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Limited quantum advantage for stellar interferometry via continuous-variable teleportation
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We consider stellar interferometry in the continuous-variable (CV) quantum information formalism and use
the quantum Fisher information (QF]I) to characterize the performance of three key strategies: direct interferom-
etry (DI), local heterodyne measurement, and a CV teleportation-based strategy. In the lossless regime, we show
that a squeezing parameter of »r & 2 (18 dB) is required to reach ~95% of the QFI achievable with DI; such a
squeezing level is beyond what has been achieved experimentally. In the low-loss regime, the CV teleportation
strategy becomes inferior to DI, and the performance gap widens as loss increases. Curiously, in the high-loss
regime, a small region of loss exists where the CV teleportation strategy slightly outperforms both DI and local
heterodyne, representing a transition in the optimal strategy. We describe this advantage as limited because it
occurs for a small region of loss, and the magnitude of the advantage is also small. We argue that practical
difficulties further impede achieving any quantum advantage, limiting the merits of a CV teleportation-based

strategy for stellar interferometry.

DOI: 10.1103/PhysRevA.109.052434

I. INTRODUCTION

Interferometry forms the basis for much of astronomical
imaging [1,2]. Its performance is limited by diffraction: the
resolution is proportional to the aperture of the receiver and
inversely proportional to the wavelength—the ideal instru-
ment is a large-baseline optical interferometer. By combining
signals collected across telescope arrays, the achievable reso-
lution is equivalent to that of a large telescope the size of the
array’s baseline.

In optical interferometric arrays, photons arriving at differ-
ent telescopes are connected by physical optical links, such
as fibers and other optical elements, that bring them together
for an interference measurement [2,3]. However, optical ele-
ments are inherently lossy, and if the telescopes are separated
by long distances, bringing the photons together to perform
such an interference measurement would result in most of the
signal being lost. Bypassing that requires quantum resources
such as entanglement and some form of established coherence
between the nodes in the array [4-7].

Several quantum-enhanced protocols [4,6—8] have consid-
ered the weak-photon limit, in which photons arriving from
the source are shared nonlocally between the telescope sites.
There, predistributed and distilled entanglement replaces the
lossy optical link, and discrete-variable measurement proto-
cols are used to estimate the parameters of interest. However,
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these discrete-variable protocols truncate the quantum state at
the single- or two-photon level, even though states received
from astronomical sources are inherently thermal [9]. There-
fore, it is natural to consider this problem in the framework
of continuous-variable (CV) quantum information [10,11],
which motivates our work. Any imaging task can be trans-
lated into a parameter estimation task, for which an essential
figure of merit is the quantum Fisher information (QFI) (see,
e.g., Ref. [12] for a review). Here, we take into account trans-
mission loss in the distributed entanglement and quantify the
QFI in the presence of this loss.

Consider a two-site scenario (named Alice and Bob), with
each featuring a telescope station such that they are sep-
arated by a large distance. As in Ref. [5], we model the
incoming signal as a correlated thermal state, and the task
is to extract the relevant parameters for imaging: the relative
phase and the (complex) degree of coherence [9]. To extract
these parameters, we need to interfere the modes held by
Alice and Bob. Several schemes can be used, as depicted in
Fig. 1: (a) direct interferometry, which requires bringing the
signal physically together via an optical link; (b) a spatially
“local” measurement scheme, heterodyne detection—a phase
reference is distributed, but without entanglement; or (c) CV
teleportation.

In this work, we scrutinize the performance of these
schemes, where we characterize the scheme (c) inspired by
CV teleportation [13], for which the resource state is a dis-
tributed two-mode squeezed vacuum (TMSV). In the schemes
in Refs. [4,6,7], the stellar photon is lossless, and the entan-
glement distribution experiences the loss in place of the stellar
photon. Here, we treat losses in a fair way—i.e., either the
distributed entanglement or the stellar photon has to travel,
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FIG. 1. The three strategies we compare for estimation of pa-
rameters in the stellar state p,. (a) Direct interferometry (DI), where
the two modes of the stellar state are physically brought together
for interference. Each mode suffers transmission loss parameterized
by n € [0, 1]. (b) A local strategy, where heterodyne detection is
performed separately on the modes held by Alice and Bob, and no
loss is incurred. (c) A CV teleportation strategy, where a TMSV is
distributed to Alice and Bob. During distribution, each mode of the
TMSYV suffers transmission loss parametrized by 7. Bob performs
joint homodyne measurements as prescribed by standard CV tele-
portation and sends his measurement outcomes to Alice.

and therefore one of them will experience losses. For each
scheme we characterize the QFI given a level of loss on
the modes. Overall, we observe a small quantum advantage
afforded by distributed entanglement in the presence of loss;
however, achieving it requires measurements that are difficult
to realize experimentally, and therefore we deem the quantum
gain limited.

The structure of our paper follows. In Sec. II we briefly
review the CV formalism, highlight the key concepts and tools
we use from quantum metrology, and describe our model. In
Sec. 111, we describe our schemes in detail, and we show our
results in Secs. I[II B 1 and III B 2. We conclude in Sec. IV with
a summary and some directions for future work.

II. PRELIMINARIES

A. Gaussian formalism

Consider n bosonic modes described by quadrature
operators

dj = 25b;+b) and p;=Eb; b, @D

whose mode creation and annihilation operators b ; and l;j

satisfy (b s 131] = 8 . The vector of quadrature operators X :=
(41, P1s - 4n, Pu)T satisfies

6. 5] = iQ =10 (_01 é) 2.2)
where 1 is the n x n identity matrix.

Any Gaussian state p is entirely specified by its first and
second moments with respect to the quadrature operators
[10,11], i.e., a mean vector r € R?"*! and covariance matrix
o € R¥*?" whose elements are given by

oji = Tr[{%; — 7}, Zx — 1e}P], 24

where {A, B} :== AB + BA denotes the anticommutator.

B. The stellar state

The task of imaging can be recast into a parameter estima-
tion problem: by estimating the relevant parameters, we can
optimally reconstruct the spatial configuration of the objects
of interest. To estimate the spatial configuration of the source,
the simplest imaging scenario requires two spatial modes for
collecting the signal [14]. Optimal parameter estimation using
two spatial modes has been shown to surpass the classical
diffraction limit of direct imaging for estimating the separa-
tion of sources [15], as well as for detecting secondary sources
[16]. We model the incoming stellar signal as a correlated
thermal state of light p, that has been multiplexed into fre-
quency bands narrow enough for interferometry. As it is a
Gaussian state, p, is fully specified by its mean vector and
covariance matrix.

