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We consider stellar interferometry in the continuous-variable (CV) quantum information formalism and use

the quantum Fisher information (QFI) to characterize the performance of three key strategies: direct interferom-

etry (DI), local heterodyne measurement, and a CV teleportation-based strategy. In the lossless regime, we show

that a squeezing parameter of r ≈ 2 (18 dB) is required to reach ∼95% of the QFI achievable with DI; such a

squeezing level is beyond what has been achieved experimentally. In the low-loss regime, the CV teleportation

strategy becomes inferior to DI, and the performance gap widens as loss increases. Curiously, in the high-loss

regime, a small region of loss exists where the CV teleportation strategy slightly outperforms both DI and local

heterodyne, representing a transition in the optimal strategy. We describe this advantage as limited because it

occurs for a small region of loss, and the magnitude of the advantage is also small. We argue that practical

difficulties further impede achieving any quantum advantage, limiting the merits of a CV teleportation-based

strategy for stellar interferometry.
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I. INTRODUCTION

Interferometry forms the basis for much of astronomical

imaging [1,2]. Its performance is limited by diffraction: the

resolution is proportional to the aperture of the receiver and

inversely proportional to the wavelength—the ideal instru-

ment is a large-baseline optical interferometer. By combining

signals collected across telescope arrays, the achievable reso-

lution is equivalent to that of a large telescope the size of the

array’s baseline.

In optical interferometric arrays, photons arriving at differ-

ent telescopes are connected by physical optical links, such

as fibers and other optical elements, that bring them together

for an interference measurement [2,3]. However, optical ele-

ments are inherently lossy, and if the telescopes are separated

by long distances, bringing the photons together to perform

such an interference measurement would result in most of the

signal being lost. Bypassing that requires quantum resources

such as entanglement and some form of established coherence

between the nodes in the array [4–7].

Several quantum-enhanced protocols [4,6–8] have consid-

ered the weak-photon limit, in which photons arriving from

the source are shared nonlocally between the telescope sites.

There, predistributed and distilled entanglement replaces the

lossy optical link, and discrete-variable measurement proto-

cols are used to estimate the parameters of interest. However,
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these discrete-variable protocols truncate the quantum state at

the single- or two-photon level, even though states received

from astronomical sources are inherently thermal [9]. There-

fore, it is natural to consider this problem in the framework

of continuous-variable (CV) quantum information [10,11],

which motivates our work. Any imaging task can be trans-

lated into a parameter estimation task, for which an essential

figure of merit is the quantum Fisher information (QFI) (see,

e.g., Ref. [12] for a review). Here, we take into account trans-

mission loss in the distributed entanglement and quantify the

QFI in the presence of this loss.

Consider a two-site scenario (named Alice and Bob), with

each featuring a telescope station such that they are sep-

arated by a large distance. As in Ref. [5], we model the

incoming signal as a correlated thermal state, and the task

is to extract the relevant parameters for imaging: the relative

phase and the (complex) degree of coherence [9]. To extract

these parameters, we need to interfere the modes held by

Alice and Bob. Several schemes can be used, as depicted in

Fig. 1: (a) direct interferometry, which requires bringing the

signal physically together via an optical link; (b) a spatially

“local” measurement scheme, heterodyne detection—a phase

reference is distributed, but without entanglement; or (c) CV

teleportation.

In this work, we scrutinize the performance of these

schemes, where we characterize the scheme (c) inspired by

CV teleportation [13], for which the resource state is a dis-

tributed two-mode squeezed vacuum (TMSV). In the schemes

in Refs. [4,6,7], the stellar photon is lossless, and the entan-

glement distribution experiences the loss in place of the stellar

photon. Here, we treat losses in a fair way—i.e., either the

distributed entanglement or the stellar photon has to travel,
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FIG. 1. The three strategies we compare for estimation of pa-

rameters in the stellar state ρ̂�. (a) Direct interferometry (DI), where

the two modes of the stellar state are physically brought together

for interference. Each mode suffers transmission loss parameterized

by η ∈ [0, 1]. (b) A local strategy, where heterodyne detection is

performed separately on the modes held by Alice and Bob, and no

loss is incurred. (c) A CV teleportation strategy, where a TMSV is

distributed to Alice and Bob. During distribution, each mode of the

TMSV suffers transmission loss parametrized by η. Bob performs

joint homodyne measurements as prescribed by standard CV tele-

portation and sends his measurement outcomes to Alice.

and therefore one of them will experience losses. For each

scheme we characterize the QFI given a level of loss on

the modes. Overall, we observe a small quantum advantage

afforded by distributed entanglement in the presence of loss;

however, achieving it requires measurements that are difficult

to realize experimentally, and therefore we deem the quantum

gain limited.

The structure of our paper follows. In Sec. II we briefly

review the CV formalism, highlight the key concepts and tools

we use from quantum metrology, and describe our model. In

Sec. III, we describe our schemes in detail, and we show our

results in Secs. III B 1 and III B 2. We conclude in Sec. IV with

a summary and some directions for future work.

II. PRELIMINARIES

A. Gaussian formalism

Consider n bosonic modes described by quadrature

operators

q̂ j := 1√
2
(b̂ j + b̂

†
j ) and p̂ j := −i√

2
(b̂ j − b̂

†
j ), (2.1)

whose mode creation and annihilation operators b̂ j and b̂
†
j

satisfy [b̂ j, b̂
†
k
] = δ j,k . The vector of quadrature operators x̂ :=

(q̂1, p̂1, . . . , q̂n, p̂n)T satisfies

[x̂ j, x̂k] = i� jk, � := 1 ⊗
(

0 1

−1 0

)

, (2.2)

where 1 is the n × n identity matrix.

Any Gaussian state ρ̂ is entirely specified by its first and

second moments with respect to the quadrature operators

[10,11], i.e., a mean vector r ∈ R
2n×1 and covariance matrix

σ ∈ R
2n×2n whose elements are given by

r j := Tr[x̂ j ρ̂], (2.3)

σ jk := Tr[{x̂ j − r j, x̂k − rk}ρ̂], (2.4)

where {Â, B̂} := ÂB̂ + B̂Â denotes the anticommutator.

B. The stellar state

The task of imaging can be recast into a parameter estima-

tion problem: by estimating the relevant parameters, we can

optimally reconstruct the spatial configuration of the objects

of interest. To estimate the spatial configuration of the source,

the simplest imaging scenario requires two spatial modes for

collecting the signal [14]. Optimal parameter estimation using

two spatial modes has been shown to surpass the classical

diffraction limit of direct imaging for estimating the separa-

tion of sources [15], as well as for detecting secondary sources

[16]. We model the incoming stellar signal as a correlated

thermal state of light ρ̂� that has been multiplexed into fre-

quency bands narrow enough for interferometry. As it is a

Gaussian state, ρ̂� is fully specified by its mean vector and

covariance matrix.

