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Abstract

The concept of antidistinguishability of quantum states has been studied to investigate

foundational questions in quantum mechanics. It is also called quantum state elim-

ination, because the goal of such a protocol is to guess which state, among finitely

many chosen at random, the system is not prepared in (that is, it can be thought of

as the first step in a process of elimination). Antidistinguishability has been used to

investigate the reality of quantum states, ruling out ψ-epistemic ontological models

of quantum mechanics (Pusey et al. in Nat Phys 8(6):475–478, 2012). Thus, due to

the established importance of antidistinguishability in quantum mechanics, explor-

ing it further is warranted. In this paper, we provide a comprehensive study of the

optimal error exponent—the rate at which the optimal error probability vanishes to

zero asymptotically—for classical and quantum antidistinguishability. We derive an

exact expression for the optimal error exponent in the classical case and show that it is

given by the multivariate classical Chernoff divergence. Our work thus provides this

divergence with a meaningful operational interpretation as the optimal error exponent

for antidistinguishing a set of probability measures. For the quantum case, we pro-

vide several bounds on the optimal error exponent: a lower bound given by the best

pairwise Chernoff divergence of the states, a single-letter semi-definite programming

upper bound, and lower and upper bounds in terms of minimal and maximal multivari-
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ate quantum Chernoff divergences. It remains an open problem to obtain an explicit

expression for the optimal error exponent for quantum antidistinguishability.

Keywords Antidistinguishability · Multivariate Chernoff divergence · Hellinger

transform · Asymptotic error exponent · Extended max-relative entropy

Mathematics Subject Classification 81P45 · 62H15 · 62B10 · 81P18 · 62H05 · 62H15
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1 Introduction

Quantum state discrimination is a fundamental component of quantum information

science, playing a key role in quantum computing [4], quantum communication [3, 20],

and quantum key distribution [8]. The state discrimination or distinguishability task is

to infer the actual state of a quantum system by applying a quantum measurement to

the system. More formally, consider a quantum system prepared in one of the quantum

123



On the optimal error exponents for classical... Page 3 of 54 76

states ρ1, . . . , ρr . A quantum measurement is specified by a positive operator-valued

measure {M1, . . . , Mr } with output i indicating ρi as the true state of the system with

success probability Tr[Miρi ], as given by the Born rule [10].

The task that we consider here is in a sense opposite to the aforementioned task

of distinguishability, and it is thus called antidistinguishability of quantum states

or quantum state elimination [5, 7, 12, 19, 31, 33, 46, 47]. In particular, for the

task of antidistinguishability, we are interested in designing a measurement whose

outcome corresponds to a state that is not the actual state of the quantum system. In

the classical version of the antidistinguishability problem, quantum states are replaced

by probability measures on a measurable space, and the task is to rule out one of the

probability measures upon observing i.i.d. (independent and identically distributed)

data that is not produced by the probability measure.

As an illustrative example in the classical case, suppose that one of three possible

dice is tossed, a red one with probability distribution pR , a green one with probability

distribution pG , or a blue one with probability distribution pB . The task is then, after

observing a sample, to output “not red” if the green or blue die is tossed, “not green” if

the red or blue die is tossed, and “not blue” if the red or green die is tossed. It is also of

interest to consider the antidistinguishability task when the same colored die is tossed

multiple times, leading to several samples that one can use to arrive at a conclusion.

To the best of our knowledge, an analysis of the asymptotics of the error probability

of antidistinguishability is missing in the literature for both cases, classical as well as

quantum, and it is this scenario that we consider in our paper.

1.1 Contributions

In this paper, we provide a comprehensive study of the optimal error exponent—

the rate at which the optimal error probability vanishes to zero asymptotically—for

classical and quantum antidistinguishability. Our contributions are as follows:

• We derive an exact expression for the optimal error exponent in the classical case

and show that it is given by the multivariate classical Chernoff divergence (The-

orem 6). Our work thus provides this multivariate divergence with a meaningful

operational interpretation as the optimal error exponent for antidistinguishing a

set of probability measures.

• We provide several bounds on the optimal error exponent in the quantum case:

◦ lower bound given by the best pairwise Chernoff divergence of the states

(Theorem 11),

◦ lower and upper bounds in terms of minimal and maximal multivariate quantum

Chernoff divergences (Theorem 17), and

◦ single-letter semi-definite programming upper bound (Theorem 19).

• We also provide an upper bound on the optimal error probability of antidistin-

guishing an ensemble of quantum states in terms of the pairwise optimal error

probabilities of the states, and consequently, we deduce that the given quantum

states are perfectly antidistinguishable if at least two of them are orthogonal to

each other (Theorem 8).
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• As a contribution of independent interest and auxiliary to Theorem 19, we establish

several fundamental properties of the extended max-relative entropy, a quantity of

interest originally defined in [62].

It remains an intriguing open problem to determine an explicit expression for the

optimal error exponent in the quantum case.

1.2 Literature review

Let us briefly review some prior contributions to the topic of antidistinguishability.

We note here that quantum state discrimination is equivalent to finding a size-(r − 1)

subset of {ρ1, . . . , ρr } such that none of the states in the subset is the true state of the

system; thus, the task is equivalent to what is called quantum (r − 1)-state exclusion.

A generalization of this task is quantum m-state exclusion for 1 ≤ m ≤ r − 1, which

aims at detecting a size-m subset of {ρ1, . . . , ρr } such that none of the states in the

subset is the true state of the system [47]. Quantum 1-state exclusion is therefore the

same as antidistinguishability of quantum states.

The concept of antidistinguishability has been studied to investigate foundational

questions in quantum mechanics [5, 12, 33, 46]. For example, it was used in [46] to

investigate the reality of quantum states, ruling out ψ-epistemic ontological models of

quantum mechanics. It was also used in studying quantum communication complex-

ity [19], in deriving noncontextuality inequalities [31], and has applications in quantum

cryptography [11]. Thus, due to the established importance of antidistinguishability

in quantum mechanics, exploring it further is warranted. There have been a number of

works that determine algebraic conditions on a set of quantum states such that perfect

antidistinguishability is possible. A sufficient condition for perfect antidistinguisha-

bility of pure states [22] is that if some positive linear combination of the pure states is

a projection with a “special” kernel, then the states are antidistinguishable. In the same

paper, a necessary and sufficient condition for antidistinguishability of pure states was

given, which demands the existence of projections satisfying three non-trivial condi-

tions. Very recently, a necessary and sufficient condition for non-antidistinguishability

of general quantum states was given in [47], which also demands the existence of a

Hermitian matrix with positive trace satisfying a set of non-trivial inequalities. Even

though the conditions given in the aforementioned works are interesting and insight-

ful, verifying them is not straightforward. One of the consequences of our work is that

we provide a simple sufficient condition for perfect antidistinguishability of quantum

states (Theorem 8).

1.3 Paper organization

The organization of our paper is as follows: In Sect. 2, we state some definitions and

provide a brief mathematical background of relevant topics covered in our paper. We

start Sect. 3 by building a theory of classical antidistinguishability, where we introduce

the notions of optimal error probability and optimal error exponent. We then derive

an explicit expression for the optimal error exponent in the classical case, and we

show that it is given by the multivariate classical Chernoff divergence (Theorem 6).
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The following sections deal with the optimal error exponent in the quantum case.

We begin Sect. 4 by providing an upper bound on the optimal error probability of

antidistinguishing an ensemble of quantum states in terms of the pairwise optimal

error probabilities of the states (Theorem 8), and we then use this result to derive a

lower bound on the optimal error exponent (Theorem 11). Next, we provide both lower

and upper bounds on the optimal error exponent in terms of minimal and maximal

multivariate quantum Chernoff divergences in Sect. 5 (Theorem 17). Lastly, in Sect. 6,

we derive a single-letter semi-definite programming upper bound on the optimal error

exponent (Theorem 19). Appendices A through I contain mathematical proofs of

various claims made throughout the paper.

2 Mathematical background

2.1 Antidistinguishability of probability measures

Let P1, . . . , Pr be probability measures on a measurable space (�,A), whereA is a

σ -algebra on the set �. Set [r ] := {1, . . . , r}. Let η1, . . . , ηr be strictly positive real

numbers such that
∑

i∈[r ] ηi = 1. Throughout the paper, we call

Ecl := {(ηi , Pi ) : i ∈ [r ]} (1)

an ensemble of probability measures on the measurable space (�,A). Let μ be the

dominating measure

μ :=
∑

i∈[r ]
ηi Pi , (2)

and p1, . . . , pr the induced densities

pi :=
dPi

dμ
, i ∈ [r ], (3)

which are given by the Radon–Nikodým theorem [6].

The problem of distinguishability, i.e., identifying the correct probability density

pi based on i.i.d. (independent and identically distributed) data, has been well studied.

This problem is as follows: Suppose that i is sampled with probability ηi , and then,

n i.i.d. samples are selected according to the product measure P⊗n
i . The task is to

identify the correct value of i based on the n i.i.d. samples observed. It is known that

the maximum likelihood method for the identification task is optimal, and the optimal

success probability, in the case that n = 1, is given by

∫
dμ (η1 p1 ∨ · · · ∨ ηr pr ) :=

∫
dμ(ω) max{η1 p1(ω), . . . , ηr pr (ω)}. (4)
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Asymptotically, the optimal error probability vanishes to zero exponentially, and the

error exponent is known to be equal to the Chernoff divergence for the least favorable

pair (pi , p j ), for i �= j [35, 50–52, 57].

For the antidistinguishability problem in the classical case, the task is to guess a

probability density that is not represented by the observed data. For this problem, no

literature is available to the best of our knowledge. A reasonable first idea for selecting

a density that is unlikely to be the true one is to choose the one such that ηi pi (ω) is

minimum if ω is observed. This corresponds to a minimum likelihood principle. In

what follows, we discuss this idea more formally.

A deterministic decision rule for the antidistinguishability problem is a function

δ : � → {ei : i ∈ [r ]}, (5)

where ei is the i th standard unit vector in Rr , such that δ(ω) = ei means that we

indicate pi to be our guess for the density that is not the true one. More generally, we

can admit a randomized decision rule, along the following lines:

δ : � → [0, 1]r ,
∑

i∈[r ]
δi (ω) = 1. (6)

If pi is the true density, then the antidistinguishability error probability is given by:

∫
dμ(ω) δi (ω)pi (ω), (7)

and the total error probability is:

Errcl(δ;Ecl) :=
∑

i∈[r ]
ηi

∫
dμ(ω) δi (ω)pi (ω) =

∫
dμ(ω)

∑

i∈[r ]
δi (ω)ηi pi (ω). (8)

To minimize the above expression, we can minimize the integrand for every ω. Since

δi (ω) is a weight, we should place maximum weight on the smallest of ηi pi (ω). So, the

optimal decision for given ω corresponds to the minimum likelihood rule: δ∗(ω) = ei ,

if i ∈ [r ] is the minimum index such that ηi pi (ω) = min{η1 p1(ω), . . . , ηr pr (ω)}. The

total error probability when using the decision rule δ∗ is the optimal error probability,

given by

Errcl(Ecl) := Errcl(δ
∗;Ecl) =

∫
dμ(ω) min{η1 p1(ω), . . . , ηr pr (ω)}

=
∫

dμ (η1 p1 ∧ · · · ∧ ηr pr ) . (9)

In the asymptotic treatment of the problem, we consider the n-fold ensemble En
cl :=

{(ηi , P⊗n
i ) : i ∈ [r ]} on the n-fold measurable space (�n,A(n)), where �n is the n-

fold Cartesian product of � andA(n) is the σ -algebra on �n generated by the n-fold
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Cartesian product of A. It then follows that the optimal antidistinguishability error

probability, in this case, is

Errcl(E
n
cl) =

∫
dμ⊗n

(
η1 p⊗n

1 ∧ · · · ∧ ηr p⊗n
r

)
. (10)

Set ηmin := min{η1, . . . , ηr } and ηmax := max{η1, . . . , ηr }. It is easy to see that, for

all n ∈ N, we have

ηmin

∫
dμ⊗n

(
p⊗n

1 ∧ · · · ∧ p⊗n
r

)
≤ Errcl(E

n
cl) ≤ ηmax

∫
dμ⊗n

(
p⊗n

1 ∧ · · · ∧ p⊗n
r

)
.

(11)

This implies that

lim inf
n→∞

−
1

n
ln Errcl(E

n
cl) = lim inf

n→∞
−

1

n
ln

∫
dμ⊗n

(
p⊗n

1 ∧ · · · ∧ p⊗n
r

)
, (12)

which is independent of η1, . . . , ηr .

Definition 1 The optimal error exponent for antidistinguishing the probability

measures of a given ensemble Ecl = {(ηi , Pi ) : i ∈ [r ]} is defined by

Ecl(P1, . . . , Pr ) := lim inf
n→∞

−
1

n
ln Errcl(E

n
cl). (13)

Remark 1 We note that Definition 1 of the optimal error exponent is indepen-

dent of the choice of dominating measure μ. This is because the development

in (4)–(12) is independent of the choice of the probability measure μ dominat-

ing P1, . . . , Pr . Indeed, if μ′ is an arbitrary probability measure dominating

P1, . . . , Pr , then μ′ also dominates μ. Let ν := dμ
dμ′ . We then have

p′i :=
dPi

dμ′ =
dPi

dμ
·

dμ

dμ′ = piν, for all i ∈ [r ]. (14)

Consequently, the quantity in (4) is given by

∫
dμ (η1 p1 ∨ · · · ∨ ηr pr ) =

∫
dμ′ (η1 p1 ∨ · · · ∨ ηr pr ) ν (15)

=
∫

dμ′ (η1 p1ν ∨ · · · ∨ ηr prν) (16)

=
∫

dμ′ (η1 p′1 ∨ · · · ∨ ηr p′r
)
. (17)
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Similarly, the remaining quantities in (4)–(12) can be shown to be independent

of the choice of μ. See [54, p. 233]. We will see later, in Theorem 6, that the

limit inferior on the left-hand side of (13) is actually a limit.

2.2 Multivariate classical Chernoff divergence

The Hellinger transform, as it is known in the literature on probability and statistics,

plays an important role in our work. The quantity seems to have been defined first

in [38, page 189], and the term “Hellinger transform” was perhaps first used in [32],

followed by several works in the area of probability and statistics. See [16, 18, 27, 36,

56–59] and references therein. See also [30, Section 3.3] for a historical discussion.

