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We study the connection between multimatroids and moduli spaces of rational curves with cyclic
action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topo-
logical graph theory. The perspective of moduli of curves provides a tropical framework for studying
multimatroids, generalizing the previous connection between type-A permutohedral varieties (Losev–
Manin moduli spaces) and matroids, and the connection between type-B permutohedral varieties and
delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space
of R-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal
complex of a multimatroid, whose volume is identified with an intersection number on the moduli
space. As an application, we give a combinatorial formula for a natural class of intersection numbers
on themoduli space by relating to the volumes of independence polytopal complexes ofmultimatroids.

1 Introduction
There have been rapid recent developments in the interplay amongst three objects: Coxeter groups,
matroids, and the Chow rings of certain moduli spaces of rational curves. In type A, the key insight is
that the base polytope of a matroid on a set with n elements is a type-A generalized permutohedron
[26], meaning that its normal fan coarsens the type-A permutohedral fan �An−1 . This allows one to
associate to any matroid an element of the Chow ring of the toric variety XAn−1 , which was realized by
the work of Losev and Manin [31] as a moduli space of rational curves with weighted marked points.
The connections between these perspectives have yielded breakthroughs in both matroid theory and
geometry [1, 7, 8, 17, 21, 27, 30].

For type-B Coxeter groups, a similar unifying framework was developed in [20, 23], establishing a
connection between the algebraic geometry of the type-B permutohedral fan �Bn and the combinatorics
of delta-matroids, an analogue of matroids first introduced by Bouchet [9]. Batyrev and Blume showed
that the toric variety XBn also admits a modular interpretation as a moduli space of rational curves
equipped with an involution [5, 6].
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9744 | E. Clader et al.

At present, it seems that this story does not extend to other Coxeter types. In particular, obstacles
were encountered while studying the tautological classes of other Coxeter matroids [20, Remark 3.6]
and in finding a modular interpretation for toric varieties corresponding to other Coxeter types [5].

On the other hand, there is another family of complex reflection groups that generalize type-A and
type-B Coxeter groups, called generalized symmetric groups S(r,n), which depend on parameters r ≥ 2
and n ≥ 1. In our previouswork [14, 15],we constructedmoduli spaces of curves that correspond to these
groups in a precise sense. The result is a smooth projective moduli space Lr

n parameterizing rational
stable curves with an order-r automorphism and n orbits of weighted points,which coincides when r = 2
with Batyrev–Blume’s space. A similar generalization applies in matroid theory: delta-matroids are the
r = 2 case of objects known as r-matroids, which are a special case of multimatroids [9]. The connection
between the theory of r-matroids and the geometry of Lr

n has not yet been studied, and developing this
connection is our primary motivation for the current work.

To describe the more general setting in which we work, fix a positive integer n, a finite set E, and a
surjection π : E → [n], where [n] := {1, . . . ,n}. The data of π is equivalent to a partition

E = E1 � · · · � En

by setting Ei := π−1(i) for each i. A subset S ⊆ E is π-colored if it contains at most one element of each
Ei. We denote by Rπ the poset of π-colored subsets of E, ordered by inclusion. Note that the maximal
elements of this poset are the size-n subsets of E consisting of precisely one element of each Ei.

In the same way that a matroid on ground set E can be defined via a rank function on subsets of E, a
multimatroid is a rank function rk : Rπ → N that satisfies analogous axioms specified in Definition 4.1.
A key feature of these axioms is that, for any maximal π-colored subset T ⊆ E, the restriction of rk to
subsets of T (all of which are automatically π-colored) is a matroid in the usual sense; in this way, a
multimatroid can roughly be viewed as a way of patching together a collection of matroids on equal-
sized ground sets.

The role played by the permutohedral fan in the theory of matroids is played in the theory of
multimatroids by the π-colored fan �π , which we introduce in Section 2.2; it is the n-dimensional fan
in the vector space

Nπ
R
:= RE1/R1 × · · · × REn/R1

with a cone

σC = cone{eS1 , . . . ,eSk }

for each chain C = (S1 � · · · � Sk) of nonempty π-colored subsets of E, where eS denotes the image in
Nπ

R
of

∑
i∈S ei ∈ RE. For any maximal π-colored subset T ⊆ E, the intersection of �π with the subspace

R≥0 · {ei | i ∈ T} ⊆ Nπ
R
is identical to a distinguished orthant (which we call the affine permutohedral fan)

of the stellahedral fan studied in [21]. So, analogously to the above perspective on multimatroids, the
π-colored fan can roughly be viewed as a way of patching together a collection of affine permutohedral
fans; see Remarks 2.6 and 4.15.

Toric geometry allows one to give an explicit presentation of the Chow ring of the toric variety X�π

as a quotient of

Z[xS | S ∈ Rπ ]

with relations described explicitly in Proposition 2.7. In the special case where |Ei| = r for each i (in
which case we refer to π as a uniform partition), the π-colored fan �π coincides with the fan �r

n studied
in [14], and the results of that work show that

A∗(Lr
n)

∼= A∗(�r
n). (1)

The perspective on �r
n as a union of affine permutohedral fans can be given a precise geometric

interpretation in this setting, as explained in Remark 6.1.
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One crucial property of �π is that it is a balanced tropical fan, and in particular, by [1, Proposition
5.6], there exists a well-defined degree map

∫
�π

: An(�π ) → R

with the defining property that
∫
�π σ = 1 for each maximal cone σ . Our first main result is a

combinatorial formula for these degrees.
Such a formula can be stated in terms of the generators xS of A∗(�π ), and in some sense, these are

the most geometrically natural generators: they correspond to the rays of �π and, in the uniform case,
they are identified by the isomorphism (1) with the boundary divisors of Lr

n. However, as was already
understood in the matroid setting by [3], the formula becomes much more combinatorially elegant
when stated in terms of a different basis. Specifically, for each S ∈ Rπ , set

hS :=
∑

S′∩S�=∅

xS′ .

One way to understand the special role played by these alternative generators (analogously to [17]) is
that, in the uniform case, they can be viewed under the isomorphism (1) as pullbacks of psi-classes
under a family of forgetful morphisms from Lr

n to a simpler moduli space, and the combinatorially rich
structure of psi-classes is well understood; see Section 6.

To state the formula for the degree of a monomial in the above generators of A∗(�π ), we define, for
any collection S1, . . . , Sn of π-colored subsets (possibly with repetitions), the set

Tπ (S1, . . . , Sn) :=
{
T ∈ Rmax

π

∣∣∣∣∣ there exists a bijection ι : [n] → T
with ι(i) ∈ Si for each i

}
.

In other words, Tπ (S1, . . . , Sn) consists of the maximal elements of Rπ containing precisely one element
from each of the sets Si. Then we have the following formula.

Theorem A. For any collection S1, . . . , Sn ∈ Rπ (with repetitions allowed), we have∫
�π

hS1 · · · hSn = |Tπ (S1, . . . , Sn)|.

The analogue of this theorem in type A follows from [33, Theorem 5.1] and [3], while the type-B
case is proved in [20, Theorem A(b)]. At the same time, given the perspective on hS as a pullback of
a psi-class in the uniform case, this theorem can be viewed as an analogue of the computations of
intersection numbers of psi-classes on M0,n in [12, 36]. This suggests that Theorem A may admit an
algebro-geometric proof via the theory of psi-classes; we investigate this direction in Section 6, but we
do not currently know of a complete proof by these methods.

Instead, we prove Theorem A via the geometry and combinatorics of multimatroids. To do so, we
introduce the independence polytopal complex IPC(M) of amultimatroid in Definition 4.11, generalizing
the independence polytope IP(M) of a matroid M. We prove that the volume of this independence
polytopal complex, when suitably normalized (see Section 4.2), coincides with the degree of the top
power of a divisor on �π naturally associated to M. Specifically, for any multimatroid M, let

DM :=
∑
S∈Rπ

rk(S)xS ∈ A1(�π ).

Then we have the following theorem.

Theorem B. (see Theorem 5.1) For any multimatroid M on (E,π),

∫
�π

(DM)n = Vol(IPC(M)). (B)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/12/9743/7654041 by Princeton U
niversity user on 21 August 2024



9746 | E. Clader et al.

Remark 1.1. Matroids are a special case of multimatroids, and the analogue of Theorem B in this
setting is the equality, for anymatroidM, of the degree of the divisor DM on the stellahedral fan
and the volume of the independence polytope ofM. In this setting, the theorem can be deduced
from a standard result in toric geometry: the volume of the polytope corresponding to a nef
divisor D on a rational, complete fan � is equal to

∫
�
Dn (see, e.g. [24, p. 111]). The divisor DM is

known to be nef, and its corresponding polytope is precisely the independence polytope. The
multimatroid case, on the other hand, is considerably more subtle.