We consider a single frequency band whose mean vector

and covariance matrix are given by [7,9,14,17]

r� := (0 0 0 0)T, (2.5)

σ� :=

»

¼

¼

¼

½

ε + 1 0 γ ε cos φ −γ ε sin φ

0 ε + 1 γ ε sin φ γ ε cos φ

γ ε cos φ γ ε sin φ ε + 1 0

−γ ε sin φ γ ε cos φ 0 ε + 1

¾

¿

¿

¿

À

,

(2.6)

where we have used the quadrature ordering (qA, pA, qB, pB),

with subscripts referring to Alice (A) and Bob (B). The pa-

rameter φ ∈ [0, 2π ) is related to the location of the sources

and γ ∈ [0, 1] is proportional to the Fourier transform of the

intensity distribution (shape of the objects) via the van Cittert–

Zernike theorem [9]. If γ = 1, the object is a single point

source, and γ decreases as the size of the object increases. The

parameter ε := 〈n̂A〉 + 〈n̂B〉 is equal to the total mean photon

number across the two spatial modes. The covariance matrix

in Eq. (2.6) can be diagonalized with a suitable beam-splitter

operation, where the eigenvalues are (1 + ε ± γ ε); this im-

plies that the mean photon numbers in the two diagonalized

modes are 1
2
[ε(1 ± γ )], and these are both thermal states.

Note that many previous analyses use a single-photon ap-

proximation to the state above, which is valid when ε 	 1
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[4–6]. The Gaussian formalism we employ does not put any

restriction on ε.

C. Quantum Fisher information

The ultimate precision in parameter estimation is spec-

ified by the quantum Cramér-Rao bound [18,19] (see also

Refs. [20,21]). For estimation of a parameter θ encoded into a

quantum state ρ̂θ , the Cramér-Rao bound sets a lower bound

on the variance (
θ )2 = 〈θ2〉 − 〈θ〉2 of any unbiased esti-

mator θ . For unbiased estimators, the quantum Cramér-Rao

bound establishes that

(
θ )2 �
1

NJθ (ρ̂θ )
, (2.7)

where N is the number of copies of ρ̂θ used and Jθ is the QFI

associated with the state ρ̂θ . For detailed discussions of the

quantum Cramér-Rao bound, see Refs. [22–26].

If there are multiple parameters we want to estimate, where

θ = (θ1, θ2, . . . ), we can define a QFI matrix J that quantifies

not only the QFI for each parameter (diagonal components)

but also for correlated parameters (off-diagonal components).

The matrix elements are given by

J jk := 1
2
Tr[ρ̂θ (L̂ j L̂k + L̂k L̂ j )], (2.8)

where L̂ j is the symmetric logarithmic derivative with respect

to θ j [27].

The inverse of the QFI matrix provides a lower bound on

the covariance matrix [Cov(θ)] jk = 〈θ jθk〉 − 〈θ j〉 〈θk〉,

Cov(θ) �
1

N
J−1. (2.9)

For a single parameter, the Cramér-Rao bound is known to

be attainable [28]. For multiple parameters, the bound is not

always attainable because the optimal measurement operators

that saturate the bound for the individual parameters may not

commute. Therefore, the parameters may not be simultane-

ously measurable.

Reference [29] derived a closed form for the QFI of a

Gaussian state for a single parameter θ . We need a version

that gives the QFI matrix for a vector of parameters θ. For this,

we turn to Ref. [30]. Both results involve some tricky notation,

and so we give our own presentation of the final form and then

relate it to the references above so that the reader may verify

it if desired.

For this, we need to define the following objects. First,

we define ς as a 4N2-dimensional column vector obtained by

stacking the 2N columns of σ on top of each other. Explicitly,

ς := (σ11, . . . , σ(2N )1, . . . , σ1(2N ), . . . , σ(2N )(2N ))
T. (2.10)

Equivalently, since σ is symmetric, ςT is a row vector obtained

by concatenating the rows of σ in order (stacking them). Next,

we need the (4N2 × 4N2) matrix

M := σ ⊗ σ − � ⊗ �, (2.11)

where ⊗ is the standard matrix Kronecker product. Note that

MT = M. Finally, we define

∂ j :=
∂

∂θ j

, (2.12)

corresponding to the components of the gradient operator with

respect to θ. This lets us express the QFI matrix elements as

[31]

J jk = 1
2
(∂ jς)TM−1(∂kς) + 2(∂ jr)Tσ−1(∂kr), (2.13)

where we have employed the findings of Ref. [29,30]. Notice

that the symmetry of M and σ allows the labels ( j, k) to be

freely exchanged on each expression on the right, ensuring

that J is symmetric, as required.

III. ESTIMATING STELLAR PARAMETERS

The problem at hand is the estimation of the two unknown

stellar parameters, φ and γ , in the stellar state specified by

Eq. (2.5). Optimally estimating φ and γ provides complete in-

formation on what we can obtain about the source distribution

by using two spatial modes. The QFI calculated directly from

the stellar state sets the ultimate limit on the precision of esti-

mators for φ and γ via the Cramér-Rao bound. Saturating this

bound requires finding an optimal positive-operator-valued

measure (POVM) that achieves the QFI, which is not neces-

sarily a simple task, even for Gaussian states.

The QFI matrix elements for the incoming stellar state can

be found using Eq. (2.13):

Jφ =
2γ 2ε

2 + ε(1 − γ 2)
, (3.1a)

Jγ =
2ε

(

2 + ε + εγ 2
)

(1 − γ 2)[4 + 4ε + ε2(1 − γ 2)]
, (3.1b)

Jφγ = 0, (3.1c)

where we label the diagonal elements simply as J j for con-

venience. Even though the QFI matrix is diagonal (i.e., the

parameters are independent), we cannot estimate them op-

timally simultaneously because the symmetric logarithmic

derivates for φ and γ do not commute [14,24].

For the problem we consider here, it has been shown that a

detection scheme called direct interferometry indeed realizes

the optimal POVM for both parameters [14]. In direct inter-

ferometry, Alice and Bob’s signals are mixed on a 50:50 beam

splitter and then measured with photon-number-resolving de-

tectors.

The question then is: can one perform direct interferometry

in practice? If not, how achievable is the Cramér-Rao bound in

realistic settings? The major practical concern arises from the

fact that the stations where Alice and Bob collect their portion

of the stellar light are necessarily space-like separated [32].

