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Abstract. Williamson’s theorem states that for any 2n x 2n real positive definite matrix A, there exists
a 2n x 2n real symplectic matrix S such that STAS = D @ D, where D is an n x n diagonal matrix
with positive diagonal entries known as the symplectic eigenvalues of A. Let H be any 2n x 2n
real symmetric matrix such that the perturbed matrix A + H is also positive definite. In this paper,
we show that any symplectic matrix § diagonalizing A + H in Williamson’s theorem is of the form
$=8Q+ O(|H|), where Q s a 21 x 2n real symplectic as well as orthogonal matrix. Moreover, Q is
in symplectic block diagonal form with the block sizes given by twice the multiplicities of the symplectic
eigenvalues of A. Consequently, we show that § and S can be chosen so that ||S - S| = O(|H|).
Our results hold even if A has repeated symplectic eigenvalues. This generalizes the stability result of
symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [Linear
Algebra Appl., 525:45-58, 2017].

1 Introduction

Analogous to the spectral theorem in linear algebra is Williamson’s theorem [23] in
symplectic linear algebra. It states that for any 2n x 2n real positive definite matrix
A, there exists a 2n x 2n real symplectic matrix S such that STAS = D ® D, where
D is an n x n diagonal matrix with positive diagonal entries. The diagonal entries
of D are known as the symplectic eigenvalues of A, and the columns of S form a
symplectic eigenbasis of A. This result is also referred to as Williamson normal form
in the literature [7, 8]. Symplectic eigenvalues and symplectic matrices are ubiquitous
in many areas such as classical Hamiltonian dynamics [2], quantum mechanics [8],
and symplectic topology [9]. More recently, it has attracted much attention from
matrix analysts [3-5, 12-14, 16, 22] and quantum physicists [1, 6, 10, 11, 15] for its
important role in continuous-variable quantum information theory [19]. For example,
any Gaussian state of zero mean vector is obtained by applying to a tensor product
of thermal states a unitary map that is characterized by a symplectic matrix [19],
and the von Neumann entropy of the Gaussian state is a smooth function of the
symplectic eigenvalues of its covariance matrix [17]. So, it is of theoretical interest
as well as practical importance to study the perturbation of symplectic eigenvalues
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202 G. Babu and H. Mishra

and symplectic matrices in Williamson’s theorem, both of which are closely related
to each other. Indeed, the perturbation bound on symplectic eigenvalues of two
positive definite matrices A and B obtained in [13] is derived using symplectic matrices
diagonalizing tA + (1-t)B for t € [0,1]. In [11], a perturbation of A of the form
A + tH was considered for small variable ¢ > 0 and a fixed real symmetric matrix H.
The authors studied the stability of symplectic matrices diagonalizing A + tH in
Williamson’s theorem and a perturbation bound was obtained for the case of A having
non-repeated symplectic eigenvalues.

In this paper, we study the stability of symplectic matrices in Williamson’s theorem
diagonalizing A + H, where H is an arbitrary 2n x 2n real symmetric matrix such
that the perturbed matrix A + H is also positive definite. Let S be a fixed symplectic
matrix diagonalizing A in Williamson’s theorem. We show that any symplectic matrix
S diagonalizing A + H in Williamson's theorem is of the form § = SQ + O(||H|) such
that Q is a 2n x 2n real symplectic as well as orthogonal matrix. Moreover, Q is
in symplectic block diagonal form with block sizes given by twice the multiplicities
of the symplectic eigenvalues of A. Consequently, we prove that S and S can be
chosen so that | — S| = O(| H|). Our results hold even if A has repeated symplectic
eigenvalues, generalizing the stability result of symplectic matrices corresponding to
the case of non-repeated symplectic eigenvalues given in [11]. We do not provide any
perturbation bounds.

The rest of the paper is organized as follows: In Section 2, we review some
definitions, set notations, and define basic symplectic operations. In Section 3, we
detail the findings of this paper. These are given in Propositions 3.2 and 3.7 and
Theorems 3.4 and 3.6.