We recall the definition of the Hellinger transform below. Let Ecl = {(ηi , Pi ) : i ∈
[r ]} be an ensemble of probability measures on a measurable space (�,A). Let μ be

the dominating measure defined by (2), and let p1, . . . , pr be the induced probability

densities given by (3). Let Sr denote the unit simplex in Rr :

Sr :=
{

s ∈ [0, 1]r : s = (s1, . . . , sr ),
∑

i∈[r ]
si = 1

}
. (18)

Definition 2 The Hellinger transform of the probability measures P1, . . . , Pr

is a function on the unit simplex, defined as

Hs(P1, . . . , Pr ) :=
∫

dμ p
s1

1 · · · psr
r , for all s := (s1, . . . , sr ) ∈ Sr .

(19)

Here we use the convention 00 = 0.

Remark 2 Some authors use the convention 00 = 1 when defining the

Hellinger transform [56, Definition 5.10], while others define it only in the

interior of the unit simplex [36, Definition 1.87, p. 49]. Note that our def-

inition is in contrast to the former, and it is consistent with first defining

Hs(P1, . . . , Pr ) on the interior of the unit simplex Sr (so that si > 0 for all

i ∈ [r ]) and then on the boundary as follows:

Hs(P1, . . . , Pr ) = lim
ε↘0

H(1−ε)s+εu(P1, . . . , Pr ), (20)

where u := (1/r , . . . , 1/r) ∈ Rr .
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Also, we emphasize that the Hellinger transform given in Definition 2, and

hence, our further analysis of the classical antidistinguishability error proba-

bility is independent of the choice of the dominating measure μ. This easily

follows by similar arguments as in Remark 1. See [54, Chapter 3, Section 9,

Lemma 3] for a proof in the case of r = 2.

The Hellinger transform given in Definition 2 is continuous on Sr . Indeed, we have

Pi ≤ η−1
i μ, implying that pi ≤ η−1

i for all i ∈ [r ]. This gives
∏

i∈[r ](pi + 1) as an

integrable upper bound on
∏

i∈[r ] p
si

i for all (s1, . . . , sr ) ∈ Sr . Thus, for every s :=
(s1, . . . , sr ) ∈ Sr and for every sequence (s(n))n∈N in Sr with s

(n) := (s
(n)
1 , . . . , s

(n)
r )

and limn→∞ s
(n) = s, we have

lim
n→∞

∏

i∈[r ]
(pi (ω))s

(n)
i =

∏

i∈[r ]
(pi (ω))si , for all ω ∈ �. (21)

Note that the existence of the limit in (21) is due to our convention 00 = 0. By the

Lebesgue-dominated convergence theorem, we then have limn→∞ Hs(n)(P1, . . . , Pr )

= Hs(P1, . . . , Pr ), thereby proving continuity of the Hellinger transform on Sr .

In general, the Hellinger transform is a measure of closeness or affinity among

several probability distributions. It is easy to see that

0 ≤ Hs(P1, . . . , Pr ) ≤ 1, (22)

which follows from Hölder’s inequality [56, Lemma 53.3]. As the value of

Hs(P1, . . . , Pr ) gets close to zero, the distance among the measures increases in some

sense [16].

The following quantity plays an important role in our paper.

Definition 3 We define the multivariate Chernoff divergence of the probability

measures P1, . . . , Pr by

ξcl(P1, . . . , Pr ) := − ln inf
s∈Sr

Hs(P1, . . . , Pr ), (23)

where Hs is defined in (19).

The divergence can be viewed as a generalization of the classical Chernoff diver-

gence, the latter being a special case of the former for r = 2 [13]. One of the

main results of our paper is that the optimal error exponent for antidistinguishing an

ensemble of probability measures is equal to their multivariate Chernoff divergence

(Theorem 6).
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2.3 Quantum states, channels, andmeasurements

A quantum system is associated with a complex Hilbert spaceH . We focus exclusively

on systems with finite-dimensional Hilbert spaces in this paper. Let dim(H) denote

the dimension ofH . We denote every element ofH using the ket notation as |ψ〉, |φ〉,
etc., and every element of its dual using the bra notation as 〈ψ |, 〈φ|, etc. The notations

go well with the natural action of a dual element 〈ψ | on a vector |φ〉 in terms of the

inner product of the two vectors: 〈ψ |(|φ〉) = 〈ψ |φ〉.
A quantum state of a system is identified by a density operator ρ, which is a self-

adjoint, positive semi-definite operator of unit trace acting onH . A pure state is given

by a state vector |ψ〉 ∈ H whose corresponding density operator is |ψ〉〈ψ |. The set

of density operators forms a convex set with pure states as the extreme points. Let

D(H) denote the set of density operators, L(H) the space of linear operators acting

on H , and L+(H) the set of positive semi-definite operators acting on H . We shall

use the notation D for the set of density operators whenever the underlying Hilbert

space is clear from the context. A quantum channelN , between two quantum systems

represented by Hilbert spaces H and K , is a completely positive, trace-preserving

linear map from L(H) to L(K). In particular, for all ρ ∈ D(H), we have that

N(ρ) ∈ D(K).

A quantum measurement is described by a positive operator-valued measure

(POVM) M = {M1, . . . , Mr }, which is a finite set of positive semi-definite oper-

ators whose sum is the identity operator, i.e.,

Mi ≥ 0 for all i ∈ [r ],
∑

i∈[r ]
Mi = I, (24)

where I is the identity operator acting onH .

The projection onto the support of an operator A is denoted by supp(A), its absolute

value is denoted by |A| :=
√

A† A, and its positive part by A+ := 1
2
(A + |A|). For

two Hermitian operators A and B, we use the notation

A ∧ B :=
1

2
(A + B − |A − B|), (25)

in analogy with min(a, b) = 1
2
(a + b − |a − b|) ≡ a ∧ b for a, b ∈ R.

2.4 Antidistinguishability of quantum states

Suppose that a quantum system is prepared in one of the quantum states ρ1, . . . , ρr

with a priori probability distribution η1, . . . , ηr such that ηi > 0 for all i ∈ [r ].
Throughout the paper, we call {(ηi , ρi ) : i ∈ [r ]} an ensemble of quantum states over

a Hilbert spaceH and denote it by E. Antidistinguishability of the states, as realized

by a POVM M = {M1, . . . , Mr }, can be described as follows: “the measurement

outcome i occurring corresponds to a guess that the true state of the system is not ρi .”

Thus, if ρi is the true state of the system, then Tr[Miρi ] is the error probability for
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making an incorrect guess. The average error probability of antidistinguishability, for

a fixed POVM M , is then given by:

Err(M ;E) :=
∑

i∈[r ]
ηi Tr[Miρi ]. (26)

We are interested in determining the optimal antidistinguishability error probability,

which is optimized over all possible measurements:

Err(E) := inf
M

Err(M ;E), (27)

where the infimum is taken over all POVMs of the form M = {M1, . . . , Mr } acting

onH .

The quantum states are said to be perfectly antidistinguishable if there exists a

quantum measurement whose outputs always correspond to a false state of the system;

i.e., there exists a POVM M such that Err(M ;E) = 0. In general, an ensemble of

quantum states may not be antidistinguishable, which means, for such an ensemble E,

that Err(M ;E) > 0 for every POVM M . For instance, two non-orthogonal quantum

states are not perfectly antidistinguishable [33].

In the asymptotic treatment of the antidistinguishability problem for a given ensem-

ble E = {(ηi , ρi ) : i ∈ [r ]}, we consider the n-fold ensemble En := {(ηi , ρ
⊗n
i ) : i ∈

[r ]}. The optimal error probability of antidistinguishability for En is by definition

given as

Err(En) = inf
M (n)

∑

i∈[r ]
ηi Tr

[
M

(n)
i ρ⊗n

i

]
, (28)

where the infimum is taken over the set of POVMsM (n) = {M (n)
1 , . . . , M

(n)
r } acting on

the n-fold tensor product Hilbert spaceH⊗n . Similar to what we discussed around (11),

we find for all n ∈ N that

ηmin inf
M (n)

∑

i∈[r ]
Tr
[

M
(n)
i ρ⊗n

i

]
≤ Err(En) ≤ ηmax inf

M (n)

∑

i∈[r ]
Tr
[

M
(n)
i ρ⊗n

i

]
, (29)

which implies that

lim inf
n→∞

−
1

n
ln Err(En) = lim inf

n→∞
−

1

n
ln inf

M (n)

∑

i∈[r ]
Tr
[

M
(n)
i ρ⊗n

i

]
, (30)

the latter being independent of η1, . . . , ηr .
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Definition 4 The optimal error exponent for antidistinguishing the states of a

quantum ensemble E = {(ηi , ρi ) : i ∈ [r ]} is defined by

E(ρ1, . . . , ρr ) := lim inf
n→∞

−
1

n
ln Err(En). (31)

2.5 Quantum Chernoff divergence

Here we briefly recall known results for distinguishability of two or more states; a key

quantity for this purpose is as follows:

Definition 5 The quantum Chernoff divergence between two states ρ1 and ρ2

is defined as:

ξ(ρ1, ρ2) := − ln inf
s∈[0,1]

Tr[ρs
1ρ

1−s
2 ]. (32)

If ρ1 = |ψ〉〈ψ | and ρ2 = |φ〉〈φ| are pure states, then

ξ(ρ1, ρ2) = − ln |〈ψ |φ〉|2. (33)

The quantum Chernoff divergence between two states is known to be the optimal error

exponent in distinguishing them [1, 45], i.e.,

lim
n→∞

−
1

n
ln
(
Tr[η1ρ

⊗n
1 ∧ η2ρ

⊗n
2 ]

)
= lim

n→∞
−

1

n
ln

(
1

2

[
1 −

∥∥η1ρ
⊗n
1 − η2ρ

⊗n
2

∥∥
1

])
= ξ(ρ1, ρ2), (34)

where we have used the well-known fact that the optimal error probability in distin-

guishing ρ⊗n
1 from ρ⊗n

2 is equal to

Tr[η1ρ
⊗n
1 ∧ η2ρ

⊗n
2 ] =

1

2

[
1 −

∥∥η1ρ
⊗n
1 − η2ρ

⊗n
2

∥∥
1

]
, (35)

with ρ⊗n
1 prepared with probability η1 and ρ⊗n

2 with probability η2 [20, 24].

It is known more generally that the optimal error exponent in distinguishing the

ensemble {(ηi , ρ
⊗n
i ) : i ∈ [r ]} is equal to the minimum pairwise Chernoff diver-

gence [34].

3 Optimal error exponent for classical antidistinguishability

In this section, we first show that the optimal error exponent for antidistinguishing an

ensemble of probability measures (13) is equal to the multivariate Chernoff divergence

of the probability measures. We then compare the multivariate Chernoff divergence
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with the pairwise Chernoff divergence, showing that the former can be strictly greater

than the latter for every pair of the probability measures.

3.1 Multivariate Chernoff divergence as the optimal error exponent

The following theorem is the main result of this section. Some aspects of the proof

presented below follow the development given in the appendix of [45].

Theorem 6 Consider an ensemble Ecl = {(ηi , Pi ) : i ∈ [r ]} of probability

measures on a measurable space (�,A), where ηi > 0 for all i ∈ [r ]. The

optimal error exponent for antidistinguishing the probability measures is given

by their multivariate Chernoff divergence, i.e.,

Ecl(P1, . . . , Pr ) = lim
n→∞

−
1

n
ln Errcl(E

n
cl) = ξcl(P1, . . . , Pr ), (36)

where recalling (18), (19), and (23), the multivariate classical Chernoff diver-

gence ξcl is defined as

ξcl(P1, . . . , Pr ) := − ln inf
s∈Sr

∫
dμ p

s1

1 · · · psr
r . (37)

Remark 3 Note that we defined the optimal error exponent in terms of the limit

inferior in Definition 1. However, Theorem 6 demonstrates that the limit exists

and is equal to the multivariate Chernoff divergence.

Proof of Theorem 6 Let μ be the dominating measure given by (2) and p1, . . . , pr

the induced densities defined in (3). Let D be the intersection of the supports of the

densities p1, . . . , pr :

D := {ω ∈ � : pi (ω) > 0, ∀i ∈ [r ]}. (38)

For all s := (s1, . . . , sr ) ∈ Sr , the following equality holds by employing the conven-

tion 00 = 0:

Hs(P1, . . . , Pr ) =
∫

D

dμ p
s1

1 · · · psr
r . (39)

We also have from (10) and the definition (38) that

Errcl(E
n
cl) =

∫

Dn

dμ⊗n
(
η1 p⊗n

1 ∧ · · · ∧ ηr p⊗n
r

)
. (40)
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Throughout the proof, we only work with D defined in (38). The case μ(D) = 0 is

trivial, since the antidistinguishability error probability is equal to zero in this case.

So, we assume henceforth that μ (D) > 0.

From (40), we get

Errcl(E
n
cl) ≤

∫

Dn

dμ⊗n
(

p⊗n
1 ∧ · · · ∧ p⊗n

r

)
. (41)

Let s ∈ Sr be arbitrary. We can write the right-hand side of (41) as

∫

Dn

dμ⊗n
(

p⊗n
1 ∧ · · · ∧ p⊗n

r

)
=
∫

Dn

dμ⊗n (p⊗n
1 ∧ · · · ∧ p⊗n

r )s1 · · · (p⊗n
1 ∧ · · · ∧ p⊗n

r )sr (42)

≤
∫

Dn

dμ⊗n (p⊗n
1 )s1 · · · (p⊗n

r )sr . (43)

The expression on the right-hand side of (43) has a product structure. Indeed, we have

that

∫

Dn

dμ⊗n (p⊗n
1 )s1 · · · (p⊗n

r )sr

=
∫

Dn

dμ⊗n(ω1, . . . , ωn) (p⊗n
1 (ω1, . . . , ωn))s1 · · · (p⊗n

r (ω1, . . . , ωn))sr

=
∫

Dn

∏

k∈[n]
dμ(ωk)

⎛
¿∏

k∈[n]
p1(ωk)

À
⎠

s1

· · ·

⎛
¿∏

k∈[n]
pr (ωk)

À
⎠

sr

(44)

=
∫

Dn

∏

k∈[n]
dμ(ωk)

∏

k∈[n]
p

s1

1 (ωk) · · · psr
r (ωk) (45)

=
∫

Dn

∏

k∈[n]

(
dμ(ωk) p

s1

1 (ωk) · · · psr
r (ωk)

)
(46)

=
∏

k∈[n]

∫

D

dμ(ωk) (p
s1

1 · · · psr
r )(ωk) (47)

=
(∫

D

dμ p
s1

1 · · · psr
r

)n

(48)

= Hs(P1, . . . , Pr )
n . (49)

From (41), (43), and (49), we thus get

Errcl(E
n
cl) ≤ Hs(P1, . . . , Pr )

n, for all s ∈ Sr . (50)

This implies, for all n ∈ N, that

−
1

n
ln Errcl(E

n
cl) ≥ − ln inf

s∈Sr

Hs(P1, . . . , Pr ) = ξcl(P1, . . . , Pr ). (51)

123



On the optimal error exponents for classical... Page 15 of 54 76

Therefore, we get

lim inf
n→∞

−
1

n
ln Errcl(E

n
cl) ≥ ξcl(P1, . . . , Pr ). (52)

This proves the achievability part of the optimal error exponent.