To implement direct interferometry, which requires a nonlocal

measurement (with respect to Alice and Bob), the signals must

be brought together. Doing so introduces transmission losses

on each arm that directly degrade the stellar state. Loss with

transmission parameter η amounts to replacing ε by ηε in the

covariance matrix for the stellar state specified by Eq. (2.5),

which reduces the QFI compared to the lossless case. Lossy

DI is depicted in Fig. 1(a).

An alternative strategy is to use local measurements and

classical communication [33]. Although such strategies have

been proven to be inferior (in general) to nonlocal strategies

for weak-field interferometry (ε 	 1) [5], they may still be

more practical, they can perform better than DI when losses
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are included, and they are useful for comparison. We consider

a local strategy in which Alice and Bob each perform hetero-

dyne detection individually using a shared phase reference.

The practical benefit is that no transmission is required and

no loss is incurred—measurements are performed directly on

the light collected at the two stations. It is known that the

classical Fisher information for this local heterodyne strategy

is guaranteed to perform suboptimally compared to lossless

DI, due to injection of vacuum noise. Nevertheless, this local

strategy will outperform DI in the high-loss limit as the base-

line becomes arbitrarily large: in that limit, the signal is almost

completely lost for DI, whereas the local measurement is

effectively lossless. The local heterodyne strategy is depicted

in Fig. 1(b).

In this work, we consider a third strategy based on CV

quantum teleportation [13], as mentioned in Ref. [4] and

also considered in more depth recently in Ref. [34] (see also

Refs. [35,36] for more background on CV teleportation). In

this scheme, Alice and Bob each possess one mode of a

TMSV state distributed to them from some central station

in addition to their respective portions of the stellar state.

Bob mixes his two local modes on a beam splitter and mea-

sures the position quadrature of one mode and the momentum

quadrature of the other. He sends his classical measurement

outcome to Alice, who uses it to undo an outcome-dependent

displacement. This completes the teleportation of Bob’s share

of the stellar state onto Alice’s share of the TMSV. At that

point, Alice has access to the full stellar state and can measure

it locally in any way she likes—nonlocal POVMs are not

required. The teleportation strategy is depicted in Fig. 1(c).

Noise enters this protocol in two ways. First, finite squeez-

ing [9, Chap. 21] in the TMSV coherently degrades the

teleported state. Current state-of-the-art single-mode and two-

mode squeezers achieve 15-dB [37] and 10-dB squeezing

[38], respectively. Even as technology improves, some level of

noise due to finite squeezing is inevitable due to energy con-

straints. Second, regardless of the squeezing level, distributing

the TMSV to Alice and Bob incurs transmission loss that must

be accounted for. This loss arises for the same reason that it

occurs for DI—Alice and Bob are distant from each other. We

note that there may be methods to improve the quality of the

shared entangled state. However, these are beyond the scope

of our analysis, as entanglement distillation procedures rely

on non-Gaussian measurements and postselection [39–43].

A. Teleportation strategy

The teleportation strategy makes use of a lossy TMSV in

modes C and D, for which the mean vector and covariance

matrix are

rTMSV :=
(

0 0 0 0
)T

,

σTMSV :=
(

c12 sσz

sσz c12

)

, (3.2)

where σz is the Pauli-Z matrix, and

c := η cosh(2r) + (1 − η), (3.3a)

s := η sinh(2r) (3.3b)

include the squeezing and loss through the parameters r and η,

respectively. The squeezing in a TMSV is often characterized

by the measured variance in the squeezed two-mode quadra-

tures 
2 = 1
2
e−2r (squeezed for r > 0) often reported in

decibels (dB): (
2)dB = −10 log10 2
2 = 20r log10 e. Since

the distributed TMSV has finite squeezing and experiences

loss, the teleportation will not be perfect.

The teleportation protocol proceeds by Bob mixing modes

D and B on a beam splitter and then measuring them in orthog-

onal quadrature bases, obtaining outcomes m := (mq, mp)T

with probability density [10]

p(m) :=
exp

(

− mTm
(1+c+ε)

)

π (1 + c + ε)
. (3.4)

Note that p(m) does not depend on the parameters φ and γ ,

because they do not appear in the reduced state at modes B

and D—all that Bob has access to.

After the quadrature measurements on modes B and D,

modes A and C (held by Alice) are projected onto a condi-

tional Gaussian state ρ̂m
φ,γ , where the subscripts emphasize

dependence on the parameters, and the superscript labels the

measurement outcomes m. The state has mean vector rAC =
(rA, rC )T, where

rA := −
1

s

(

μ ν

ν −μ

)

m,

rC := s(1 + ε + c)σzm,

(3.5)

and covariance matrix

σAC :=

»

¼

¼

½

1 + ε − » 0 μ −ν

0 1 + ε − » ν μ

μ ν c − ¼ 0

−ν μ 0 c − ¼

¾

¿

¿

À

, (3.6)

where

» :=
γ 2ε2

1 + c + ε
, ¼ :=

s2

1 + c + ε
, (3.7)

μ :=
γ sε cos φ

1 + c + ε
, ν :=

γ sε sin φ

1 + c + ε
. (3.8)

Details of this calculation are given in Appendix B. An impor-

tant observation is that both the covariance matrix σAC and the

mean vector rAC of the postmeasurement state carry informa-

tion about the unknown parameters. However, as is always the

case for Gaussian conditioning, only the mean depends on the

measurement outcomes [10]. Often for Gaussian states, the

mean plays no role in quantities of interest; however, in our

setting, the mean explicitly appears in the QFI via the fidelity

in Eq. (A3) and cannot be ignored.

At this point, the teleportation protocol is not complete

because Alice would conventionally wait for Bob to send

his measurement results and then perform an appropriate dis-

placement of her state. Since the QFI is invariant under unitary

transformations that do not depend on the parameters, this

step need not be explicitly performed for our comparisons.

However, it is important to stress that the optimal POVM

will, in general, depend on Bob’s measurement outcomes,

as is evident in Eq. (3.6): the mean of the postmeasurement

state held by Alice explicitly depends on Bob’s classical

052434-4



LIMITED QUANTUM ADVANTAGE FOR STELLAR … PHYSICAL REVIEW A 109, 052434 (2024)

outcomes—without them, she has no information about it; see

Eq. (3.5). The purpose of teleporting the full stellar state to Al-

ice is so that she can apply the POVM that extracts parameter

information local to her. Holding her state while waiting for

Bob’s outcomes requires a quantum memory, which can lead

to additional noise. For example, if Alice uses a fiber delay, the

memory losses will be comparable to transmission losses over

the full distance between Bob and Alice, ∼η2, which provides

no advantage. To perform better, Alice could use another type

of high-efficiency quantum memory; such analysis is beyond

the scope of this work.