Theorem B implies Theorem A via the results of [22], as we show in Section 5. In order to prove
Theorem B, the main idea is to use the work of Nathanson–Ross [32], which relates the degrees of top
powers of divisors on tropical fans to the volumes of associated polytopal complexes known as normal
complexes. However, their results generally apply only to divisors satisfying a cubical condition, which
DM does not necessarily satisfy. We resolve this obstruction by extending the statement as an equality
of functions on the space of multimatroids on (E,π).

The key idea is to consider a slight generalization of the notion of multimatroid that we refer to as
an R-multimatroid, which consists of a rank function rk : Rπ → R satisfying the properties listed in
Definition 4.2. The notions of DM and IPC(M) extend to this setting, so the statement of Theorem B
makes sense when M is an R-multimatroid, and it is in this setting that we prove the theorem. The
advantage of this extension is two-fold:

1) The space M of R-multimatroids on (E,π) is a connected subspace of RRπ , while the space of all
multimatroids on (E,π) is discrete (see Definition 4.6).

2) For a given (E,π), one can always find an R-multimatroid M for which DM is cubical (Lemma 4.20);
this is not true if we only consider multimatroids.

Given this extension, we prove Theorem 5.1 (and hence Theorem B) by showing that both sides of
(B) are polynomial functions on M that agree—via the work of [32]—on the subset consisting of R-
multimatroids M for which DM is cubical. Since this locus is non-empty and open (Lemma 4.20), this
implies that the two polynomial functions agree on all of M , showing that the theorem holds for every
R-multimatroid.

1.1 Future directions
One of the reasons for our interest in Theorem A is that it provides evidence for the existence of an
exceptional isomorphsim from the Chow ring A(Lr

n) to the Grothendieck K-ring of vector bundles K(Lr
n)

similar to isomorphisms appearing in the study of matroids and delta-matroids [7, 20, 21, 29]. In future
work, we plan to study the conjectural existence of such an isomorphism, which we hope will yield a
Hirzebruch–Riemann–Roch-type formula for computing Euler characteristics of vector bundles on Lr

n.
In the case of matroids and delta-matroids, this isomorphism also relates to an isomorphism with the
polytope algebra of generalized (type-A or type-B) permutohedra, so we hope along the way to relate the
K-ring of Lr

n to a polytopal complex algebra. Such a connection would also yield a relationship between
Euler characteristics of vector bundles on Lr

n and lattice point counts of certain polytopal complexes of
multimatroids, analogous to the case ofmatroids [13] and toric varieties [24, Section 5.3]. As applications
of this circle of ideas, we hope to apply the present framework to the study of certain polynomials of
multimatroids, embedded graphs, and knots [19].

1.2 Outline of the paper
Section 2 introduces the fan �π and the relevant generators of its Chow ring. In Section 3,we first review
from [32] the definition of the normal complex C�,∗(D) of a fan � equipped with a divisor D ∈ A1(�)R, as
well as the relation between the volume of the normal complex and

∫
�
Dn under the condition that D is

cubical.We then specialize this framework to the case of �π , in which case we canmake both the notion
of volume and the cubical condition concrete. We turn in Section 4 to the definition of multimatroids
and R-multimatroids, and we explain how to associate to any R-multimatroid M both a divisor DM ∈
A1(�π )R and an independence polytopal complex IPC(M). The key result of this section is that there
is a nonempty open subset in the space of R-multimatroids on which the divisor DM is cubical, and
the first result of Section 5 is that IPC(M) is equal to the normal complex C�π ,∗(DM) (with equivalent
notions of volume) in this case. Combining these results with [32] proves Theorem B, and the remainder
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of Section 5 is devoted to unpacking Theorem B from the perspective of the generators hS in order to
deduce Theorem A. Lastly, in Section 6, we specialize to the case in which π is uniform with |Ei| = r
for each i, and we use the isomorphism A∗(�π ) ∼= A∗(Lr

n) to reprove some cases of Theorem A from a
geometric perspective.

2 The π-Colored Fan
Throughout what follows, we fix a nonempty finite set E with a partition

E = E1 � · · · � En,

or equivalently, a surjective map π : E → [n] where π−1(i) = Ei. We refer to the partition as uniform if
|Ei| = |Ej| for all i, j ∈ [n].

2.1 Colored sets
Viewing [n] as the set of possible colors, and π as a way to assign a unique color to every element of
E, we are particularly interested in subsets of E that contain at most one element of each color. More
precisely, we have the following definition.

Definition 2.1. A subset S ⊆ E is π-colored (or just colored, if π is clear from context) if

|S ∩ Ei| ≤ 1

for each i ∈ [n]. We denote by Rπ the poset of colored subsets of E, ordered by inclusion. Maximal
elements ofRπ are those that contain exactly one element of each Ei, and we denote the set of
these byRmax

π .We often wish to exclude the possibility that S = ∅, so we denoteR×
π = Rπ \{∅}.

Remark 2.2. One can generalize the notion of colored sets by requiring that the set S ∩ Ei has at
most a specified number of elements ci, which might depend on i ∈ [n]. Though we do not take
up this generalization in this work, it would be interesting to investigate the extent to which
the results of this paper generalize to that setting.

2.2 The π-colored fan
To define a fan associated to the data of (E,π), we consider the real vector space RE with standard basis
{ei | i ∈ E}. For each X ⊆ E, denote

eX :=
∑
i∈X

ei.

Set

Nπ
R
:= RE1

ReE1
× · · · × REn

ReEn
, (2)

and denote the image of ei or eX in Nπ
R
by ei or eX, respectively. Similarly, for every X ⊆ E, denote by R

X

the image of RX ⊆ RE in Nπ
R
.

Definition 2.3. The π-colored fan �π is the fan in Nπ
R
consisting of cones

σC = cone{eS1 , . . . ,eSk }

for each chain C = (
S1 � · · · � Sk

)
of elements Si ∈ R×

π .
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9748 | E. Clader et al.

Fig. 1. The fan �B2 , with the cone corresponding to C = ({2} � {1̄, 2}) shaded.

Fig. 2. The fan �π for (E,π) as in Example 2.5, with the cone corresponding to C = ({a} � {a, 2}) shaded.

In the special case where (E,π) is uniform with |Ei| = r ≥ 2 for each i, the fan �π coincides with
the r-permutohedral fan �r

n studied in [14]. If, furthermore, r = 2, then it is the type-B permutohedral
fan �Bn . We begin by illustrating what �π looks like in this particularly simple case.

Example 2.4. Let E = {1, 1̄} � {2, 2̄} with E1 = {1, 1̄} and E2 = {2, 2̄}. Then,

Nπ
R

= Re1 ⊕ Re1̄
R(e1 + e1̄)

× Re2 ⊕ Re2̄
R(e2 + e2̄)

.

Choosing the basis {e1,e2} for Nπ
R
gives an isomorphism Nπ

R
∼= R2 in which

e1 �→ (1, 0), e1̄ �→ (−1, 0), e2 �→ (0, 1), e2̄ �→ (0,−1).

The fan �π = �B2 is depicted under this isomorphism in Figure 1.

On the other hand, the following example illustrates a non-uniform case.

Example 2.5. Let E = {a, b, c} � {1, 2} with E1 = {a, b, c} and E2 = {1, 2}. Then Figure 2 depicts the
associated fan �π , under the isomorphism Nπ

R
∼= R3 given by the basis {ea,eb,e1}.

Remark 2.6. For any T ∈ Rmax
π , the restriction of �π to the subset RT

≥0
∼= Rn

≥0 is a fan �T that can
be identified with the fan in Rn

≥0 consisting of a cone for each chain of subsets of [n]. This fan
in Rn

≥0, which we call the affine permutohedral fan, is a distinguished portion (the negative
orthant) of the stellahedral fan defined in [11]. Thus, �π can be viewed as a union of copies
of the n-dimensional affine permutohedral fan, one for each T ∈ Rmax

π . Given the connection
between stellahedral fans and matroids studied in [21], this observation can be seen as the
fan-theoretic analogue of the perspective mentioned in the introduction that a multimatroid
is a way of patching together a collection of matroids.

2.3 The Chow ring of the π-colored fan
Standard results in toric geometry calculate the Chow ring of �π (or, equivalently, of the associated toric
variety).
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Proposition 2.7. The Chow ring of �π is

A∗(�π ) = Z[xS | S ∈ R×
π ]

I + J ,

where I is the ideal of quadratic relations

I := 〈xSxS′ | S and S′ incomparable〉 (3)

(inwhich “incomparable”means that neither S ⊆ S′ nor S′ ⊆ S) andJ is the ideal of linear relations

J :=
〈∑

S�e
xS −

∑
S�e′

xS

∣∣∣∣∣ distinct e, e′ ∈ Ei for some i

〉
. (4)

In fact, although the divisors xS for S ∈ R×
π are manifestly generators of the Chow ring A∗(�π ),

another generating set has more elegant intersection-theoretic properties (and has a natural geometric
interpretation explained in Section 6). Namely, for each S ∈ R×

π , we define

hS :=
∑

S′∩S�=∅

xS′ . (5)

These indeed generate A∗(�π ), as a result of the following lemma.