2 Background and notations

Let Sm(m) denote the set of m x m real symmetric matrices equipped with the
spectral norm | - |, that is, for any X € Sm(m), | X| is the maximum singular value
of X. We also use the same notation | - | for the Euclidean norm, and (-,-) for the
Euclidean inner product on R™ or C™. Let 0;,; denote the i x j zero matrix, and let 0;
denote the i x i zero matrix (i.e., 0; = 0; ;). We denote the imaginary unit number by
1 := /~1. We use the Big-O notation Y = O(||X| ) to denote a matrix Y as a function
of X for which there exist positive scalars c and 8 such that | Y|| < ¢||X|| for all X with
| X1 <o.

2.1 Symplectic matrices and symplectic eigenvalues

Define J, := ( % §),andlet )5, = J, ® I,, for n > 1, where I, is the n x n identity matrix.
A 21 x 2n real matrix S is said to be symplectic if ST1,,8 = J»,. The set of 2n x 2n
symplectic matrices, denote by Sp(2#), forms a group under multiplication called
the symplectic group. The symplectic group Sp(2n) is analogous to the orthogonal
group Or(2n) of 2n x 2n orthogonal matrices in the sense that replacing the matrix
J2n with I, in the definition of symplectic matrices gives the definition of orthogonal
matrices. However, in contrast with the orthogonal group, the symplectic group
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Block perturbation of symplectic matrices in Williamson’s theorem 203

is non-compact. Also, the determinant of every symplectic matrix is equal to +1
which makes the symplectic group a subgroup of the special linear group [8]. Let
Pd(2n) c Sm(2n) denote the set of positive definite matrices. Williamson’s theorem
[23] states that for every A € Pd(2n), there exists S € Sp(2#n) such that STAS = D @ D,
where D is an n x n diagonal matrix. The diagonal elements d;(A) < -+ < d,(A) of D
are independent of the choice of S, and they are known as the symplectic eigenvalues
of A. Denote by Sp(2n; A) the subset of Sp(2#) consisting of symplectic matrices that
diagonalize A in Williamson’s theorem. Several proofs of Williamson’s theorem are
available using basic linear algebra (e.g., [7, 20]).

Denote the set of 21 x 2n orthosymplectic (orthogonal as well as symplectic) matri-
ces as OrSp(2n) = Or(2n) n Sp(2n). Any orthosymplectic matrix Q € OrSp(2n) is
precisely of the form

21) Q- (f; §)

where X, Y are n x n real matrices such that X + 1Y is a unitary matrix [3]. For m < n,
we denote by Sp(2n, 2m) the set of 2n x 2m matrices M satisfying M” J,, M = J,,,. In
particular, we have Sp(2n, 2n) = Sp(2n).

2.2 Symplectic block and symplectic direct sum

Let m be a natural number and J,J ¢ {1,..., m}. Suppose M is an m x m matrix. We
denote by My the submatrix of M consisting of the columns of M with indices in .
Also, denote by Mgy the [J| x || submatrix of M = [M;;] consisting of the elements
M;; with indices i € J and je J. Let T be any 2m x 2m matrix given in the block
form by

w X
where X, Y, W, Z are matrices of order m x m. Define a symplectic block of T as a

submatrix of the form
Wiyg  Xog
Yog  Zgg)’

Also, define a symplectic diagonal block of T as a submatrix of the form

Wig  Xgg
Yi9 Zyg )’

The following example illustrates this.
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204 G. Babu and H. Mishra

Example 2.1 Let T be a 6 x 6 matrix given by

1 213 :[4 576
7 8|19 |10 11|12
13 14 15 : 16 17 18
19 20|21 :[22 23|24
25 26|27 i |28 29130
31 32 33 : 34 35 36

A symplectic block of T, which corresponds to J = {3} and J = {2}, is given by

14 17
32 35 )°

A symplectic diagonal block, corresponding to J = {1, 2}, is given by

1 24 5
7 8110 11
19 2022 23
25 26|28 29

Let T” be another 2m’ x 2m’ matrix, given in the block form

w' X’
T, = ( Y/ Z/) 5>
where the blocks W', X', Y’, Z' have size m’ x m’. Define the symplectic direct sum of
T and T’ as

s [(WOW XeX
T@T_(Y®Y’ YAYVAN N

This is illustrated in the following example.