In a single shot, the postmeasurement state depends on

the measurement outcome m, which occurs with probability

density p(m). The Cramér-Rao bound dictated by the QFI in

Eq. (2.7) is achievable in the limit of large N [44]. This means

that many copies of the state will be required to perform the

estimation properly, and a proper accounting for this requires

an ensemble average over Bob’s outcomes. We write this

ensemble as follows:

�̂φ,γ :=
{(

p(m), ρ̂m
φ,γ

)}

m
, (3.9)

and apply Eq. (5.45) from Ref. [45], which gives the elements

of the QFI matrix for the ensemble,

J jk (�̂φ,γ ) = J jk[p(m)] +
∫

dm p(m)J jk

(

ρ̂m
φ,γ

)

=
∫

dm p(m)J jk

(

ρ̂m
φ,γ

)

. (3.10)

The first term on the right-hand side of the first line is the clas-

sical Fisher information for parameter φ or γ or correlations

between the two embedded in the probability distribution

p(m), and the second term on the first line is the quantum

contribution: the QFI for each conditional state J jk (ρ̂m
φ,γ )

weighted by p(m). In our case, the probability density in

Eq. (3.4) does not depend on φ or γ , and so the first term does

not contribute to the QFI for either parameter, thus leading to

the second line above.

We use Eq. (2.13) to find the QFI matrix elements for the

conditional state corresponding to outcome m, and then we

average over the outcomes using Eq. (3.10). This gives the

average QFI matrix for the teleported state,

Jtel(�̂φ,γ ) =

(

J tel
φ 0

0 J tel
γ

)

. (3.11)

The matrix is diagonal (J tel
φγ = 0), and we refer the reader to

Appendix B 3 for analytical expressions for J tel
φ and J tel

γ , which

are long and unwieldy.

We are now ready to compare the QFI for γ and φ of the

different schemes.

B. Comparing the strategies

The three strategies—direct interferometry (DI), local het-

erodyne, and teleportation-based—are depicted in Fig. 1. We

compare them by calculating the QFI in Eq. (A1) for φ and γ ,

which sets the limit on estimating these parameters through

the Cramér-Rao bound. (For the local heterodyne strategy, the

measurements are fully specified, and so we use the classical

(a)

(b)

FIG. 2. QFI per photon, J tel
φ /ε and J tel

γ /ε (dashed lines), in the

lossless case (η = 1) as a function of the squeezing parameter of the

TMSV used in the teleportation strategy. The solid yellow lines at

the top of each plot are the QFIs of the stellar state ρ̂�, achievable by

DI in the lossless case, and the solid horizontal lines at the bottom

of each plot are the classical FIs for the local heterodyne strategy for

each value of ε. (a) QFI Jφ per photon when γ = 1. (b) QFI Jγ per

photon when γ = 0.95; note that the QFI Jγ does not depend on φ.

FI for this case). A summary of the strategies and parameters

we use is as follows:

(1) DI. The portions of the stellar state collected by Alice

and Bob are brought together before detection. In doing so,

each arm experiences loss with transmission parameter η.

The result is a reduction in the QFI—before loss, the QFI is

proportional to ε [5], and after loss, it is proportional to ηε.

(2) Local heterodyne. Alice and Bob perform heterodyne

detection separately with a shared phase reference [5]. No

loss is incurred on the stellar state before detection. In the

weak-field limit (ε 	 1), the QFI scales as ε2 [5]. For stronger

fields, it can scale more favorably as ε, in which case local

heterodyne performs as well as DI.

(3) CV teleportation strategy. A TMSV with squeezing

parameter r is prepared and its modes are distributed to Alice

and Bob, each incurring loss with transmission parameter

η. The stellar state is lossless. Bob mixes his share of the

stellar state and TMSV state on a balanced beam splitter and

performs quadrature measurements. We calculate the QFI at

this point using the tools presented in Sec. III A.

1. QFI for zero loss

First, we quantify the performance of the three strategies in

the lossless case (η = 1). The QFI of the teleportation strategy

depends on the amount of squeezing in the TMSV, as quanti-

fied by the squeezing parameter r. Figure 2 shows the QFI

per photon, Jφ/ε and Jγ /ε, given several values of ε. Recall
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that ε characterizes the mean photon number in the stellar

state; see Sec. II B. For increasing r, the TMSV becomes more

squeezed. As a result, the measurement outcomes become

more uniformly distributed—the variance in Eq. (3.4) scales

as cosh 2r for high squeezing—and the mean in Eq. (3.5)

depends less on the parameters φ and γ . In the limit of infinite

squeezing, the mean does not depend on the stellar state at all,

and the teleportation is perfect: Alice has the full stellar state

locally. In this regime, the teleportation strategy performs just

as well as DI, as is evident for large r in Fig. 2. An optimal

measurement then follows directly from DI: Alice first applies

a displacement based on Bob’s outcomes to complete the ideal

teleportation, and then she measures q̂1q̂2 + p̂1 p̂2 (quadrature

correlations) on the two modes; in the optical setting, this is

equivalent to applying a 50:50 beam splitter, then performing

a photon(intensity)-difference measurement [14]. Again, this

assumes she can store her state losslessly while waiting for

Bob’s outcomes to arrive.

As squeezing is lowered (r → 0), the TMSV approaches

the tensor-product state |vac〉C ⊗ |vac〉D, which carries no en-

tanglement to be exploited by Alice and Bob. (Note that this is

also the limit of high loss on the TMSV; see Appendix B 1. It

is discussed further in the next subsection.) In this case, Bob’s

measurement is equivalent to local heterodyne detection, leav-

ing behind Alice’s share of the stellar state and her share of the

TMSV. The best she can do using those is local heterodyne on

her share of the stellar state—the two strategies coincide, and

the QFI can be calculated analytically. In this limit, Alice’s

state ρ̂m
φ,γ has mean

rA =

»

½

− γ ε cos φ

ε+2
− γ ε sin φ

ε+2

− γ ε sin φ

ε+2

γ ε cos φ

ε+2

¾

Àm, rC = 0, (3.12)

and a covariance matrix σAC , given in Eq. (B22), that has no

dependence on φ or γ . Therefore, the only contribution to the

QFI for φ comes from rA, and Alice does best by using hetero-

dyne detection to sample this mean in both quadratures; this

is because the stellar state is classically quadrature correlated.

