussian states is of immediate practical rele-
vance in quantum information processing tasks. Holevo recently showed that the pretty
good measurement for a bosonic Gaussian ensemble is a bosonic Gaussian measurement
that attains the accessible information of the ensemble [IEEE Trans. Inf. Theory 66(9)
(2020) 5634]. In this paper, we provide an alternate proof of Gaussianity of the pretty
good measurement for a Gaussian ensemble of multimode bosonic states, with a focus
on establishing an explicit and efficiently computable Gaussian description of the mea-
surement. We also compute an explicit form of the mean square error of the pretty good
measurement, which is relevant when using it for parameter estimation.

Generalizing the pretty good measurement is a quantum instrument, called the
pretty good instrument. We prove that the post-measurement state of the pretty good
instrument is a faithful Gaussian state if the input state is a faithful Gaussian state whose
covariance matrix satisfies a certain condition. Combined with our previous finding for
the pretty good measurement and provided that the same condition holds, it follows that
the expected output state is a faithful Gaussian state as well. In this case, we compute
an explicit Gaussian description of the post-measurement and expected output states.
Our findings imply that the pretty good instrument for bosonic Gaussian ensembles is
no longer merely an analytical tool, but that it can also be implemented experimentally

in quantum optics laboratories.

Keywords: Pretty good measurement; pretty good instrument; bosonic Gaussian ensem-
ble; Gaussian measurement; exponential quadratic forms; mean square error.

1. Introduction

Quantum measurement is a fundamental component of quantum mechanics, giv-

ing a method for guessing the classical label that identifies the state of a quantum

system prepared from an ensemble of states with a known a priori probability dis-

tribution.5–7 It has important applications in quantum communication,8,9 quantum

key distribution,10 and quantum cryptography11,12; more generally, it is the basic

way that we read out classical information encoded into quantum states.

The extraction of information from a finite-dimensional quantum system pre-

pared in one of finitely many quantum states has been well studied in the past

several decades.1,4,5,8,13,14 A measurement for such systems, with an expected error

probability not more than twice the optimal error probability,15 was independently

identified by several authors13,16–18 (see also Ref. 19). Known as the pretty good mea-

surement or the square-root measurement, it is a commonly considered measurement

and analytical tool in quantum information theory.20–30 Recently, a quantum algo-

rithm was proposed for implementing the pretty good measurement for an ensemble

of quantum states in discrete-variable systems.31 The pretty good measurement for

2440010-2

In
t.

 J
. 
Q

u
an

tu
m

 I
n
fo

rm
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 T

S
IN

G
H

U
A

 U
N

IV
E

R
S

IT
Y

 o
n
 0

8
/0

5
/2

4
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



Pretty good measurement for bosonic Gaussian ensembles

any ensemble of quantum states has a canonical mathematical construction which

also makes it a valid measurement for continuous-variable (CV) systems.2,3,32 In

his work on the classical capacity and accessible information of a bosonic Gaus-

sian ensemble,32 Holevo showed that the pretty good measurement of a Gaussian

ensemble of multimode bosonic Gaussian states is a Gaussian measurement that

attains the accessible information of the ensemble.

In this paper, we provide a comprehensive study of the pretty good measurement

for bosonic Gaussian ensembles, as well as its generalization, the pretty good instru-

ment. We begin by furnishing an alternate proof of the Gaussianity of the pretty

good measurement for a bosonic Gaussian ensemble, together with an explicit and

efficiently computable Gaussian description of the measurement. We additionally

compute an explicit form of the mean square error for this measurement. Next,

we study the pretty good instrument, which is the quantum instrument general-

izing the pretty good measurement of the ensemble (see Remark 14 of Ref. 33).

We prove that the post-measurement state of the pretty good instrument corre-

sponding to a faithful Gaussian state, under a certain condition on the covariance

matrix, is a faithful Gaussian state. Combined with our previous finding for the

pretty good measurement and provided that the same condition holds, it follows

that the expected output state is a faithful Gaussian state as well. In this case,

we also compute an explicit Gaussian description of both the post-measurement

and expected output states. With all of these findings in place, the pretty good

instrument for multimode bosonic systems is no longer merely an analytical tool

for theoretical derivations in quantum information, but it can also be implemented

experimentally in quantum optics laboratories.

Our paper is organized as follows. Section 2 reviews some definitions and the

basic theory of CV quantum systems and bosonic Gaussian states. In Sec. 3, we

set up the notations of a bosonic Gaussian ensemble and state two of our main

results, Theorem 1 on the Gaussianity of the pretty good measurement and its

explicit form, and Theorem 2 on the mean square error of the measurement. We

then study the pretty good instrument in Sec. 4, stating our finding in Theorem 3.

Appendix A through Appendix G contain detailed calculations and proofs that

support the aforementioned results.

2. Background

2.1. Quantum states and quantum channels

A CV quantum system is associated with an infinite-dimensional, separable Hilbert

space H over the complex field C. A quantum state of the system is given by a

density operator ρ, which is a self-adjoint, positive semidefinite operator of unit

trace acting on H. Let D(H) denote the set of density operators and B(H) the

space of bounded linear operators acting on H. A quantum channel Φ, between

2440010-3
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H. K. Mishra et al.

two CV systems represented by Hilbert spaces H and K, is a completely positive,

trace-preserving linear map from B(H) to B(K). In particular, for all ρ ∈ D(H), we

have Φ(ρ) ∈ D(K).

2.2. Quantum ensembles and measurements

A quantum ensemble, denoted by {(p(x), ρx)}x∈Π, consists of a probability density

function p(x) on the parameter space Π with an underlying measure π(dx) and a

measurable family of quantum states ρx in D(H). For example, the parameter space

Π can be Rm associated with the Lebesgue measure. A quantum measurement is

given by a positive operator-valued measure (POVM). It is a family of self-adjoint,

positive semidefinite operators {Ex}x∈Π satisfying
∫

Π

π(dx)Ex = I, (1)

where I is the identity operator acting on the underlying Hilbert space. If the quan-

tum system that is being measured is prepared in the state ρ, then the probability

density q(x) for the measurement outcome x is given by the Born rule:

q(x) = Tr[Exρ], x ∈ Π. (2)

The construction of the pretty good measurement associated with a given ensem-

ble of quantum states is as follows. Let ρ be the average state of the ensemble

given by

ρ :=

∫

Π

π(dx)p(x)ρx, (3)

where the integral exists in the strong sense of the Banach space of trace-class

operators.32 The family of operators {Ex}x∈Π defined by

Ex := p(x)ρ−
1

2 ρxρ−
1

2 (4)

is the associated pretty good measurement and well defined if every Ex is a bounded

operator. In this case, the fact that {Ex}x∈Π is a POVM can be seen from the

fact that each Ex is positive semi-definite and from the following completeness

condition:
∫

Π

π(dx)Ex =

∫

Π

π(dx)p(x)ρ−
1

2 ρxρ−
1

2 = ρ−
1

2

(∫

Π

π(dx)p(x)ρx

)
ρ−

1

2

= ρ−
1

2 ρρ−
1

2 = I. (5)

2.3. Quantum instrument

Let {Mx}x∈Π be a collection of completely positive and trace nonincreasing maps,

such that the map
∫
Π

π(dx)Mx is trace preserving, i.e. a quantum channel. The

collection {Mx}x∈Π is called a quantum instrument and is the most general way
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Pretty good measurement for bosonic Gaussian ensembles

of describing both the classical outcome of a measurement in addition to the post-

measurement state.4,34–36 If the input state is τ , then the probability density for

observing the outcome x is given by Tr[Mx(τ)], and the post-measurement state is

given by Mx(τ)/ Tr[Mx(τ)]. A quantum instrument is thus a generalization of a

quantum measurement in the sense that it records both the measurement outcome

and the post-measurement state. Associated with a POVM {Ex}x∈Π is a quantum

instrument, given by the collection {Kx(·)K†
x}x∈Π, where Ex = K†

xKx for all x ∈ Π.