Example 2.2 Let

1 2 3 4
|5 6|7 8 , (17 18
T= 9 10|11 12 ’T_(19 20)'
13 14|15 16
We then have
1 210 3 410
6|0 7 810
0o 0 17 0O 0 18
TS T =
9 10| 0 1 120
13 14| 0 |15 16| 0
0O 0 19 : 0 0 20
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Block perturbation of symplectic matrices in Williamson’s theorem 205

We know that the usual direct sum of two orthogonal matrices is also an orthogonal
matrix. It is interesting to note that an analogous property is also satisfied by the
symplectic direct sum. If T € Sp(2k) and T’ € Sp(2¢), then T &° T’ € Sp(2(k + £)).
Indeed, we have

(T T) Tagrary (T &° T')

T
_ WeW XeX [\ ) WeW XeX
“\YeovY ZoZ Iy Opse YoY ZoZ'

WTeaW'T YT@Y'T YoV VA YA
o X'’ eZT|\-(We W) -(XeX)

WIyewWTy - YTWe Y™ W WIZeWTZ -YTXeY'TX
X'yo XY -ZTWwWe Z2™W X"Ze X2 -2TXe7'TX’'

(XTY-ZTW)e (X'TY' -Z'"TW') (XTZ-Z"X)e (X'TZ'-Z'TX")

XTy-zTw XTz-7TXx

X/T Y - Z/T w’ X/TZ/ _ ZITXI

((WTY YTW)ye (WTY -YTW) (WIZ-YTX)e (W'TZ - Y’TX’))
(WTY YT WTZ YTX) s (WITYI _ YlTwl Wszl _ YITXI)

Y Z o wt y™(y z
W -X XIT Z/T _Wl _Xl

(w ox\ (o I WXGBSW’X’TOg L\ (w X
Ny z) \-. o)\y z vy z) \-, o)\y z
=T T & T o T

=k @ Jae

= Ja(k+e)-

2.3 Symplectic concatenation

Let M=(p1,.--»Px>q1>----qx) and N =(x1,...,%xp, ¥1,...,y¢) be 2nx2k and
2n x 2¢ matrices, respectively. Define the symplectic concatenation of M and N to
be the following 2n x 2(k + ¢) matrix:

MON = (Plsee s Pis Xl e e s X0 Qe o> Qh> V1o e o5 V0)

Here is an example to illustrate symplectic concatenation.

Example 2.3 Let

1 2|13 4 17 18
5 6|7 8 19 20
M= 9 10|11 12 | N= 21 22
13 14|15 16 23 24
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206 G. Babu and H. Mishra

The symplectic concatenation of M and N is given by

1 2 17|13 4 18
5 6 19,7 8 20
9 10 21|11 12 22
13 14 23|15 16 24

MoN =

Suppose that M € Sp(2n,2k) and N € Sp(2n,2¢). Let us derive a necessary and
sufficient condition on M and N for k + ¢ < n such that M o N € Sp(2n,2(k + ¢)).
This will be useful later. We have

(MoN) " Tpu(MoN)=((MoN)"J,uM) o ((MoN)"J,,N)

(MTJL (Mo N)) o (NTJE (Mo N))"

((MTJEM) o (MTTEN)) o (NTTEM) o (NTIEN))

T T
(2.2) = (ko (MT]3,N)) " o (NT]3,M) ¢ J5,) .
We also observe that

T T
(2.3) Jaksey = (Tak © 02k2¢) " © (02026 © J3y)

By comparing (2.2) and (2.3), we deduce that M o N € Sp(2n,2(k + £)) if and only if
M"]5uN = 020

3 Main results

We fix the following notations throughout the paper. Let A € Pd(2n) with distinct
symplectic eigenvalues y; < - < y,. Foralli =1,...,r, define sets

ai={j:dj(A) =pij=1....n}
Bi={j+n:jearl,
Vi 5:061‘Uﬁi.