We consider a single frequency band whose mean vector
and covariance matrix are given by [7,9,14,17]

r,=0 0 0 0T, (2.5)
e+1 0 yecosg —yesing
. 0 €+ 1 yesing  yecoso
o yecos¢p  yesing e+ 1 0 ’
—yesing yecos¢ 0 €+ 1
(2.6)

where we have used the quadrature ordering (g4, pa, g5, Ps),
with subscripts referring to Alice (A) and Bob (B). The pa-
rameter ¢ € [0, 27) is related to the location of the sources
and y € [0, 1] is proportional to the Fourier transform of the
intensity distribution (shape of the objects) via the van Cittert—
Zernike theorem [9]. If y = 1, the object is a single point
source, and y decreases as the size of the object increases. The
parameter € := (fi4) + (fig) is equal to the total mean photon
number across the two spatial modes. The covariance matrix
in Eq. (2.6) can be diagonalized with a suitable beam-splitter
operation, where the eigenvalues are (1 4 € &£ y¢); this im-
plies that the mean photon numbers in the two diagonalized
modes are %[6(1 =+ y)], and these are both thermal states.
Note that many previous analyses use a single-photon ap-
proximation to the state above, which is valid when € < 1
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[4-6]. The Gaussian formalism we employ does not put any
restriction on €.

C. Quantum Fisher information

The ultimate precision in parameter estimation is spec-
ified by the quantum Cramér-Rao bound [18,19] (see also
Refs. [20,21]). For estimation of a parameter 6 encoded into a
quantum state Py, the Cramér-Rao bound sets a lower bound
on the variance (A)?> = (#%) — (0)? of any unbiased esti-
mator 6. For unbiased estimators, the quantum Cramér-Rao
bound establishes that

(A0) >

—, 2.7)
NJo(po)
where N is the number of copies of py used and Jy is the QFI
associated with the state py. For detailed discussions of the
quantum Cramér-Rao bound, see Refs. [22-26].

If there are multiple parameters we want to estimate, where
0 = (01, 65, ...), we can define a QFI matrix J that quantifies
not only the QFI for each parameter (diagonal components)
but also for correlated parameters (off-diagonal components).
The matrix elements are given by

Jix = %Tr[ﬁo(ijﬁk + Ll )], (2.8)
where L ; 1s the symmetric logarithmic derivative with respect
to 6; [27].

The inverse of the QFI matrix provides a lower bound on
the covariance matrix [COV(O)]jk = (0,;0r) — (0;) (k).

Cov(0) > lJ—‘. (2.9)

N

For a single parameter, the Cramér-Rao bound is known to
be attainable [28]. For multiple parameters, the bound is not
always attainable because the optimal measurement operators
that saturate the bound for the individual parameters may not
commute. Therefore, the parameters may not be simultane-
ously measurable.

Reference [29] derived a closed form for the QFI of a
Gaussian state for a single parameter 6. We need a version
that gives the QFI matrix for a vector of parameters 6. For this,
we turn to Ref. [30]. Both results involve some tricky notation,
and so we give our own presentation of the final form and then
relate it to the references above so that the reader may verify
it if desired.

For this, we need to define the following objects. First,
we define ¢ as a 4N>-dimensional column vector obtained by
stacking the 2N columns of ¢ on top of each other. Explicitly,

s 0(2N)(2N))T~ (2.10)

Equivalently, since o is symmetric, g7 is a row vector obtained
by concatenating the rows of ¢ in order (stacking them). Next,
we need the (4N? x 4N?) matrix

G =(0O11,---,00N)1s -+- > OIQN)» - -

M=0Q0c—2QQ, @2.11)

where ® is the standard matrix Kronecker product. Note that
MT = M. Finally, we define

2.12)

corresponding to the components of the gradient operator with
respect to #. This lets us express the QFI matrix elements as
[31]

Jjx = %(3j§)TM71(3k§) +2(3;r) o (1),

where we have employed the findings of Ref. [29,30]. Notice
that the symmetry of M and o allows the labels (j, k) to be
freely exchanged on each expression on the right, ensuring
that J is symmetric, as required.

(2.13)

III. ESTIMATING STELLAR PARAMETERS

The problem at hand is the estimation of the two unknown
stellar parameters, ¢ and y, in the stellar state specified by
Eq. (2.5). Optimally estimating ¢ and y provides complete in-
formation on what we can obtain about the source distribution
by using two spatial modes. The QFI calculated directly from
the stellar state sets the ultimate limit on the precision of esti-
mators for ¢ and y via the Cramér-Rao bound. Saturating this
bound requires finding an optimal positive-operator-valued
measure (POVM) that achieves the QFI, which is not neces-
sarily a simple task, even for Gaussian states.

The QFI matrix elements for the incoming stellar state can
be found using Eq. (2.13):

2y2%€

Jy = ———M—, 3.1
= T red— ) 10
2¢(24 € +€y?
J, = . ( ! ) —. (.b)
(1 —yD)[4+4e+€2(1 - y?)]
Jyy =0, (3.1¢)

where we label the diagonal elements simply as J; for con-
venience. Even though the QFI matrix is diagonal (i.e., the
parameters are independent), we cannot estimate them op-
timally simultaneously because the symmetric logarithmic
derivates for ¢ and y do not commute [14,24].

For the problem we consider here, it has been shown that a
detection scheme called direct interferometry indeed realizes
the optimal POVM for both parameters [14]. In direct inter-
ferometry, Alice and Bob’s signals are mixed on a 50:50 beam
splitter and then measured with photon-number-resolving de-
tectors.

The question then is: can one perform direct interferometry
in practice? If not, how achievable is the Cramér-Rao bound in
realistic settings? The major practical concern arises from the
fact that the stations where Alice and Bob collect their portion
of the stellar light are necessarily space-like separated [32].
To implement direct interferometry, which requires a nonlocal
measurement (with respect to Alice and Bob), the signals must
be brought together. Doing so introduces transmission losses
on each arm that directly degrade the stellar state. Loss with
transmission parameter 7 amounts to replacing € by ne in the
covariance matrix for the stellar state specified by Eq. (2.5),
which reduces the QFI compared to the lossless case. Lossy
DI is depicted in Fig. 1(a).