2.4. Bosonic Gaussian states

We briefly recall some mathematical definitions and basic results on quantum Gaus-

sian states that will be useful in the development of the paper (see Refs. 37–39 for

reviews). An n-mode CV quantum system is described by a density operator acting

on a tensor-product Hilbert space

H =

n⊗

j=1

Hj , (6)

with each Hj being an infinite-dimensional separable Hilbert space over C. Associ-

ated with the jth mode are the position- and momentum-quadrature (self-adjoint)

operators, denoted by x̂j and p̂j , which satisfy the canonical commutation relations

(CCR):

[x̂j , p̂k] = i�δj,k for all j, k ∈ {1, . . . , n}. (7)

Here [x̂j , p̂k] = x̂j p̂k − p̂kx̂j denotes the commutator of x̂j and p̂k, i the imagi-

nary unit, � the reduced Planck’s constant h/2π and δj,k the Kronecker delta. In

our treatment of CV systems, we set � = 1. Let r̂ denote the following vector of

canonical operators:

r̂ := (r̂1, . . . , r̂2n)T ≡ (x̂1, p̂1, . . . , x̂n, p̂n)T . (8)

Let [r̂, r̂T ] denote the 2n×2n matrix whose (j, k)th element is given by [r̂j , r̂k]. The

CCR can be represented in matrix form as

[r̂, r̂T ] = iΩ, where Ω = In ⊗
[

0 1

−1 0

]
, (9)

and In is the n × n identity matrix. An n-mode faithful Gaussian state ρ can be

written as

ρ =
1

Zρ
exp[−Ĥρ],

Ĥρ :=
1

2
(r̂ − rρ)

T Hρ(r̂ − rρ),

Zρ :=
√

det([Vρ + iΩ]/2),

(10)

where Ĥρ is the quadratic Hamiltonian operator of the state, Hρ is a 2n × 2n real

positive-definite matrix that we refer to as the Hamiltonian matrix, rρ ∈ R2n is

2440010-5
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H. K. Mishra et al.

equal to the mean vector of the state rρ = 〈r̂〉ρ = Tr[r̂ρ], and Vρ is the 2n × 2n

positive-definite covariance matrix whose (j, k)th element is given by

[Vρ]j,k = Tr[{(r̂ − rρ)j , (r̂ − rρ)k}ρ]. (11)

Here {â, b̂} = âb̂+ b̂â denotes the anticommutator of the two operators â and b̂. The

covariance matrix Vρ of a faithful Gaussian state ρ satisfies the following uncertainty

principle:

Vρ + iΩ > 0. (12)

We shall use the following relation from Lemma 10 of Ref. 40 on the covariance

matrix of a faithful Gaussian state:

Vρ − iΩ =
√

I + (VρΩ)−2Vρ(Vρ + iΩ)−1Vρ

√
I + (ΩVρ)−2. (13)

The matrices Hρ and Vρ are related as follows41,42:

Hρ = 2iΩ arcoth(VρiΩ),

Vρ = coth(iΩHρ/2)iΩ,
(14)

where

coth(x) =
ex + e−x

ex − e−x
,

arcoth(x) =
1

2
ln

(
x + 1

x − 1

)
.

(15)

Let Wρ := −VρiΩ. The relations in (14) give the following well-known Cayley

transforms43,44:

exp[iΩHρ] =
Wρ − I

Wρ + I
,

Wρ =
I + exp[iΩHρ]

I − exp[iΩHρ]
,

(16)

where we have used the notation A
B

:= AB−1 for invertible matrices A and B.

Define a unitary operator D̂(r) for r ∈ R2n as

D̂(r) := exp[irT Ωr̂]. (17)

This is also known as a Weyl displacement operator. Its inverse is given by D̂(r)† =

D̂(−r). The displacement operator shifts the mean of a Gaussian state ρ by r; i.e.

the mean vector of D̂(r)†ρD̂(r) is rρ + r. The covariance matrix of the state does

not change by the action of a displacement operator.

2440010-6
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Pretty good measurement for bosonic Gaussian ensembles

2.5. Gaussian measurements

The measurement corresponding to the POVM
{

1

(2π)n
D̂(−ym)ρmD̂(ym)

}

ym∈R2n

, (18)

where ρm is a fixed n-mode Gaussian state with zero mean vector and a generic

covariance matrix Vm, is a Gaussian measurement. As such, the following equality

holds:

I =
1

(2π)n

∫

R2n

dym D̂(−ym)ρmD̂(ym). (19)

This measurement is also known as general-dyne detection,39 as it represents a

general form for a Gaussian measurement.

3. Pretty Good Measurement for Gaussian States and Mean

Square Error

Let {(p(x), ρx)}x∈R2n be an ensemble of Gaussian states, such that the state ρx is

defined as follows:

ρx := D̂(−Lx)ρ0D̂(Lx), (20)

where ρ0 is a fixed n-mode faithful Gaussian state, and L is a 2n×2n real invertible

matrix. Additionally, p(x) is a Gaussian probability density function with a mean

vector μ ∈ R2n and a 2n × 2n real positive-definite covariance matrix Σ:

p(x) =
1

(2π)n
√

detΣ
exp

[
−1

2
(x − μ)T Σ−1(x − μ)

]
. (21)

We can say that the ensemble {(p(x), ρx)}x∈R2n is a quantum generalization of the

normal location model, well known in classical estimation theory (see Example 1.1

of Ref. 45). Note that the mean vector rρx
and covariance matrix Vρx

of ρx are

given by

rρx
= rρ0

+ Lx, Vρx
= Vρ0

. (22)

The average state ρ of the ensemble is also a faithful Gaussian state, and its mean

vector and covariance matrix are given by (see Sec. 5.3.2 of Ref. 39):

rρ = rρ0
+ Lμ, Vρ = Vρ0

+ 2LΣLT . (23)

The following theorem states that the pretty good measurement associated with

the Gaussian ensemble is a Gaussian measurement, and it also provides an explicit

expression for it.