Lemma 2.8. For any S ∈ R×
π , one has

xS =
∑

U,T∈R×
π

U⊆T⊇S

(−1)|T|+|S|+|U|+1hU.

Proof. It is helpful to first express hS in terms of yet another generating set fS, defined by

fT :=
∑
Z⊇T

xZ (6)

for each T ∈ R×
π . Then

hS =
∑
T⊆S

(−1)|T|+1fT, (7)

as one sees from the following standard inclusion-exclusion argument. The right-hand side can be
expanded as ∑

i∈S
fi −

∑
i,j∈S

fij +
∑
i,j,k∈S

fijk − · · · + (−1)|S|fS. (8)

The first term of these sums is equal to ∑
i∈S
T�i

xT,

and while each of these xT’s appears in the definition of hS, those for which T contains two distinct
elements of S are double-counted. The second summand of (8) subtracts these, but this double-counts
those xT for which T contains three distinct elements of S, and so on.

Since any interval in the poset R×
π is isomorphic to an interval in the Boolean lattice, the Möbius

function of this poset is μ(T, S) = (−1)|T|+|S| for any S ⊆ T. Thus, the relation (7) can be inverted via
Möbius inversion (which is effectively inclusion-exclusion again) to yield

fS =
∑
T⊆S

(−1)|T|+1hT, (9)
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and by the same token, the relation (6) can be inverted to yield

xS =
∑
T⊇S

(−1)|T|+|S|fT. (10)

Combining these two equations gives

xS =
∑
T⊇S

(−1)|T|+|S|
(∑
U⊆T

(−1)|U|+1hU

)
,

which is precisely the statement of the lemma. �

Remark 2.9. It is occasionally convenient to allow that S = ∅, in which case we set x∅ = h∅ = 0.
However, we caution the reader that Lemma 2.8 does not hold for S = ∅.

3 Normal Complexes
Recall that Theorem B is a statement about the degree of the top power of a particular divisor on �π .
Such degrees have been related to the volumes of normal complexes introduced by Nathanson–Ross
[32]. In this section, we review the relevant background—in a slightly less general setting than the
framework of [32]—and study its application to the π-colored fan.

3.1 Background on normal complexes
Let N be a lattice and let � be a fan in the vector space NR := N ⊗ R. Assume that � is

• unimodular, meaning that every cone has generators that can be extended to a basis of N;
• pure of dimension n, meaning that all maximal cones are n-dimensional;
• tropical and balanced, meaning that there exists a linear degree map

∫
�
: An(�) → R such that∫

�
Xσ = 1 for each maximal cone σ of �, where Xσ is the product of the generators of A∗(�)

associated to the rays of σ . (The definition of tropical fan is generally stated in terms of the existence
of a weight function on the maximal cones of � under which a weighted balancing condition is
satisfied; see, for instance, [32, Section 2.7]. The requirement that � is balanced in our case means
that the weight function is identically 1, and it is a result of [1, Proposition 5.6] that this is equivalent
to the existence of a degree map as stated. It is worth noting that the definition of the balancing
condition in [1] and [32] is subtlely different from the condition used in some other sources such
as [25, equation (3)]: the former is stated in terms of primitive integral generators uσ\τ of rays σ \ τ ,
where σ is a maximal cone and τ ⊆ σ a codimension-one face, whereas the latter replaces uσ\τ with
a lattice point nσ ,τ whose image generates the quotientNσ /Nτ . The two definitions coincide when �

is unimodular, which is sufficient for our purposes; avoiding this subtlety is the reason we assume
� is unimodular in this subsection.)

Given such a fan, associated to any choice of inner product ∗ on NR and any divisor D ∈ A1(�)R, one
can define a normal complex by truncating each cone of � by affine hyperplanes normal to the rays;
here, the notion of normal is determined by ∗ and the distance of the hyperplanes from the origin is
determined by D. More precisely, the definition is as follows.

For each ray ρ of �, denote by uρ ∈ NR the primitive integral generator (i.e., the first nonzero element
of N that lies on ρ), which exists because � is unimodular. Denoting by {xρ | ρ ∈ �(1)} the generators of
A∗(�) associated to the rays of �, any divisor D ∈ A1(�)R can be expressed, not necessarily uniquely, as

D =
∑

ρ∈�(1)

aρxρ

for some aρ ∈ R. From here, associated to each cone σ ∈ �, one defines a polytope

Pσ ,∗(D) := {m ∈ σ | m ∗ uρ ≤ aρ for all ρ ∈ σ(1)} ⊆ NR, (11)

where σ(1) denotes the set of rays of σ .
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The normal complex of � associated to ∗ and D is the union of these polytopes as σ ranges over all
maximal cones. However, in order to ensure that these polytopes meet along faces—and therefore their
union forms a polytopal complex—one must impose the following compatibility condition on ∗ and D.

Definition 3.1. A divisor D on � is called pseudo-cubical with respect to the inner product ∗ if
the bounding hyperplanes of Pσ ,∗(D) meet within σ for all cones σ ; that is, for each σ ∈ � (not
necessarily maximal), we have

σ ∩ {m ∈ NR | m ∗ uρ = aρ for all ρ ∈ σ(1)} �= ∅.

The divisor D is cubical with respect to ∗ if

σ ◦ ∩ {m ∈ NR | m ∗ uρ = aρ for all ρ ∈ σ(1)} �= ∅

for all σ ∈ �, where σ ◦ denotes the interior of σ .

From here, one can define the normal complex precisely as follows.

Definition 3.2. The normal complex C�,∗(D) of � with respect to ∗ and D is the union

C�,∗(D) :=
⋃

σ∈�(n)

Pσ ,∗(D). (12)

It has the structure of a polytopal complex when D is pseudo-cubical.

We refer the reader to Section 3.2 for several examples of normal complexes in the specific context
relevant to the current work.

In the case where � is complete, the normal complex C�,∗(D) is the classical normal polytope
associated to D. Moreover, a fundamental result of toric geometry (see, e.g., [24, Corollary, p. 111]) states
that, when D is nef, the volume of its normal polytope is equal to the degree

∫
�
Dn. The main theorem

of [32] asserts that the analogous result is true when � is not necessarily complete, with the normal
complex now playing the role of the normal polytope.

To state the result precisely, care must be taken in how the volume is defined. Specifically, for each
σ ∈ �(n), let

Nσ := N ∩ span
R
(σ ),

and let

Mσ := N∨
σ = HomZ(Nσ ,Z).

These are lattices in different vector spaces, but the inner product ∗ allows one to view them both as
lattices in the same space span

R
(σ ). In this way, one can define the volume of any polytope in span

R
(σ )

by declaring

Volσ ,∗(any n -simplex unimodular with respect to Mσ ) = 1,

where unimodular means that the simplex is lattice-equivalent to the n-simplex with vertices at 0 and
the standard basis vectors. This definition of volume, in particular, allows us to define the volume of
the polytope Pσ ,∗(D) ⊆ span

R
(σ ), and adding these over each maximal cone defines the volume of the

normal complex:

Vol�,∗
(
C�,∗(D)

)
:=

∑
σ∈�(n)

Volσ ,∗
(
Pσ ,∗(D)

)
. (13)

The main theorem of [32], in the generality we will need, is the following.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/12/9743/7654041 by Princeton U
niversity user on 21 August 2024



9752 | E. Clader et al.

Theorem 3.3. [32, Theorem 6.3] Let � be a unimodular, pure n-dimensional, balanced tropical fan
in NR, let ∗ be an inner product on NR, and let D ∈ A1(�)R be a divisor that is pseudo-cubical
with respect to ∗. Then, ∫

�

Dn = Vol�,∗
(
C�,∗(D)

)
.

3.2 Application to the π-colored fan
We now specialize the previous subsection to the case in which � is the π-colored fan �π . In this case,
the lattice N is

Nπ := ZE1

ZeE1
× · · · × ZEn

ZeEn
,

so that Nπ
R
is as in (2). It is straightforward to see that �π is indeed unimodular and pure n-dimensional.