To prove the optimality part, we apply multivariable calculus and the law of large

numbers. For this purpose, let us parameterize the unit simplex of Rr by the corner of

the standard unit cube of Rr−1, defined as

Tr :=
{

t ∈ [0, 1]r−1 : t := (t1, . . . , tr−1),
∑

i∈[r−1]
ti ≤ 1

}
. (53)

The unit simplex (18) can be expressed as:

Sr =
{(

t1, . . . , tr−1, 1 −
∑

i∈[r−1]
ti

)
: (t1, . . . , tr−1) ∈ Tr

}
. (54)

Using the new parameterization, let us denote the elements of Sr by st :=
(t1, . . . , tr−1, 1 −

∑
i∈[r−1] ti ) for t := (t1, . . . , tr−1) ∈ Tr . The Hellinger transform

of P1, . . . , Pr can then be expressed as the following function on Tr :

H(t) := Hst
(P1, . . . , Pr ), for all t ∈ Tr . (55)

Thus, the multivariate Chernoff divergence of P1, . . . , Pr has the form

ξcl(P1, . . . , Pr ) = sup
t∈Tr

− ln H(t). (56)

In what follows, using the reparametrized Hellinger transform (55), we define an

exponential family of densities pt with t ∈ Tr , as given in (61), which enables us to

express each p⊗n
i in terms of p⊗n

t
for all n ∈ N as given in (82). This then allows

for the use of the law of large numbers to deduce a family of upper bounds on the

asymptotic error exponent, given by −min1≤i≤r γi (t) for the non-corner points in Tr ,

as defined later on in (80). Lastly, we use multivariable calculus to prove that there

exists a non-corner point t
∗ such that ln H(t∗) = min1≤i≤r γi (t

∗). This implies that

the multivariate Chernoff divergence is the optimal bound for the asymptotic error

rate.

For every t ∈ Tr , let us express H(t) in an exponential-integral form as follows:

H(t) =
∫

D

dμ p
t1
1 · · · p

tr−1

r−1 p
1−

∑
i∈[r−1] ti

r (57)

=
∫

D

dμ (p1/pr )
t1 · · · (pr−1/pr )

tr−1 pr (58)
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=
∫

D

dμ pr exp

⎛
¿ ∑

i∈[r−1]
ti ln (pi/pr )

À
⎠ (59)

=
∫

D

dμ pr exp

⎛
¿ ∑

i∈[r−1]
ti qi

À
⎠ , (60)

where qi := ln(pi/pr ). The assumption μ(D) > 0 implies that H(t) > 0 for all

t ∈ Tr . This allows us to define an exponential family of densities on D with respect

to μ for t ∈ Tr given by

pt(ω) :=
1

H(t)
pr (ω) exp

⎛
¿ ∑

i∈[r−1]
ti qi (ω)

À
⎠ for all ω ∈ D. (61)

Define a function K : Tr → R by

K(t) := ln H(t). (62)

Let e1, . . . , er−1 denote the standard unit vectors in Rr−1, and let T◦
r denote the interior

of Tr which is given by

T◦
r :=

{
(t1, . . . , tr−1) ∈ (0, 1)r−1 :

∑

i∈[r−1]
ti < 1

}
. (63)

We note that the set T◦
r represents a parametrization of the interior S◦

r of the unit

simplex Sr . By Theorem 2.64 of [53], we know that H is a smooth function on T◦
r ;

also its partial derivatives are given for t ∈ T◦
r and i ∈ [r − 1] by

∂i H(t) := lim
h→0

H(t + hei ) − H(t)

h
(64)

=
∫

D

dμ qi pr exp

⎛
¿ ∑

j∈[r−1]
t j q j

À
⎠ (65)

= H(t)Et [qi ] , (66)

where Et is the expectation under the density pt. We know that the Hellinger transform

is a continuous function taking only positive values on Sr . This implies that K is a real-

valued continuous function on Tr . Additionally, the smoothness of H on T◦
r implies

the smoothness of K on T◦
r . From (66), we have that

∂i K(t) =
1

H(t)
∂i H(t) = Et [qi ] , for all i ∈ [r − 1], t ∈ T◦

r . (67)
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Also, K is a convex function on T◦
r . Indeed, for s, s

′ ∈ S◦
r and all t ∈ (0, 1), we have

∫

D

dμ p
(1−t)s1+ts′1
1 · · · p

(1−t)sr+ts′r
r =

∫

D

dμ
(

p
s1

1 · · · psr
r

)1−t
(

p
s′1
1 · · · p

s′r
r

)t

(68)

≤
(∫

D

dμ p
s1

1 · · · psr
r

)1−t (∫

D

dμ p
s′1
1 · · · p

s′r
r

)t

(69)

due to Hölder’s inequality. The convexity of K then follows by taking the logarithm

on both sides of (69). By continuity, K is convex on Tr . Let T1
r denote the set

T1
r :=

§
¨
©(t1, . . . , tr−1) ∈ Tr :

∑

i∈[r−1]

ti < 1

«
¬
­ . (70)

We call T1
r the set of non-corner points of Tr . It is easy to see that T◦

r ⊂ T1
r . For all

t ∈ T1
r and i ∈ [r − 1], the limit

∂+i K(t) := lim
h↘0

K(t + hei ) − K(t)

h
(71)

exists in R∪ {−∞} (Lemma 22). Observe that for t ∈ T
◦
r , we have ∂i K(t) = ∂+i K(t)

for all i ∈ [r − 1]. It is shown in Lemma 23 that for t ∈ T1
r and i ∈ [r − 1], the

expectation value Et[qi ] exists in R ∪ {−∞} and satisfies

∂+i K(t) = Et[qi ]. (72)

Define a set

T1
r , f :=

{
t ∈ T1

r : ∂+i K(t) �= −∞, ∀i ∈ [r − 1]
}

. (73)

Note that T◦
r ⊂ T1

r , f .

Using the definition (61) of the density pt on D for t := (t1, . . . , tr−1) ∈ T1
r , f and

i ∈ [r ], we have

ln
pi

pt

= ln pi − ln pt (74)

= ln pi −
∑

j∈[r−1]
t j q j − ln pr + ln H(t) (75)

= ln
pi

pr

−
∑

j∈[r−1]
t j q j + K(t) (76)

= qi −
∑

j∈[r−1]
t j q j + K(t), (77)
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where qr is the zero function on D. We write (77) in a more compact form as

ln
pi

pt

=
∑

j∈[r−1]
(δi j − t j )q j + K(t), for all i ∈ [r ], t ∈ T1

r , f . (78)

Here δi j is the Kronecker delta (taking the value 1 if i = j , and 0 otherwise). By

taking the expectation on both sides of (78) under the density pt and then using (72),

we get

γi (t) := Et

[
ln

pi

pt

]
=

∑

j∈[r−1]
(δi j − t j )Et[q j ] + K(t) (79)

=
∑

j∈[r−1]
(δi j − t j )∂

+
j K(t) + K(t) (80)

for all i ∈ [r ] and t ∈ T1
r , f . We can write (80) in a more compact form as

γi (t) =
{

∂+i K(t) − t
T∇+K(t) + K(t), i ∈ [r − 1],

−t
T∇+K(t) + K(t), i = r ,

for all t ∈ T1
r , f , (81)

where ∇+K(t) := (∂+1 K(t), . . . , ∂+r−1K(t))T .

Let ωn := (ω1, . . . , ωn) ∈ Dn and t ∈ T1
r , f be arbitrary. We have that

p⊗n
i (ωn) =

⎛
¿∏

j∈[n]

pi

pt

(ω j )

À
⎠ p⊗n

t
(ωn) = exp

(
nG

(i)
t,n(ωn)

)
p⊗n

t
(ωn), (82)

where

G
(i)
t,n(ωn) :=

1

n

∑

j∈[n]
ln

pi

pt

(ω j ), for all i ∈ [r ]. (83)

Let P⊗n
t

be the product measure corresponding to the density p⊗n
t

on Dn , and let En
t

be the pertaining expectation. By the definition in (79), we then have that

En
t

[
G

(i)
t,n

]
= γi (t), for all i ∈ [r ]. (84)

Since G
(i)
t,n is an i.i.d. average, the law of large numbers [6] implies that for arbitrary

δ > 0, there exists nδ ∈ N such that the probability of the event

Un,δ := {ωn ∈ Dn : ∀i ∈ [r ], G
(i)
t,n(ωn) ≥ γi (t) − δ} (85)
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satisfies

P⊗n
t

(Un,δ) ≥ 1 − δ, for all n ≥ nδ. (86)

The development in (82)–(86) implies that, for all n ≥ nδ ,

Errcl(E
n
cl) =

∫

Dn

dμ⊗n
(
η1 p⊗n

1 ∧ · · · ∧ ηr p⊗n
r

)
(87)

≥ ηmin

∫

Dn

dμ⊗n
(

p⊗n
1 ∧ · · · ∧ p⊗n

r

)
(88)

= ηmin

∫

Dn

dμ⊗n
(

exp
(

nG
(1)
t,n

)
∧ · · · ∧ exp

(
nG

(r)
t,n

))
p⊗n

t
(89)

= ηmin En
t

[
exp

(
nG

(1)
t,n

)
∧ · · · ∧ exp

(
nG

(r)
t,n

)]
(90)

≥ ηmin En
t

[
1Un,δ

(
exp

(
nG

(1)
t,n

)
∧ · · · ∧ exp

(
nG

(r)
t,n

))]
(91)

≥ ηmin P⊗n
t

(Un,δ) exp

(
n min

1≤i≤r
(γi (t) − δ)

)
(92)

≥ ηmin(1 − δ) exp

(
n min

1≤i≤r
γi (t) − nδ

)
. (93)

Here 1Un,δ
denotes the indicator function of the set Un,δ . Therefore, we have that

−
1

n
ln Errcl(E

n
cl) ≤ −

ln(ηmin(1 − δ))

n
−
(

min
1≤i≤r

γi (t) − δ

)
, for all n ≥ nδ.

(94)

By taking the limit superior as n → ∞ on both sides of (94) and then the limit δ → 0,

we thus get

lim sup
n→∞

−
1

n
ln Errcl(E

n
cl) ≤ − min

1≤i≤r
γi (t), for all t ∈ T1

r , f . (95)

Recall from (56) and the fact K(t) = ln H(t), our goal is to show that

lim sup
n→∞

−
1

n
ln Errcl(E

n
cl) ≤ sup

t∈Tr

−K(t). (96)

In view of (95), it suffices to show that for some t
∗ ∈ T1

r , f , the following holds

min
1≤i≤r

γi (t
∗) ≥ K(t∗). (97)
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We now argue that such a t
∗ exists. Since K is a continuous function on the compact

set Tr , there exists t
∗ := (t∗1 , . . . , t∗r−1) ∈ Tr that minimizes K over Tr , i.e.,

K(t∗) = min
t∈Tr

K(t). (98)

Consider the following two cases.

Case A Suppose t
∗ ∈ T1

r . Choose arbitrary i ∈ [r − 1]. If t∗i = 0, then by convexity,

continuity of K, and the fact that t
∗ is a minimizer, we have ∂+i K(t∗) ≥ 0 (see

Lemma 22). Else we have 0 < t∗i < 1 and the first-order necessary condition for

a minimizer implies ∂+i K(t∗) = 0. Combining these, we get ∂+i K(t∗) ≥ 0 for all

i ∈ [r − 1] and hence t
∗ ∈ T1

r , f , and t
∗T∇+K(t∗) = 0. From (81), we thus get

γi (t
∗) =

{
∂+i K(t∗) + K(t∗), i ∈ [r − 1],
K(t∗), i = r .

(99)

This implies that the inequality (97) holds for the minimizer t
∗.

Case B Suppose t
∗ ∈ Tr\T1

r , i.e., t∗1 + · · · + t∗r−1 = 1. For some i ∈ [r − 1], we have

t∗i > 0. According to the current parameterization of the unit simplex given in (54), t
∗

corresponds to the vector (t∗1 , . . . , t∗r−1, 0) in Sr . We reparameterize the unit simplex

Sr as

su =

⎛
¿u1, . . . , ui−1, 1 −

∑

j∈[r−1]
u j , ui , . . . , ur−1

À
⎠ , u ∈ Tr . (100)

In the reparameterized problem, the corresponding minimizer u
∗ of K satisfies su∗ =

(t∗1 , . . . , t∗r−1, 0), which implies

1 −
∑

j∈[r−1]
u∗

j = t∗i > 0. (101)

This reduces the problem to Case A, which implies that (97) holds.

Combining the above two cases, we conclude that (97) holds for the minimizer t
∗

and this completes the proof. ��

3.2 Multivariate Chernoff divergence versus pairwise Chernoff divergences

Identifying the true probability measure out of the given r probability measures is

the same as eliminating all the remaining r − 1 false probability measures. As such,

general intuition says that, upon observing i.i.d. data, it is easier to eliminate a false

probability measure than to identify the true probability measure. This also means that
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the optimal error exponent of classical antidistinguishability should be greater than

that of multiple classical hypothesis testing, the former being the multivariate classi-

cal Chernoff divergence and the latter being the minimum of the pairwise Chernoff

divergences of the probability measures [50] (see also [57, Theorem 4.2] and [35, 51,

52]). Indeed, for any two indices i, j ∈ [r ] define a subset of Sr :

S(i, j)
r = {s ∈ Sr : s := (s1, . . . , sr ), si + s j = 1}. (102)

By definition, we have

ξcl(P1, . . . , Pr ) ≥ − ln inf
s∈S

(i, j)
r

Hs(P1, . . . , Pr ) (103)

= − ln inf
s∈[0,1]

∫
dμ ps

i p
(1−s)
j (104)

= ξcl(Pi , Pj ), (105)

where ξcl(Pi , Pj ) is the Chernoff divergence of the probability measures Pi and Pj .

This gives

ξcl(P1, . . . , Pr ) ≥ max
i< j

ξcl(Pi , Pj ) ≥ min
i< j

ξcl(Pi , Pj ). (106)

The following example illustrates an instance for which the first inequality in (106) is

strict.