Theorem 1. Let {(p(x), ρx)}x∈R2n be a Gaussian ensemble such that ρx =

D̂(−Lx)ρ0D̂(Lx), where ρ0 is a fixed n-mode faithful Gaussian state, L is a 2n×2n

real invertible matrix, and p(x) is a Gaussian probability density function with mean

2440010-7
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H. K. Mishra et al.

vector μ ∈ R2n and 2n × 2n real positive-definite covariance matrix Σ. The pretty

good measurement {Ex}x∈R2n associated with the Gaussian ensemble is a Gaussian

measurement. Its explicit Gaussian description is as follows:

Exdx =
1

(2π)n
D̂(−y)σD̂(y)dy, (24)

where σ is an n-mode faithful Gaussian state with zero mean vector and covariance

matrix Vσ given by

Vσ = −Vρ +
1

2

√
I + (VρΩ)−2VρL

−T Σ−1L−1Vρ

√
I + (ΩVρ)−2, (25)

and the measurement outcome y is related to the ensemble parameter x by

y = rρ +
1

2

√
I + (VρΩ)−2VρL

−T Σ−1(x − μ). (26)

Proof. The proof is given in Appendix C.

We now investigate the mean square error of the pretty good measurement for

estimating the parameter of the ensemble. Let X be a random variable over R2n

with the probability density pX(x) = p(x), so that it represents the true value of the

classical label of the ensemble. Also, let X̃ be a random variable taking values in R2n

given by the outcomes of the pretty good measurement. The conditional probability

density of X̃ for given X = x is given by the Born rule pX̃|X(x̃|x) = Tr[Exρx̃] =

Tr[p(x)ρ−
1

2 ρxρ−
1

2 ρx̃]. The mean square error of the pretty good measurement is

defined as the expected value of ‖X − X̃‖2:

E[‖X − X̃‖2] :=

∫

R2n

∫

R2n

dx dx̃‖x − x̃‖2pX,X̃(x, x̃)

=

∫

R2n

∫

R2n

dx dx̃‖x − x̃‖2pX(x)pX̃|X(x̃|x). (27)

In the following theorem, we provide an exact expression for the mean square error

of the pretty good measurement.

Theorem 2. The mean square error of the pretty good measurement associated

with the Gaussian ensemble described in Theorem 1 is

E[‖X − X̃‖2] = 2 Tr
[(

I − 2ΣLT V −1
ρ

(√
I + (VρΩ)−2

)−1

L
)
Σ

]
. (28)

Proof. See Appendix D for a proof.

4. Pretty Good Instrument for Gaussian States

The quantum instrument associated with the pretty good measurement is called

the pretty good instrument (see Remark 14 of Ref. 33). For the Gaussian ensemble

2440010-8
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Pretty good measurement for bosonic Gaussian ensembles

{(p(x), ρx)}x∈R2n , it is defined as the following collection of completely positive,

trace nonincreasing maps:

{τ 	→ p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x }x∈R2n . (29)

We emphasize that for every input state τ , the operator ρ
1/2
x ρ−1/2τρ−1/2ρ

1/2
x is trace

class. This follows because ρ
1/2
x ρ−1/2 is a bounded operator, which is a consequence

of the fact that the max-relative entropy of ρx and ρ is finite, since Vρ0
< Vρ. See

Theorem 24 of Ref. 40. We are interested in the probability density function t(x)

for observing outcome x

t(x) = Tr[p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x ], (30)

the post-measurement state

p(x)ρ
1/2
x ρ−1/2τρ−1/2ρ

1/2
x

t(x)
, (31)

and the expected output state of the associated quantum channel

τ 	→
∫

R2n

dx p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x . (32)

The following theorem states that both the post-measurement state and the

expected output state of the instrument are Gaussian if the input state τ is faithful

Gaussian satisfying Vτ < Vρ. Its proof is given in Appendix E.

Theorem 3. For the pretty good instrument corresponding to the Gaussian ensem-

ble described in Theorem 1, if the input state τ is a faithful Gaussian state satisfying

Vτ < Vρ, then the post-measurement state is a faithful Gaussian state and is given by

p(x)ρ
1/2
x ρ−1/2τρ−1/2ρ

1/2
x

Tr[p(x)ρ
1/2
x ρ−1/2τρ−1/2ρ

1/2
x ]

= D̂(−z)ρ7D̂(z). (33)

In the above, ρ7 is a faithful Gaussian state with mean vector

rρ7
:= rρ + J6J5(rτ − rρ), (34)

and covariance matrix

Vρ7
:= Vρ0

−
√

I + (Vρ0
Ω)−2Vρ0

(V5 + Vρ0
)−1Vρ0

√
I + (ΩVρ0

)−2, (35)

where

V5 := −Vρ +
√

I + (VρΩ)−2Vρ(Vρ − Vτ )−1Vρ

√
I + (ΩVρ)−2,

J5 :=
√

I + (VρΩ)−2Vρ(Vρ − Vτ )−1,

J6 :=
√

I + (Vρ0
Ω)−2Vρ0

(V5 + Vρ0
)−1,

J7 := 2(I − J6)LΣLT V −1
ρ

(√
I + (VρΩ)−2

)−1

.

(36)
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H. K. Mishra et al.

The variable z is related to x by

z = J7

√
I + (VρΩ)−2VρL

−T Σ−1(x − μ)/2. (37)

In this case, the expected output state τ̃ of the corresponding quantum channel (32)

is also a faithful Gaussian state, with mean vector and covariance matrix given by

rτ̃ := rρ7
+ J7(rτ − rρ),

Vτ̃ := Vρ7
+ J7[Vτ + Vσ]JT

7 ,
(38)

where Vσ is given by (25) in Theorem 1.

5. Conclusion

One of the main findings of our work is a mathematically explicit Gaussian descrip-

tion of the pretty good measurement for an ensemble of multimode bosonic Gaus-

sian states parameterized over R
2n. Furthermore, we have given a closed form of

the mean square error for such a measurement. These results should be useful in

experiments related to Bayesian quantum estimation tasks with Gaussian states,

in which the goal is to estimate the vector x in (20) by means of a measurement.

Indeed, since the pretty good measurement in this case is a Gaussian measurement,

the experimental demands of implementing this measurement are far less than if

it were not. Another finding of our work is a mathematically explicit Gaussian

description of the post-measurement state, as well as the expected output state, of

the pretty good instrument corresponding to a faithful Gaussian state τ under the

condition Vτ < Vρ, where ρ is the average state of the ensemble.