Averaging over measurement outcomes, the QFI for φ and γ

is found in Appendix B 1:

J tel
φ

∣

∣

r=0
=

2γ 2ε2

[(1 − γ 2)ε2] + 3ε + 2
= J local het

φ , (3.13a)

J tel
γ

∣

∣

r=0
=

2ε2

[(1 − γ 2)ε2] + 3ε + 2
+ O(ε3)

= J local het
γ + O(ε3). (3.13b)

The explicit form for the additional term can be found in

Eq. (B24). As indicated earlier, the QFI scales as ε2 in the

weak-field limit and as ε for larger fields [5]. This can be

seen in Fig. 2, where the local heterodyne strategy sets a

lower bound on the QFI for the teleportation strategy (for a

given ε).

For the phase parameter φ, the lower the mean photon num-

ber ε in the state, the higher the required squeezing to achieve

the same QFI per photon. This is qualitatively consistent with

the discrete case [4,6], which showed that the smaller the

mean photon number in the stellar state, the more distributed

0.24

0.22

0.20

1.00

0.75

0.50

0.25

0

direct interferometry

local heterodyne

(a)

(b)

10.750.500.250

0.20.10

local heterodyne

direct interferometry

transmission parameter

transmission parameter

FIG. 3. QFI per photon for φ under loss for the three strategies.

Parameters are ε = 0.3 and γ = 1. (a) QFI over all values of η.

(b) A detailed view of the QFI in the high-loss regime 0 < η < 0.25.

The crossover values of the transmission parameter ηcross for infinite

squeezing demarcate the region where the teleportation strategy out-

performs the others (shaded in pink).

entanglement is required to achieve the same fidelity as the

received state. On the other hand, for γ , this dependence on ε

appears less pronounced. This may be due to the fact that γ is

not encoded by a unitary and behaves differently from φ.

For both φ and γ , to achieve 95% of the QFI of the

original stellar state, we require r ≈ 2 (18 dB), beyond

what has been achieved experimentally, even for single-mode

squeezing [37].

2. QFI for φ as a function of loss

We now turn to calculating the QFI per photon for the

parameter φ as a function of loss, across the three strategies.

First, we show comparisons for ε = 0.3 in Fig. 3. Although

this value of ε is beyond the typical setting of weak inter-

ferometry, for which ε 	 1, at this value the characteristic

behaviors of the three strategies are distinguishable. We return

to weaker fields later.

The benchmark is DI, for which the QFI is linear in η.

The local heterodyne strategy, whose classical FI is given

analytically in Eq. (3.13), appears as a flat line. For high

values of loss, here around η ∼ 0.2, a crossover occurs. At

this crossover, so much light is lost transmitting the collected

stellar state to a spatially local station in the DI strategy that

Alice and Bob are better off simply performing heterodyne

detection locally. This crossover depends on the mean photon

number ε in the stellar state. For the teleportation strategy, we
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show the QFI for several values of the squeezing parameter

r and for the limit of infinite squeezing r → ∞, for which

loss is equivalent to a random displacement channel on half

of the stellar state; see Appendix B 2 [46]. At zero loss, the

infinite-squeezing teleportation strategy performs identically

to DI, with other values of r performing worse. As loss in-

creases (η < 1), the QFI for the teleportation strategy falls

faster than that for DI. This behavior is expected because the

entanglement in a TMSV is notoriously sensitive to losses. For

low to moderate levels of loss, the QFI for the teleportation

strategy lies between that for the DI and local heterodyne

strategies.

Curiously, for higher levels of loss, a small region of

“limited quantum advantage” exists in which the teleportation

strategy can outperform both DI and the local heterodyne

strategy. This region, highlighted in Fig. 3, is characterized

by two crossover values of the transmission parameter that we

label ηcross, one where the teleportation-strategy QFI begins

to exceed DI and one where it falls below local heterodyne.

For infinite squeezing, these crossovers occur at ηcross ≈ 0.23

and ηcross ≈ 0.11, shown in greater detail in the inset. The

teleportation strategy performing worse than heterodyne may

be due to the fact that as the quality of the TMSV decreases,

Bob’s measurements serve to teleport excess noise to Alice

without a compensating amount of information about φ. As

η decreases further toward zero, the QFI converges to that

of local heterodyne. This is expected, because at maximal

loss any TMSV becomes |vac〉 ⊗ |vac〉, the same state used

to derive Eq. (3.13); see Appendix B 1.

For the two extremal points, η = 0 and η = 1 (given r →
∞), the optimal measurement operators are known [14,34].

For other values of η, the optimal POVMs and how to imple-

ment them physically are unknown (even assuming Alice has

a perfect quantum memory to store her modes while waiting

for Bob’s classical outcomes). This is due to the fact that both

the displacement and the correlation contain the parameters of

interest—one must measure both the displacement rA and the

correlations, proportional to q̂Aq̂C + p̂A p̂C .

To quantify the region of advantage with respect to loss, we

repeat the numerical analysis for other values of ε, including

the parameter regime for weak stellar interferometry where

ε 	 1. QFI curves for several choices of ε are shown in

Fig. 4(a), using infinite squeezing for the teleportation strategy

to set an upper bound on the quantum advantage. We see that

for each value of ε, in principle, there is reason to consider

a teleportation-based estimation strategy, which can outper-

form both the “classical” strategies when the expected loss is

between the indicated crossover values ηcross. Figure 4(b) ex-

tends this to show the bounding region of quantum advantage

achievable with infinite squeezing. These figures reveal that,

for weaker and weaker stellar states, the quantum advantage

decreases in two ways. First, the size of the region where an

advantage is possible decreases, and second, the magnitude

of the advantage (in QFI) also decreases. Finite squeezing

in any physical implementation will further reduce both the

size of the region and the magnitude of the advantage. More-

over, given the increased experimental complexity associated

with implementing the (unknown) optimal measurement, it is

likely this small advantage will be washed out by extra noise

introduced in the process.

direct interferometry

local heterodyne
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(b)

0.40.30.20.10 0.5

region of advantage

0.40.30.20.10 0.5

mean photon number

direct interferometry
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FIG. 4. Comparison of regions where the teleportation strategy

is, in principle, advantageous for φ given different values of the mean

photon number ε. Curves for the teleportation strategy (dotted) are

shown for infinite squeezing r → ∞. Red stars mark the crossover

values of the transmission parameter ηcross. Regions of advantage for

the teleportation strategy are shaded pink. (a) Curves for three values

of ε showing the size of the region and the relative advantage. (b) The

region of advantage for different values of mean photon number ε.

3. QFI for ³ with loss

The QFI for γ behaves very much like that for φ

across the three strategies. We focus here on notable

differences.