An example to illustrate these sets is as follows.

Example3.1 Suppose A € Pd(20) with symplectic eigenvalues1,1,2,3,3,3,4,4,4,5.
We have uy=1, ps =2, p3 =3, ps=4, ps=5. Also a1 ={1,2}, a, = {3}, a3 =
{4,5,6},a4 = {7,8,9}, a5 = {10}. Note that n =10, so we have 5 = {11,12}, B, =
{13}, Bs = {14,15,16}, B = {17,18,19}, Bs = {20}. We thus also get y; = {1,2,11,12},
2 ={3,13}, 35 = {4,5,6,14,15,16}, y4 = {7,8,9,17,18,19}, y5 = {10, 20}.

Proposition 3.2 Let A€Pd(2n) and H € Sm(2n) such that A+ H € Pd(2n). Let
S eSp(2n;A) and S € Sp(2n; A+ H). For1<i # j <r, we have

3.1) (87'S), . =o(|H]),

YiVj

(3.2) (S‘IS)W =(s7'9) 5 +OUH],

Bi
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Block perturbation of symplectic matrices in Williamson’s theorem 207

(33) (55), . =~ (57'),, + OUIH]),
(3.4) (578)) (579, = Ley + O(IHI),
(3.5) (578)) Jope (S79) = Ty + OCIHI).

Proof It suffices to prove the assertions for A in the diagonal form A = D ® D and
S = I,. Forany S € Sp(2n; A + H), we have

(3.6) ST(A+H)S=DeD,

where D is the diagonal matrix with entries d;(A + H) < - < d, (A + H). By Theo-
rem 3.1 of [11], we get

(3.7) D=D+0O(|H|).
By (3.6) and (3.7), and using the diagonal form A = D @ D, we get
(3.8) ST(A+H)S = A+ O(|H|).
The symplectic matrix S satisfies
ISI7 = (A + H) 2 (A + H)'2S)?
<(A+H)P|(A+ H)S)?
=[(a+ )78 (A+H)S|
=2|(A+H)"|di(A+H)
<2[(A+H)||A+H| =2x(A+H),

where x(T) = || T|| T7"| is the condition number of an invertible matrix T, and we
used [13, Lemma 2.2(iii)] in the last inequality. It thus implies that |S| is uniformly
bounded for small |H|, which follows from the continuity of . So, from (3.8) and
the symplectic relation ST = J,,SJT , we get

(3.9) AS = onS13, A+ O(|HI).
Consider § in the block matrix form:
- (W X
S = ( Y"’v Z) >
where each block W, X, Y, Z has size n x n. From (3.9) and using the fact A = D & D,
we get
DW DX 0, L\(W X\(o, -IL\(D o,
(Df/ DZ) - (—In 0,,) ( Y Z) (1,, 0, ) (o,, D) + 0D
ZD -YD
610) (% wp) .
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208 G. Babu and H. Mishra

Now, using the representation D = pljs,| ® -+ ® fi;]|q,, and comparing the corre-
sponding blocks on both sides in (3.10), we get, forall 1< i, j < r,

om (i ) (e, i) o
This can be equivalently represented as

(312) #iSyiy; = HilaleSyiyi 2y + OCIHI).-

This also gives

(3.13) UiSyy, = yijz‘m‘s"y,,yjﬁlaj‘ +O(|H]).