Going forward from here, it is an important open question to remove the need for

the technical condition Vτ < Vρ in Theorem 3 in order to establish that the pretty

good instrument in (29) is a Gaussian instrument. We suspect that this condition is

not needed. It would also be interesting to make a more explicit connection between

the findings presented here and the earlier results of Ref. 46 for the Gaussian Petz

recovery map, given that, in the finite-dimensional case, the pretty good instrument

is known to be a special case of the Petz recovery map, as discussed in Remark 14

of Ref. 33.
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Appendix A. The Golden Rule for Manipulating Exponential

Quadratic Forms

We briefly recall the golden rule for manipulating products of exponential quadratic

forms, which we use repeatedly in the paper. For more details, see Appendix A of

Ref. 46 and references therein. Let Ĥj be any inhomogeneous quadratic operator

of the form

Ĥj :=
i

2
r̂T ΩXj r̂ + isT

j Ωr̂ +
i

2
aj , (A.1)

such that Xj is a 2n × 2n complex matrix with ΩXj symmetric, sj ∈ C2n and

aj ∈ C. Define a matrix Mj(Xj , sj , aj) corresponding to the operator Ĥj as

Mj ≡ Mj(Xj , sj, aj) :=

⎡
⎢⎢⎣

0 sT
j ΩT aj

0 Xj sj

0 0 0

⎤
⎥⎥⎦. (A.2)

Its exponential is given by

exp[Mj ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

(
I − exp[−Xj ]

Xj
sj

)T

ΩT aj + sT
j Ω

Xj − sinh Xj

X2
j

sj

0 exp[Xj]
exp[Xj ] − I

Xj
sj

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (A.3)

where I is the 2n × 2n identity matrix and sinh(x) = (ex − e−x)/2. Given two

operators Ĥ1 and Ĥ2, suppose there exists an operator Ĥ3 satisfying

exp[Ĥ1]exp[Ĥ2] = exp[Ĥ3] (A.4)

which lies in the Lie algebra generated by Ĥ1 and Ĥ2. The golden rule refers to the

one-to-one correspondence between the operator Ĥ3 and its corresponding matrix

M3 satisfying

exp[M1]exp[M2] = exp[M3]. (A.5)

It is easier to solve (A.5) for M3 using the exponential form (A.3) and basic algebraic

manipulations.

2440010-11

In
t.

 J
. 
Q

u
an

tu
m

 I
n
fo

rm
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 T

S
IN

G
H

U
A

 U
N

IV
E

R
S

IT
Y

 o
n
 0

8
/0

5
/2

4
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



H. K. Mishra et al.

Appendix B. The Mean Square Formula for Multidimensional

Gaussian Distributions

Let g : Rm → R be a Gaussian probability density function with a mean vector

η ∈ Rm and an m × m real positive-definite covariance matrix Γ:

g(x) =
1

(2π)
m

2

√
det Γ

exp

[
−1

2
(x − η)T Γ−1(x − η)

]
. (B.1)

The density function g satisfies the relation
∫

Rm

dx‖x − y‖2g(x) = ‖η − y‖2 + TrΓ for all y ∈ R
m. (B.2)

We call (B.2) the mean square formula for multidimensional Gaussian distributions.

It can be easily proved using the following properties: for all 1 ≤ i, j ≤ m,
∫

Rm

dx xig(x) = ηi,

∫

Rm

dx(xi − ηi)(xj − ηj)g(x) = Γij .

(B.3)

See Chap. 2 of Ref. 47 for a detailed treatment of integrals involving multidimen-

sional Gaussian densities.

Appendix C. Proof of Theorem 1

Using the representation of Gaussian states in (10), we can rewrite the pretty good

measurement as

Ex = p(x)ZρZ
−1
ρ0

exp[Ĥρ/2]exp[−Ĥρx
]exp[Ĥρ/2]. (C.1)

Here we used the fact that the covariance matrix of ρx is the same as that of ρ0 so

that Zρx
= Zρ0

. The golden rule, described in Appendix A, guarantees that there

exists an operator Ĥ4 of the form

Ĥ4 =
i

2
r̂T ΩX4r̂ + isT

4 Ωr̂ +
i

2
a4 (C.2)

that satisfies

exp[Ĥρ/2]exp[−Ĥρx
]exp[Ĥρ/2] = exp[Ĥ4]. (C.3)

The matrix X4, vector s4 and scalar a4 in (C.2) can be obtained as follows. Let M4

be the matrix corresponding to the operator Ĥ4 given by (A.2):

M4 =

⎡
⎢⎢⎣

0 sT
4 ΩT a4

0 X4 s4

0 0 0

⎤
⎥⎥⎦. (C.4)
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Pretty good measurement for bosonic Gaussian ensembles

Write the operators Ĥρ and Ĥρx
in the standard form (A.1):

Ĥρ =
i

2
r̂T (−iHρ)r̂ + irT

ρ (iHρ)r̂ +
i

2
(−irT

ρ Hρrρ),

Ĥρx
=

i

2
r̂T (−iHρ0

)r̂ + irT
ρx

(iHρ0
)r̂ +

i

2
(−irT

ρx

Hρ0
rρx

),

(C.5)

and let Mρ and Mρx
be the corresponding matrices given by (A.2):

Mρ =

⎡
⎢⎢⎣

0 −irT
ρ Hρ −irT

ρ Hρrρ

0 iΩHρ iΩHρrρ

0 0 0

⎤
⎥⎥⎦,

Mρx
=

⎡
⎢⎢⎣

0 −irT
ρx

Hρ0
−irT

ρx

Hρ0
rρx

0 iΩHρ0
iΩHρ0

rρx

0 0 0

⎤
⎥⎥⎦.

(C.6)

The golden rule implies that the matrices Mρ, Mρx
and M4 satisfy

exp[Mρ/2]exp[−Mρx
]exp[Mρ/2] = exp[M4]. (C.7)

We know by (A.3) that

exp[Mρ/2] =

⎡
⎢⎢⎢⎣

1 rT
ρ (I − exp[−iΩHρ/2])T ΩT −rT

ρ ΩT sinh(iΩHρ/2)rρ

0 exp[iΩHρ/2] (exp[iΩHρ/2] − I) rρ

0 0 1

⎤
⎥⎥⎥⎦,

exp[−Mρx
] =

⎡
⎢⎢⎢⎣

1 rT
ρx

(I − exp[iΩHρ0
])T ΩT rT

ρx

ΩT sinh(iΩHρ0
)rρx

0 exp[−iΩHρ0
] (exp[−iΩHρ0

] − I)rρx

0 0 1

⎤
⎥⎥⎥⎦,

exp[M4] =

⎡
⎢⎢⎢⎢⎢⎣

1

(
I − exp[−X4]

X4

s4

)T

ΩT a4 + sT
4 Ω

X4 − sinh X4

X2
4

s4

0 exp[X4]
exp[X4] − I

X4

s4

0 0 1

⎤
⎥⎥⎥⎥⎥⎦
.

(C.8)

Multiply the matrices in the left-hand side of (C.7) using (C.8) and compare it with

exp[M4]; with some algebraic manipulations, we get

exp[X4] = exp[iΩHρ/2]exp[−iΩHρ0
]exp[iΩHρ/2],

exp[X4] − I

X4

s4 = (exp[X4] − I)rρ − exp[iΩHρ/2](I − exp[−iΩHρ0
])(rρx

− rρ).

(C.9)
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By applying Proposition 6 of Ref. 40 twice in the first equation of (C.9), we get

X4 = −iΩH4, where H4 = 2iΩ arcoth(V4iΩ) and V4 is a 2n × 2n real symmetric

matrix given by

V4 = −Vρ +
√

I + (VρΩ)−2Vρ(Vρ − Vρ0
)−1Vρ

√
I + (ΩVρ)−2

= −Vρ +
1

2

√
I + (VρΩ)−2VρL

−T Σ−1L−1Vρ

√
I + (ΩVρ)−2.