To see that it is a balanced tropical fan, one must verify the condition of [32, equation (2.16)] with
w(σ ) = 1: namely, for each chain C of length n − 1,∑

C ′∈MaxChain(Rπ )
σC ⊆σC ′

eC ′\C ∈ span
R
(σC ), (14)

where MaxChain(Rπ ) denotes the set of maximal chains and C ′ \ C is the unique colored set in the
chain C ′ that is not in the chain C . If the maximal element of C has size n, then we can write C = (S1 �

· · · � Ŝi � · · · � Sn) for some i ∈ [n], with |Sj| = j for all j ∈ [n] \ {i}. In this case, one sees that the sum in
(14) equals ∑

x∈Si+1\Si−1

eSi−1∪{x} = eSi−1 + eSi+1 ,

which indeed lies in span
R
(σC ). If the maximal element of C does not have size n, then the sum (14) is∑

j∈Ei ej for some i ∈ [n], which equals zero and therefore also lies in span
R
(σC ).

To apply the machinery of [32], we must now choose an inner product on Nπ
R
. To define the inner

product, recall that R
Ei denotes the image of REi in Nπ

R
. Choose an inner product ∗i on each R

Ei with

ej ∗i ej = 1,

for all j ∈ Ei, and set ∗ := ∗1 × · · · × ∗n.

Remark 3.4. There is a non-canonical isomorphism R
Ei ∼= R|Ei |−1 given by choosing a ∈ Ei and

sending {ej | j �= a} to the standard basis vectors, while sending ea to the vector (−1,−1, . . . ,−1).
We note that ∗i is not the standard inner product on R|Ei |−1 under this isomorphism unless
|Ei| = 2. For example, if Ei = {1, 2, 3} and we choose the isomorphism R

Ei ∼= R2 given by

e1 �→ (−1,−1), e2 �→ (1, 0), e3 �→ (0, 1),

then ∗i is not the standard inner product on R2 but can instead be taken to be

(x1, y1) ∗i (x2, y2) := x1x2 + y1y2 − 1
2

(x1y2 + x2y1).

This example can be generalized to all dimensions to give an explicit formula for ∗i.

Under this choice of inner product,we can describe the normal complex C�π ,∗(D) explicitly as follows.
First, note that by Definition 2.3, the maximal cones of �π are of the form σC in which C is a maximal
chain in Rπ , so we can rewrite (12) as

C�π ,∗(D) =
⋃

C∈MaxChain(Rπ )

PσC ,∗(D).
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Grouping these chains according to their maximal element, which is necessarily an element of Rmax
π ,

we have

C�π ,∗(D) =
⋃

T∈Rmax
π

⋃
C∈MaxChain(T)

PσC ,∗ (D), (15)

where MaxChain(T) is the subset of MaxChain(Rπ ) consisting of maximal chains with T as their
maximal element. Note, in this grouping, that all of polytopes PσC ,∗ (D) lie in the same subspace R

T ⊆ Nπ
R
.

Moreover, the volume functionsVolσC ,∗ for any C ∈ MaxChain(T) are all restrictions of the same volume

function on R
T
, which we now describe.

To do so, note that for any T ∈ Rmax
π , the fact that T is colored implies that R

T ∼= RT, and the fact that

it is maximal further implies that R
T
is isomorphic to Rn via a basis of the form

{ei | i ∈ T}. (16)

Now, let VolT be the volume function on Rn ∼= R
T
with

VolT(standard n -simplex) := 1, (17)

where the standard n-simplex refers to the convex hull of 0 and the standard basis vectors in Rn. Then
we have the following lemma.

Lemma 3.5. For any maximal cone σC of �π associated to a chain C ∈ MaxChain(T), the volume
function VolσC ,∗ on span

R
(σC ) ⊆ R

T
is the restriction of VolT.

Proof. Fix amaximal cone σC as in the statement of the lemma.Then the set (16) is both an orthonormal
basis of R

T
and a Z-basis of Nπ ∩ R

T
. It follows that the isomorphism Nπ

R
∼= (Nπ

R
)∨ given by ∗ identifies

the lattice Nπ
σC

with the lattice Mπ
σC

. Thus, under the isomorphism R
T ∼= Rn provided by this basis, the

standard n-simplex is unimodular with respect to Mπ
σC

= Nπ
σC

, and the lemma follows. �

Combining Lemma 3.5 with the definition of volume in (13), one sees that for any divisor D on �π ,
the volume of the normal complex C�π ,∗(D) is given by

Volπ (C�π ,∗(D)) :=
∑

T∈Rmax
π

VolT

⎛⎝ ⋃
C∈MaxChain(T)

PσC ,∗(D)

⎞⎠ . (18)

Let us illustrate this normal complex and its volume in some examples. We specifically consider
cases where the divisor D is

∑
S∈Rπ

hS, as this will play a key role in the proof of Theorem A below.

Example 3.6. As in Example 2.4, let E = {1, 1̄} � {2, 2̄} and consider the divisor D = ∑
S∈Rπ

hS. A
straightforward computation from the definition (5) of hS shows that D can be expanded as

D = 3
(
x{1} + x{1̄} + x{2} + x{2̄}

) + 5
(
x{1,2} + x{1̄,2} + x{1,2̄} + x{1̄,2̄}

)
. (19)

The normal complex C�π ,∗(D) is depicted in the leftmost part of Figure 3. Note that it is bounded
by hyperplanes normal to the eight rays, and that the normal hyperplanes to the rays of any
maximal cone σC meet in the interior of σC . This shows that D is cubical, and it illustrates
the reason for the terminology: the cubical condition ensures that PσC ,∗(D) is combinatorially
a cube.

There are four choices of T ∈ Rmax
π in this example, and the corresponding subspaces R

T ⊆ Nπ
R
are

the four quadrants in Figure 3. Each quadrant contains two polytopes PσC ,∗(D), corresponding
to the two choices of C ∈ MaxChain(T). The decomposition (18) then says that Volπ

(
C�π ,∗(D)

)
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Fig. 3. On the left, the normal complex C�π ,∗(D) from Example 3.6. In the middle, the polytope PσC ,∗(D) and its
bounding hyperplanes, where σC is the maximal cone associated with the chain C = ({1} ⊆ {1, 2}). On the right,
C�π ,∗(D) is subdivided into simplices, each of volume 1.

Fig. 4. On the left, the normal complex C�π ,∗(D) from Example 3.7. On the right, the polytope PσC ,∗(D) and its
bounding hyperplanes, where σC is the maximal cone associated with the chain C = ({a} ⊆ {1, a}). Note that the
intersection of the bounding hyperplanes lies on the boundary of σC .

is computed by assigning volume 1 to the standard n-simplex within each quadrant. From the
rightmost part of Figure 3 we deduce that the volume of C�π ,∗(D) is 68.

Example 3.7. By contrast to the previous example, the divisor D = ∑
S∈Rπ

hS is not necessarily
cubical if the partition is not uniform. For instance, as in Example 2.5, let E and its partition π

be defined by E = {a, b, c} � {1, 2}. Then the divisor D = ∑
S∈Rπ

hS can be expanded as

3(x{a} + x{b} + x{c}) + 4(x{1} + x{2}) + 6(x{1,a} + x{1,b} + x{1,c} + x{2,a} + x{2,b} + x{2,c}).

This divisor is pseudo-cubical but not cubical: the normal hyperplanes to the rays of the cone σC

on the right-hand part of Figure 4 meet on the boundary of σC .

For later reference, we describe the pseudo-cubical condition for the π-colored fan explicitly. To do
so, we express a divisor D ∈ A1(�π )R as a linear combination of the generators xS for S ∈ R×

π , in which
case we have the following lemma.

Lemma 3.8. Let

D =
∑
S∈R×

π

c(S)xS ∈ A1(�π )R

be such that c(S) ≥ 0 for all S. Then D is pseudo-cubical if and only if, for any maximal chain
C = (

S1 � · · · � Sn
)
of nonempty colored sets and for every i ∈ [n − 1] and j ∈ [n], the following

conditions hold:

2c(Si) ≥ c(Si−1) + c(Si+1) and c(Sj) ≥ c(Sj−1), (20)

where c(S0) = 0. Furthermore, D is cubical if and only if the inequalities are all strict.
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Proof. We first show that, for the π-colored fan, it suffices to check the cubicality condition of
Definition 3.1 on maximal cones. This follows from the observation that, for any maximal cone σ of
�π and any face τ ⊆ σ , the orthogonal projection of span

R
(σ ) onto span

R
(τ ) takes σ to τ and σ ◦ to τ ◦.

This is tedious but straightforward to check: first, by relabelling elements of E, we can assume that σ

is the cone associated with the maximal chain C = ({1} � {1, 2} � · · · � [n]) and that τ is the cone
associated to a chain (S1 � · · · � Sk), which is refined by C . For every i ∈ [k], we set Ti := Si \ Si−1, which
necessarily consists of consecutive integers. Then, since {eT1 , . . . eTk } is an orthogonal basis of span

R
(τ ),

the orthogonal projection of span
R
(σ ) onto span

R
(τ ) sends

�x = c1e1 + c2e{1,2} + · · · + cne[n] ∈ σ

to

k∑
i=1

�x ∗ eTi
|Ti| eTi =

k∑
i=1

⎛⎝ 1
|Ti|

∑
j∈Ti

(cj + cj+1 + · · · + cn) − 1
|Ti+1|

∑
j∈Ti+1

(cj + · · · + cn)

⎞⎠eSi .