An alternative strategy is to use local measurements and
classical communication [33]. Although such strategies have
been proven to be inferior (in general) to nonlocal strategies
for weak-field interferometry (¢ < 1) [5], they may still be
more practical, they can perform better than DI when losses
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are included, and they are useful for comparison. We consider
a local strategy in which Alice and Bob each perform hetero-
dyne detection individually using a shared phase reference.
The practical benefit is that no transmission is required and
no loss is incurred—measurements are performed directly on
the light collected at the two stations. It is known that the
classical Fisher information for this local heterodyne strategy
is guaranteed to perform suboptimally compared to lossless
DI, due to injection of vacuum noise. Nevertheless, this local
strategy will outperform DI in the high-loss limit as the base-
line becomes arbitrarily large: in that limit, the signal is almost
completely lost for DI, whereas the local measurement is
effectively lossless. The local heterodyne strategy is depicted
in Fig. 1(b).

In this work, we consider a third strategy based on CV
quantum teleportation [13], as mentioned in Ref. [4] and
also considered in more depth recently in Ref. [34] (see also
Refs. [35,36] for more background on CV teleportation). In
this scheme, Alice and Bob each possess one mode of a
TMSV state distributed to them from some central station
in addition to their respective portions of the stellar state.
Bob mixes his two local modes on a beam splitter and mea-
sures the position quadrature of one mode and the momentum
quadrature of the other. He sends his classical measurement
outcome to Alice, who uses it to undo an outcome-dependent
displacement. This completes the teleportation of Bob’s share
of the stellar state onto Alice’s share of the TMSV. At that
point, Alice has access to the full stellar state and can measure
it locally in any way she likes—nonlocal POVMs are not
required. The teleportation strategy is depicted in Fig. 1(c).

Noise enters this protocol in two ways. First, finite squeez-
ing [9, Chap. 21] in the TMSV coherently degrades the
teleported state. Current state-of-the-art single-mode and two-
mode squeezers achieve 15-dB [37] and 10-dB squeezing
[38], respectively. Even as technology improves, some level of
noise due to finite squeezing is inevitable due to energy con-
straints. Second, regardless of the squeezing level, distributing
the TMSV to Alice and Bob incurs transmission loss that must
be accounted for. This loss arises for the same reason that it
occurs for DI—Alice and Bob are distant from each other. We
note that there may be methods to improve the quality of the
shared entangled state. However, these are beyond the scope
of our analysis, as entanglement distillation procedures rely
on non-Gaussian measurements and postselection [39—43].

A. Teleportation strategy

The teleportation strategy makes use of a lossy TMSV in
modes C and D, for which the mean vector and covariance
matrix are

rrMsv = (0 0 0 O)T,

_ (cly so,
OTMSV = (saz Cﬂz)’ (3.2)
where o, is the Pauli-Z matrix, and
¢ :=ncosh(2r)+ (1 —n), (3.3a)
s = nsinh(2r) (3.3b)

include the squeezing and loss through the parameters » and 7,
respectively. The squeezing in a TMSV is often characterized
by the measured variance in the squeezed two-mode quadra-
tures A? = 1e~> (squeezed for r > 0) often reported in
decibels (dB): (A?)qp = —101log,,2A% = 20r log,, e. Since
the distributed TMSV has finite squeezing and experiences
loss, the teleportation will not be perfect.

The teleportation protocol proceeds by Bob mixing modes
D and B on a beam splitter and then measuring them in orthog-
onal quadrature bases, obtaining outcomes m := (i, mp)T
with probability density [10]

T
CXp(— (ITCTG))
a(l+c+e)

Note that p(m) does not depend on the parameters ¢ and y,
because they do not appear in the reduced state at modes B
and D—all that Bob has access to.

After the quadrature measurements on modes B and D,
modes A and C (held by Alice) are projected onto a condi-
tional Gaussian state ,Z);fy, where the subscripts emphasize
dependence on the parameters, and the superscript labels the
measurement outcomes m. The state has mean vector ryc =

(rs, re)T, where
1 % v
ry = —— m,
4 s <U —M>

p(m) = 34

3.5)
rc :=s(1 +¢€+c)o,m,
and covariance matrix
l+e—« 0 nw —v
. 0 l14+€—« v 7
OsCc = i v c—\ 0 s (36)
—v 7 0 c—A
where
2.2 2
PR S W — (.7
l+c+e l+c+e
Y S€ COS ¢ Y S€ sin ¢
W= —T = — 3.8)
14+c+e l4+c+e

Details of this calculation are given in Appendix B. An impor-
tant observation is that both the covariance matrix o 4¢ and the
mean vector ryc of the postmeasurement state carry informa-
tion about the unknown parameters. However, as is always the
case for Gaussian conditioning, only the mean depends on the
measurement outcomes [10]. Often for Gaussian states, the
mean plays no role in quantities of interest; however, in our
setting, the mean explicitly appears in the QFI via the fidelity
in Eq. (A3) and cannot be ignored.

At this point, the teleportation protocol is not complete
because Alice would conventionally wait for Bob to send
his measurement results and then perform an appropriate dis-
placement of her state. Since the QFI is invariant under unitary
transformations that do not depend on the parameters, this
step need not be explicitly performed for our comparisons.
However, it is important to stress that the optimal POVM
will, in general, depend on Bob’s measurement outcomes,
as is evident in Eq. (3.6): the mean of the postmeasurement
state held by Alice explicitly depends on Bob’s classical
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outcomes—without them, she has no information about it; see
Eq. (3.5). The purpose of teleporting the full stellar state to Al-
ice is so that she can apply the POVM that extracts parameter
information local to her. Holding her state while waiting for
Bob’s outcomes requires a quantum memory, which can lead
to additional noise. For example, if Alice uses a fiber delay, the
memory losses will be comparable to transmission losses over
the full distance between Bob and Alice, ~n?, which provides
no advantage. To perform better, Alice could use another type
of high-efficiency quantum memory; such analysis is beyond
the scope of this work.