(C.10)

We used the relation Vρ − Vρ0
= 2LΣLT in the last equality. Using the covariance

matrix relation (13) for Vρ in (C.10), we get

V4 + iΩ = −(Vρ − iΩ) +
√

I + (VρΩ)−2Vρ(Vρ − Vρ0
)−1Vρ

√
I + (ΩVρ)−2

=
√

I + (VρΩ)−2Vρ[(Vρ − Vρ0
)−1 − (Vρ + iΩ)−1]Vρ

√
I + (ΩVρ)−2

> 0. (C.11)

The last inequality follows, since Vρ0
+ iΩ > 0 implies (Vρ − Vρ0

)−1 > (Vρ + iΩ)−1.

Therefore, V4 is a legitimate covariance matrix of a faithful Gaussian state48; we

denote by ρ4 the Gaussian state with zero mean vector and covariance matrix

Vρ4
= V4.

Using the relations X4 = −iΩH4 and rρx
−rρ = L(x−μ) in the second equation

of (C.9), we get

s4 = −iΩH4[rρ + (exp[−iΩH4] − I)−1 exp[iΩHρ/2](exp[−iΩHρ0
] − I)L(x − μ)].

(C.12)

By applying the Cayley transform (16), we get

s4 = −iΩH4[rρ + (Wρ4
− I)exp[iΩHρ/2](Wρ0

− I)−1L(x − μ)]. (C.13)

By Corollary 4 and the function relation in Eq. (130) of Ref. 40, we get

exp[iΩHρ/2] =

√
I − W−2

ρ (Wρ + I)−1Wρ. (C.14)
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Substituting the above relation in (C.13) gives

s4 = −iΩH4

[
rρ + (Wρ4

− I)

√
I − W−2

ρ (Wρ + I)−1Wρ(Wρ0
− I)−1L(x − μ)

]

= −iΩH4

[
rρ + (Wρ4

− I)

√
(I − W−1

ρ )(I + W−1
ρ )(I + W−1

ρ )−1(Wρ0
− I)−1L(x − μ)

]

= −iΩH4

[
rρ + (Wρ4

− I)

√
(I − W−1

ρ )(I + W−1
ρ )−1(Wρ0

− I)−1L(x − μ)
]

= −iΩH4

[
rρ + (Wρ4

− I)

√
(I − W−1

ρ )−1(I + W−1
ρ )−1(I − W−1

ρ )(Wρ0
− I)−1L(x − μ)

]

= −iΩH4

[
rρ + (Wρ4

− I)

√
(I − W−2

ρ )−1(I − W−1
ρ )(Wρ0

− I)−1L(x − μ)
]
.

(C.15)

From (C.11), we get

Wρ4
− I =

√
I − W−2

ρ Wρ[(Wρ − Wρ0
)−1 − (Wρ − I)−1]Wρ

√
I − W−2

ρ

=

√
I − W−2

ρ Wρ(Wρ − Wρ0
)−1[(Wρ − I) − (Wρ − Wρ0

)]

× (Wρ − I)−1Wρ

√
I − W−2

ρ

=

√
I − W−2

ρ Wρ(Wρ − Wρ0
)−1(Wρ0

− I)(Wρ − I)−1Wρ

√
I − W−2

ρ .

(C.16)

By substituting the above expression of Wρ4
− I in (C.15), we get

s4 = −iΩH4

[
rρ +

√
I − W−2

ρ Wρ(Wρ − Wρ0
)−1L(x − μ)

]
=: −iΩH4y, (C.17)

where

y = rρ + JL(x − μ) (C.18)

and

J :=

√
I − W−2

ρ Wρ(Wρ − Wρ0
)−1 =

√
I + (VρΩ)−2Vρ(Vρ − Vρ0

)−1

=
√

I + (VρΩ)−2Vρ(2LΣLT )−1. (C.19)

By substituting the values X4 = −iΩH4 and s4 = −iΩH4y in (C.2) and simplifying,

we get

Ĥ4 = −1

2
(r̂ − y)T H4(r̂ − y) +

1

2
(ia4 + yT H4y). (C.20)
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By substituting (C.20) into (C.3) and then combining with (C.1), we get

Ex = p(x)ZρZ
−1
ρ0

exp

[
1

2
(ia4 + yT H4y)

]
exp

[
−1

2
(r̂ − y)T H4(r̂ − y)

]

= ξp(x)ZρZρ4
Z−1

ρ0
D̂(−y)ρ4D̂(y), (C.21)

where ξ := exp[(ia4 + yT H4y)/2].

In the remainder of the proof, we will establish that ξ is equal to

(2π)−n(detΣ)−1/2p(x)−1, which will in turn allow us to conclude the final form

of the Gaussian pretty good measurement. By the same arguments as in Proposi-

tion 12 of Ref. 40, applied to the first equation in (C.9), we get

Zρ4
=

√
det([Vρ4

+ iΩ]/2)

=

√
det([Vρ + iΩ]/2)det([Vρ0

+ iΩ]/2)

det([Vρ − Vρ0
]/2)

=

√
det([Vρ + iΩ]/2)det([Vρ0

+ iΩ]/2)

detL2 detΣ

=
ZρZρ0

|detL|
√

detΣ
. (C.22)

Substituting the value of Zρ4
into (C.21) gives

Ex =
ξp(x)Z2

ρ

|det L|
√

detΣ
D̂(−y)ρ4D̂(y). (C.23)

Also, from (C.19) we have

detJ = det
√

I + (VρΩ)−2 detVρ det(Vρ − Vρ0
)−1

= det
√

I − (VρiΩ)−2 detVρ det(Vρ − Vρ0
)−1

=
√

det[I − (VρiΩ)−1] det[I + (VρiΩ)−1] detVρ det(Vρ − Vρ0
)−1

=

√
det[Vρ − iΩ] detV −1

ρ det[Vρ + iΩ] detV −1
ρ detVρ det(Vρ − Vρ0

)−1

=
√

det[Vρ + iΩ]det[Vρ + iΩ]det(2LΣLT )−1

= det([Vρ + iΩ]/2)(detL2 detΣ)−1

=
Z2

ρ

detL2 detΣ
, (C.24)

which implies

Z2
ρ

|det L|
√

det Σ
= |det[JL]|

√
det Σ. (C.25)
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Pretty good measurement for bosonic Gaussian ensembles

From (C.23) and (C.25), we get

Ex = ξp(x)|det[JL]|
√

det Σ D̂(−y)ρ4D̂(y). (C.26)

We have Tr[Exρ] = Tr[ρ−1/2p(x)ρxρ−1/2ρ] = p(x). Using (C.26), we thus get

p(x) = ξp(x)|det[JL]|
√

detΣ Tr[D̂(−y)ρ4D̂(y)ρ], (C.27)

which implies

ξ =
1

|det[JL]|
√

detΣTr[D̂(−y)ρ4D̂(y)ρ]
. (C.28)

By the overlap formula for Gaussian states, given in Eq. (4.51) of Ref. 39, we get

Tr[D̂(−y)ρ4D̂(y)ρ]

=
1√

det([Vρ4
+ Vρ]/2)

exp

[
−1

2
(y − rρ)

T ([Vρ4
+ Vρ]/2)−1(y − rρ)

]
.