Adding (3.12) and (3.13), and then dividing by y; + u;, gives

(3.14) Syivs = TSy Ty + OCIHI)-

Suppose, we have i # j. This implies y; # y;. By subtracting (3.13) from (3.12), and
then dividing by y; — p;, we then get

(3.15) y‘yj ]Z\a,\sy,y]]2|a]‘ +O(”H”)

By adding (3.14) and (3.15), we get S,,,, = O(| H]). This settles (3.1).
We get (3.2) and (3.3) dlrectly as a consequence of (3.11) by taking i =
By the symplectic relation ST1,,8 = Jon, we get

]2|a,-| = Sy,-]ZnSyi
r

_ QT Q
- Z S}’kyilz\aﬂs)’k)’i

r
7 .
(3.16) = Sy;yfhlailsym + ) Zk yky,IZIthISVka
*i,k=1

We know by (3.1) that S,,,, = O(|H|) for all k # i. Using this in the second term of
(3.16), we get

(317) ]2|a,»| = S);Tiyilzlailgyfy; + O(HHHZ)
This implies (3.5). The relation (3.17) also gives
(318) S)z:yi]2|ai|§yiyi];iai| = IZ\a,-\ + O(HHHZ)
The two relations (3.2) and (3.3) can be combined and expressed as
(3'19) ]2‘“i‘\§yi7i]£a,’| = S~yi7i + O(HHH)
Substituting (3.19) in (3.18) gives

Sy Sy = Loy + O(IH])-

This proves the remaining assertion (3.4). [
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Remark 3.3 By taking H = 0,,,5, in Proposition 3.2, we observe that (S’IS)M_ =
iVj
02)a;|,2/a;| for i # j, and that Qp;y = (S’IS)H' is orthosymplectic for all i. This implies

S =5Q, where Q = Qp ®° -+ ®° Q[ is orthosymplectic. The following result gener-
alizes this observation for arbitrary H — 0,,,.

Theorem 3.4 Let AePd(2n) and H e Sm(2n) such that A+ H e Pd(2n). Let
S € Sp(2n; A) and S € Sp(2n; A + H) be arbitrary. Then, there exists an orthosymplectic
matrix Q of the form

Q=Qu & & Q)
where Q[;1 € OrSp(2|a|) forall i = 1,. .., 1, satisfying
§=5Q+0(|H]).

Proof  There is no loss of generality in assuming that A has the diagonal form
A=D@&D and S = I,,. With this assumption, Proposition 3.2 gives the following
representation of S in terms of a symplectic direct sum:

6:20) s-oi( S ) ot

_Slxiﬁi aa;
Our strategy is to apply the Gram-Schmidt orthonormalization process to the
columns of S4, + lgaiﬁi to obtain a unitary matrix of the form Uy;j + 1V[;}, where
Upi) and V[;) are real matrices, and then use the representation (2.1) to obtain
orthosymplectic matrix Q[;]

Let x1,...,X|q, and yi,..., Y|q, be the columns of Saa; and Sq,p,, respectively.
Now, apply the Gram-Schmidt orthonormalization process to the complex vectors
X1+ 1YL Xjay| + 1Y]ay|- Let 21 = x1 + ty1. Choose wy = z1/|z1]| = uy + tv1. By (3.5)
and (3.4), we have

lz]* = flas]* + Hyl I

A0

wi =21+ O([|H|) = x1 + 1y + O(|H|).

=1+ 0(|H]).

This implies

Let zy = xp + 1y — (w1, X2 + 1¥2)wy. Choose wy = 25 /|22 || = ua + 1v so that {wy, w,}
is an orthonormal set. By (3.5) and (3.4), we have (x; + ty1, X2 + 1y,) = O(||H|). This
implies
Zy =Xy + 11Xy — (W1, X2 + 1y2)Wy
=y +1ys — (x1 + 1y, x2 + 1y2)wr + O(|HJ)
=x, + 1y, + O(|H|).

Again, by (3.5) and (3.4), we have |z;| =1+ O(||H| ), which implies w; = x5 + 1y, +
O([H]).
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210 G. Babu and H. Mishra

By continuing with the Gram-Schmidt process, we get orthonormal vectors
(Wi Wapag ) = { + v, g + Vg, ) such that forall j =1, ),

(3.21) uj+vj=xj+1y;+ O(|H).