In a single shot, the postmeasurement state depends on
the measurement outcome m, which occurs with probability
density p(m). The Cramér-Rao bound dictated by the QFI in
Eq. (2.7) is achievable in the limit of large N [44]. This means
that many copies of the state will be required to perform the
estimation properly, and a proper accounting for this requires
an ensemble average over Bob’s outcomes. We write this
ensemble as follows:

&de = {(p(m), "A)gfy)}m’

and apply Eq. (5.45) from Ref. [45], which gives the elements
of the QFI matrix for the ensemble,

(3.9)

Ji(Dg ) = Jilpm)] + / dm P(m)J.ik(/AOrl;y)

= f dm p(m)J ;. (p5.,). (3.10)
The first term on the right-hand side of the first line is the clas-
sical Fisher information for parameter ¢ or y or correlations
between the two embedded in the probability distribution
p(m), and the second term on the first line is the quantum
contribution: the QFI for each conditional state J jk(,?):;y)
weighted by p(m). In our case, the probability density in
Eq. (3.4) does not depend on ¢ or y, and so the first term does
not contribute to the QFI for either parameter, thus leading to
the second line above.

We use Eq. (2.13) to find the QFI matrix elements for the
conditional state corresponding to outcome m, and then we
average over the outcomes using Eq. (3.10). This gives the
average QFI matrix for the teleported state,

Jlel 0
tel / & ¢
(o} = .
3(dy,) <0 J;el)

The matrix is diagonal (J;f; = 0), and we refer the reader to

@3.11)

Appendix B 3 for analytical expressions for Ji! and J!, which
are long and unwieldy.

We are now ready to compare the QFI for y and ¢ of the
different schemes.

B. Comparing the strategies

The three strategies—direct interferometry (DI), local het-
erodyne, and teleportation-based—are depicted in Fig. 1. We
compare them by calculating the QFI in Eq. (A1) for ¢ and y,
which sets the limit on estimating these parameters through
the Cramér-Rao bound. (For the local heterodyne strategy, the
measurements are fully specified, and so we use the classical

(@  1.00] —
e=0.1
e=0.3
< 74 —e=001
§ 0.50 Vi
0.251 ////////’,// local hete/rodyne
04+= : , |
(b) 10.0 | P——
direct interferometry =
//
7.51 Y
//
w
= /
5.0
S /
= /
,//
2.51 /
,/
// local heterodyne
0= : :
0 1 2 3

squeezing parameter r

FIG. 2. QFI per photon, Ji'/e and Ji'/e (dashed lines), in the
lossless case (n = 1) as a function of the squeezing parameter of the
TMSYV used in the teleportation strategy. The solid yellow lines at
the top of each plot are the QFIs of the stellar state p,, achievable by
DI in the lossless case, and the solid horizontal lines at the bottom
of each plot are the classical FIs for the local heterodyne strategy for
each value of €. (a) QFI J, per photon when y = 1. (b) QFI J,, per
photon when y = 0.95; note that the QFI J,, does not depend on ¢.

FI for this case). A summary of the strategies and parameters
we use is as follows:

(1) DI. The portions of the stellar state collected by Alice
and Bob are brought together before detection. In doing so,
each arm experiences loss with transmission parameter 7.
The result is a reduction in the QFI—before loss, the QFI is
proportional to € [5], and after loss, it is proportional to ne.

(2) Local heterodyne. Alice and Bob perform heterodyne
detection separately with a shared phase reference [5]. No
loss is incurred on the stellar state before detection. In the
weak-field limit (¢ < 1), the QFI scales as €2 [5]. For stronger
fields, it can scale more favorably as €, in which case local
heterodyne performs as well as DI.

(3) CV teleportation strategy. A TMSV with squeezing
parameter r is prepared and its modes are distributed to Alice
and Bob, each incurring loss with transmission parameter
n. The stellar state is lossless. Bob mixes his share of the
stellar state and TMSV state on a balanced beam splitter and
performs quadrature measurements. We calculate the QFI at
this point using the tools presented in Sec. III A.

1. QFI for zero loss

First, we quantify the performance of the three strategies in
the lossless case (n = 1). The QFI of the teleportation strategy
depends on the amount of squeezing in the TMSYV, as quanti-
fied by the squeezing parameter r. Figure 2 shows the QFI
per photon, Jy /€ and J, /€, given several values of €. Recall
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that € characterizes the mean photon number in the stellar
state; see Sec. I B. For increasing r, the TMSV becomes more
squeezed. As a result, the measurement outcomes become
more uniformly distributed—the variance in Eq. (3.4) scales
as cosh2r for high squeezing—and the mean in Eq. (3.5)
depends less on the parameters ¢ and y . In the limit of infinite
squeezing, the mean does not depend on the stellar state at all,
and the teleportation is perfect: Alice has the full stellar state
locally. In this regime, the teleportation strategy performs just
as well as DI, as is evident for large r in Fig. 2. An optimal
measurement then follows directly from DI: Alice first applies
a displacement based on Bob’s outcomes to complete the ideal
teleportation, and then she measures 414> + p1 p» (quadrature
correlations) on the two modes; in the optical setting, this is
equivalent to applying a 50:50 beam splitter, then performing
a photon(intensity)-difference measurement [14]. Again, this
assumes she can store her state losslessly while waiting for
Bob’s outcomes to arrive.

As squeezing is lowered (r — 0), the TMSV approaches
the tensor-product state |vac)- ® |vac)p, which carries no en-
tanglement to be exploited by Alice and Bob. (Note that this is
also the limit of high loss on the TMSV; see Appendix B 1. It
is discussed further in the next subsection.) In this case, Bob’s
measurement is equivalent to local heterodyne detection, leav-
ing behind Alice’s share of the stellar state and her share of the
TMSV. The best she can do using those is local heterodyne on
her share of the stellar state—the two strategies coincide, and
the QFI can be calculated analytically. In this limit, Alice’s
state ,?)gfy has mean

__yecosd __yesing
€+2 €+2
Ta = __yesing yecosp |M  Tc = 0, (3.12)
€+2 €+2

and a covariance matrix ac, given in Eq. (B22), that has no
dependence on ¢ or y. Therefore, the only contribution to the
QFI for ¢ comes from ry, and Alice does best by using hetero-
dyne detection to sample this mean in both quadratures; this
is because the stellar state is classically quadrature correlated.
Averaging over measurement outcomes, the QFI for ¢ and y
is found in Appendix B 1:

2 2.2
J(;el| = V€ :J;ﬁocal het’ (3138.)
=0 [(1 —y?)e2] +3e +2
2¢?
Kl = +0(€)

[(1 —y?)e?] 43¢ +2

= J 4 0. (3.13b)
The explicit form for the additional term can be found in
Eq. (B24). As indicated earlier, the QFI scales as € in the
weak-field limit and as € for larger fields [5]. This can be
seen in Fig. 2, where the local heterodyne strategy sets a
lower bound on the QFI for the teleportation strategy (for a
given €).