Example 7 Consider a uniform ensemble Ecl = {(1/3, P1), (1/3, P2), (1/3,

P3)} of probability measures on a discrete space � = {x, y, z}whose densities

with respect to the counting measure μ are given by

p1 =
1

2
1{x,y}, p2 =

1

2
1{x,z}, p3 =

1

3
1�. (107)

We have for ωn ∈ �n ,

(p⊗n
1 ∧ p⊗n

2 ∧ p⊗n
3 )(ωn) =

§
⎪̈

⎪©

1

3n
, if ωn = (x, . . . , x︸ ︷︷ ︸

n times

),

0, otherwise.

(108)

By the minimum likelihood principle, we thus get

Errcl(E
n
cl) =

1

3

∫
dμ⊗n

(
p⊗n

1 ∧ p⊗n
2 ∧ p⊗n

3

)
(109)

=
1

3
· μ⊗n({(x, . . . , x︸ ︷︷ ︸

n times

)}) ·
1

3n
(110)
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=
1

3
· μ({x})n ·

1

3n
(111)

=
1

3
· 1 ·

1

3n
(112)

=
1

3n+1
. (113)

This gives the optimal error exponent

Ecl(P1, P2, P3) = lim inf
n→∞

−
1

n
ln Errcl(E

n
cl) = ln 3. (114)

We now compute the pairwise Chernoff divergences of the probability mea-

sures as follows.

ξcl(P1, P2) = − ln inf
s∈[0,1]

∫
dμ ps

1 p
(1−s)
2 (115)

= − ln inf
s∈[0,1]

∫

{x}
dμ

1

2s

1

2(1−s)
(116)

= − ln inf
s∈[0,1]

1

2s

1

2(1−s)
(117)

= − ln

(
1

2

)
(118)

= ln 2. (119)

Also,

ξcl(P1, P3) = − ln inf
s∈[0,1]

∫
dμ ps

1 p
(1−s)
3 (120)

= − ln inf
s∈[0,1]

∫

{x,y}
dμ

1

2s

1

3(1−s)
(121)

= − ln

[
μ({x, y}) ·

1

3
· inf

s∈[0,1]

(
3

2

)s]
(122)

= − ln

[
2 ·

1

3
· 1

]
(123)

= ln(3/2). (124)

By similar arguments, we get ξcl(P2, P3) = ln(3/2). This implies

max{ξcl(P1, P2), ξcl(P1, P3), ξcl(P2, P3)} = ln 2. (125)

min{ξcl(P1, P2), ξcl(P1, P3), ξcl(P2, P3)} = ln(3/2). (126)
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From (114), (125), and (126), we have

Ecl(P1, P2, P3) > max{ξcl(P1, P2), ξcl(P1, P3), ξcl(P2, P3)} (127)

> min{ξcl(P1, P2), ξcl(P1, P3), ξcl(P2, P3)}. (128)

4 Achievable error exponent for quantum antidistinguishability

4.1 One-shot case

Observe that the “antidistinguishability problem” between any two states ρ1 and ρ2 is

the same as the state discrimination problem. Indeed, if we say that “ρ1 is not the true

state,” then we are saying “ρ2 is the true state.” Using this observation, we obtain an

upper bound on the optimal error probability of antidistinguishing the states of a given

quantum ensemble by considering “special” POVMs that focus on pairs of states, as

expounded upon in the proof of the following theorem:

Theorem 8 Consider a quantum ensemble E = {(ηi , ρi ) : i ∈ [r ]}. An upper

bound on the optimal error probability of antidistinguishing the states of the

ensemble is given by:

Err(E) ≤ min
1≤i< j≤r

Tr[ηiρi ∧ η jρ j ] (129)

= min
1≤i< j≤r

1

2

(
ηi + η j −

∥∥ηiρi − η jρ j

∥∥
1

)
. (130)

In particular, if at least two states in ρ1, . . . , ρr are mutually orthogonal, then

Err(E) = 0.

Proof Given two fixed indices i, j ∈ [r ], let �
(i, j)
r denote the set of POVMs M =

{M1, . . . , Mr } such that Mk = 0 if k /∈ {i, j}. For such POVMs, we have Mi +M j = I
and

Err(M ;E) = ηi Tr[Miρi ] + η j Tr
[
(I − Mi )ρ j

]
(131)

= ηi Tr[Miρi ] + η j − η j Tr
[
Miρ j

]
(132)

= η j − Tr
[
Mi

(
η jρ j − ηiρi

)]
. (133)

By taking the infimum over �
(i, j)
r on both sides of (133), we get

inf
M∈�

(i, j)
r

Err(M ;E) = η j − sup
0≤Mi≤I

Tr
[
Mi

(
η jρ j − ηiρi

)]
, (134)
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where the supremum on the right-hand side of (134) is taken over every positive

semi-definite operator Mi such that 0 ≤ Mi ≤ I. The supremum is attained by the

Helstrom–Holevo measurement [20, 24] given by Mi = supp(η jρ j − ηiρi )+ (note

the order of i and j). We thus get

inf
M∈�

(i, j)
r

Err(M ;E) = η j − Tr
[(

η jρ j − ηiρi

)
+

]
(135)

= Tr
[
η jρ j

]
− Tr

[(
η jρ j − ηiρi + |η jρ j − ηiρi |

)
/2
]

(136)

= Tr
[(

ηiρi + η jρ j − |ηiρi − η jρ j |
)
/2
]

(137)

= Tr
[
ηiρi ∧ η jρ j

]
(138)

=
1

2

(
ηi + η j −

∥∥ηiρi − η jρ j

∥∥
1

)
. (139)

It is clear that the optimal antidistinguishability error probability satisfies

Err(E) ≤ inf
M∈�

(i, j)
r

Err(M ;E) = Tr
[
ηiρi ∧ η jρ j

]
, for all 1 ≤ i < j ≤ r .

(140)

By combining (138)–(140), we thus get the upper bound on the optimal antidistin-

guishability error probability stated in the theorem. ��

The expression on the right-hand side of (129) can be further simplified for

pure states. This is a consequence of the following identity (see Proposition 24 in

Appendix B):

‖|ϕ〉〈ϕ| − |ζ 〉〈ζ |‖2
1 = (〈ϕ|ϕ〉 + 〈ζ |ζ 〉)2 − 4 |〈ζ |ϕ〉|2 , (141)

which holds for vectors |ϕ〉 and |ζ 〉, as well as Theorem 1 of [1] which states that for

all positive semi-definite operators A, B and all 0 ≤ s ≤ 1, we have

Tr[A ∧ B] ≤ Tr As B1−s . (142)

Corollary 9 If the quantum states in Theorem 8 are pure, i.e., given by ρi =
|ψi 〉〈ψi |, then we have

Err(E) ≤ min
1≤i< j≤r

ηi + η j

2

(
1 −

√
1 −

4ηiη j |〈ψi |ψ j 〉|2
(ηi + η j )2

)
(143)

≤
1

2
min

1≤i< j≤r
|〈ψi |ψ j 〉|2. (144)
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Proof Applying (130) and (141), we find that for all 1 ≤ i < j ≤ r ,

Err(E) ≤
1

2

(
ηi + η j −

∥∥ηi |ψi 〉〈ψi | − η j |ψ j 〉〈ψ j |
∥∥

1

)
(145)

=
1

2

(
ηi + η j −

√
(ηi + η j )2 − 4ηiη j |〈ψi |ψ j 〉|2

)
(146)

=
ηi + η j

2

(
1 −

√
1 −

4ηiη j |〈ψi |ψ j 〉|2
(ηi + η j )2

)
. (147)

This proves the inequality (143). By (142), we get that for all 1 ≤ i < j ≤ r and

0 ≤ s ≤ 1,

Tr
[
ηi |ψi 〉〈ψi | ∧ η j |ψ j 〉〈ψ j |

]
≤ ηs

i η
1−s
j Tr

[
|ψi 〉〈ψi |ψ j 〉〈ψ j |

]
= ηs

i η
1−s
j |〈ψi |ψ j 〉|2.

(148)

Since (148) holds for all s ∈ [0, 1], we get

Tr
[
ηi |ψi 〉〈ψi | ∧ η j |ψ j 〉〈ψ j |

]
≤ (ηi ∧ η j )|〈ψi |ψ j 〉|2 ≤

1

2
|〈ψi |ψ j 〉|2. (149)

The desired inequality (144) thus follows by using the inequality (149) in (129). ��

The sufficient condition for perfect antidistinguishability given in Theorem 8 is not

a necessary condition, even in the simple case of commuting states. This is illustrated

in the following example.

Example 10 Consider states ρ1, ρ2, and ρ3 diagonalizable in a common eigen-

basis {|1〉〈1|, |2〉〈2|, |3〉〈3|}, given by

ρ1 =
1

2
(|1〉〈1| + |2〉〈2|) , (150)

ρ2 =
1

2
(|1〉〈1| + |3〉〈3|) , (151)

ρ3 =
1

2
(|2〉〈2| + |3〉〈3|) . (152)

Consider a POVM M = {M1, M2, M3} given by

M1 = |3〉〈3|, (153)

M2 = |2〉〈2|, (154)

M3 = |1〉〈1|. (155)

The POVM M antidistinguishes the states perfectly because Tr[Miρi ] = 0

for i ∈ [3]. However, no pair of states are mutually orthogonal to each other.
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4.2 Asymptotic case

As a consequence of Theorem 8, we arrive at a lower bound on the optimal error

exponent, as stated in the following theorem.

Theorem 11 Consider a quantum ensemble E = {(ηi , ρi ) : i ∈ [r ]}. A lower

bound on the optimal error exponent for antidistinguishing the states of the

ensemble is given by the maximum of the pairwise Chernoff divergence of the

states; i.e., we have

E(ρ1, . . . , ρr ) ≥ max
1≤i< j≤r

ξ(ρi , ρ j ). (156)

Proof By Theorem 8, we have

Err(En) ≤ min
1≤i< j≤r

Tr[ηiρ
⊗n
i ∧ η jρ

⊗n
j ]. (157)

By combining (157) with (34), we get the desired inequality in (156). ��

Let us recall from Example 7 that the inequality in (156) can be strict in some cases.

Corollary 12 If the quantum states in Theorem 11 are pure, given by ρi =
|ψi 〉〈ψi |, then we have

E(|ψ1〉〈ψ1|, . . . , |ψr 〉〈ψr |) ≥ max
1≤i< j≤r

− ln |〈ψi |ψ j 〉|2. (158)

Proof It follows directly from (144). ��

5 Bounds on the optimal error exponent for quantum
antidistinguishability frommultivariate quantum Chernoff
divergences

In this section, we begin by introducing the general concept of multivariate quantum

Chernoff divergences, and after that, we employ this concept in order to obtain bounds

on the optimal error exponent for quantum antidistinguishability. The reasoning used

here is inspired by similar reasoning used for distinguishability problems between two

states [23, 26, 39–41, 44].
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5.1 Multivariate quantum Chernoff divergences

Definition 13 Let r ≥ 2 be an integer. We call a function ξ : Dr → [0,∞] a

multivariate quantum Chernoff divergence if it satisfies the following proper-

ties:

1. Data processing: for states ρ1, . . . , ρr and a channel N ,

ξ(ρ1, . . . , ρr ) ≥ ξ(N(ρ1), . . . ,N(ρr )), (159)

2. Reduction to the multivariate classical Chernoff divergence for commuting

states: if the states ρ1, . . . , ρr commute, then

ξ(ρ1, . . . , ρr ) = ξcl(P1, . . . , Pr ), (160)

where ξcl is defined in (23), P1, . . . , Pr are probability measures on

[dim(H)],

P�(X) :=
∑

i∈X

λ�,i , for X ⊆ [dim(H)], (161)

given by a spectral decomposition of the states in a common eigenbasis

ρ� =
∑

i∈[dim(H)]
λ�,i |i〉〈i |, for � ∈ [r ]. (162)

As stated above, all multivariate quantum Chernoff divergences agree on com-

muting states and are equal to the multivariate classical Chernoff divergence of the

corresponding probability measures induced by the states in their common eigenbasis.

If ρ1, . . . , ρr are commuting states, then we denote their divergence by ξcl(ρ1, . . . , ρr ).

In this case, it is easy to verify that

ξcl(ρ1, . . . , ρr ) = − ln inf
s∈Sr

∑

i∈[dim(H)]

⎛
¿∏

�∈[r ]
λ

s�
�,i

À
⎠ . (163)

As a first starting point, let us explicitly note that the optimal error exponent in (31)

is itself a multivariate quantum Chernoff divergence.

Proposition 14 The optimal error exponent E : Dr → [0,∞] defined by (31)

is a multivariate quantum Chernoff divergence.

Proof See Appendix C. ��
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Let us note that other multivariate quantum Chernoff divergences can be constructed

from the multivariate log-Euclidean divergence, as discussed in Remark 4, as well as

by means of the multivariate quantum Rényi divergences proposed in [17, 42]. In

what follows, we discuss some other constructions of multivariate quantum Chernoff

divergences.

We say that a multivariate quantum Chernoff divergence ξmin is minimal if it is a

lower bound on any other multivariate quantum Chernoff divergence; i.e., for every

multivariate quantum Chernoff divergence ξ , we have

ξmin(ρ1, . . . , ρr ) ≤ ξ(ρ1, . . . , ρr ), for all (ρ1, . . . , ρr ) ∈ Dr . (164)

A minimal multivariate quantum Chernoff divergence is unique by definition, and it can

be obtained as an optimization over quantum-to-classical or measurement channels

as presented in Proposition 15.

Let K be a complex Hilbert space of dimension t with an orthonormal basis

{|1〉, . . . , |t〉}. Associated with a POVM {M1, . . . , Mt } acting on the Hilbert space

H is a channelM, known as a measurement channel, which has the following action

on an input state ρ ∈ D(H):

M(ρ) =
∑

ω∈[t]
Tr[Mωρ]|ω〉〈ω|. (165)

The action of the measurement channel on any given states ρ1, . . . , ρr pro-

duces the commuting statesM(ρ1), . . . ,M(ρr ). This induces probability measures

PM1 , . . . , PMr on the discrete space � = [t], defined by

PMi (X) :=
∑

x∈X

Tr[Mxρi ], for X ⊆ �. (166)

It can be easily verified that the optimal error probability of antidistinguishing the

commuting statesM(ρ1), . . . ,M(ρr ) is equal to that of antidistinguishing the corre-

sponding probability measures PM1 , . . . , PMr . See (C7)–(C14) in Appendix C.

Proposition 15 The minimal multivariate quantum Chernoff divergence is

given by

ξmin(ρ1, . . . , ρr ) = sup
M

ξcl(PM1 , . . . , PMr ), (167)

where the supremum is taken over all measurement channels M with a t-

dimensional classical output space for all t ∈ N and each probability measure

PMi is defined in (166).