Let Upjp = [uns .. o5 o] VIi] = [Vis -+ - V]ay|] SO that Up;p + 1V} is a unitary matrix.
By (2.1), it then follows that the following matrix:

UV,
o ::( [i [,])
I U

is orthosymplectic. The relation (3.21) thus gives

Sa,a. S{x.ﬁ.
q= i P+ O(H).
Qri (—Sa,-/z,- Smi) (IH])

This combined with (3.20) gives S = Q+ O(|H|), where Q = Qp;; ®° - &° Q[
which completes the proof. ]

The matrix SQ in Theorem 3.4 characterizes the set Sp(2n; A). We state this in the
following proposition, proof of which follows directly from Corollary 5.3 of [13]. It is
also stated as Theorem 3.5 in [21].

Proposition 3.5  Let S € Sp(2n; A) be fixed. Every symplectic matrix S € Sp(2n; A) is
precisely of the form
§=5Q,
where Q = Q] ®° -+ ®° Q[ such that Q[; € OrSp(2|a;|) foralli=1,...,r.
In [11], it is shown that if A has no repeated symplectic eigenvalues, then for any
fixed H € Sm(2n), one can choose S € Sp(2n; A) and S(¢) € Sp(2n; A + ¢H) for small
€ > 0 such that |S(¢) — S| = O(\/€). We generalize their result to the more general

case of A having repeated symplectic eigenvalues. Moreover, we consider the most
general perturbation of A and strengthen the aforementioned result.

Theorem 3.6 ~ Let A € Pd(2n) and H € Sm(2n) such that A + H € Pd(2n). Given any
S € Sp(2n; A+ H), there exists S € Sp(2n; A) such that
(322) IS - sl =odH]).

Proof Let M € Sp(2n;A). By Theorem 3.4, we have
$=MQ+O(|H]),

where Q = Qpyj @° -+ ®° Qq,] such that Qp;j € OrSp(2|a;|) for all i=1,...,r. Set
S := MQ so that |S - S| = O(|H|). We also have S € Sp(2n; A) which follows from
Proposition 3.5. u

We know from Theorem 3.4 that the distance of the symplectic block (S‘IS)TV
from OrSp(2|a;|) is O(|H|) for all i =1,...,r. Since Sp(2|a;|) > OrSp(2|a;|), the
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Block perturbation of symplectic matrices in Williamson’s theorem 211

distance of (S7'S )y_y_ from Sp(2|a;|) is expected to be even smaller. The following

result shows that this distance is O(|H||?).
Let W =[u,v] be a 2n x 2 matrix such that Range(W) is non-isotropic, i.e.,
0
0 uf Jonv
decomposition W = SR is called the elementary SR decomposition (ESR). See [18]
for various versions of ESR and their applications in symplectic analogs of the Gram-
Schmidt method.

uTJ,v#0. Let R = and S = WR™'. We then have S € Sp(2n,2). The

Proposition 3.7  Let A € Pd(2n) and H € Sm(2n) such that A+ H € Pd(2n). Let S €
Sp(2n;A) and S € Sp(2n; A+ H). For each i =1,...,r, there exists N[;) € Sp(2|a;|)
such that

(Silg)yiy,- = N[l] + O(HHHZ)
Proof ~ Without loss of generality, we can assume that A has the diagonal form
A=D®D and S =1,,. Let UL e Uy p VI e+ o Ve be the columns of Syiyie Set
M = [uj,v;] for j=1,...,]a;|. We will apply mathematical induction on j to

construct N[;1. We note that S,,y; can be expressed as

Sy = Mpy @+ © Mijay))-

Choose Wj;j = M[;). We know from (3.5) that Range(W[y}) is non-isotropic for
small | H|. Apply ESR to W) to get Wiy = SpyjRy), where

1 0
(3.23) Ry = (O M1T]2|a.|V1))

and Spj = W[l]R[_ll] € Sp(2|a;, 2). By (3.5), we have u Jjq,v1 = 1+ O(|H]?). Substi-
tuting this in (3.23) gives

(3.24) Rpp =L+ O(|H[).
Substituting the value of R[;j from (3.24) in Wpyj = SppjR[y) gives
My = Wy = Sy + O(|H[1?).