For the phase parameter ¢, the lower the mean photon num-
ber € in the state, the higher the required squeezing to achieve
the same QFI per photon. This is qualitatively consistent with
the discrete case [4,6], which showed that the smaller the
mean photon number in the stellar state, the more distributed

(@) 1.00 ,
"o direct interferometry };‘/
0754 .
N
3 0.50 A
0251
0 . . .
0 0.25 0.50 0.75 1
transmission parameter 7
(b)

direct interferometry

0.241 * Tlcross

0.22

J¢/€

0.201',

0 0.1 0.2
transmission parameter 7

FIG. 3. QFI per photon for ¢ under loss for the three strategies.

Parameters are ¢ = 0.3 and y = 1. (a) QFI over all values of 7.

(b) A detailed view of the QFI in the high-loss regime 0 < n < 0.25.

The crossover values of the transmission parameter 7)..oss for infinite

squeezing demarcate the region where the teleportation strategy out-
performs the others (shaded in pink).

entanglement is required to achieve the same fidelity as the
received state. On the other hand, for y, this dependence on €
appears less pronounced. This may be due to the fact that y is
not encoded by a unitary and behaves differently from ¢.

For both ¢ and y, to achieve 95% of the QFI of the
original stellar state, we require » =~ 2 (18 dB), beyond
what has been achieved experimentally, even for single-mode
squeezing [37].

2. QFI for ¢ as a function of loss

We now turn to calculating the QFI per photon for the
parameter ¢ as a function of loss, across the three strategies.
First, we show comparisons for € = 0.3 in Fig. 3. Although
this value of € is beyond the typical setting of weak inter-
ferometry, for which € < 1, at this value the characteristic
behaviors of the three strategies are distinguishable. We return
to weaker fields later.

The benchmark is DI, for which the QFI is linear in 7.
The local heterodyne strategy, whose classical FI is given
analytically in Eq. (3.13), appears as a flat line. For high
values of loss, here around 7 ~ 0.2, a crossover occurs. At
this crossover, so much light is lost transmitting the collected
stellar state to a spatially local station in the DI strategy that
Alice and Bob are better off simply performing heterodyne
detection locally. This crossover depends on the mean photon
number € in the stellar state. For the teleportation strategy, we
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show the QFI for several values of the squeezing parameter
r and for the limit of infinite squeezing r — oo, for which
loss is equivalent to a random displacement channel on half
of the stellar state; see Appendix B2 [46]. At zero loss, the
infinite-squeezing teleportation strategy performs identically
to DI, with other values of r performing worse. As loss in-
creases (n < 1), the QFI for the teleportation strategy falls
faster than that for DI. This behavior is expected because the
entanglement in a TMSV is notoriously sensitive to losses. For
low to moderate levels of loss, the QFI for the teleportation
strategy lies between that for the DI and local heterodyne
strategies.

Curiously, for higher levels of loss, a small region of
“limited quantum advantage” exists in which the teleportation
strategy can outperform both DI and the local heterodyne
strategy. This region, highlighted in Fig. 3, is characterized
by two crossover values of the transmission parameter that we
label n¢0ss, One where the teleportation-strategy QFI begins
to exceed DI and one where it falls below local heterodyne.
For infinite squeezing, these crossovers occur at 7¢ross ~ 0.23
and 7ncross A~ 0.11, shown in greater detail in the inset. The
teleportation strategy performing worse than heterodyne may
be due to the fact that as the quality of the TMSV decreases,
Bob’s measurements serve to teleport excess noise to Alice
without a compensating amount of information about ¢. As
n decreases further toward zero, the QFI converges to that
of local heterodyne. This is expected, because at maximal
loss any TMSV becomes |vac) ® |vac), the same state used
to derive Eq. (3.13); see Appendix B 1.

For the two extremal points, » = 0 and n = 1 (given r —
00), the optimal measurement operators are known [14,34].
For other values of 5, the optimal POVMs and how to imple-
ment them physically are unknown (even assuming Alice has
a perfect quantum memory to store her modes while waiting
for Bob’s classical outcomes). This is due to the fact that both
the displacement and the correlation contain the parameters of
interest—one must measure both the displacement r, and the
correlations, proportional to §agc + papc-

To quantify the region of advantage with respect to loss, we
repeat the numerical analysis for other values of ¢, including
the parameter regime for weak stellar interferometry where
€ < 1. QFI curves for several choices of ¢ are shown in
Fig. 4(a), using infinite squeezing for the teleportation strategy
to set an upper bound on the quantum advantage. We see that
for each value of €, in principle, there is reason to consider
a teleportation-based estimation strategy, which can outper-
form both the “classical” strategies when the expected loss is
between the indicated crossover values 7cross- Figure 4(b) ex-
tends this to show the bounding region of quantum advantage
achievable with infinite squeezing. These figures reveal that,
for weaker and weaker stellar states, the quantum advantage
decreases in two ways. First, the size of the region where an
advantage is possible decreases, and second, the magnitude
of the advantage (in QFI) also decreases. Finite squeezing
in any physical implementation will further reduce both the
size of the region and the magnitude of the advantage. More-
over, given the increased experimental complexity associated
with implementing the (unknown) optimal measurement, it is
likely this small advantage will be washed out by extra noise
introduced in the process.

(@) 0.5
* Tlcross direct interferometry
0.4 |
w 03— - T local heterodyne
R
S
e i local heterodyne
S —t5cal heterodyne
0 4
0 0.1 0.2 0.3 0.4 0.5

transmission parameter 7)

(b)

=~ 0.3
Ej direct interferometry
£
s 0.2 .
S region of advantage
=%
=]
2
2 0.1
g local heterodyne
=]
I
& 0+
0 0.1 0.2 03 0.4 0.5

mean photon number €

FIG. 4. Comparison of regions where the teleportation strategy
is, in principle, advantageous for ¢ given different values of the mean
photon number €. Curves for the teleportation strategy (dotted) are
shown for infinite squeezing r — co. Red stars mark the crossover
values of the transmission parameter 7.ss. Regions of advantage for
the teleportation strategy are shaded pink. (a) Curves for three values
of € showing the size of the region and the relative advantage. (b) The
region of advantage for different values of mean photon number €.