Proof See Appendix D. ��
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Similar to the definition of minimal multivariate quantum Chernoff divergence,

we can define the maximal multivariate quantum Chernoff divergence. We say that a

multivariate quantum Chernoff divergence ξmax is maximal if it is an upper bound on

any other multivariate quantum Chernoff divergence, i.e., for any multivariate quantum

Chernoff divergence ξ , we have

ξmax(ρ1, . . . , ρr ) ≥ ξ(ρ1, . . . , ρr ), for (ρ1, . . . , ρr ) ∈ Dr . (168)

A maximal multivariate quantum Chernoff divergence is unique by definition, and it

can be obtained as an optimization over classical-to-quantum or preparation channels

as given in Proposition 16.

We can view any probability measure P on the discrete space � = [t] as a quantum

state in K with the fixed eigenbasis {|1〉〈1|, . . . , |t〉〈t |}, i.e.,

P ≡
∑

ω∈�

P({ω})|ω〉〈ω|. (169)

A quantum channel P : L(K) → L(H) is said to prepare a state ρ ∈ D(H) from

a probability measure P if it satisfies P(P) = ρ and is called a preparation channel

or classical–to–quantum channel (see [61, Section 4.6.5] for a review of classical–to–

quantum channels).

Proposition 16 The maximal multivariate quantum Chernoff divergence is

given by:

ξmax(ρ1, . . . , ρr ) = inf
(P,{Pi }i∈[r ])

{ξcl(P1, . . . , Pr ) : P(Pi ) = ρi for all i ∈ [r ]} ,

(170)

where the infimum involves preparation channelsPwith a t-dimensional clas-

sical input system, for all t ∈ N, as well as probability measures {P1, . . . , Pr }
of the form in (169).

Proof See Appendix E. ��

5.2 Bounds on the optimal error exponent for quantum antidistinguishability

The optimal error exponent for quantum antidistinguishability can be bounded from

above and below by the minimal and the maximal multivariate quantum Chernoff

divergences, respectively, as stated in the following theorem.
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Theorem 17 Let E = {(ηi , ρi ) : i ∈ [r ]} be a quantum ensemble. We have

ξmin(ρ1, . . . , ρr ) ≤ E(ρ1, . . . , ρr ) ≤ ξmax(ρ1, . . . , ρr ), (171)

where ξmin and ξmax are given by (167) and (170), respectively. Additionally,

the bounds in (171) can be strengthened through regularization as

sup
�∈N

1

�
ξmin(ρ

⊗�
1 , . . . , ρ⊗�

r ) ≤ E(ρ1, . . . , ρr ) ≤ inf
�∈N

1

�
ξmax(ρ

⊗�
1 , . . . , ρ⊗�

r ).

(172)

Proof We know from Proposition 14 that the optimal error exponent is a multivari-

ate quantum Chernoff divergence, which, along with (164) and (168), justifies the

inequalities in (171).

We know from Lemma 25 in Appendix F that

E(ρ1, . . . , ρr ) =
1

�
E(ρ⊗�

1 , . . . , ρ⊗�
r ) for all � ∈ N. (173)

Substituting the above equality into (171) gives

1

�
ξmin(ρ

⊗�
1 , . . . , ρ⊗�

r ) ≤ E(ρ1, . . . , ρr ) ≤
1

�
ξmax(ρ

⊗�
1 , . . . , ρ⊗�

r ) for all � ∈ N,

(174)

which implies the inequalities (172). ��

We note that in the upper bound in (172), the infimum over � ∈ N can be replaced

with the limit � → ∞:

inf
�∈N

1

�
ξmax(ρ

⊗�
1 , . . . , ρ⊗�

r ) = lim
�→∞

1

�
ξmax(ρ

⊗�
1 , . . . , ρ⊗�

r ). (175)

See Appendix G. It is open to determine whether the supremum over � ∈ N in the

lower bound in (172) can be replaced with the limit � → ∞, if the limit exists.

It is known from [44, Corollary III.8] and [26, Corollary 4] (see also [40, Sec-

tion 9.3]) that when r = 2, the following equality holds

sup
�∈N

1

�
ξmin(ρ

⊗�
1 , ρ⊗�

2 ) = ξ̃ (ρ1, ρ2) := sup
s∈(0,1)

[
− ln Q̃s(ρ1, ρ2)

]
, (176)

where

Q̃s(ρ1, ρ2) :=

§
⎪̈

⎪©

Tr
[(

ρ
(1−s)/2s
2 ρ1ρ

(1−s)/2s
2

)s]
: s ∈ [1/2, 1)

Tr

[(
ρ

s/2(1−s)
1 ρ2ρ

s/2(1−s)
1

)1−s
]

: s ∈ (0, 1/2)

. (177)
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Since the optimal error exponent is known in this case to be ξ(ρ1, ρ2), which is defined

in (32), and it is also known from [14, Lemma 3] that

ξ(ρ1, ρ2) ≥ ξ̃ (ρ1, ρ2), (178)

where the inequality is strict if ρ1 and ρ2 are invertible and do not commute (see [21,

Theorem 2.1]), it follows that the lower bound in (172) cannot be optimal in general.

It is also known from [39, 41] that when r = 2, we have

inf
�∈N

1

�
ξmax(ρ

⊗�
1 , ρ⊗�

2 ) ≥ ξ̂ (ρ1, ρ2) := sup
s∈(0,1)

− ln Q̂s(ρ1, ρ2), (179)

where

Q̂s(ρ1, ρ2) := Tr
[
ρ2

(
ρ
−1/2
2 ρ̃1ρ

−1/2
2

)s]
. (180)

Here ρ̃1 is the absolutely continuous part of ρ1 with respect to ρ2 [2], and the negative

power of ρ2 is taken in on its support (see also [29, Proposition 66]). Since the optimal

error exponent is known in this case to be ξ(ρ1, ρ2) given in (32), and it is also known

from [39, 41] that

ξ(ρ1, ρ2) ≤ ξ̂ (ρ1, ρ2), (181)

where the inequality is strict if ρ1 and ρ2 are invertible and do not commute (see [23,

Theorem 4.3]), it follows that the upper bound in (172) cannot be the tightest possible

upper bound in general.

6 Single-letter semi-definite programming upper bound on the
optimal error exponent for antidistinguishability

In this section, we derive a single-letter semi-definite programming upper bound on the

optimal error exponent. Let us begin by recalling that the minimum error probability

of antidistinguishability of an ensemble E := {(ηi , ρi ) : i ∈ [r ]} can also be expressed

in terms of the following primal and dual semi-definite programs [7, Section II] (see

also [63, Eq. (III.15)]):

Err(E) = inf
{Mi }i∈[r ]

§
¨
©
∑

i∈[r ]

ηi Tr[Miρi ] : Mi ≥ 0 for all i ∈ [r ] ,
∑

i∈[r ]

Mi = I

«
¬
­ (182)

= sup
Y∈Herm

{Tr[Y ] : Y ≤ ηiρi for all i ∈ [r ]} , (183)

where Herm denotes the set of Hermitian operators. The equality holds as a conse-

quence of Slater’s condition; indeed, we see this by noting that Mi = I/r is strictly

feasible for the primal and Y = 0 is feasible for the dual. Defining ηmin := mini∈[r ] ηi ,

then it follows that

Err(E) = sup
Y∈Herm

{Tr[Y ] : Y ≤ ηiρi ∀i ∈ [r ]} (184)
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≥ sup
Y∈Herm

{Tr[Y ] : Y ≤ ηminρi ∀i ∈ [r ]} (185)

= sup
Y∈Herm

{Tr[ηminY ] : ηminY ≤ ηminρi ∀i ∈ [r ]} (186)

= ηmin · sup
Y∈Herm

{Tr[Y ] : Y ≤ ρi ∀i ∈ [r ]} (187)

≥ ηminκ(ρ1, . . . , ρr ), (188)

where

κ(ρ1, . . . , ρr ) := sup
Y∈Herm

{Tr[Y ] : −ρi ≤ Y ≤ ρi ∀i ∈ [r ]} . (189)

The first inequality follows because

Y ≤ ηminρi ∀i ∈ [r ] ⇒ Y ≤ ηiρi ∀i ∈ [r ] . (190)

The second equality follows because optimizing over all Hermitian Y is equiva-

lent to optimizing over ηminY since ηmin > 0. The third equality follows because

ηminY ≤ ηminρi ⇔ Y ≤ ρi and by factoring ηmin out of the optimization. The final

inequality follows because the optimization in the definition of κ(ρ1, . . . , ρr ) adds

extra constraints.

The main advantage of the κ quantity over the antidistinguishability error proba-

bility itself is that it is supermultiplicative, as stated below. For this reason, we can use

it to bound the error exponent.

Lemma 18 For the tuples of states, (ρ1, . . . , ρr ) and (σ1, . . . , σr ), the fol-

lowing supermultiplicativity inequality holds

κ(ρ1 ⊗ σ1, . . . , ρr ⊗ σr ) ≥ κ(ρ1, . . . , ρr ) · κ(σ1, . . . , σr ). (191)

Proof Let Yρ, Yσ ∈ Herm satisfy −ρi ≤ Yρ ≤ ρi and −σi ≤ Yσ ≤ σi for all i ∈ [r ].

Now invoking Lemma 12.35 of [28], we conclude that, for all i ∈ [r ],

− ρi ⊗ σi ≤ Yρ ⊗ Yσ ≤ ρi ⊗ σi . (192)

It then follows that

Tr[Yρ] · Tr[Yσ ] = Tr[Yρ ⊗ Yσ ] (193)

≤ sup
Y∈Herm

{Tr[Y ] : −ρi ⊗ σi ≤ Y ≤ ρi ⊗ σi ∀i ∈ [r ]} (194)

= κ(ρ1 ⊗ σ1, . . . , ρr ⊗ σr ). (195)

Since the inequality holds for all Yρ and Yσ satisfying the aforementioned constraints,

we conclude (191). ��
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By applying the supermultiplicativity result inductively, combined with the devel-

opment in (184)–(188), we conclude the following:

Theorem 19 For states ρ1, . . . , ρr , the following upper bound holds for the

asymptotic error exponent of quantum antidistinguishability:

E(ρ1, . . . , ρr ) ≤ − ln κ(ρ1, . . . , ρr ). (196)

Proof Consider that

E(ρ1, . . . , ρr ) = lim inf
n→∞

−
1

n
ln Err(En) (197)

≤ lim inf
n→∞

−
1

n
ln
(
ηminκ(ρ⊗n

1 , . . . , ρ⊗n
r )

)
(198)

≤ lim inf
n→∞

−
1

n
ln
(
κ(ρ1, . . . , ρr )

n
)

(199)

= − ln κ(ρ1, . . . , ρr ). (200)

The first inequality follows from (184)–(188). The second inequality follows from

lim inf − 1
n

ln ηmin = 0 and Lemma 18 applied inductively. ��

The upper bound in (196) can be bounded from above by a quantity expressed in

terms of the extended max-relative entropy, defined for a Hermitian operator X and a

positive semi-definite operator σ as [62, Eqs. (14)–(16)]:

Dmax(X‖σ) := ln inf
λ≥0

{λ : −λσ ≤ X ≤ λσ } . (201)

If the support of X is not contained in the support of σ , then there is no finite λ ≥ 0

such that the constraints above can be satisfied, and so Dmax(X‖σ) = +∞ in this

case. Also, whenever the support of X is contained in the support of σ , we have

Dmax(X‖σ) < +∞ and in this case,

Dmax(X‖σ) = ln

∥∥∥σ− 1
2 Xσ− 1

2

∥∥∥
∞

, (202)

where the inverse is understood to be taken on the support of σ . In Appendix H, we

derive several fundamental properties of the extended max-relative entropy, including

monotonicity, data processing, joint quasi-convexity, lower semi-continuity, non-

negativity and faithfulness, and additivity, which we think are of independent interest.

We also show that

Dmax(X‖σ) = sup
ε>0

Dmax(X‖σ + ε I ). (203)
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Theorem 20 For quantum states ρ1, . . . , ρr , the quantity κ(ρ1, . . . , ρr ) is

bounded from below in terms of the extended max-relative entropy, as follows:

κ(ρ1, . . . , ρr ) ≥ exp

(
− inf

ω∈D′
max
i∈[r ]

Dmax(ω‖ρi )

)
, (204)

where D′ :=
{
ω : ω = ω†, Tr[ω] = 1

}
is the set of all Hermitian operators

with trace one. Consequently, we have

E(ρ1, . . . , ρr ) ≤ inf
ω∈D′

max
i∈[r ]

Dmax(ω‖ρi ) (205)

= max
{si }i∈[r ]

inf
ω∈D′

∑

i∈[r ]

si Dmax(ω‖ρi ), (206)

where {si }i∈[r ] is a probability distribution.

Proof By the definition (189) and the fact that Y = 0 is always feasible for

κ(ρ1, . . . , ρr ), we conclude that

κ(ρ1, . . . , ρr ) = sup
Y∈Herm

{Tr[Y ] : −ρi ≤ Y ≤ ρi ∀i ∈ [r ]} (207)

= sup
Y∈Herm:Tr[Y ]≥0

{Tr[Y ] : −ρi ≤ Y ≤ ρi ∀i ∈ [r ]} (208)

= sup
λ≥0,ω∈D′

{Tr[λω] : −ρi ≤ λω ≤ ρi , ∀i ∈ [r ]} (209)

= sup
λ≥0,ω∈D′

{λ : −ρi ≤ λω ≤ ρi , ∀i ∈ [r ]} (210)

≥ sup
λ>0,ω∈D′

{λ : −ρi ≤ λω ≤ ρi , ∀i ∈ [r ]} (211)

= sup
λ>0,ω∈D′

{
λ : −

1

λ
ρi ≤ ω ≤

1

λ
ρi , ∀i ∈ [r ]

}
(212)

= sup
λ′>0,ω∈D′

{
1

λ′
: −λ′ρi ≤ ω ≤ λ′ρi , ∀i ∈ [r ]

}
(213)

=
[

inf
λ′>0,ω∈D′

{
λ′ : −λ′ρi ≤ ω ≤ λ′ρi , ∀i ∈ [r ]

}]−1

(214)

=
[

inf
ω∈D′

exp

(
max
i∈[r ]

Dmax (ω‖ρi )

)]−1

(215)

=
[

exp

(
inf

ω∈D′
max
i∈[r ]

Dmax(ω‖ρi )

)]−1

(216)

= exp

(
− inf

ω∈D′
max
i∈[r ]

Dmax(ω‖ρi )

)
. (217)
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The equality (207) follows because Y = 0 is feasible in (189). The equality (209)

follows because for every Hermitian operator Y with positive trace, we can choose

λ = Tr[Y ] and ω = Y/ Tr[Y ] ∈ D′ so that Y = λω; and if Y = 0 then we can choose

λ = 0 and ω = I/ dim(H) ∈ D′ so that Y = λω. The equality (213) follows from the

substitution λ = 1
λ′ .