(C.29)

From (C.28), (C.29) and using the relation y = rρ + JL(x − μ), we thus get

ξ =

√
det([Vρ4

+ Vρ]/2)

|det[JL]|
√

detΣ

× exp

[
1

2
(x − μ)T (L−1J−1[Vρ4

+ Vρ]J
−T L−T /2)−1(x − μ)

]

=

√
(det[JL])−2 det([Vρ4

+ Vρ]/2)√
detΣ

× exp

[
1

2
(x − μ)T (L−1J−1[Vρ4

+ Vρ]J
−T L−T /2)−1(x − μ)

]

=

√
det(L−1J−1[Vρ4

+ Vρ]J−T L−T /2)√
detΣ

× exp

[
1

2
(x − μ)T (L−1J−1[Vρ4

+ Vρ]J
−T L−T /2)−1(x − μ)

]
. (C.30)

From (C.10) and (C.19) and the fact that Vρ4
= V4, we have

1

2
L−1J−1[Vρ4

+ Vρ]J
−T L−T

=
1

2
L−1J−1

√
I + (VρΩ)−2Vρ(Vρ − Vρ0

)−1Vρ

√
I + (ΩVρ)−2J−T L−T

=
1

2
L−1(Vρ − Vρ0

)L−T

=
1

2
L−1(2LΣLT )L−T

= Σ. (C.31)
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H. K. Mishra et al.

Substituting (C.31) into (C.30) gives

ξ = exp

[
1

2
(x − μ)T Σ−1(x − μ)

]
= (2π)−n(detΣ)−1/2p(x)−1. (C.32)

By substituting the above value of ξ into (C.26), we get

Ex =
|det[JL]|

(2π)n
D̂(−y)ρ4D̂(y). (C.33)

Recall from (C.18) that y = rρ + JL(x − μ), which implies dy = |det[JL]|dx. We

thus get

Exdx =
1

(2π)n
D̂(−y)ρ4D̂(y)dy. (C.34)

Finally, we make the substitution ρ4 → σ to arrive at the precise statement given

in Theorem 1.

Appendix D. Proof of Theorem 2

Recall from (27) that we have

E[‖X − X̃‖2] =

∫

R2n

∫

R2n

dx dx̃‖x − x̃‖2p(x)pX̃|X(x̃|x), (D.1)

where pX̃|X(x̃|x) is the conditional probability density of the random variable X̃

given that X = x, and it is given by

pX̃|X(x̃|x)dx̃ = Tr[Ex̃ρx]dx̃. (D.2)

By Theorem 1, we have

Ex̃dx̃ = (2π)−nD̂(−ỹ)σD̂(ỹ)dỹ, (D.3)

where ỹ = rρ + JL(x̃ − μ) and J is given by (C.19). This also gives us the relation

dỹ = |det[JL]|dx̃. By substituting (D.3) into (D.2) we thus get

pX̃|X(x̃|x)dx̃ =
|det[JL]|

(2π)n
Tr[D̂(−ỹ)σD̂(ỹ)ρx]dx̃. (D.4)

By the overlap formula for Gaussian states, given in Eq. (4.51) of Ref. 39, and some

simplifying, we have

Tr[D̂(−ỹ)σD̂(ỹ)ρx] =
1√

det[(Vσ + Vρ0
)/2]

exp

[
−1

2
(x̃ − μx)T Σ̃−1(x̃ − μx)

]
,

(D.5)

where

μx = μ + L−1J−1L(x − μ),

Σ̃ =
L−1J−1[Vσ + Vρ0

]J−T L−T

2
.

(D.6)
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Pretty good measurement for bosonic Gaussian ensembles

Substituting (D.5) into (D.4) gives

pX̃|X(x̃|x)dx̃ =
1

(2π)n
√

det Σ̃
exp

[
−1

2
(x̃ − μx)T Σ̃−1(x̃ − μx)

]
dx̃. (D.7)

Thus, pX̃|X(x̃|x) is a Gaussian probability density function with mean vector μx

and covariance matrix Σ̃. Using the formula discussed in Appendix B, we get
∫

R2n

dx̃‖x − x̃‖2pX̃|X(x̃|x) = ‖μx − x‖2 + Tr Σ̃

= ‖(L−1J−1L − I)(x − μ)‖2 + Tr Σ̃. (D.8)

Substituting the above value into (D.1) gives

E[‖X − X̃‖2] =

∫

R2n

dx(‖(L−1J−1L − I)(x − μ)‖2 + Tr Σ̃)p(x)

=

∫

R2n

dx‖(L−1J−1L − I)(x − μ)‖2p(x) + Tr Σ̃. (D.9)

We note that the matrix L−1J−1L − I is invertible, the proof of which is given in

Appendix F. By a change of variable (i.e. z = (L−1J−1L − I)(x − μ)), we get

E[‖X − X̃‖2] = |det[L−1J−1L − I]|−1

×
∫

R2n

dz‖z‖2p(μ + [L−1J−1L − I]−1z) + Tr Σ̃

=

∫

R2n

dz‖z‖2q(z) + Tr Σ̃, (D.10)

where q(z) is the Gaussian probability density function on R2n with zero mean

vector and covariance matrix (L−1J−1L− I)Σ(L−1J−1L− I)T . Again, by applying

the formula from Appendix B to (D.10), we get

E[‖X − X̃‖2] = Tr[(L−1J−1L − I)Σ(L−1J−1L − I)T ] + Tr Σ̃. (D.11)

We simplify Σ̃ given by (D.6) using the relations (23) and (25) as follows:

Σ̃ = L−1J−1
[
−(Vρ − Vρ0

) +
√

I + (VρΩ)−2Vρ(Vρ − Vρ0
)−1Vρ

√
I + (ΩVρ)−2

]

× J−T L−T /2

= −L−1J−1LΣLT J−T L−T

+
1

2
L−1J−1

√
I + (VρΩ)−2Vρ(Vρ − Vρ0

)−1Vρ

√
I + (ΩVρ)−2J−T L−T

= −L−1J−1LΣLT J−T L−T +
1

2
L−1(Vρ − Vρ0

)L−T

= −L−1J−1LΣJ−T L−T + Σ. (D.12)
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H. K. Mishra et al.

By substituting (D.12) into (D.11), we get

E[‖X − X̃‖2] = Tr[(L−1J−1L − I)Σ(L−1J−1L − I)T ]

+ Tr[−L−1J−1LΣJ−T L−T + Σ]

= 2 TrΣ − 2 Tr[L−1J−1LΣ]

= 2 Tr[(I − L−1J−1L)Σ]. (D.13)

We obtain the desired expression (28) by resubstituting the value of J in (D.13).