Our induction hypothesis is that, for 1< j < |a;|, there exist 2|a;| x 2 real matrices
Spys - - -» Sy satisfying Spyy o -+ © Sy € Sp(2|ai, 2) and

(3.25) M[l] O o M[]] = S[l] O e O S[]] + O(||H||2)
We choose
T
(326) Wiy = My = (Spy 0+ 0 817) 12 (Spy © 0 S3)” Jafa M-
By (3.5) and (3.25), we have

(3.27) Wi = Mpja) + O(|H[?).
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212 G. Babu and H. Mishra

which implies Range(W[;;1]) is non-isotropic for small O(||H|). Apply ESR to
Wi = [Wjs1, 2] to get Wiji) = Spja1) Rpj1)- Here, Spjiq) € Sp(2|ai, 2) and

1 0
3.28 Riii = '

( ) [j+1] (0 W};—ljzailzj‘*l)
From (3.5) and (3.27), we get WjT+1]2|vci\Zj+1 =1+ O(|H|?). Using this relation in (3.28)
implies Rpj,q7 = I + O(|H|?). Substituting this in Wijs] = Spja]R[j+1] gives
(3.29) Wija) = Sgjeny + O(|H[?).
Combining (3.27) and (3.29) then gives

Mijiy = Sgjen) + O([H[?).
We thus have

My 0 -+ 0 Mijpy = Sy © -+ © Spjier) + O(JH).

To complete the induction, we just need to show that Spjj o - o Spjiq7 € Sp(2ail,
2(j+1)). We have

Sty @+ © Stjay = (Spy 0+ © Sjp) © Sty

By the necessary and sufficient condition for (Spyj © -+ ¢ S[j1) © S[j417 € Sp(2|exi], 2(j +
1)),asdiscussed in Section 2.3, it is equivalent to show that (Sp;j ¢ -+ © Sfj7) T]z\a,-|5[j+1]
is the zero matrix. Now, using the relation W[,y = S[j1)R[j+1)> we get

(3300 (SpypoS() ety = (Spy @0 S(77) Jotey Wijsn Rihy-
Substitute in (3.30), the value of W[;,;) from (3.26) to get
(S 813) et Sty = (S @+ © S(31) " T
[ Mgy = (Spy o0 S7) 13 (Sy @+ 0 S12) T Moy | Ry
Apply the induction hypothesis Sp;j o -+ © S[;1 € Sp(2]a;, 2j) and simplify as follows:
(S @+ 17) Tt St
[(Sty o0 St) " T Miony = J2iJ3; (Spy -+ © S(37) " Joges Moy | R

T T _
[(Sy oo S1) oMz = (Siy 0 S(17) ' Jatat Mijon | Ry

(3.31)
= 02]')2.

We have thus shown that Sp;j -+ o Sp;.17 € Sp(2|a;], 2(j +1)). By induction, we then
get the desired matrix Np;; = Sy © -+ © Spja,[] € Sp(2|ai|), which satisfies

Syiyi = Mpy o+ 0 Myje,y = Npip + O(|H|?). L
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4 Conclusion

One of the main findings of our work is that, given any S € Sp(2m;A) and S €
Sp(2n; A + H), there exists an orthosymplectic matrix Q such that $ = SQ + O(|H|)).
Moreover, the orthosymplectic matrix Q has structure Q = Qp;; @° -+ ®° Q[,], where
Qqj] is a 2|aj| x 2|a;| orthosymplectic matrix. Here, r is the number of distinct
symplectic eigenvalues py, ..., u, of A and «; is the set of indices of the symplectic
eigenvalues of A equal to y;. We also proved that S € Sp(2n; A) and S € Sp(2n; A + H)
can be chosen so that ||S — S| = O(|H])).
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