The spatial parameter γ is imprinted nonunitarily onto

the stellar state and behaves qualitatively differently from φ:

in fact, the QFI for γ calculated directly from the stellar

state is itself a function of γ . In the weak photon limit, its

QFI is 1/(1 − γ 2) per photon [7] and approaches infinity as

γ → 1. This is because when γ = 1, the state is spatially

pure: when a suitable DI measurement is made, the stellar

photon will always output at the same port, and there is no

error in the estimation. The γ dependence of the QFI for the

three strategies is illustrated in Fig. 5. The lossless, infinite

squeezing teleportation strategy coincides with DI. For lower

transmission, η = 0.8, a large gap between the two strategies

exists, and teleportation performs only marginally better than

the local heterodyne strategy.

This gap between lossy DI and the lossy teleportation

strategy increases as the squeezing is also lowered, as shown

in Fig. 6(a), where we plot the QFI of γ as a function of η
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teleportation

teleportation

FIG. 5. QFI per photon for γ for parameters ε = 0.3 as a

function of γ , for 0 � γ � 0.95.

in Fig. 5. At very high loss, the lossy teleportation scheme

acquires a slight advantage compared to DI; however, the

region of advantage shrinks dramatically for lower ε; see

Fig. 6(b). On the other hand, local heterodyne is consistently

outperformed by the teleportation strategy, unlike the QFI

for φ.

direct interferometry

(a)

(b)

0.3

0.2

0.1

0

0.4

0.5

local heterodyne

transmission parameter

direct interferometry

local heterodyne

local heterodyne

6

4

2

0

8

10

10.750.500.250

transmission parameter

0.050.040.030.020 0.01

FIG. 6. Comparison of the QFI per photon for γ under loss for

the three strategies. (a) Curves for parameters ε = 0.3 and γ = 0.95

showing performance for several levels of squeezing in the TMSV

for the teleportation strategy. (b) Curves for several values of ε in the

very high loss regime. The teleportation strategy performs best once

the transmission parameter is below ηcross. Note that unlike the QFI

for φ—compared to Fig. 4—for γ , the teleportation strategy always

performs better than the local heterodyne strategy.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we characterized three schemes for per-

forming CV stellar interferometry in the full Gaussian

formalism. In the lossless case, we examined the QFI of a

CV teleportation-based strategy as a function of squeezing

in the TMSV resource state. We found that the smaller the

mean photon number ε in the stellar signal state, the larger

the squeezing required to achieve the same QFI per photon

for the parameter φ. For ε ∼ 10−2–10−3, we see that ∼95%

of the QFI can be achieved with r = 2.

In the case with loss, we see that there is a transition

between DI and the local heterodyne strategy: this comes from

the fact that DI scales linearly in both ε and in the loss parame-

ter, whereas the local heterodyne strategy is completely robust

to loss (since the stellar state is measured immediately), but

scales as ε2. The teleportation strategy requires distributed en-

tanglement by means of the TMSV. This entanglement is very

sensitive to loss, and the QFI initially drops off sharply as loss

increases. However, at high loss, a small region of advantage

opens up for which the teleportation strategy outperforms both

lossy DI and local heterodyne strategies with respect to QFI.

We consider this advantage to be limited for the following

reasons. First, the teleportation strategy underperforms lossy

DI unless the loss is high; from Fig. 4, for φ this occurs for

η � ε; for γ this region shrinks by an order of magnitude.

Even with access to very high squeezing, (a) the advantage

only occurs for small regions of η at high loss, and (b) the

magnitude of the advantage is also small. Achieving it will

require measurements that are difficult to realize experimen-

tally, and therefore we deem the quantum advantage limited.

In addition to the advantage itself being limited, we

identify other obstacles to using a teleportation strategy in

practice:

(1) It requires significant two-mode squeezing.

(2) It requires near-perfect quantum memories. Even then,

it is likely that the optimal POVM will depend on the

unknown parameters. That is because they are embedded

in Alice’s mean, as indicated by Eq. (3.5).

For point 1, there are ways forward—notably, using an en-

tanglement distillation procedure to improve the quality of the

lossy TMSV [40] by increasing the effective squeezing and

decreasing the effective noise. The cost for this can be quite

high: a quantum scissors approach [47] is probabilistic. More-

over, such a distillation procedure introduces non-Gaussianity

into the TMSV which must either be (a) accounted for with

new analysis or (b) removed via a Gaussification process that

will inject more noise.

For point 2, we further remark that for the teleportation

strategy, to implement the optimal measurement, in general,

quantum memories [48] will be required. This is because the

postmeasurement state will have nonzero displacement. Anal-

ogous to the discrete-variable case where a Pauli correction

is required after teleportation, the CV states considered here

will need a displacement correction that depends on Bob’s

quadrature measurement outcomes. Since we need to com-

municate this classical information from Bob to Alice, Alice

will need to store her share of the quantum states losslessly. In
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the lossy case, the optimal measurement will depend on both

the displacement and the covariance of the postmeasurement

state, which may make its implementation even more difficult.

A few intriguing questions remain unanswered: First, why

does the QFI for the teleportation strategy cross that of the

local heterodyne strategy at a specific value of η over many

values of the squeezing parameter r? Second, what is the

underlying mechanism that allows the teleportation strategy

to outperform DI in the region of advantage after performing

worse for high η? Finally, why does the teleportation strategy

have a minimum QFI for each value of r and then perform bet-

ter as loss increases? Answers to these could unearth untapped

quantum advantage with applications in sensing and quantum

illumination.

With this work, we hope to inspire future studies that could

find strategies not only robust to noise but also experimentally

achievable. A potential path forward involves correcting the

loss itself during lossy DI. However, it is known that Gaussian

operations cannot correct Gaussian errors on Gaussian states

[39]. As such, to overcome loss and other Gaussian noise such

as thermalization, protocols involving non-Gaussian resources

may prove useful.

Recently, we learned that Ref. [34] also considered CV

teleportation for stellar interferometry in a complementary

setting of CV repeater networks.

All codes used to generate the figures in this paper and

a Mathematica file supporting some of the theoretical calcu-

lations are available with the arXiv posting of this paper, as

arXiv ancillary files.
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APPENDIX A: ALTERNATE METHOD FOR

CALCULATING THE QFI FOR A GAUSSIAN STATE

Alternatively, the QFI is a function of the parametrized

family {ρ̂θ }θ of states and can be calculated using the follow-

ing formula [49, Theorem 6.3], which is useful for numerical

calculations if analytical expressions are intractable:

Jθ (ρ̂θ ) = lim
dθ→0

8[1 − F (ρ̂θ , ρ̂θ+dθ )]

dθ2
, (A1)

where the fidelity between two states ρ̂1 and ρ̂2 [50] is

F (ρ̂1, ρ̂2) := Tr[

√

√

ρ̂1ρ̂2

√

ρ̂1]. (A2)

Thus, we can approximately evaluate the QFI numerically by

choosing small dθ .