3. QFI for y with loss

The QFI for y behaves very much like that for ¢
across the three strategies. We focus here on notable
differences.

The spatial parameter y is imprinted nonunitarily onto
the stellar state and behaves qualitatively differently from ¢:
in fact, the QFI for y calculated directly from the stellar
state is itself a function of y. In the weak photon limit, its
QFI is 1/(1 — y?) per photon [7] and approaches infinity as
y — 1. This is because when y = 1, the state is spatially
pure: when a suitable DI measurement is made, the stellar
photon will always output at the same port, and there is no
error in the estimation. The y dependence of the QFI for the
three strategies is illustrated in Fig. 5. The lossless, infinite
squeezing teleportation strategy coincides with DI. For lower
transmission, n = 0.8, a large gap between the two strategies
exists, and teleportation performs only marginally better than
the local heterodyne strategy.

This gap between lossy DI and the lossy teleportation
strategy increases as the squeezing is also lowered, as shown
in Fig. 6(a), where we plot the QFI of y as a function of 5
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101 direct interferometry 7 =1
gl — direct interferometry 1) = 0.8
teleportation 7 — 00 n =1

PR X [Q— teleportation 7 — oo 1 = 0.8
=
~ 4

2

focal hetérodyne

0 02 0.4 0.6 0.8 1
Y

FIG. 5. QFI per photon for y for parameters ¢ =0.3 as a
function of y, for 0 < y < 0.95.

in Fig. 5. At very high loss, the lossy teleportation scheme
acquires a slight advantage compared to DI; however, the
region of advantage shrinks dramatically for lower €; see
Fig. 6(b). On the other hand, local heterodyne is consistently
outperformed by the teleportation strategy, unlike the QFI
for ¢.

a ]
( ) 10 " oo direct interferometry
————— r=2.5
81 r=15
o 61 r=0.5 i
\?\ l
S 4 |
I‘/
/ ,"
21 A
__-—’:':'T‘,":/—i/i' -
0 : - :
0 0.25 0.50 0.75 1
transmission parameter 7
(b) 0.51 * Teross direct interferometry
0.41
= 0.5 ]
v 03 e —— local heterodyne
= 0.2
~ £= *
0.21 local heterodyne
0.11¢= 0.1 local heterodyne. |
0
0 0.01 0.02 0.03 0.04 0.05

transmission parameter 7)

FIG. 6. Comparison of the QFI per photon for y under loss for
the three strategies. (a) Curves for parameters € = 0.3 and y = 0.95
showing performance for several levels of squeezing in the TMSV
for the teleportation strategy. (b) Curves for several values of € in the
very high loss regime. The teleportation strategy performs best once
the transmission parameter is below 7.0ss. Note that unlike the QFI
for ¢——compared to Fig. 4—for y, the teleportation strategy always
performs better than the local heterodyne strategy.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we characterized three schemes for per-
forming CV stellar interferometry in the full Gaussian
formalism. In the lossless case, we examined the QFI of a
CV teleportation-based strategy as a function of squeezing
in the TMSV resource state. We found that the smaller the
mean photon number € in the stellar signal state, the larger
the squeezing required to achieve the same QFI per photon
for the parameter ¢. For € ~ 1072-1073, we see that ~95%
of the QFI can be achieved with r = 2.

In the case with loss, we see that there is a transition
between DI and the local heterodyne strategy: this comes from
the fact that DI scales linearly in both € and in the loss parame-
ter, whereas the local heterodyne strategy is completely robust
to loss (since the stellar state is measured immediately), but
scales as €2. The teleportation strategy requires distributed en-
tanglement by means of the TMSV. This entanglement is very
sensitive to loss, and the QFI initially drops off sharply as loss
increases. However, at high loss, a small region of advantage
opens up for which the teleportation strategy outperforms both
lossy DI and local heterodyne strategies with respect to QFI.

We consider this advantage to be limited for the following
reasons. First, the teleportation strategy underperforms lossy
DI unless the loss is high; from Fig. 4, for ¢ this occurs for
n < €; for y this region shrinks by an order of magnitude.
Even with access to very high squeezing, (a) the advantage
only occurs for small regions of 7 at high loss, and (b) the
magnitude of the advantage is also small. Achieving it will
require measurements that are difficult to realize experimen-
tally, and therefore we deem the quantum advantage limited.

In addition to the advantage itself being limited, we
identify other obstacles to using a teleportation strategy in
practice:

(1) It requires significant two-mode squeezing.

(2) It requires near-perfect quantum memories. Even then,
it is likely that the optimal POVM will depend on the
unknown parameters. That is because they are embedded
in Alice’s mean, as indicated by Eq. (3.5).

For point 1, there are ways forward—notably, using an en-
tanglement distillation procedure to improve the quality of the
lossy TMSV [40] by increasing the effective squeezing and
decreasing the effective noise. The cost for this can be quite
high: a quantum scissors approach [47] is probabilistic. More-
over, such a distillation procedure introduces non-Gaussianity
into the TMSV which must either be (a) accounted for with
new analysis or (b) removed via a Gaussification process that
will inject more noise.

For point 2, we further remark that for the teleportation
strategy, to implement the optimal measurement, in general,
quantum memories [48] will be required. This is because the
postmeasurement state will have nonzero displacement. Anal-
ogous to the discrete-variable case where a Pauli correction
is required after teleportation, the CV states considered here
will need a displacement correction that depends on Bob’s
quadrature measurement outcomes. Since we need to com-
municate this classical information from Bob to Alice, Alice
will need to store her share of the quantum states losslessly. In
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the lossy case, the optimal measurement will depend on both
the displacement and the covariance of the postmeasurement
state, which may make its implementation even more difficult.