Writing Ti = {� + 1, � + 2, . . . , � + a} and Ti+1 = {j + 1, j + 2, . . . , j + b} for � + a ≤ j, the coefficient of eSi in
the above summation is

a∑
x=1

x
a
c�+x +

j∑
y=�+a+1

cy +
b∑

z=1

(
1 − z

b

)
cj+z

This is manifestly non-negative whenever cj ≥ 0 for all j and positive whenever cj > 0 for all j. Therefore,
the orthogonal projection indeed sends σ to τ and σ ◦ to τ ◦.

Thus, to check that D is (pseudo-)cubical, one must only check the condition of Definition 3.1 on
each maximal cone of �π . These are of the form σC for a maximal chain C = (S1 � · · · � Sn), and the
pseudo-cubical condition is that

σC ∩
⎧⎨⎩ �x =

∑
i∈Sn

xiei ∈ R
Sn

∣∣∣∣∣∣ �x ∗ eS = c(S) for all S ∈ C

⎫⎬⎭ �= ∅, (21)

while the cubical condition is that these intersections all lie within σ ◦
C . Since the chain C is maximal,

for every i �= j ∈ Sn we have ei ∗ ej = δij. Thus, the n conditions �x ∗ eS = c(S) for S ∈ C yield the equations∑
i∈Sk

xi = c(Sk) for all k ∈ [n]

on the coordinates of �x. These equations determine �x, meaning that (21) consists of a single point.
Namely, if we order the elements of Sn = {j1, . . . , jn} by the condition that ji ∈ Ti for each i, then we have

�x =
n∑
i=1

(
c(Si) − c(Si−1)

)
eji .

This �x belongs to

σC = cone
(
ej1 , ej1 + ej2 , ej1 + ej2 + ej3 , . . . , ej1 + · · · + ejn

)
if and only if xji+1

≤ xji for every i ∈ [n − 1] and xj ≥ 0 for every j ∈ [n], and it belongs to σ ◦
C if and only if

these inequalities are all strict. This completes the proof. �

Example 3.9. One can use Lemma 3.8 to verify that the divisor D from Example 3.6 is cubical. For
instance, for the chain C = ({1} ⊆ {1, 2}), the relevant coefficients of D satisfy

2 · c({1}) = 2 · 3 > 0 + 5 = c(∅) + c({1, 2}) and c({1, 2}) = 5 > 3 = c({1}).
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On the other hand, one can also use Lemma 3.8 to verify that the divisor D from Example 3.7
is pseudo-cubical but not cubical. For instance, the chain C = ({a} ⊆ {1, a}) gives the equality
2 · 3 = 0 + 6.

Equipped with the explicit descriptions of the pseudo-cubical condition and the volume function
furnished by the previous two lemmas,we can restate the results of [32] for the π-colored fan as follows.

Corollary 3.10. Let D = ∑
S∈R×

π
c(S)xS ∈ A1(�π )R be such that c(S) ≥ 0 for all S. Assume that

D is pseudo-cubical with respect to ∗, or equivalently, that the coefficients c(S) satisfy the
inequalities (20) for all maximal chains C of colored sets. Then∫

�π

Dn = Volπ
(
C�π ,∗(D)

)
in which Volπ is defined by (18).

In order to use Corollary 3.10 to prove Theorem 5.1, we must now specialize to the case D = DM for a
multimatroid M. For this, we turn in the next section to giving the requisite preliminary definitions on
multimatroids.

4 Multimatroids
We begin this section by introducing the concept of an R-multimatroid, which can be seen as a
generalization of the multimatroids introduced in [10, Section 3]. As explained in the introduction, the
motivation for this extension is that it allows us to extend the equality of Corollary 3.10 to settingswhere
the divisor D = DM is not necessarily cubical. Throughout, we assume that the data of (E,π) is fixed.

4.1 Definition of R-multimatroids
First, we recall the definition of multimatroid from [10].

Definition 4.1. Amultimatroid M on (E,π) is a rank function rk : Rπ → N satisfying the following
conditions:

(BR1) rk(∅) = 0;
(BR2) (monotonicity and boundedness) for any S ∈ Rπ and any x ∈ Ei such that Ei ∩ S = ∅,

rk(S) ≤ rk(S ∪ {x}) ≤ rk(S) + 1;

(BR3) (submodularity) for any S,T ∈ Rπ with S ∪ T ∈ Rπ ,

rk(S ∪ T) + rk(S ∩ T) ≤ rk(S) + rk(T);

(BR4) for any S ∈ Rπ and any pair {x, y} ⊆ Ei such that Ei ∩ S = ∅, either rk(S ∪ {x}) − rk(S) = 1 or
rk(S ∪ {y}) − rk(S) = 1.

If (E,π) is uniform with |Ei| = r for each i, then M is referred to as an r-matroid.

One can always define a multimatroid on (E,π) by setting rk(S) = |S| for all S ∈ Rπ ; this is referred
to as the Boolean multimatroid. For a somewhat more motivated class of examples—which, in fact,
was one of the original reasons for the definition of multimatroids—one can consider the collection
of vertex splitters of the medial graph of an embedded (or, more generally, 4-regular) graph; this is the
main subject of [19].

The generalization of the concept of multimatroid that we require allows the rank function to be
R-valued and removes the boundedness condition from (BR2) for the two reasons stated at the end of
the introduction, so our notion might be called a weak R-multimatroid in the language of [4]. We also
remove condition (BR4), since that condition is not needed for any of our results, so our notion might
be called a weak poly-R-multimatroid in the language of [18]. (We refer to [10, Remark, page 633] for a
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comment about (BR4). It is worth noting that, although Bouchet originally viewed the structure defined
by (BR1)-(BR3) as “too weak to be interesting,” our results show that one can indeed prove interesting
results without imposing (BR4).) To avoid this proliferation of qualifiers, we simply refer to our concept
as an R-multimatroid, and we define it precisely as follows.

Definition 4.2. An R-multimatroid M on (E,π) is a rank function rk : Rπ → R satisfying

(R1) rk(∅) = 0;
(R2) (monotonicity) for any S,T ∈ Rπ with S ⊆ T, one has rk(S) ≤ rk(T); and
(R3) (submodularity) for any S,T ∈ Rπ with S ∪ T ∈ Rπ ,

rk(S ∪ T) + rk(S ∩ T) ≤ rk(S) + rk(T).

Example 4.3. Let E = {1, 1̄} � {2, 2̄}. Then one can define an R-multimatroid on E by

rk(∅) = 0;

rk({1}) = rk({1̄}) = rk({2}) = rk({2̄}) = rk({1̄, 2}) = rk({1, 2̄}) = 1;

rk({1, 2}) = rk({1̄, 2̄}) = 2.

In fact, this example is a multimatroid, as one can check from Definition 4.1.

Example 4.4. Let E = {1, 1̄} � {2, 2̄}. Then one can define an R-multimatroid on E by

rk(∅) = 0;

rk(1) = rk(1̄) = 5;

rk(2) = rk(2̄) = 4;

rk({1, 2}) = rk({1̄, 2}) = rk({1, 2̄}) = rk({1̄, 2̄}) = 6.

This is not a multimatroid because it does not satisfy the boundedness condition in (BR2).

Remark 4.5. One advantage of the additional constraints in Definition 4.1 is that they allow one
to alternatively describe multimatroids via their associated collection of independent sets,
bases, or circuits, in the same way that matroids are often described. It would be interesting to
determine whether R-multimatroids can analogously be described via their independent sets,
bases, or circuits, but we currently do not know of such a description.

By identifying each R-multimatroid with its rank function, one can define a topological space of
R-multimatroids as follows.

Definition 4.6. The space of R-multimatroids on (E,π), denoted M = M(E,π), is the subset of the
set of functions Rπ → R satisfying the conditions of Definition 4.2. Identifying the function
space with RRπ and giving it the usual Euclidean topology, we have an embedding

M ⊆ RR×
π

in which M is a closed, full-dimensional, connected subspace. To see this, note that axiom (R1) of
Definition 4.2 ensures that M ⊆ RR×

π . Inequalities (R2) and (R3) describe M as an intersection
of closed half-spaces, so M is closed and convex (in particular, connected). The fact that it is
full-dimensional follows from Lemma 4.20.