The desired inequality (205) is a direct consequence of (196) and (204). Also, we

have

inf
ω∈D′

max
i∈[r ]

Dmax(ω‖ρi ) = inf
ω∈D′

max
{si }i∈[r ]

∑

i∈[r ]

si Dmax(ω‖ρi ) (218)

= max
{si }i∈[r ]

inf
ω∈D′

∑

i∈[r ]

si Dmax(ω‖ρi ). (219)

The first equality follows because the maximum over a finite set can be replaced

with a maximum of the expected value of the elements of the set, with the maximum

taken over all possible distributions. The second equality follows from an applica-

tion of Sion’s minimax theorem [55]. Indeed, if ∩i∈[r ] supp(ρi ) �= ∅, then the infima

in (218) and (219) can be restricted to a smaller set D′′ := {ω ∈ D′ : supp(ω) ⊆
∩i∈[r ] supp(ρi )} so that

∑
i∈[r ] si Dmax(ω‖ρi ) is finite for all ω ∈ D′′ and every proba-

bility distribution {si }i∈[r ]. Also, the objective function
∑

i∈[r ] si Dmax(ω‖ρi ) is linear

and continuous in the probability distribution {si }i∈[r ], and it is lower semi-continuous

and quasi-convex in ω ∈ D′′ (Appendix H). Sion’s minimax theorem thus applies and

gives the equality (219). In the case when ∩i∈[r ] supp(ρi ) = ∅, both the sides of (219)

are infinity and the equality holds trivially. ��

Remark 4 By replacing the set D′ with D (the set of density operators) in

Theorem 20, we get an interesting (although weaker) upper bound on the

optimal error exponent:

E(ρ1, . . . , ρr ) ≤ max
{si }i∈[r ]

inf
ω∈D

∑

i∈[r ]

si Dmax(ω‖ρi ). (220)

This upper bound has a resemblance to the following divergence:

max
{si }i∈[r ]

inf
ω∈D

∑

i∈[r ]

si D(ω‖ρi ) = max
{si }i∈[r ]

⎛
¿− ln Tr

⎡
£exp

⎛
¿∑

i∈[r ]

si ln ρi

À
⎠
¤
⎦
À
⎠ ,

(221)

where the equality follows whenever each ρi is positive definite. Indeed, the

only difference between (220) and (221) is the substitution Dmax(ρ‖σ) →
D(ρ‖σ) := Tr[ρ(ln ρ− ln σ)], where the latter denotes the standard quantum

relative entropy [60]. The equality in (221) was established in Eq. (V.121)

and Example V.25 of [42]. See Appendix I for a review of the proof of (221).

Finally, note that (221) reduces to the multivariate classical Chernoff diver-
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gence when the states in the set {ρi }i∈[r ] commute (have a common eigenbasis).

As such, this quantity is a multivariate quantum Chernoff divergence according

to Definition 13.

We end the section by deriving another alternative form for the κ quantity.

Proposition 21 The quantity κ(ρ1, . . . , ρr ) can alternatively be written as:

κ(ρ1, . . . , ρr ) = inf
Z1,i ,Z2,i≥0

∀i∈[r ]

§
¨
©
∑

i∈[r ]
Tr[

(
Z1,i + Z2,i

)
ρi ] : I =

∑

i∈[r ]
Z2,i − Z1,i

«
¬
­ .

(222)

Proof We prove this by showing that the expression on the right-hand side of (222)

is the dual SDP of κ(ρ1, . . . , ρr ) and that the strong duality holds. We derive it as

follows:

sup
Y∈Herm

{Tr[Y ] : −ρi ≤ Y ≤ ρi ∀i ∈ [r ]}

= sup
Y∈Herm

§
¨
©Tr[Y ] + inf

Z1,i ,Z2,i≥0

§
¨
©
∑

i∈[r ]

(
Tr[Z1,i (Y + ρi )] + Tr[Z2,i (ρi − Y )]

)
«
¬
­

«
¬
­ (223)

= sup
Y∈Herm

inf
Z1,i ,Z2,i≥0

§
¨
©Tr[Y ] +

∑

i∈[r ]

(
Tr[Z1,i (Y + ρi )] + Tr[Z2,i (ρi − Y )]

)
«
¬
­ (224)

= sup
Y∈Herm

inf
Z1,i ,Z2,i≥0

§
¨
©Tr

⎡
£Y

⎛
¿I +

∑

i∈[r ]

(
Z1,i − Z2,i

)
À
⎠
¤
⎦+

∑

i∈[r ]
Tr[

(
Z1,i + Z2,i

)
ρi ]

«
¬
­ (225)

≤ inf
Z1,i ,Z2,i≥0

sup
Y∈Herm

§
¨
©Tr

⎡
£Y

⎛
¿I +

∑

i∈[r ]

(
Z1,i − Z2,i

)
À
⎠
¤
⎦+

∑

i∈[r ]
Tr[

(
Z1,i + Z2,i

)
ρi ]

«
¬
­ (226)

= inf
Z1,i ,Z2,i≥0

§
¨
©
∑

i∈[r ]
Tr[

(
Z1,i + Z2,i

)
ρi ] : I =

∑

i∈[r ]
Z2,i − Z1,i

«
¬
­ . (227)

Strong duality holds here by picking Z2,i = 2I/r and Z1,i = I/r for all i ∈ [r ] in the

dual and by picking Y = 0 for the primal. ��

7 Conclusion

Summary We have solved the classical antidistinguishability problem of finding the

optimal error exponent, which we proved to be equal to the multivariate classical

Chernoff divergence of the given probability measures. To the best of our knowledge,
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this result constitutes the first operational interpretation of the divergence involving

three or more states. We have also given various upper and lower bounds on the optimal

error exponent in the quantum case, while it still remains an open problem to compute

its exact expression. In analogy with the classical case, we believe that the quantity that

gives the exact error exponent in the quantum case should be called the multivariate

quantum Chernoff divergence.

Future directions Recall from [7] that quantum m-state exclusion can be thought

of as antidistinguishability of a set of states related to the original set. We leave it as

an intriguing open question to determine the optimal asymptotic error exponent for

quantum m-state exclusion.

Analogous to the task of antidistinguishing quantum states, one may consider the

problem of antidistinguishing an ensemble of quantum channels. In this problem, a

quantum channel is chosen randomly from a finite set of quantum channels, with known

a priori probability distribution. The antidistinguisher is allowed to pass one share of

a bipartite quantum state through the channel, after which both the reference system

and the channel output system are measured. Based on the measurement outcome, the

antidistinguisher’s goal is to rule out a quantum channel other than the selected one.

It would be an interesting future work to study the asymptotics of the error rates for

antidistinguishing an ensemble of quantum channels.

Appendix A: Expectation values at non-corner points

We begin by stating a known property of convex functions in the lemma below. We

include a proof of the statement for the sake of completeness.

Lemma 22 Let a > 0 be arbitrary. Let f : [0, a] → R be a convex and continuous

function on [0, a], and suppose f is differentiable on (0, a). Then, the one-sided

derivative

f ′+ (0) := lim
t↘0

f (t) − f (0)

t
(A1)

exists and fulfills

f ′+ (0) = lim
t↘0

f ′ (t) . (A2)

Here f ′+ (0) is either finite or takes the value −∞; if f takes its minimum value at 0,

then f ′+ (0) is finite and f ′+ (0) ≥ 0.

Proof The map t  → ( f (t)− f (0))/t defined on (0, a) is non-decreasing. See [9, Sec-

tion 2.1, Exercise 7]). Also, the limit in (A1) exists in R∪{−∞} [9, Proposition 3.1.2].

By the Lagrange mean-value theorem, for any t ∈ (0, a) there exists ut ∈ (0, t) such

that

f (t) − f (0)

t
= f ′(ut ). (A3)
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We know that f being convex, its derivative is a non-decreasing function on (0, a).

We thus get from (A3) that

f ′+(0) = lim
t↘0

f ′(t), (A4)

with a possible value −∞. If f is minimized at 0, then we have f (t) − f (0) ≥ 0 for

all t ∈ (0, a). It then directly follows from the definition (A1) that f ′+(0) ≥ 0. ��

Lemma 23 For t ∈ T1
r and i ∈ [r−1], the expectation value Et[qi ] exists in R∪{−∞}

and satisfies

∂+i K(t) = Et[qi ]. (A5)

Proof Recall that T1
r is the set of non-corner points of Tr given by (70). Let t ∈ T1

r .

Define a set

Bt := {i ∈ [r − 1] : ti > 0} , (A6)

and let Bc
t
:= [r − 1]\Bt. Let β denote the cardinality of the set Bt. We emphasize

that if Bt �= ∅ so that β ≥ 1, t corresponds to an interior point of Tβ+1, which is the

β-vector obtained by discarding the zero entries of t. This allows us to use properties

of the exponential family of densities given in (61). So, if i ∈ Bt so that Bt �= ∅ then by

similar arguments as given for (67), it follows that the expectation value Et[qi ] exists,

and it satisfies ∂i K(t) = Et[qi ]. It remains to show for i ∈ Bc
t

that Et[qi ] exists, and it

is equal to ∂+i K(t). Let us fix an arbitrary index i ∈ Bc
t
. Choose a small number ε > 0

such that t + hei ∈ T1
r for all h ∈ [0, ε]. The function h  → K(t + hei ) is continuous,

convex on [0, ε], and it is differentiable on (0, ε). Lemma 22 thus implies that

∂+i K(t) = lim
h↘0

∂i K(t + hei ) = lim
h↘0

Et+hei
[qi ]. (A7)

Here we used the relation ∂i K(t + hei ) = Et+hei
[qi ] proved earlier. We now claim

that Et[qi ] exists and satisfies

lim
h↘0

Et+hei
[qi ] = Et[qi ] (A8)

with a possible value of −∞. Indeed, we have

Et+hei
[qi ] =

1

H (t + hei )

∫

D

dμ qi pr exp

⎛
¿ ∑

j∈[r−1]

t j q j + hqi

À
⎠ . (A9)
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By continuity of H, we have H (t + hei ) → H (t) as h ↘ 0. Thus, for (A8) to hold,

it suffices to prove that

lim
h↘0

∫

D

dμ qi pr exp

⎛
¿ ∑

j∈[r−1]

t j q j + hqi

À
⎠ =

∫

D

dμ qi pr exp

⎛
¿ ∑

j∈[r−1]

t j q j

À
⎠ .

(A10)

Let qi = q+
i −q−

i , where q+
i and q−

i are non-negative functions with mutually disjoint

supports. This gives
∫

D

dμ qi pr exp

⎛
¿ ∑

j∈[r−1]

t j q j + hqi

À
⎠ =

∫

D

dμ q+
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j + hq+
i

À
⎠−

∫

D

dμ

q−
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j − hq−
i

À
⎠ . (A11)

Both integral terms in the right-hand side of (A11) are finite, because for h ∈ (0, ε),

the left-hand side is finite. Indeed then t + hei corresponds to an interior point of

Tr−β+1 so that the properties of an exponential family of densities apply. Consider

now the first integral term on the right-hand side of (A11). We have the pointwise

monotone convergence on D

q+
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j + hq+
i

À
⎠ ↘ q+

i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j

À
⎠ as h ↘ 0.

(A12)

By the monotone convergence theorem, we have

lim
h↘0

∫

D

dμ q+
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j + hq+
i

À
⎠ =

∫

D

dμ q+
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j

À
⎠ < ∞

(A13)

where the limit is finite because the integrand is nonnegative. We now consider the

second integral term on the right-hand side of (A11). We have the pointwise monotone

convergence on D

q−
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j − hq−
i

À
⎠ ↗ q−

i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j

À
⎠ , as h ↘ 0.

(A14)
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By the monotone convergence theorem, we get

lim
h↘0

∫

D

dμ q−
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j − hq−
i

À
⎠ =

∫

D

dμ q−
i pr exp

⎛
¿ ∑

j∈[r−1]

t j q j

À
⎠

(A15)

regardless of whether the right-hand integral in (A15) is finite or infinite. The latter

point is explicitly stressed in Theorem 16.2 of [6]. By taking the limit h ↘ 0 in (A11)

and then using (A7), (A13), and (A15), we get

∂+i K(t) = Et[q+
i ] − Et[q−

i ] = Et[qi ]. (A16)

Since Et[q+
i ] is a real number, Et[qi ] takes a value in R∪{−∞}. If t is a minimizer of

K, then by Lemma 22 we have ∂+i K(t) ≥ 0, and hence, Et[qi ] is finite. We have thus

accomplished that if t ∈ T1
r is a minimizer of K and i ∈ [r − 1], then the expectation

value Et[qi ] exists, is finite, and satisfies ∂+i K(t) = Et[qi ]. ��

Appendix B: Proof of Equation (141)

Proposition 24 For arbitrary (not necessarily normalized) vectors |ϕ〉, |ζ 〉 ∈ H , the

following equality holds:

‖|ϕ〉〈ϕ| − |ζ 〉〈ζ |‖2
1 = (〈ϕ|ϕ〉 + 〈ζ |ζ 〉)2 − 4 |〈ζ |ϕ〉|2 . (B1)

Proof The equality (B1) trivially holds if one of the vectors is zero. So, we assume

that both |ϕ〉 and |ζ 〉 are nonzero vectors. Define

|ϕ′〉 :=
|ϕ〉
‖|ϕ〉‖

, |ζ ′〉 :=
|ζ 〉
‖|ζ 〉‖

. (B2)

Then, the desired equality is equivalent to

∥∥c|ϕ′〉〈ϕ′| − d|ζ ′〉〈ζ ′|
∥∥2

1
= (c + d)2 − 4cd

∣∣〈ζ ′|ϕ′〉
∣∣2 , (B3)

where

c := ‖|ϕ〉‖2 , d := ‖|ζ 〉‖2 . (B4)

Defining |ϕ⊥〉 to be the unit vector orthogonal to |ϕ′〉 in span
{
|ϕ′〉, |ζ ′〉

}
, we find that

|ζ ′〉 = cos(θ)|ϕ′〉 + sin(θ)|ϕ⊥〉, (B5)

where

cos(θ) = 〈ϕ′|ζ ′〉. (B6)
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Then, it follows that

c|ϕ′〉〈ϕ′| − d|ζ ′〉〈ζ ′|

= c|ϕ′〉〈ϕ′| − d
(

cos(θ)|ϕ′〉 + sin(θ)|ϕ⊥〉
) (

cos(θ)〈ϕ′| + sin(θ)〈ϕ⊥|
)