Appendix E. Proof of Theorem 3

Let τ be a generic faithful Gaussian state. We have

ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x

=
Zρ

Zρ0
Zτ

exp[−Ĥρx
/2]exp[Ĥρ/2]exp[−Ĥτ ]exp[Ĥρ/2]exp[−Ĥρx

/2]. (E.1)

We first combine the product of exponential operators exp[Ĥρ/2], exp[−Ĥτ ] and

exp[Ĥρ/2]. The golden rule implies that there exists an operator Ĥ5 of the form

Ĥ5 =
i

2
r̂T ΩX5r̂ + isT

5 Ωr̂ +
i

2
a5 (E.2)

that satisfies

exp[Ĥρ/2]exp[−Ĥτ ]exp[Ĥρ/2] = exp[Ĥ5]. (E.3)

By similar arguments as in the proof of Theorem 1, we get X5 = −iΩH5 and

s5 = X5y5, where

H5 = 2iΩ arcoth(V5iΩ),

V5 := −Vρ +
√

I + (VρΩ)−2Vρ(Vρ − Vτ )−1Vρ

√
I + (ΩVρ)−2,

y5 = rρ + J5(rτ − rρ),

J5 :=
√

I + (VρΩ)−2Vρ(Vρ − Vτ )−1.

(E.4)

We note that V5 − iΩ > 0, whenever Vτ < Vσ. Indeed, by using the relation

(13), we get

V5 − iΩ = −(Vρ + iΩ) +
√

I + (VρΩ)−2Vρ(Vρ − Vτ )−1Vρ

√
I + (ΩVρ)−2

=
√

I + (VρΩ)−2Vρ[(Vρ − Vτ )−1 − (Vρ − iΩ)−1]Vρ

√
I + (ΩVρ)−2. (E.5)

Since Vτ < Vσ implies (Vρ −Vτ )−1− (Vρ − iΩ)−1 > 0, we have V5− iΩ > 0. The fact

that V5 is a real matrix such that V5 − iΩ > 0 implies V5 > 0, a proof of which can

be found on p. 58 of Ref. 39. Thus, V5 is a legitimate covariance matrix of a faithful
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Pretty good measurement for bosonic Gaussian ensembles

Gaussian state. It is also easy to see that y5 is a real vector. Now, substituting the

values of X5 and s5 in (E.2) gives

Ĥ5 = −1

2
(r̂ − y5)

T H5(r̂ − y5) +
1

2
(ia5 + yT

5 H5y5). (E.6)

From (E.1), using the relations (E.3) and (E.6), we have

ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x =
Zρ

Zρ0
Zτ

exp

[
1

2
(ia5 + yT

5 H5y5)

]

× exp[−Ĥρx
/2]exp

[
−1

2
(r̂ − y5)

T H5(r̂ − y5)

]
exp[−Ĥρx

/2].

(E.7)

Again, by applying the golden rule and arguments similar to those given in the

proof of Theorem 1, we get an operator Ĥ6 of the form

Ĥ6 =
i

2
r̂T ΩX6r̂ + isT

6 Ωr̂ +
i

2
a6, (E.8)

satisfying

exp[−Ĥρx
/2]exp

[
−1

2
(r̂ − y5)

T H5(r̂ − y5)

]
exp[−Ĥρx

/2] = exp[Ĥ6]. (E.9)

Moreover, we have X6 = −iΩH6 and s6 = X6y6, where

H6 = 2iΩ arcoth(V6iΩ),

V6 := Vρ0
−

√
I + (Vρ0

Ω)−2Vρ0
(V5 + Vρ0

)−1Vρ0

√
I + (ΩVρ0

)−2,

y6 = rρx
+ J6(y5 − rρx

),

J6 :=
√

I + (Vρ0
Ω)−2Vρ0

(V5 + Vρ0
)−1.

(E.10)

The following argument shows that V6 is a legitimate covariance matrix for a

faithful Gaussian state if Vτ < Vρ. By (13), we have

V6 − iΩ =
√

I + (Vρ0
Ω)−2Vρ0

[(Vρ0
+ iΩ)−1 − (V5 + Vρ0

)−1]Vρ0

√
I + (ΩVρ0

)−2.

(E.11)

If Vτ < Vρ, we know that V5 + iΩ > 0. This implies (Vρ0
+ iΩ)−1− (V5 +Vρ0

)−1 > 0.

We thus get V6 − iΩ > 0. We also note that y6 is a real vector since y5 is a real
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H. K. Mishra et al.

vector and J6 is a real matrix. Substituting the values of X6 and s6 into (E.8) gives

Ĥ6 = −1

2
(r̂ − y6)

T H6(r̂ − y6) +
1

2
(ia6 + yT

6 H6y6). (E.12)

From (E.7), using the relations (E.9) and (E.12), we get

ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x =
ξ̃Zρ

Zρ0
Zτ

exp

[
−1

2
(r̂ − y6)

T H6(r̂ − y6)

]
, (E.13)

where ξ̃ is a scalar given by

ξ̃ := exp

[
1

2
(i(a5 + a6) + yT

5 H5y5 + yT
6 H6y6)

]
. (E.14)

In what follows, we will simplify (E.13) to get the desired structure of the

instrument. By (E.13), we get

Tr[p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x ]dx =
ξ̃p(x)Zρ

Zρ0
Zτ

Tr exp

[
−1

2
(r̂ − y6)

T H6(r̂ − y6)

]
dx

=
ξ̃p(x)Zρ

Zρ0
Zτ

√
det([V6 + iΩ]/2)dx. (E.15)

Also, we have

Tr[p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x ]dx

= Tr[τρ−1/2p(x)ρxρ−1/2]dx

=
1

(2π)n
Tr[τD̂(−y)σD̂(y)]dy

=
(2π)−n

√
det([Vτ + Vσ]/2)

exp

[
−1

2
(y − rτ )T ([Vτ + Vσ]/2)−1(y − rτ )

]
dy, (E.16)

where y and σ are given as in Theorem 1. The first equality follows from the

cyclic property of trace, the second equality follows from (24), and the third equal-

ity follows from the overlap formula for Gaussian states.39 By comparing the two

expressions (E.16) and (E.15), we get

ξ̃p(x)Zρ

Zρ0
Zτ

dx =
(2π)−n

√
det([V6 + iΩ]/2)

√
det([Vτ + Vσ ]/2)

× exp

[
−1

2
(y − rτ )T ([Vτ + Vσ]/2)−1(y − rτ )

]
dy. (E.17)

Substituting the above value into (E.13) gives

p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x dx

=
p̃(y)√

det([V6 + iΩ]/2)
exp

[
−1

2
(r̂ − y6)

T H6 (r̂ − y6)

]
dy, (E.18)
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Pretty good measurement for bosonic Gaussian ensembles

where p̃(y) is the Gaussian probability density function on R2n with the mean

vector rτ and the covariance matrix (Vτ +Vσ)/2. In order to express the exponential

operator in the right-hand side of (E.18) as a function of y, we express y6 in terms

of y. Recall from (C.18) that x = L−1J−1(y − rρ) + μ, where J is given by (C.19).