A few intriguing questions remain unanswered: First, why
does the QFI for the teleportation strategy cross that of the
local heterodyne strategy at a specific value of n over many
values of the squeezing parameter r? Second, what is the
underlying mechanism that allows the teleportation strategy
to outperform DI in the region of advantage after performing
worse for high 7? Finally, why does the teleportation strategy
have a minimum QFI for each value of r and then perform bet-
ter as loss increases? Answers to these could unearth untapped
quantum advantage with applications in sensing and quantum
illumination.

With this work, we hope to inspire future studies that could
find strategies not only robust to noise but also experimentally
achievable. A potential path forward involves correcting the
loss itself during lossy DI. However, it is known that Gaussian
operations cannot correct Gaussian errors on Gaussian states
[39]. As such, to overcome loss and other Gaussian noise such
as thermalization, protocols involving non-Gaussian resources
may prove useful.

Recently, we learned that Ref. [34] also considered CV
teleportation for stellar interferometry in a complementary
setting of CV repeater networks.

All codes used to generate the figures in this paper and
a Mathematica file supporting some of the theoretical calcu-
lations are available with the arXiv posting of this paper, as
arXiv ancillary files.
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APPENDIX A: ALTERNATE METHOD FOR
CALCULATING THE QFI FOR A GAUSSIAN STATE

Alternatively, the QFI is a function of the parametrized
family {pgy}¢ of states and can be calculated using the follow-
ing formula [49, Theorem 6.3], which is useful for numerical
calculations if analytical expressions are intractable:

8[1 — F(Pa, Po+as)]
de? ’

Jo(pe) = lim (AD)

where the fidelity between two states p; and p, [50] is

F(pr, p2) = Trly/ /D12y P1 ). (A2)

Thus, we can approximately evaluate the QFI numerically by
choosing small d6.

When the family of states in Eq. (Al) is Gaussian, the
QFI can be calculated directly from the first and second mo-
ments. This follows from the fact that the fidelity between
two Gaussian states with respective mean vectors r; and r;
and covariance matrices o and o, is given by [51] (see also
Refs. [52-54)):

A 1 o140\
f(pl,m)=fo<al,az)exp[—st(%> 6], (A3)

where § :==r; — ry, and

Fiot

det (2522)"

-2
(Fio)* := det [2( 1+ Ganx§) + ﬂ)ow}, (A5)

Foloy,02) = (A4)

4
-1
o1+ 07 Q 0,90,
=7 = ) A6
(A7) (B 00

APPENDIX B: FINDING THE TELEPORTED STATE

In the following calculations, we use the notation and con-
vention of Chapter 8 in Ref. [10]. Consider the four-mode
state, before any measurements are performed, consisting of
the stellar state across modes A and B and the TMSV across
modes B and D. The TMSYV is prepared with initial squeez-
ing r and has undergone pure loss described by transmission
parameter 1.

The stellar state mean vector and covariance matrix rewrit-
ten in this convention is

r,=0 0 0 0, (BI)
( o, aah)
o= (B2)
0. Op
e+1 0 yecos¢p —yesing
0 e+1 yesing  yecos¢
- y€ecos¢y  yesing €+ 1 0
—yesing yecoso 0 e€e+1

(B3)

USing the mode Ordering (qAAv ﬁA’ qAC’ ﬁC, qAB9 ﬁb” qADv ﬁD)’
the covariance matrix for this state is

Oy Oy
OACBD = ( T ﬁ) (B4)

aaﬁ (]
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with block matrices

o, 0

0, = (0 c]12>’ (BS)
Ouh 0

B — s B6

Tap < 0 sorz> (B6)
_ (o, O

og = (0 C]12>' B7)

The matrices 1, and 0 are the two-dimensional identity and
matrix of all zeros, respectively, and o, is the Pauli-Z ma-
trix. As in the main text, ¢ := ncosh(2r) 4+ (1 — n), and s :=
n sinh(2r).

A joint Einstein-Podolsky-Rosen (EPR) measurement of
modes B and D is realized by sending them through a 50:50
beam splitter and performing homodyne detection of the
output modes—one measured in position and the other in
momentum. This produces two outcomes m = (m,, m,, )T, ob-
tained with probability density (Chap. 5 of Ref. [10])

_ exp[-mT[cl; + 6] 'm] _exp (- %)
w+/det(cl, + ap) a(l4+c+e)
(B3)

p(m)

This EPR measurement can be described by a projection of
the measured modes, B and D, onto a displaced TMSV state

J

PHYSICAL REVIEW A 109, 052434 (2024)
with first and second moments,

(O) (c/ﬂz c/az>
r, = ’ / ’ s
m cdo, 1,

a description that will be useful in calculations below. The
limit ¢’ — oo describes infinite squeezing in the projected
state, i.e., ideal homodyne detection.

After the measurement, the remaining modes, A and C, are
projected into a conditional Gaussian state that depends on
the outcome m. The mean vector and covariance matrix for
the postmeasurement state are formally

0, = lim (B9)

c'—o00

rac = Uaﬁ(aﬂ + Um)_lrmv (Bloa)
aAczaa—aaﬂ(a/3+am)_laZﬂ. (BlOb)
Both moments depend on the matrix inverse
» ) o, 0 dly, Co, -
(@p+0om) " = ch—?go 0 cl, + do, 1,
(B11)
M M
_ < 11 12)’ (B12)
My My

which we calculate now. Block Gaussian elimination using
Schur complements gives

/ -1
My = lim (0 + ——1,) = (a,+cly) ", (B13)
c'—00 (C + c’)
M, = lim ¢(0p + 1) 'o.[(¢Vo:(0) + ¢To)'o; = (c + o] = —0.(0.040; +clo) ', (B14)
c'—o00
My, = lim [(c + )y — (¢)0.(0p + o) 'o:]" = (0.040- 4 clp) ", (B15)
and My = ME. Taking the limits above can be expedited using (o, + ¢'1,)~! &~ C%(]lz - %). With these relations, Eqgs. (B10)
become
r —0,30,(cly + 0.040.) " 'm
fac = < A) _ ab z(c 2+ 0.0 Z? , (B16a)
rc so;(cly 4+ 0,0,0,)"'m
6, — 0g(cly +0p) ot 500, (cly + 0.0,0,) o
— p(cly b_)l a? b2z( 2+ 0.0,07) 711 . (B16b)
so (cly +0.0,0,) 0.0, cly—s0(cly+0,0,0;) 0,
Inserting the block matrices from the stellar state, Eq. (B1), into Eq. (B16) gives the mean rac with
__y€cos¢ __yesing
_ c+e+l c+e+1
T4 = (_yesin¢ y€cos ¢ ) ’ (B17)
c+e+1 c+e+1
_ (s(c+e+1) 0
fe = ( 0 —s(c+e+ 1))“" (B18)
and the covariance matrix
2¢? s ¢ s€ sin ¢
I+e— 25 0 reren — e
2.2 H
B R e .
Oac = y5€ Cos ys€ sin ¢ c— s 0 ’ ( )
cte+1 cte+1 ct+e+1
__ysesing y s€ cos ¢ 0 5
cte+1 cte+1 cte+1

for the conditional state py', held by Alice across unmeasured modes A and C.
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1. High-loss or low-squeezing limit