When the family of states in Eq. (A1) is Gaussian, the

QFI can be calculated directly from the first and second mo-

ments. This follows from the fact that the fidelity between

two Gaussian states with respective mean vectors r1 and r2

and covariance matrices σ1 and σ2 is given by [51] (see also

Refs. [52–54]):

F (ρ̂1, ρ̂2) = F0(σ1, σ2) exp

[

−
1

4
´T

(

σ1 + σ2

2

)−1

´

]

, (A3)

where ´ := r1 − r2, and

F0(σ1, σ2) :=
Ftot

det
(

σ1+σ2

2

)1/4
, (A4)

(Ftot)
4 := det

[

2

(
√

1 +
(σaux�)−2

4
+ 1

)

σaux

]

, (A5)

σaux := �T

(

σ1 + σ2

2

)−1(
�

4
+

σ2�σ1

4

)

. (A6)

APPENDIX B: FINDING THE TELEPORTED STATE

In the following calculations, we use the notation and con-

vention of Chapter 8 in Ref. [10]. Consider the four-mode

state, before any measurements are performed, consisting of

the stellar state across modes A and B and the TMSV across

modes B and D. The TMSV is prepared with initial squeez-

ing r and has undergone pure loss described by transmission

parameter η.

The stellar state mean vector and covariance matrix rewrit-

ten in this convention is

r� = (0 0 0 0)T, (B1)

σ� :=

(

σa σab

σT
ab σb

)

(B2)

=

»

¼

¼

¼

½

ε + 1 0 γ ε cos φ −γ ε sin φ

0 ε + 1 γ ε sin φ γ ε cos φ

γ ε cos φ γ ε sin φ ε + 1 0

−γ ε sin φ γ ε cos φ 0 ε + 1

¾

¿

¿

¿

À

.

(B3)

Using the mode ordering (q̂A, p̂A, q̂C, p̂C, q̂B, p̂B, q̂D, p̂D),

the covariance matrix for this state is

σACBD =

(

σ³ σ³´

σT
³´ σ´

)

(B4)
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with block matrices

σ³ :=
(

σa 0

0 c12

)

, (B5)

σ³´ :=
(

σab 0

0 sσz

)

, (B6)

σ´ :=
(

σb 0

0 c12

)

. (B7)

The matrices 12 and 0 are the two-dimensional identity and

matrix of all zeros, respectively, and σz is the Pauli-Z ma-

trix. As in the main text, c := η cosh(2r) + (1 − η), and s :=
η sinh(2r).

A joint Einstein-Podolsky-Rosen (EPR) measurement of

modes B and D is realized by sending them through a 50:50

beam splitter and performing homodyne detection of the

output modes—one measured in position and the other in

momentum. This produces two outcomes m = (mq, mp)T, ob-

tained with probability density (Chap. 5 of Ref. [10])

p(m) =
exp[−mT[c12 + σb]−1m]

π
√

det(c12 + σb)
=

exp
(

− mTm
(1+c+ε)

)

π (1 + c + ε)
.

(B8)

This EPR measurement can be described by a projection of

the measured modes, B and D, onto a displaced TMSV state

with first and second moments,

rm =
(

0

m

)

, σm = lim
c′→∞

(

c′
12 c′σz

c′σz c′
12

)

, (B9)

a description that will be useful in calculations below. The

limit c′ → ∞ describes infinite squeezing in the projected

state, i.e., ideal homodyne detection.

After the measurement, the remaining modes, A and C, are

projected into a conditional Gaussian state that depends on

the outcome m. The mean vector and covariance matrix for

the postmeasurement state are formally

rAC = σ³´ (σ´ + σm)−1rm, (B10a)

σAC = σ³ − σ³´

(

σ´ + σm

)−1
σT

³´ . (B10b)

Both moments depend on the matrix inverse

(σ´ + σm)−1 = lim
c′→∞

[(

σb 0

0 c12

)

+

(

c′
12 c′σz

c′σz c′
12

)]−1

(B11)

=:

(

M11 M12

M21 M22

)

, (B12)

which we calculate now. Block Gaussian elimination using

Schur complements gives

M11 = lim
c′→∞

(

σb +
cc′

(c + c′)
12

)−1

= (σb + c12)−1, (B13)

M12 = lim
c′→∞

c′(σb + c′
12)−1σz[(c

′)2σz(σb + c′
12)−1σz − (c + c′)12]−1 = −σz(σzσbσz + c12)−1, (B14)

M22 = lim
c′→∞

[(c + c′)12 − (c′)2σz(σb + c′
12)−1σz]

−1 = (σzσbσz + c12)−1, (B15)

and M21 = MT
12. Taking the limits above can be expedited using (σb + c′

12)−1 ≈ 1
c′ (12 − σb

c′ ). With these relations, Eqs. (B10)

become

rAC =
(

rA

rC

)

=

(

−σabσz(c12 + σzσbσz )−1m

sσz(c12 + σzσbσz )−1m

)

, (B16a)

σAC =

(

σa − σab(c12 + σb)−1σT
ab sσabσz(c12 + σzσbσz )−1σz

sσz(c12 + σzσbσz )−1σzσ
T
ab c12 − s2σz(c12 + σzσbσz )−1σz

)

. (B16b)

Inserting the block matrices from the stellar state, Eq. (B1), into Eq. (B16) gives the mean rAC with

rA =

(

− γ ε cos φ

c+ε+1
− γ ε sin φ

c+ε+1

− γ ε sin φ

c+ε+1

γ ε cos φ

c+ε+1

)

m, (B17)

rC =
(

s(c + ε + 1) 0

0 −s(c + ε + 1)

)

m, (B18)

and the covariance matrix

σAC =

»

¼

¼

¼

¼

¼

¼

½

1 + ε − γ 2ε2

c+ε+1
0

γ sε cos φ

c+ε+1
− γ sε sin φ

c+ε+1

0 1 + ε − γ 2ε2

c+ε+1

γ sε sin φ

c+ε+1

γ sε cos φ

c+ε+1

γ sε cos φ

c+ε+1

γ sε sin φ

c+ε+1
c − s2

c+ε+1
0

− γ sε sin φ

c+ε+1

γ sε cos φ

c+ε+1
0 c − s2

c+ε+1

¾

¿

¿

¿

¿

¿

¿

À

, (B19)

for the conditional state ρ̂m
φ,γ held by Alice across unmeasured modes A and C.
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1. High-loss or low-squeezing limit

Consider the limits c → 1 and s → 0 in the TMSV. This case applies to both the high loss (η → 0) or low squeezing (r →
1) limits; see Eq. (3.3). Under either of these conditions, the TMSV becomes |vac〉 ⊗ |vac〉. In the teleportation strategy, the

probability density for Bob’s outcomes is

p(m) =
e−mTm/(ε+2)