(B7)

=
[
c − d cos2(θ)

]
|ϕ′〉〈ϕ′| − d sin(θ) cos(θ)|ϕ⊥〉〈ϕ′|

− d sin(θ) cos(θ)|ϕ′〉〈ϕ⊥| − d sin2(θ)|ϕ⊥〉〈ϕ⊥|. (B8)

As a matrix with respect to the basis
{
|ϕ′〉, |ϕ⊥〉

}
, the last line has the following form:

[
c − d cos2(θ) −d sin(θ) cos(θ)

−d sin(θ) cos(θ) −d sin2(θ)

]
, (B9)

and this matrix has the following eigenvalues:

λ1 =
1

2

(
c − d +

√
(c + d)2 − 4cd cos2(θ)

)
, (B10)

λ2 =
1

2

(
c − d −

√
(c + d)2 − 4cd cos2(θ)

)
. (B11)

Note that c ≥ 0 and d ≥ 0. Without loss of generality, suppose that c ≥ d. Then

0 ≤ 4cd sin2(θ) (B12)

= 4cd
(

1 − cos2(θ)
)

(B13)

⇒ −2cd ≤ 2cd − 4cd cos2(θ) (B14)

⇒ c2 − 2cd + d2 ≤ c2 + 2cd + d2 − 4cd cos2(θ) (B15)

⇒ (c − d)2 ≤ (c + d)2 − 4cd cos2(θ) (B16)

⇒ c − d ≤
√

(c + d)2 − 4cd cos2(θ). (B17)

Then, it follows that the square of the trace norm of c|ϕ′〉〈ϕ′| − d|ζ ′〉〈ζ ′| is given by:

∥∥c|ϕ′〉〈ϕ′| − d|ζ ′〉〈ζ ′|
∥∥2

1

= (|λ1| + |λ2|)2 (B18)

=
(

1

2

(
c − d +

√
(c + d)2 − 4cd cos2(θ)

)
−

1

2

(
c − d −

√
(c + d)2 − 4cd cos2(θ)

))2

(B19)

= (c + d)2 − 4cd cos2(θ), (B20)

concluding the proof. ��
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Appendix C: Proof of Proposition 14

To prove the data-processing inequality, let N be an arbitrary quantum channel. We

denote by N(E) the ensemble {(ηi ,N(ρi )) : i ∈ [r ]}, which results from applying

the channel N to each state in E. The optimal antidistinguishability error probability

for the ensemble Err(E) is not more than that for the ensemble N(E). To see this, let

M = {M1, . . . , Mr } be an arbitrary POVM. We have

Err(M ;N(E)) =
∑

i∈[r ]
ηi Tr[MiN(ρi )] (C1)

=
∑

i∈[r ]
ηi Tr[N†(Mi )ρi ] (C2)

≥ Err(E). (C3)

The inequality (C3) follows because {N†(M1), . . . ,N
†(Mr )} is a POVM. Since (C3)

holds for every POVM M , we have

Err(E) ≤ Err(N(E)). (C4)

Therefore, for all n ∈ N, we get

−
1

n
ln Err(En) ≥ −

1

n
ln Err(N(E)n), (C5)

which implies

E(ρ1, . . . , ρr ) ≥ E(N(ρ1), . . . ,N(ρr )). (C6)

Now, suppose that the states in the given ensemble commute with each other. The

following arguments show that the optimal error of antidistinguishing the given states

is equal to that of the induced probability measures. Let P1, . . . , Pr be the probability

measures on the discrete space [dim(H)] induced by the states in a common eigenbasis

as defined in (161), and let Ecl be the classical ensemble {(ηi , Pi ) : i ∈ [r ]}. Suppose

p1, . . . , pr are the corresponding densities of the probability measures with respect

to the counting measure μ. This gives the following representation of each state:

ρi =
∫

[dim(H)]
dμ(ω) pi (ω)|ω〉〈ω|, i ∈ [r ]. (C7)

We have

Err(M ;E) =
∑

i∈[r ]
ηi Tr[Miρi ] (C8)

=
∑

i∈[r ]
ηi Tr

[
Mi

(∫

[dim(H)]
dμ(ω) pi (ω)|ω〉〈ω|

)]
(C9)
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=
∫

[dim(H)]
dμ(ω)

∑

i∈[r ]
〈ω|Mi |ω〉ηi pi (ω) (C10)

= Errcl(δ;Ecl), (C11)

where δ is the decision rule given by δ(ω) := (〈ω|M1|ω〉, . . . , 〈ω|Mr |ω〉). We note

here that for any POVM M , there corresponds a decision rule δ that satisfies (C8)–

(C11). Conversely, given any decision rule δ for antidistinguishing the classical

ensemble Ecl there corresponds a POVM M = {M1, . . . , Mr }, given by

Mi :=
∫

[dim(H)]
dμ(ω) δi (ω)|ω〉〈ω|, (C12)

that satisfies (C8)–(C11). This then implies

inf
M

Err(M ;E) = inf
δ

Err(δ;Ecl), (C13)

where the infima are taken over all POVMs M and decision rules δ corresponding to

the given quantum and classical ensembles, respectively. We have thus proved that

Err(E) = Errcl(Ecl), (C14)

which directly implies

E(ρ1, . . . , ρr ) = Ecl(P1, . . . , Pr ). (C15)

Appendix D: Proof of Proposition 15

Define a map ξ ′ : Dr → [0,∞] by

ξ ′(ρ1, . . . , ρr ) := sup
M

ξcl(PM1 , . . . , PMr ) (D1)

as given on the right-hand side of (167). We first show that ξ ′ is a lower bound on any

multivariate Chernoff divergence. Let ξ : Dr → [0,∞] be any multivariate quantum

Chernoff divergence and ρ1, . . . , ρr be arbitrary quantum states. For any measurement

channelM, we have

ξ(ρ1, . . . , ρr ) ≥ ξ(M(ρ1), . . . ,M(ρr )) = ξcl(PM1 , . . . , PMr ). (D2)

Here we used the assumptions that ξ satisfies the data-processing inequality and

reduces to the multivariate classical Chernoff divergence for commuting states. Since

the inequality (D2) holds for an arbitrary measurement channelM, taking the supre-

mum overM gives

ξ(ρ1, . . . , ρr ) ≥ ξ ′(ρ1, . . . , ρr ). (D3)
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We now show that ξ ′ is a multivariate quantum Chernoff divergence, i.e., it satis-

fies the data-processing inequality and reduces to the multivariate classical Chernoff

divergence for commuting states. Consider a quantum channel N and any measure-

ment channel M corresponding to a POVM {M1, . . . , Mt } on the output Hilbert

space of the channel N . Let MN be the measurement channel corresponding to

the POVM {N†(M1), . . . ,N
†(Mt )}. Let P

MN
1 , . . . , P

MN
r denote the probability

measures induced byMN corresponding to the states ρ1, . . . , ρr as given in the devel-

opment (165)–(166). Similarly, let QM1 , . . . , QMr denote the probability measures

induced byM corresponding to the statesN(ρ1), . . . ,N(ρr ). Since Tr[M jN(ρi )] =
Tr[N†(M j )(ρi )] for all i, j , it follows that QMi = P

MN
i for i ∈ [r ]. This implies

ξ ′(N(ρ1), . . . ,N(ρr )) = sup
M

ξcl(QM1 , . . . , QMr ) (D4)

= sup
M

ξcl(P
MN
1 , . . . , P

MN
r ) (D5)

≤ ξ ′(ρ1, . . . , ρr ), (D6)

which means that ξ ′ satisfies the data-processing inequality. In the case when the states

ρ1, . . . , ρr commute, Theorem 6 and Proposition 14 give the following classical data-

processing inequality

ξcl(ρ1, . . . , ρr ) ≥ ξcl(PM1 , . . . , PMr ). (D7)

Also, the inequality in (D7) is saturated for the measurement channel corresponding

to a common eigenbasis of the commuting states. Therefore, we get

ξ ′(ρ1, . . . , ρr ) = ξcl(ρ1, . . . , ρr ). (D8)

We thus conclude that ξ ′ is the minimal multivariate quantum Chernoff divergence.

Appendix E: Proof of Proposition 16

Define a map ξ ′′ : Dr → [0,∞] by

ξ ′′(ρ1, . . . , ρr ) := inf
(P,{Pi }i∈[r ])

{ξcl(P1, . . . , Pr ) : P(Pi ) = ρi for all i ∈ [r ]} , (E1)

as given on the right-hand side of (170). We first show that ξ ′′ is an upper bound

on any multivariate Chernoff divergence. Let ξ : Dr → [0,∞] be any multivariate

quantum Chernoff divergence, and let ρ1, . . . , ρr be arbitrary quantum states. Given

a preparation channel P and probability measures P1, . . . , Pr satisfying

P(Pi ) = ρi , for i ∈ [r ], (E2)

123



On the optimal error exponents for classical... Page 45 of 54 76

we have

ξ(ρ1, . . . , ρr ) = ξ(P(P1), . . . ,P(Pr )) ≤ ξcl(P1, . . . , Pr ). (E3)

In (E3), we used the assumptions that ξ satisfies the data-processing inequality and

reduces to the multivariate classical Chernoff divergence for commuting states. By

taking the infimum in (E3) over preparation channels and probability measures satis-

fying (E2), we thus get

ξ(ρ1, . . . , ρr ) ≤ ξ ′′(ρ1, . . . , ρr ). (E4)

We now show that ξ ′′ is a multivariate quantum Chernoff divergence, i.e., it satis-

fies the data-processing inequality and reduces to the multivariate classical Chernoff

divergence for commuting states. Let N be any quantum channel. We have

ξ ′′(N(ρ1), . . . ,N(ρr )) = inf
(P,{Pi }i∈[r ])
P(Pi )=N(ρi )

ξcl(P1, . . . , Pr ) (E5)

≤ inf
(P,{Pi }i∈[r ])
P(Pi )=ρi

ξcl(P1, . . . , Pr ) (E6)

= ξ ′′(ρ1, . . . , ρr ), (E7)

where the inequality follows because for every preparation channel P satisfying

P(Pi ) = ρi , its concatenation with N gives another preparation channel N ◦ P that

satisfies (N ◦P)(Pi ) = N(P(Pi )) = N(ρi ). If the states ρ1, . . . , ρr commute, then by

the classical data-processing inequality, for any preparation channelP and probability

measures P1, . . . , Pr satisfying (E2), we get

ξcl(ρ1, . . . , ρr ) = ξcl(P(P1), . . . ,P(Pr )) ≤ ξcl(P1, . . . , Pr ). (E8)

Also, the last inequality is equality for probability distributions prepared from a spectral

decomposition of the commuting states in a common orthonormal basis. Therefore,

we get

ξ ′′(ρ1, . . . , ρr ) = ξcl(ρ1, . . . , ρr ). (E9)

We thus conclude that ξ ′′ is the maximal multivariate quantum Chernoff divergence.

Appendix F: Additivity of the optimal error exponent

Lemma 25 Let E = {(ηi , ρi ) : i ∈ [r ]} be an ensemble of states. The following

equality holds

E(ρ1, . . . , ρr ) =
1

�
E(ρ⊗�

1 , . . . , ρ⊗�
r ) for all � ∈ N, (F1)
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where E(ρ1, . . . , ρr ) is the optimal error exponent defined in (31).

Proof First, we have that

E(ρ1, . . . , ρr ) ≤
1

�
E(ρ⊗�

1 , . . . , ρ⊗�
r ) for all � ∈ N, (F2)

because
{
− 1

n�
ln Err(En�)

}
n∈N

is a subsequence of
{
− 1

n
ln Err(En)

}
n∈N

. We now

prove the inequality converse to (F2). Let {Mk,�(1), . . . , Mk,�(r)} be a POVM attaining

Err(Ek�) for all k, � ∈ N. Then for all n ∈ N such that n ≥ �, we have

Err(En) ≤
∑

i∈[r ]
ηi Tr

[
ρ⊗n

i

(
M# n

�
$,�(i) ⊗ I⊗(n−# n

�
$)
)]

(F3)

=
∑

i∈[r ]
ηi Tr

[
ρ
⊗# n

�
$�

i M# n
�
$,�(i)

]
(F4)

= Err(E#
n
�
$�). (F5)

This implies

E(ρ1, . . . , ρr ) = lim inf
n→∞

−
1

n
ln Err(En) (F6)

≥ lim inf
n→∞

−
1

# n
�
$�

ln Err(E#
n
�
$�) (F7)

=
1

�
lim inf
k→∞

−
1

k
ln Err(Ek�) (F8)

=
1

�
E(ρ⊗�

1 , . . . , ρ⊗�
r ). (F9)

This completes the proof. ��

Appenix G: Limit of the regularized maximal multivariate quantum
Chernoff divergence

Here we provide a proof of equation (175). We first observe that the multivariate

classical Chernoff divergence is subadditive, i.e.,

ξcl(P1 ⊗ Q1, . . . , Pr ⊗ Qr ) ≤ ξcl(P1, . . . , Pr ) + ξcl(Q1, . . . , Qr ) (G1)

for all sets of probability densities {P1, . . . , Pr } and {Q1, . . . , Qr } on a measureable

space (�,A). This follows easily from the definitions of the Hellinger transform (19)

and multivariate Chernoff divergence (23). So, from the definition (170), we have for

�, m ∈ N that

ξmax(ρ
⊗(�+m)
1 , . . . , ρ⊗(�+m)

r )

123



On the optimal error exponents for classical... Page 47 of 54 76

= inf
(P(�+m),{P

(�+m)
i }i∈[r ])

P(�+m)(P
(�+m)
i )=ρ⊗�

i ⊗ρ⊗m
i

ξcl(P
(�+m)
1 , . . . , P(�+m)

r ) (G2)

≤ inf
(P(�)⊗P(m),{P

(�)
i ⊗P

(m)
i }i∈[r ])

P(�)(P
(�)
i )=ρ⊗�

i ,P(m)(P
(m)
i )=ρ⊗m

i

ξcl(P
(�)
1 ⊗ P

(m)
1 , . . . , P(�)

r ⊗ P(m)
r ) (G3)

≤ inf
(P(�)⊗P(m),{P

(�)
i ⊗P

(m)
i }i∈[r ])

P(�)(P
(�)
i )=ρ⊗�

i ,P(m)(P
(m)
i )=ρ⊗m

i

(
ξcl(P

(�)
1 , . . . , P(�)

r ) + ξcl(P
(m)
1 , . . . , P(m)

r )
)

(G4)

= inf
(P(�),{P

(�)
i }i∈[r ])

P(�)(P
(�)
i )=ρ⊗�

i

(
ξcl(P

(�)
1 , . . . , P(�)

r )
)
+ inf

(P(m),{P
(m)
i }i∈[r ])

P(m)(P
(m)
i )=ρ⊗m

i

(
ξcl(P

(m)
1 , . . . , P(m)

r )
)

(G5)

= ξmax(ρ
⊗�
1 , . . . , ρ⊗�

r ) + ξmax(ρ
⊗m
1 , . . . , ρ⊗m

r ). (G6)

We have thus proved that the sequence
(
ξmax(ρ

⊗�
1 , . . . , ρ⊗�

r )
)

�∈N

is subadditive. It

then follows from Fekete’s subadditive lemma [15] that the limit lim�→∞ ξmax(ρ
⊗�
1 ,

. . . , ρ⊗�
r )/� exists and is given by

lim
�→∞

1

�
ξmax(ρ

⊗�
1 , . . . , ρ⊗�

r ) = inf
�∈N

1

�
ξmax(ρ

⊗�
1 , . . . , ρ⊗�

r ). (G7)

AppendixH: Properties of the extendedmax-relative entropy in Equa-
tion (201)

Recall the definition of extended max-relative entropy from (201) for a Hermitian

operator X and a positive semidefinite operator σ :

Dmax(X‖σ) := ln inf
λ≥0

{λ : −λσ ≤ X ≤ λσ } . (H1)

We illustrate some special cases of extended max-relative entropy as follows. If X = 0,

then, for all positive semi-definite σ , the choice λ = 0 satisfies −λσ ≤ X ≤ λσ . This

implies that Dmax(X‖σ) = −∞ in this case. In the case when X is nonzero and

σ is zero, the support of X is not contained in the support of σ . This implies that

Dmax(X‖σ) = +∞ in this case.