Consider the limits ¢ — 1 and s — 0 in the TMSV. This case applies to both the high loss (n — 0) or low squeezing (r —
1) limits; see Eq. (3.3). Under either of these conditions, the TMSV becomes |vac) ® |vac). In the teleportation strategy, the
probability density for Bob’s outcomes is

o—m'm/(e+2)
m)= ——————, B20
p(m) 1) (B20)
and Alice’s postmeasurement state has mean
__yecos(®) __yesin(¢)
_ €+2 €+2
fa= (_Ve sin(¢) yé€cos(¢) )m,
€+2 €+2
rc =0, (B21)
and covariance matrix
2.2
1+e€— % 0 » 0 o0
202
oac = 0 I+e-%53 0 0 (B22)
0 0 1 0
0 0 0 1
The QFI matrix for the conditional state can be found using the expressions in Appendix B 3,
292¢2mT
J5(05,) = e : (B23a)
g4 (e + 2)[(1 — y2)e? 4+ 3¢ + 2]
2¢2m? 41263
) = e e e
' €+ —y2)e"+3e+2] (2 —1) € —6(y2—1)e2 —4(y2—3)e+8
Taking a weighted average of Eq. (B23) by Eq. (B20) gives
. 2y%e?
Jtel ) — , B24
o (Por) = T a1 3e 12 (B24a)
N 2¢? 4y%e’
j}tfl(cp‘ﬁqy) = (B24b)

+ .
A=y +3¢4+2 (32— 113 —6(y2— 1)e2 —4(y2 —3)e + 8
Mathematica files supporting the calculations in (B23)—(B24) are available with the arXiv posting of our paper.

2. Lossy, high-squeezing limit (y # 0)

Another extreme is for a highly squeezed state r — oo with loss 0 < n < 1. This excludes n = 0, where the state again
returns to vacuum in both modes. The mean of Alice’s state is

ry =0, (B25)
rc = sco,m, (B26)
and the covariance matrix is
1+e€ 0 Y€ CoS P —yesing
ac = 0 1 + € y€ sin ¢ Y€ CoS P (B27)
yecos¢p yesing 14+e€+2(1—n) 0
—yesing yecos¢ 0 14+e+2(1—n)

In the high-squeezing limit, this is equivalent to Bob’s half of the stellar state being teleported to Alice with a Gaussian random
displacement channel of strength 1 — n applied. For no loss at all, n = 1, the stellar state is perfectly teleported to Alice.

While the mean r¢ can be quite large, it has no dependence on the parameters ¢ and y. The QFI is independent of the outcome
m and is determined solely by the covariance matrix.

3. QFI matrix for the teleported state

We find the elements of the QFI matrix for the teleported state J'' using Eq. (2.13). First, we find that J;f; = J;eqlﬁ = 0, meaning
the QFI matrix is diagonal.
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Next, we find the diagonal element Je which we simply label J®. The first term in Eq. (2.13) can be calculated
straightforwardly; we focus on the second term, which depends on the mean of the Gaussian state. For the teleported state
here, this mean depends on the measurement outcome m = (i, mp)T [see Eq. (B17)], and the second term in Eq. (2.13) is

2y?e2(m m)[c(c + € + 1) — 57]

(3p1) 0 (1) =

(c+e+1Dc2(e+ 1) +cele(l —y2) +2]+c—s2(e + 1)}

(B28)

Taking the average over the outcomes with probability density p(m) according to Eq. (3.10), with (m™m) = Tr[Cov(m)] =

14+ ¢ + €, gives

(31) 03 (1|, =

2e2[c(c+ €+ 1) — §7]

N (c4e+ Dic2e+ 1)+ cele(l —y2)+2]4+c—s2(e + 1)}

(B29)

Combining with the first term from Eq. (2.13) gives us the full expression for the QFI matrix element,

2y2¢? 52

tel __

clc+e+1)—s? )

¢ _C+6+1<62(6+1)+6‘6[€(1—]/2)+2]—(S2+1)(6+1)+62(6+1)+CE[€(1—J/2)+2]+C—S2(6+1)

(B30)

where, again, ¢ and s are defined in Egs. (3.3). In the limit that s, c — oo, Eq. (B30) converges to Eq. (3.1a), and in the limit that

s — 0and ¢ — 1, Eq. (B30) reduces to Eq. (3.13).
We find J;,“’l following the same procedure,

X
J}l/el — +

where

— 25t (e +2)+ yPe —cle + DI(y? — e — 21} + s%(e +2)
+ 52—+ DEd+ e +2) =23 + DIRY? — 1)e — 2]

2€%[c(c+ €+ 1) — 5%]
, (B31)
Y  (c+e+D{cE(e+1)+ce[e(l —y2)+2]+c —s2(e + 1)}
X =222 — Dy%e(c + e + D{cP(e + 1) + ce[y*(—e) + € + 2] — e — 1}
+Pe[(4 —8y2)e + (¥ — 4y + De? + 41+ 2¢c(e + D[(2y? — 1)e — 2] — 4e® — 5¢ — 2}), (B32)
Y =(+e+Dy’e+c?+cle—y)—s*—e—11{P(e+ 1)+ cele(l —y?) +2] — (s> + D)(e + 1)}
x {=y? + (e +2)+cle*(1 —y?) +4e + 4] — s> (€ +2) + €* + 3¢ + 2}. (B33)

In the limit that s — 0 and ¢ — 1, the second term in Eq. (B31) (which is determined by the mean of the teleported state, on
average) converges to the FI accessible to local heterodyne measurement [see Eq. (3.13)].
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