As mentioned in the introduction, a key feature of multimatroids is that their restriction to any
colored set yields a matroid, so a multimatroid can in some sense be viewed as a way of patching
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together a collection of ordinary matroids. More precisely, if rk defines a multimatroid and S ∈ Rπ , then
every subset of S is also an element of Rπ , so one can define a rank function on the power set P(S) by
the restriction of rk, and it is straightforward to verify from conditions (BR1) – (BR3) that rk|P(S) defines
a matroid on the ground set S (the axiom (BR4) is irrelevant for this purpose).

A similar story holds for R-multimatroids, but the restrictions are the following weakening of
matroids; these are essentially the same as polymatroids [18], but with real-valued rather than integer-
valued rank function.

Definition 4.7. An R-matroid is a function rk: P(S) → R on the power set P(S) satisfying

(M1) rk(∅) = 0;
(M2) rk(X) ≤ rk(Y) whenever X ⊆ Y;
(M3) for every X,Y ∈ P(S), rk(X ∪ Y) + rk(X ∩ Y) ≤ rk(X) + rk(Y).

Comparing the conditions (R1), (R2) and (R3) of Definition 4.2 with (M1), (M2) and (M3) above, one
sees that the following definition indeed yields an R-matroid.

Definition 4.8. For an R-multimatroid M and S ∈ Rπ , the restriction of M to S is the R-matroid
M(S) given by restricting the rank function of M to subsets of S.

4.2 Independence polytopal complexes
We now introduce the analogue for multimatroids and R-multimatroids of the independence polytope
of a matroid. Carrying forth the philosophy that a multimatroid M is a way of patching together a
collection of matroids M(S), we form the independence polytopal complex of M by patching together
the independence polytopes of the matroids M(S). This same idea holds for R-multimatroids, but in
this case the components M(S) are only R-matroids, so care must be taken in how their independence
polytopes are defined.

Definition 4.9. The independence polytope of an R-matroid M(S) is the polytope

IP(M(S)) :=
{∑

i∈S
xiei ∈ R

S
≥0

∣∣∣∣∣ ∑
i∈X

xi ≤ rk(X) for all X ⊆ S

}
⊆ R

S
≥0 ⊆ Nπ

R
. (22)

Remark 4.10. If M(S) is an honest matroid and not merely an R-matroid, then one defines the
independent sets of M(S) as those subsets I ⊆ S such that rk(I) = |I|. In this situation, [2,
equation (4)] show that the independence polytope of M(S) is given by

IP(M(S)) = conv{eI | I ⊆ S an independent set},

which explains its name. However, when M(S) is R-valued, there is not, to our knowledge, a good
notion of independent sets (as discussed in Remark 4.5), so we do not know of a convenient
description of IP(M(S)) as a convex hull.

Gluing the polytopes M(S) across all colored subsets S ∈ Rπ , one obtains the following.

Definition 4.11. The independence polytopal complex of an R-multimatroid M is the union

IPC(M) :=
⋃

S∈Rπ

IP(M(S)).

Remark 4.12. The fact that IPC(M) forms a polytopal complex follows from the observation that,
for any S1, S2 ∈ Rπ with S1 ∩ S2 �= ∅, one has

IP(M(S1)) ∩ IP(M(S2)) = IP(M(S1 ∩ S2))
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Fig. 5. The independence polytopal complex of the multimatroid M of Example 4.3.

Fig. 6. The independence polytopal complex of the multimatroid M of Example 4.4.

by axiom (R2), and therefore this intersection is a face of each of the two independence polytopes
on the left-hand side. This furthermore shows that

IPC(M) =
⋃

T∈Rmax
π

IP(M(T)) (23)

since for every S ⊆ T we have IP(M(S)) ⊆ IP(M(T)).

Example 4.13. For the multimatroidM as in Example 4.3, IPC(M) can be realized as the polytopal
complex in R2 depicted in Figure 5.

Example 4.14. For the R-multimatroid M as in Example 4.4, the complex IPC(M) is depicted in
Figure 6.

Remark 4.15. Analogously to the observation in Remark 2.6 that �π can be viewed as a union of
copies of the n-dimensional affine permutohedral fan, with one copy associated to each T ∈
Rmax

π , equation (23) shows that IPC(M) can be viewed as a union of independence polytopes of
matroids on size-n ground sets, with onematroid associated to each T ∈ Rmax

π . This parallelism
is no accident: we will see in Lemma 5.2 that, under a certain condition on M, the polytopal
complex IPC(M) is a normal complex of �π .

In the same way that the volume of a normal complex C�π ,∗(D) was given in (18) as the sum over
volumes of its components in each R

T
, we define the volume of IPC(M) as the sum

Vol(IPC(M)) :=
∑

T∈Rmax
π

VolT(IP(M(T))), (24)

where the volume VolT on R
T
is defined by (17). One key property of this volume function that will play

a crucial role below is the following.
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Lemma 4.16. The volume function

Vol : M → R

Vol(M) = Vol(IPC(M))

is a polynomial function on M ⊆ RRπ .

Proof. It is enough to show that, for every T ∈ Rmax
π , the expression VolT(IP(M(T))) is a polynomial in

{rk(S)}∅�=S⊆T. This follows by applying [16, Theorem 13.4.4] to the stellahedral fan, for which the nef
divisors correspond to the monotone submodular rank functions by [21, Proposition 3.13]. �

4.3 Divisor associated to a multimatroid
Having fully defined the objects appearing on the right-hand side of Theorem B, we now turn to the
left-hand side, describing how an R-multimatroid M defines a divisor DM on �π . In particular, using the
notation of Section 2.2, we set

DM :=
∑
S∈Rπ

rk(S)xS. (25)

We say that an R-multimatroid is pseudo-cubical if DM is a pseudo-cubical divisor on �π under the
inner product described in Section 3.2. By Lemma 3.8, this is equivalent to the condition that, for every
maximal chain C = (S1 � · · · � Sn) of nonempty colored sets, we have

2rk(Si) ≥ rk(Si−1) + rk(Si+1) and rk(Sj) ≥ rk(Sj−1) (26)

for each i ∈ [n − 1] and j ∈ [n], where rk(S0) = 0. Similarly, an R-multimatroid M is cubical if DM is a
cubical divisor, which is equivalent to the condition that the inequalities (26) are all strict.

It is straightforward to check from the conditions (26) that the Boolean multimatroid is pseudo-
cubical for any (E,π). The following examples illustrate the behavior of DM in some somewhat more
interesting cases.

Example 4.17. For M as in Example 4.3, we have

DM = 2
(
x{1,2} + x{1̄,2̄}

) + 1
(
x{1,2̄} + x{1̄,2} + x{1} + x{1̄} + x{2} + x{2̄}

)
.

This is a pseudo-cubical but not cubical multimatroid, since, for instance, the chain

C = ({1} ⊆ {1, 2})

yields the equality 2 · 1 = 0 + 2.

Example 4.18. For M as in Example 4.4, we have

DM = 4
(
x{1} + x{1̄}

) + 5
(
x{2} + x{2̄}

) + 6
(
x{1,2} + x{1̄,2} + x{1,2̄} + x{1̄,2̄}

)
.

This is a cubical R-multimatroid; for instance, the chain

C = ({1} ⊆ {1, 2})

yields the inequality 2 · 4 > 0 + 6, and the chain

C = ({2} ⊆ {1, 2})

yields the inequality 2 · 5 > 0 + 6.

Interestingly, the pseudo-cubical condition on DM in fact implies the R-multimatroid axioms. This
observation is useful in what follows, so we prove it in the following lemma.
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Lemma 4.19. For any function rk : Rπ → R such that rk(∅) = 0, if the divisor
∑

S∈Rπ
rk(S)xS is

pseudo-cubical, then rk defines an R-multimatroid.

Proof. The second inequality of (26) clearly implies the monotonicity axiom (R2).We now show that the
submodularity axiom (R3) is implied by the first inequality of (26).

For every I ∈ Rπ , and for every x, y ∈ E \ I such that I ∪ {x, y} ∈ Rπ , applying (26) gives

2rk(I ∪ {x}) ≥ rk(I) + rk(I ∪ {x, y}) and 2rk(I ∪ {y}) ≥ rk(I) + rk(I ∪ {x, y}),

so we obtain

rk(I ∪ {x}) + rk(I ∪ {y}) ≥ rk(I) + rk(I ∪ {x, y}). (27)

This shows that axiom (R3) holds when |S ∪ T| = |S| + 1 = |T| + 1, by setting I = S ∩ T. It is known that
the validity of (R3) in such cases implies its validity in full generality [34, Theorem 44.1]. For the sake of
self-containment, we include a proof below.