We now present several properties of the extended max-relative entropy.

Proposition 26 (Monotonicity). Let X be a Hermitian operator, and let σ ′, σ be pos-

itive semi-definite operators such that σ ′ ≤ σ . Then

Dmax(X‖σ) ≤ Dmax(X‖σ ′). (H2)
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Proof Given an arbitrary λ ≥ 0 that satisfies −λσ ′ ≤ X ≤ λσ ′, this λ also satisfies

−λσ ≤ X ≤ λσ . Consequently,

Dmax(X‖σ) = ln inf
λ≥0

{λ : −λσ ≤ X ≤ λσ } (H3)

≤ ln inf
λ≥0

{λ : −λσ ′ ≤ X ≤ λσ ′} (H4)

= Dmax(X‖σ ′), (H5)

concluding the proof. ��

Proposition 27 (Supremum representation). For a Hermitian operator X and a posi-

tive semi-definite operator σ , the following equality holds:

Dmax(X‖σ) = sup
ε>0

Dmax(X‖σ + ε I ) = lim
ε↘0

Dmax(X‖σ + ε I ). (H6)

Proof We conclude the second equality in (H6) because σ + ε I ≤ σ + ε′ I holds for

0 < ε ≤ ε′, and applying Proposition 26 allows us to conclude that, for fixed X and

σ , the function ε  → Dmax(X‖σ + ε I ) is monotone non-increasing.

For all ε > 0, the operator inequality σ ≤ σ+ε I holds. By applying Proposition 26,

we conclude that Dmax(X‖σ) ≥ Dmax(X‖σ + ε I ). So it remains to prove that this is

actually an equality. To see that equality holds, we consider two separate cases. First

suppose that the support of X is contained in the support of σ . Then, the following

equality holds as a consequence of (202):

Dmax(X‖σ + ε I ) = ln

∥∥∥(σ + ε I )−1/2 X(σ + ε I )−1/2
∥∥∥
∞

. (H7)

The equality Dmax(X‖σ) = limε↘0 Dmax(X‖σ +ε I ) follows as a consequence of the

continuity of the operator norm. Now suppose that the support of X is not contained

in the support of σ . Let |v〉 ∈ supp(X) \ supp(σ ) be a unit vector. Consider that

ln

∥∥∥(σ + ε I )−1/2 X(σ + ε I )−1/2
∥∥∥
∞

≥ ln

∣∣∣〈v|(σ + ε I )−1/2 X(σ + ε I )−1/2|v〉
∣∣∣

= ln
(
|〈v|X |v〉| ε−1

)
. (H8)

Thus, by taking the ε ↘ 0 limit, we see that limε↘0 Dmax(X‖σ + ε I ) = +∞ in this

case, consistent with the definition in (201). ��

Proposition 28 (Data-processing inequality). Let X be a Hermitian operator and σ a

positive semi-definite operator. Let N be a positive map (a special case of which is a

quantum channel, i.e., a completely positive and trace-preserving map). Then

Dmax(X‖σ) ≥ Dmax(N(X)‖N(σ )). (H9)

Proof A special case of this inequality follows from [62, Lemma 2] by taking the limit

α → ∞. Here we prove it for all positive maps, for X an arbitrary Hermitian operator,
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and σ an arbitrary positive semi-definite operator. Suppose that λ ≥ 0 is such that

−λσ ≤ X ≤ λσ . Then, the following inequality holds −λN(σ ) ≤ N(X) ≤ λN(σ ),

from the assumption that N is a positive map. Consequently, we get

Dmax(X‖σ) = ln inf
λ≥0

{λ : −λσ ≤ X ≤ λσ } (H10)

≥ ln inf
λ≥0

{λ : −λN(σ ) ≤ N(X) ≤ λN(σ )} (H11)

= Dmax(N(X)‖N(σ )), (H12)

concluding the proof. ��

Proposition 29 (Joint quasi-convexity). Let X be a finite alphabet and p a probability

distribution on X . Let X x and σ x be Hermitian and positive semi-definite operators,

respectively, for all x ∈ X . Then

max
x∈X

Dmax(X x‖σ x ) ≥ Dmax

⎛
¿∑

x∈X

p(x)X x

∥∥∥∥
∑

x∈X

p(x)σ x

À
⎠ . (H13)

Proof If λ ≥ 0 satisfies −λσ x ≤ X x ≤ λσ x for all x ∈ X , then we also have

−λ
∑

x∈X p(x)σ x ≤
∑

x∈X p(x)X x ≤ λ
∑

x∈X p(x)σ x . This gives

Dmax

⎛
¿∑

x∈X

p(x)X x

∥∥∥∥
∑

x∈X

p(x)σ x

À
⎠ = ln inf

λ≥0

{
λ : −λ

∑

x∈X

p(x)σ x

≤
∑

x∈X

p(x)X x ≤ λ
∑

x∈X

p(x)σ x

}
(H14)

≤ ln inf
λ≥0

{
λ : −λσ x ≤ X x ≤ λσ x ,∀x ∈ X

}

(H15)

= max
x∈X

ln inf
λ≥0

{
λ : −λσ x ≤ X x ≤ λσ x

}

(H16)

= max
x∈X

Dmax(X x‖σ x ), (H17)

concluding the proof. ��

Proposition 30 (Non-negativity and faithfulness). Let X be a Hermitian operator of

unit trace, and let σ be a quantum state. Then Dmax(X‖σ) ≥ 0. Also, under the same

conditions, Dmax(X‖σ) = 0 if and only if X = σ .

Proof For every λ ≥ 0 satisfying −λσ ≤ X ≤ λσ , we have that λ = Tr[λσ ] ≥
Tr X = 1, implying that ln λ ≥ 0. By definition, we then get Dmax(X‖σ) ≥ 0.

If X = σ , then it trivially follows by definition that Dmax(X‖σ) = 0. Conversely,

suppose that Dmax(X‖σ) = 0. This implies −σ ≤ X ≤ σ , and hence σ − X ≥ 0. By
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the Helstrom-Holevo Theorem [28, Eq. (5.1.17)], and the fact that Tr[σ − X ] = 0,

we get

1

2
‖σ − X‖1 = sup

M≥0

{Tr[M(σ − X)] : M ≤ I} (H18)

≤ inf
Y≥0

{Tr[Y ] : Y ≥ σ − X}, (H19)

where the last inequality follows by the weak duality of the SDP given in (H18). A

feasible point in (H19) is given by Y = σ − X , and we have Tr[Y ] = Tr[σ − X ] = 0.

It thus follows from (H19) that ‖σ − X‖1 ≤ 0, which implies ‖σ − X‖1 = 0. We

have thus shown that σ = X . ��

Proposition 31 (Lower semi-continuity). The function (X , σ )  → Dmax(X‖σ), with

domain Herm(H) ×L+(H) and range R ∪ {−∞,+∞}, is lower semi-continuous.

Proof Here we follow arguments similar to those given in [43] (see also [48,

Lemma 18], whose short proof we follow verbatim). Recall the supremum repre-

sentation in Proposition 27. For all ε > 0, the functions defined by (X , σ )  →
Dmax(X‖σ + ε I ) are continuous because the second argument has full support. Since

the pointwise supremum of continuous functions is lower semi-continuous, it follows

that the function (X , σ )  → Dmax(X‖σ) is lower semi-continuous. ��

If A, B are Hermitian operators on a Hilbert spaceH , then it is easy to prove that

the kernel of their tensor product is given by ker(A⊗B) = ker(A)⊗H+H⊗ker(B).

We use this observation in the proof of the next property.

Proposition 32 (Additivity). Let X1, X2 be nonzero Hermitian operators, and let

σ1, σ2 be nonzero positive semi-definite operators. Then,

Dmax(X1 ⊗ X2‖σ1 ⊗ σ2) = Dmax(X1‖σ1) + Dmax(X2‖σ2). (H20)

Proof First, suppose that supp(X1) � supp(σ1). This implies that supp(X1 ⊗ X2) �
supp(σ1⊗σ2). Indeed, let |x1〉 ∈ supp(X1)\ supp(σ1). Also, X2 �= 0 implies that there

exists a nonzero vector |x2〉 ∈ supp(X2). We thus have (X1⊗X2)(|x1〉⊗|x2〉) �= 0 and

(σ1 ⊗σ2)(|x1〉⊗ |x2〉) = 0, implying that supp(X1 ⊗ X2) � supp(σ1 ⊗σ2). Also, the

assumption that X2 and σ2 are nonzero implies that Dmax(X2‖σ2) > −∞. Therefore,

in this case, both Dmax(X1 ⊗ X2‖σ1 ⊗ σ2) and Dmax(X1‖σ1) + Dmax(X2‖σ2) are

equal to ∞. We also get by similar arguments for the case supp(X2) � supp(σ2) that

both Dmax(X1 ⊗ X2‖σ1 ⊗ σ2) and Dmax(X1‖σ1) + Dmax(X2‖σ2) are equal to ∞.

To complete the proof, we now consider the case when supp(X1) ⊆ supp(σ1) and

supp(X2) ⊆ supp(σ2). In this case, we have supp(X1 ⊗ X2) ⊆ supp(σ1 ⊗ σ2). This

is because we have ker(σ1) ⊆ ker(X1) and ker(σ2) ⊆ ker(X2), which gives

ker(σ1 ⊗ σ2) = ker(σ1) ⊗H +H ⊗ ker(σ2) (H21)

⊆ ker(X1) ⊗H +H ⊗ ker(X2) (H22)

= ker(X1 ⊗ X2). (H23)
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We thus have

Dmax(X1 ⊗ X2‖σ1 ⊗ σ2) = ln
∥∥(σ−1/2

1 ⊗ σ
−1/2
2 )(X1 ⊗ X2)(σ

−1/2
1 ⊗ σ

−1/2
2 )

∥∥
∞

(H24)

= ln
∥∥σ−1/2

1 X1σ
−1/2
1 ⊗ σ

−1/2
2 X2σ

−1/2
2

∥∥
∞ (H25)

= ln
(∥∥∥σ−1/2

1 X1σ
−1/2
1

∥∥∥
∞

·
∥∥∥σ−1/2

2 X2σ
−1/2
2

∥∥∥
∞

)
(H26)

= ln

∥∥∥σ−1/2
1 X1σ

−1/2
1

∥∥∥
∞

+ ln

∥∥∥σ−1/2
2 X2σ

−1/2
2

∥∥∥
∞

(H27)

= Dmax(X1‖σ1) + Dmax(X2‖σ2), (H28)

concluding the proof. ��

Appendix I: Proof of Equation (221)

Let ω ∈ D be arbitrary and (s1, . . . , sr ) ∈ Rr be any probability vector. Since the

quantum states ρ1, . . . , ρr have full support, we have

∑

i∈[r ]
si D(ω‖ρi )

=
∑

i∈[r ]
si Tr[ω(ln ω − ln ρi )] (I1)

= Tr[ω ln ω] − Tr

⎡
£ω

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦ (I2)

= Tr[ω ln ω] − Tr

⎡
£ω ln exp

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦ (I3)

= Tr[ω ln ω] − Tr

⎡
£ω ln

⎛
¿ exp

(∑
i∈[r ] si ln ρi

)

Tr
[
exp

(∑
i∈[r ] si ln ρi

)] · Tr

⎡
£exp

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦
À
⎠
¤
⎦

(I4)

= Tr[ω ln ω] − Tr

[
ω ln

(
exp

(∑
i∈[r ] si ln ρi

)

Tr
[
exp

(∑
i∈[r ] si ln ρi

)]
)]

− ln Tr

⎡
£exp

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦

(I5)

= D

(
ω

∥∥∥∥∥
exp

(∑
i∈[r ] si ln ρi

)

Tr
[
exp

(∑
i∈[r ] si ln ρi

)]
)
− ln Tr

⎡
£exp

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦ (I6)
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≥ − ln Tr

⎡
£exp

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦ , (I7)

where the inequality follows from the non-negativity of quantum relative entropy for

quantum states. The lower bound is achieved by picking ω = exp
(∑

i∈[r ] si ln ρi

)

Tr
[
exp

(∑
i∈[r ] si ln ρi

)] , so

that

inf
ω∈D

∑

i∈[r ]
si D(ω‖ρi )

= inf
ω∈D

D

(
ω

∥∥∥∥∥
exp

(∑
i∈[r ] si ln ρi

)

Tr
[
exp

(∑
i∈[r ] si ln ρi

)]
)
− ln Tr

⎡
£exp

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦ (I8)

= − ln Tr

⎡
£exp

⎛
¿∑

i∈[r ]
si ln ρi

À
⎠
¤
⎦ . (I9)

This directly gives (221).
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