π (ε + 2)
, (B20)

and Alice’s postmeasurement state has mean

rA =

(

− γ ε cos(φ)

ε+2
− γ ε sin(φ)

ε+2

− γ ε sin(φ)

ε+2

γ ε cos(φ)

ε+2

)

m,

rC = 0, (B21)

and covariance matrix

σAC =

»

¼

¼

¼

½

1 + ε − γ 2ε2

ε+2
0 0 0

0 1 + ε − γ 2ε2

ε+2
0 0

0 0 1 0

0 0 0 1

¾

¿

¿

¿

À

. (B22)

The QFI matrix for the conditional state can be found using the expressions in Appendix B 3,

J tel
φ

(

ρ̂m
φ,γ

)

=
2γ 2ε2mTm

(ε + 2)[(1 − γ 2)ε2 + 3ε + 2]
, (B23a)

J tel
γ

(

ρ̂m
φ,γ

)

=
2ε2mTm

(ε + 2)[(1 − γ 2)ε2 + 3ε + 2]
+

4γ 2ε3

(γ 2 − 1)
2
ε3 − 6(γ 2 − 1)ε2 − 4(γ 2 − 3)ε + 8

. (B23b)

Taking a weighted average of Eq. (B23) by Eq. (B20) gives

J tel
φ (�̂φ,γ ) =

2γ 2ε2

(1 − γ 2)ε2 + 3ε + 2
, (B24a)

J tel
γ (�̂φ,γ ) =

2ε2

(1 − γ 2)ε2 + 3ε + 2
+

4γ 2ε3

(γ 2 − 1)
2
ε3 − 6(γ 2 − 1)ε2 − 4(γ 2 − 3)ε + 8

. (B24b)

Mathematica files supporting the calculations in (B23)–(B24) are available with the arXiv posting of our paper.

2. Lossy, high-squeezing limit (η �= 0)

Another extreme is for a highly squeezed state r → ∞ with loss 0 < η � 1. This excludes η = 0, where the state again

returns to vacuum in both modes. The mean of Alice’s state is

rA = 0, (B25)

rC = scσzm, (B26)

and the covariance matrix is

σAC =

»

¼

¼

¼

½

1 + ε 0 γ ε cos φ −γ ε sin φ

0 1 + ε γ ε sin φ γ ε cos φ

γ ε cos φ γ ε sin φ 1 + ε + 2(1 − η) 0

−γ ε sin φ γ ε cos φ 0 1 + ε + 2(1 − η)

¾

¿

¿

¿

À

. (B27)

In the high-squeezing limit, this is equivalent to Bob’s half of the stellar state being teleported to Alice with a Gaussian random

displacement channel of strength 1 − η applied. For no loss at all, η = 1, the stellar state is perfectly teleported to Alice.

While the mean rC can be quite large, it has no dependence on the parameters φ and γ . The QFI is independent of the outcome

m and is determined solely by the covariance matrix.

3. QFI matrix for the teleported state

We find the elements of the QFI matrix for the teleported state Jtel using Eq. (2.13). First, we find that J tel
φγ = J tel

γφ = 0, meaning

the QFI matrix is diagonal.
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Next, we find the diagonal element J tel
φφ , which we simply label J tel

φ . The first term in Eq. (2.13) can be calculated

straightforwardly; we focus on the second term, which depends on the mean of the Gaussian state. For the teleported state

here, this mean depends on the measurement outcome m = (mq, mp)T [see Eq. (B17)], and the second term in Eq. (2.13) is

(∂φr)Tσ−1
AC (∂φr) =

2γ 2ε2(mTm)[c(c + ε + 1) − s2]

(c + ε + 1)2{c2(ε + 1) + cε[ε(1 − γ 2) + 2] + c − s2(ε + 1)}
. (B28)

Taking the average over the outcomes with probability density p(m) according to Eq. (3.10), with 〈mTm〉 = Tr[Cov(m)] =
1 + c + ε, gives

(∂φr)Tσ−1
AC (∂φr)

∣

∣

avg
=

2γ 2ε2[c(c + ε + 1) − s2]

(c + ε + 1){c2(ε + 1) + cε[ε(1 − γ 2) + 2] + c − s2(ε + 1)}
. (B29)

Combining with the first term from Eq. (2.13) gives us the full expression for the QFI matrix element,

J tel
φ =

2γ 2ε2

c + ε + 1

(

s2

c2(ε + 1) + cε[ε(1 − γ 2) + 2] − (s2 + 1)(ε + 1)
+

c(c + ε + 1) − s2

c2(ε + 1) + cε[ε(1 − γ 2) + 2] + c − s2(ε + 1)

)

,

(B30)

where, again, c and s are defined in Eqs. (3.3). In the limit that s, c → ∞, Eq. (B30) converges to Eq. (3.1a), and in the limit that

s → 0 and c → 1, Eq. (B30) reduces to Eq. (3.13).

We find J tel
γ following the same procedure,

J tel
γ =

X

Y
+

2ε2[c(c + ε + 1) − s2]

(c + ε + 1){c2(ε + 1) + cε[ε(1 − γ 2) + 2] + c − s2(ε + 1)}
, (B31)

where

X := 2ε2(2(c2 − 1)γ 2ε(c + ε + 1){c2(ε + 1) + cε[γ 2(−ε) + ε + 2] − ε − 1}

− 2s4{c2(ε + 2) + γ 2ε − c(ε + 1)[(γ 2 − 1)ε − 2]} + s6(ε + 2)

+ s2{−(γ 4 + 1)ε3 + c4(ε + 2) − 2c3(ε + 1)[(2γ 2 − 1)ε − 2]

+ c2ε[(4 − 8γ 2)ε + (γ 4 − 4γ 2 + 1)ε2 + 4] + 2c(ε + 1)[(2γ 2 − 1)ε − 2] − 4ε2 − 5ε − 2}), (B32)

Y := (c + ε + 1)[γ 2ε + c2 + c(ε − γ 2ε) − s2 − ε − 1]{c2(ε + 1) + cε[ε(1 − γ 2) + 2] − (s2 + 1)(ε + 1)}

× {−γ 2ε2 + c2(ε + 2) + c[ε2(1 − γ 2) + 4ε + 4] − s2(ε + 2) + ε2 + 3ε + 2}. (B33)

In the limit that s → 0 and c → 1, the second term in Eq. (B31) (which is determined by the mean of the teleported state, on

average) converges to the FI accessible to local heterodyne measurement [see Eq. (3.13)].
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