So, using the relations rρx
= rρ0

+ Lx, rρ = rρ0
+ Lμ and (E.10), we get

y6 = (I − J6)rρx
+ J6y5

= (I − J6)(Lx + rρ0
) + J6y5

= (I − J6)[J
−1(y − rρ) + Lμ + rρ0

] + J6y5

= (I − J6)J
−1y − (I − J6)J

−1rρ + (I − J6)rρ + J6y5

= (I − J6)J
−1y − (I − J6)J

−1rρ + rρ + J6(y5 − yρ). (E.19)

By substituting the value of y5 − rρ from (E.4) in the above relation, we get

y6 = (I − J6)J
−1y +

[
I − (I − J6)J

−1
]
rρ + J6J5(rτ − rρ) := J7(y − rρ) + y7,

(E.20)

where J7 is a real matrix and y7 is a real vector, given by

J7 = (I − J6)J
−1 = 2(I − J6)LΣLT V −1

ρ

(√
I + (VρΩ)−2

)−1

,

y7 = rρ + J6J5(rτ − rρ).

(E.21)

From (E.18) and (E.20), we thus get

p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x dx = p̃(y)D̂(−J7(y − rρ))ρ7D̂(J7(y − rρ))dy, (E.22)

where ρ7 is a faithful Gaussian state with mean rρ7
= y7 given by (E.21) and

covariance matrix Vρ7
= V6 given by (E.10). We note that J7 is invertible, which

is shown in Appendix G. Therefore, a change of variable on the right-hand side of

(E.22) (i.e. z = J7(y − rρ)) gives

p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x dx = q̃(z)D̂(−z)ρ7D̂(z)dz, (E.23)

where q̃(z) is a Gaussian density function with mean vector J7(rτ − rρ) and covari-

ance matrix J7(Vτ + Vσ)JT
7 /2. The variable z is related to x by

z = J7(y − rρ) = J7

√
I + (VρΩ)−2Vρ(Vρ − Vρ0

)−1L(x − μ)

= J7

√
I + (VρΩ)−2VρL

−T Σ−1(x − μ)/2. (E.24)

The post-measurement state of the instrument is then obtained from (E.23):

p(x)ρ
1/2
x ρ−1/2τρ−1/2ρ

1/2
x

Tr[p(x)ρ
1/2
x ρ−1/2τρ−1/2ρ

1/2
x ]

= D̂(−z)ρ7D̂(z). (E.25)
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To obtain the expected output state
∫

R2n
dxp(x)ρ

1/2
x ρ−1/2τρ−1/2ρ

1/2
x that

results from discarding the measurement outcome, consider the following argument.

By integrating on both sides of (E.23), and using the classical mixing formula, given

in Eq. (5.76) of Ref. 39, we get
∫

R2n

dx p(x)ρ1/2
x ρ−1/2τρ−1/2ρ1/2

x =

∫

R2n

dz q̃(z)D̂(−z)ρ7D̂(z) = τ̃ , (E.26)

where τ̃ is a Gaussian state with mean vector and covariance matrix given by

rτ̃ = rρ7
+ J7(rτ − rρ),

Vτ̃ = Vρ7
+ J7[Vτ + Vσ ]JT

7 .
(E.27)

Appendix F. Invertibility of the Matrix L
−1

J
−1

L − I

We show that the matrix L−1J−1L− I is invertible, where L is defined in (20) and

J in (C.19). Recall that it is assumed that L is invertible and J is invertible because

it is a product of invertible matrices. Since L−1J−1L − I = L−1J−1(I − J)L, it

suffices to show that I − J is invertible. We repeatedly make use of the functional

calculus of matrices: if A is a diagonalizable matrix and X is an invertible matrix,

then f(X−1AX) = X−1f(A)X holds for any continuous function f defined on the

spectrum of A.

From (C.19), we get

I − J =
[
Vρ − Vρ0

−
√

I + (VρΩ)−2Vρ

]
(Vρ − Vρ0

)−1

=
[(

I −
√

I + (VρΩ)−2

)
Vρ − Vρ0

]
(Vρ − Vρ0

)−1, (F.1)

which gives

(I − J)(Vρ − Vρ0
) =

(
I −

√
I + (VρΩ)−2

)
Vρ − Vρ0

. (F.2)

By Williamson’s theorem,49 there exists a symplectic matrix S, which by definition

satisfies ST ΩS = Ω, such that Vρ = ST DS, where D = Λ⊗ I2, and Λ is a diagonal

matrix with positive diagonal elements. We refer to Refs. 50–52 for more details on

Williamson’s theorem. From (F.2), and using the fact SΩ = ΩS−T , we thus get

(I − J)(Vρ − Vρ0
) =

(
I −

√
I + (ST DSΩ)−2

)
ST DS − Vρ0

=
(
I −

√
I + (ST DΩS−T )−2

)
ST DS − Vρ0

= ST
(
I −

√
I + (DΩ)−2

)
S−T ST DS − Vρ0

= ST
(
I −

√
I − D−2

)
DS − Vρ0

. (F.3)
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We note here that D > I. Indeed, by applying Williamson’s theorem in condition

(12), we get D + iΩ > 0, which is equivalent to D > I. We also have the function

relation, for x > 1,

(1 −
√

1 − x−2)x =
x−1

1 +
√

1 − x−2
< x−1. (F.4)

Using the above function relation in (F.3), and then simplifying further, gives

(I − J)(Vρ − Vρ0
) < ST D−1S − Vρ0

= (S−1DS−T )−1 − Vρ0

= (S−1ΩDΩT S−T )−1 − Vρ0

= (ΩST DSΩT )−1 − Vρ0

= (ΩVρΩT )−1 − Vρ0

= ΩV −1
ρ ΩT − Vρ0

. (F.5)

Recall that Vρ > Vρ0
, which implies V −1

ρ < V −1
ρ0

. From (F.5), we thus get

(I − J)(Vρ − Vρ0
) < ΩV −1

ρ0
ΩT − Vρ0

. (F.6)

The matrix ΩV −1
ρ0

ΩT − Vρ0
is negative definite, which follows from Lemma 11 of

Ref. 53. We have thus proved that (I − J)(Vρ − Vρ0
) < 0. In particular, I − J is an

invertible matrix.

Appendix G. Invertibility of the Matrix J7 from Eq. (36)

To prove that J7 = 2(I − J6)LΣLT V −1
ρ (

√
I + (VρΩ)−2)−1 from (36) is invertible,

it suffices to show that I − J6 is invertible, where J6 is defined in (36). We have

that

(I − J6)(V5 + Vρ0
) = V5 + Vρ0

−
√

I + (Vρ0
Ω)−2Vρ0

> Vρ0
−

√
I + (Vρ0

Ω)−2Vρ0
.

(G.1)

The last inequality follows because V5 > 0, under the given condition Vρ > Vτ .

Apply Williamson’s theorem again (as in Appendix F) to get a symplectic matrix

S0 such that Vρ0
= ST

0 D0S0, where D0 = Λ0⊗ I2, and Λ0 is a diagonal matrix with

positive diagonal elements. By applying similar arguments to (G.1) as developed in

(F.3), we get

(I − J6)(V5 + Vρ0
) > ST

0

(
I −

√
I − D−2

0

)
D0S0 > 0. (G.2)

We have thus proved that (I − J6)(V5 + Vρ0
) is a positive definite matrix. In par-

ticular, I − J6 is invertible.
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