Again setting I = S ∩ T, denote S = I ∪ {s1, . . . , sk} and T = I ∪ {t1, . . . , t�}. Then, for every 0 ≤ a ≤ k and
0 ≤ b ≤ �, define the set

Xa,b := I ∪ {s1, . . . , sa, t1, . . . , tb} ∈ Rπ ,

where Xk,0 := S, X0,� := T, and X0,0 := I. Then (27) yields

rk(Xa,b−1) + rk(Xa−1,b) ≥ rk(Xa−1,b−1) + rk(Xa,b)

for all a ∈ [k] and b ∈ [�]. Taking the sum over all such a and b, we obtain the inequality

rk(S) + rk(T) = rk(Xk,0) + rk(X0,�) ≥ rk(X0,0) + rk(Xk,�) = rk(S ∩ T) + rk(S ∪ T),

which shows that (R3) holds and thus concludes the proof. �

Now, in the topological space M of R-multimatroids defined in Section 4.6, define the subset

Then we have the following key properties.

Lemma 4.20. The space is a nonempty, open subset of RR×
π . In particular, M has nonempty

interior and is therefore a full-dimensional subset of RR×
π .

Proof. The conditions (26) with strict inequalities manifestly define as an open subset of RR×
π . We

are left to show that is nonempty. To do so,we define a specific cubicalR-multimatroidM by setting

rk(S) :=
(
n + 1
2

)
−

(
n + 1 − |S|

2

)
(28)

for each S ∈ Rπ . It is straightforward to see that the inequalities (26) hold and therefore M is cubical. By
Lemma 4.19, it follows that M is an R-multimatroid, so M ∈ . �

Remark 4.21. The fact that (28) defines an R-multimatroid and not an ordinary multimatroid
is one of the key reasons why we require the generalization from multimatroids to R-
multimatroids in this work. In fact, if n ≥ 3, then no (E,π) can admit a cubical multimatroid.
To see this, let M be a multimatroid on (E,π) with n ≥ 3, so that, for every maximal chain
C = (S1 � · · · � Sn) in R×

π , one has rk(Si) ∈ N and rk(Si) ≤ rk(Si+1) ≤ rk(Si) + 1 for every
i ∈ [n − 1]. The inequalities (26) show that M can only be cubical if

(i) 2rk(S1) > rk(S2) and (ii) 2rk(S2) > rk(S1) + rk(S3).
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Condition (i) implies that rk(S1) �= 0 and so necessarily rk(S1) = 1. This implies that rk(S2) = 1 and
so rk(S3) ∈ {1, 2}. None of these options is compatible with condition (ii), and so M cannot be
cubical.

At this point,we have all the ingredients necessary to prove Theorem B, so we turn in the next section
to its proof and then, in turn, to the deduction of Theorem A.

5 Proofs of Main Theorems
While Theorem B was stated in the introduction as a statement about multimatroids, we in fact prove
it for all R-multimatroids. The statement is as follows.

Theorem 5.1. For any R-multimatroid M on (E,π),∫
�π

(DM)n = Vol(IPC(M)). (29)

5.1 Proof of Theorem 5.1
When M is pseudo-cubical, Theorem 5.1 can be deduced from what we have already done, so we begin
with this case.

Lemma 5.2. Let M be a pseudo-cubical R-multimatroid. Then

C�π ,∗(DM) = IPC(M), (30)

and furthermore, their volumes agree in the sense that

Volπ (C�π ,∗(DM)) = Vol(IPC(M)), (31)

where the left-hand side is defined by (18) and the right-hand side by (24). In particular, combining
(31) with Corollary 3.10, it follows that Theorem 5.1 holds when M is pseudo-cubical.

Proof. As noted in (15), we have

C�π ,∗(DM) =
⋃

T∈Rmax
π

⋃
C∈MaxChain(T)

PσC ,∗ (DM),

where MaxChain(T) again denotes the set of maximal chains C = (S1 � · · · � Sn) of colored sets with
Sn = T. Expanding the definition of PσC ,∗ (DM) as in (11) we obtain

PσC ,∗(DM) = {�x ∈ σC | �x ∗ eS ≤ rk(S) for all S ∈ C
}
.

We claim, in fact, that

PσC ,∗(DM) = {�x ∈ σC | �x ∗ eS ≤ rk(S) for all S ⊆ T}.

Because the proof of this claim is somewhat cumbersome, we relegate it to Lemma 5.3 below. Assuming
it, and writing �x ∈ σC in terms of the orthonormal basis {ei}i∈T for R

T
, we find

⋃
C∈MaxChain(T)

PσC ,∗(DM) =
{∑

i∈T
xiei ∈ R

T
≥0

∣∣∣∣∣ ∑
i∈S

xi ≤ rk(S) for all S ⊆ T

}
. (32)

In view of (22), we conclude that (32) coincides with IP(M(T)), so taking the union over T ∈ Rmax
π we see

that the equality (30) holds. The fact that the notions of volume agree is the content of equations (18)
and (24), so (31) holds, as well. �
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Lemma 5.3. Let M be a pseudo-cubical R-multimatroid. Then

PσC ,∗(DM) = {�x ∈ σC | �x ∗ eS ≤ rk(S) for all S ⊆ T}

for any T ∈ Rmax
π and any C ∈ MaxChain(T).

Proof. Fix T ∈ Rmax
π and C ∈ MaxChain(T). Up to relabeling, we can write T = [n] and

C = ([1] � [2] � · · · � [n]).

Now, let �x ∈ PσC ,∗(DM). By definition, this means that �x ∈ σC = cone(e[1],e[2] . . . ,e[n]), so

�x = a1e[1] + · · · + ane[n] = (a1 + · · · + an)e1 + (a2 + · · · + an)e2 + · · · + anen

for some a1, . . . , an ≥ 0. Equivalently, �x = c1e1 + · · · + cnen for some c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. The defining
inequalities of PσC ,∗(DM) then imply that ∑

i∈S
ci ≤ rk(S) (33)

whenever S = [j] for some j ∈ [n], and what we must prove is that the same is true for all S ⊆ [n].
To prove this, we define a pair of functions

f : P([n]) → P([n]) and g : P([n]) → P([n])

on the power set P([n]) by setting f ([j]) = g([j]) = [j] for each j ∈ [n], and setting

f (S) = S ∪ {aS} and g(S) = S \ {bS}

for any S that is not of this form, where aS and bS are defined by

aS := min{i ∈ [n] | i /∈ S}, bS := min{i ∈ S | i > aS}.

We first claim that, if (33) holds for f (S) and g(S), then it also holds for S. This is trivially true when S = [j]
for some j, so we prove it in the case where S is not of this form. The assumption that (33) holds for f (S)
means that caS + ∑

i∈S ci ≤ rk(f (S)). Since aS < bS and therefore caS ≥ cbS , it follows that

cbS +
∑
i∈S

ci ≤ rk(f (S)). (34)

On the other hand, the assumption that (33) holds for g(S) means that

− cbS +
∑
i∈S

ci ≤ rk(g(S)). (35)

Adding (34) and (35) yields

2
∑
i∈S

ci ≤ rk(f (S)) + rk(g(S)) ≤ 2rk(S),

where the second inequality follows by applying the pseudo-cubicality condition (26) to any maximal
chain containing g(S) � S � f (S). This shows that (33) holds for S, as claimed.

From here, we prove that (33) holds for all S ⊆ [n] by descending induction, first on aS and then on
bS. Note that it suffices to prove the claim when S is not of the form [j] for any j ∈ [n], since it holds
by assumption when S is of this form. The base case of the first induction is the case aS = n − 1. Then
f (S) = [n] and g(S) = [n − 2], so (33) holds for both of these and therefore holds for S. Suppose, then,
that (33) holds for all S′ ⊆ [n] with aS′ > k, and let S be such that aS = k. We now introduce the second
induction, a descending induction on bS.
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Fig. 7. The polytope IP(M(T)) for M as in (28) and any T ∈ Rmax
π , with one of the maximal cones of �π shaded.

The base case is bS = n. In this case, f (S) has af (S) > k, so (33) holds for f (S) by the first inductive
hypothesis, whereas g(S) = [k − 1], so (33) holds for g(S) by assumption. Therefore, (33) holds for S,
completing the base case. Finally, suppose that (33) holds for all S′′ ⊆ [n] with bS′′ > �, and let S be such
that bS = �. Then f (S) has af (S) > k and g(S) has bg(S) > �, so (33) holds for both of these by the two
inductive hypotheses. This implies that (33) holds for S, completing the proof. �

Remark 5.4. Lemma 5.3 shows that the fan �π satisfies the global condition of [32, equation (2.9)].

Remark 5.5. We note that the pseudo-cubical condition is critical in order for Lemmas 5.2 and 5.3
to hold.One indication of this, as pointed out in Remark 4.12, is that IPC(M) is always a polytopal
complex,whereas C�π ,∗(DM) is not necessarily a polytopal complex unlessM is pseudo-cubical.

For a specific example, consider the R-multimatroid M on E = {1} � {2} defined by

rk({1}) = 2, rk({2}) = 1, rk({1, 2}) = 3.

The figure below illustrates C�π ,∗(DM) on the left and IPC(M) on the right.

Note that in the cone σC corresponding to C = ({1} ⊆ {1, 2}), the purple shaded polytope PσC ,∗(DM)

on the left is bounded only by the two hyperplanes normal to the two incident rays. On the
other hand, IPC(M) is bounded by all three hyperplanes normal to the rays in R

T
≥0. Thus, we

see that C�π ,∗(DM) �= IPC(M) in this example, and moreover, that Lemma 5.3 fails: imposing the
defining equalities �x ∗ eS ≤ rk(S) on each maximal cone separately (which defines C�π ,∗(DM))
does not coincide with imposing them simultaneously on all of RT

≥0 (which defnes IPC(M)).

To illustrate Lemma 5.2 in the pseudo-cubical case, it is illuminating to look back at Examples 4.13
and 4.14. In particular, one can see visually that the independence polytopal complexes in both of these
examples are normal complexes of the fan �π illustrated in Figure 1, and that Example 4.14 is cubical
while Example 4.13 is not; this is consistent with the computations of Examples 4.17 and 4.18. To see
the same phenomenon in higher dimension, we turn to the following example.

Example 5.6. Suppose that n = 3, and let M be the cubical R-matroid defined by (28). Then, for
any T ∈ Rmax

π , the independence polytope IP(M(T)) is the polytope illustrated in Figure 7. In
particular, note that each maximal cone of �π contains exactly one vertex of the complex,
which is consistent with the claim that IPC(M) is a normal complex of �π associated to a
cubical divisor.
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Having proven Theorem 5.1 in the pseudo-cubical case, the general case follows almost immediately
by polynomiality considerations.

Proof of Theorem 5.1. Letting M vary in M , both sides of the theorem can be viewed as functions on
M—that is, functions on the parameters

(
rk(S)

)
S∈R×

π
. The left-hand side is manifestly polynomial in

these parameters, and the right-hand side is polynomial as well by Lemma 4.16. Lemma 5.2 shows that
the theorem holds when M is pseudo-cubical, so it in particular holds when M is cubical. Therefore,
the two sides of Theorem 5.1 agree on the subset ⊆ M , which is nonempty and open by Lemma 4.20.
Polynomiality then implies that they agree on all of M , proving the result. �

The proof of Theorem 5.1 shows that it can actually be seen as an identity between polynomials
functions in the parameters

(
rk(S)

)
S∈R×

π
on the space R

R×
π

≥0 . For values of these parameters that do not
necessarily define an R-multimatroid, the left-hand side of the theorem manifestly still makes sense;
as for the right-hand side, note that (23) can be taken as the definition of IPC(M), and while it may
not be a polytopal complex for values of

(
rk(S)

)
S∈R×

π
that do not satisfy the R-multimatroid axioms, it

is nevertheless a union of polytopes with finite volume. In the following subsection, we rephrase this
equality of polynomials in a different basis for RR×

π , which is what will ultimately allow us to deduce
Theorem A.

5.2 An alternative formulation
Recall from (5) that there is an alternative set of generators hS for A∗(�π ), and the divisors xS can be
expressed in terms of the divisors hS via Lemma 2.8. Thus, we can rewrite

DM =
∑
S∈R×

π

aShS (36)

for coefficients �a = (aS)S∈R×
π
. In particular, the left-hand side of Theorem 5.1 is equal to the value at this

particular choice of �a of the polynomial

I(�a) :=
∫

�π

⎛⎝ ∑
S∈R×

π

aShS

⎞⎠n

.

The right-hand side of Theorem 5.1 can also be expressed as a value of a polynomial in �a, and this
polynomial turns out to have a very nice description. To state this description, for any T ∈ Rmax

π and
any S ⊆ T, define the simplex


T
S := conv

(
{0} ∪ {ej | j ∈ S}

)
⊆ R

T
.

Then the intersection of IPC(M) with R
T
can be expressed as a Minkowski sum of these simplices, as the

following proposition verifies.

Proposition 5.7. Let M be an R-multimatroid. Then

Vol(IPC(M)) =
∑

T∈Rmax
π

VolT

⎛⎝ ∑
S∈R×

π

aS
T
S∩T

⎞⎠ ,

where the sum denotes the Minkowski sum of polytopes and the coefficients �a = (aS)S∈R×
π
are

defined by (36).

Before proving the proposition, we illustrate it in some examples.

Example 5.8. Consider the R-multimatroid in Example 4.4, whose independence polytopal com-
plex is illustrated in Example 4.13. Via the change of coordinates from {xS} to {hS} in Lemma 2.8,
we obtain

DM = h12̄ + h1̄2,
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so a12̄ = a1̄2 = 1 and aS = 0 for all other S ∈ R×
π . Thus, taking T = {1, 2} on the right-hand side of

Corollary 5.7, one obtains the following Minkowski sum of polytopes:

1
T
{1,2̄}∩{1,2} + 1
T

{1̄,2}∩{1,2} = 1
T
{1} + 1
T

{2}.

The contribution to the proposition from this T then follows from the equality

IPC(M({1, 2})) = 1
T
{1} + 1
T

{2},

which can be seen from Example 4.13 because IPC(M({1, 2})) is a square with vertices at 0, e1,
e2, and e1 + e2. On the other hand, a similar computation shows that the contribution to the
proposition from T = {1̄, 2} is

IPC(M({1̄, 2})) = 1
T
{1̄,2},

which can again be seen from Example 4.13 because IPC(M({1̄, 2})) is the standard simplex in its
quadrant.

Example 5.9. Now consider the R-multimatroid in Example 4.4, whose independence polytopal
complex is illustrated in Example 4.14. Again applying Lemma 2.8, we find

DM = −1
(
h1 + h1̄

) − 2
(
h2 + h2̄

) + 3
(
h{1,2} + h{1̄,2} + h{1,2̄} + h{1̄,2̄}

)
.

Hence, the Minkowski sum of polytopes on the right-hand sum of Proposition 5.7 for T = {1, 2} is

− 1
T
{1}∩{1,2} − 2
T

{2}∩{1,2} + 3
T
{1,2̄}∩{1,2} + 3
T

{1̄,2}∩{1,2} + 3
T
{1,2}

= − 1
T
{1} − 2
T

{2} + 3
T
{1} + 3
T

{2} + 3
T
{1,2}

= 2
T
{1} + 1
T

{2} + 3
T
{1,2}.

Thus, the statement of the proposition for T = {1, 2} is that

IP(M({1, 2})) = 2
T
{1} + 1
T

{2} + 3
T
{1,2},

which one indeed sees is the case from the figure below.

A similar decomposition applies in this example for all other T ∈ Rmax
π .

Equipped with the intuition of these examples, we are prepared to prove the proposition in general.

Proof of Proposition 5.7. By the definition of Vol(IPC(M)) in (24), it suffices to prove that, for any T ∈
Rmax

π , one has

IP(M(T)) =
∑
S∈R×

π

aS
T
S∩T. (37)
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This follows from the computation of the independence polytope of a matroid as a Minkowski sum of
simplices given in [2]. Before stating their result,we require some notation.Note, either using Lemma 2.8
or through [2], that the free module Z[{xS}S⊆T] is isomorphic to Z[{hTS}S⊆T], where

hTS :=
∑
S′⊆T

S∩S′ �=∅

xS′ .

Thus, one can write

DM(T) :=
∑
S⊆T

rk(S)xS =
∑
S⊆T

aTSh
T
S

for uniquely defined aTS ∈ Z. In fact, [2, Proposition 4.3] shows that

IP(M(T)) =
∑
S⊆T

aTS

T
S , (38)

so the content of the proof of (37) is relating the coefficients aTS to the coefficients aS. We can unpack
this relationship using the commutative diagram

where the upper horizontal arrow is hS �→ hTS∩T and the lower horizontal arrow is

xS �→
⎧⎨⎩xS if S ⊆ T

0 otherwise.

In particular, applying the commutativity of this diagram to
∑

S∈R×
π
aShS shows that

∑
S⊆T

rk(S)xS =
∑
S∈R×

π

aShTS∩T.

Rewriting the right-hand side slightly gives

∑
S⊆T

rk(S)xS =
∑
S⊆T

⎛⎜⎜⎝ ∑
S′∈R×

π

S′∩T=S

aS′

⎞⎟⎟⎠ hTS ,

from which we deduce

aTS =
∑

S′∈R×
π

S′∩T=S

aS′ .

Combining this with (38) shows (37) and thus completes the proof. �
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In light of Proposition 5.7, we define the polynomial

V(�a) :=
∑

T∈Rmax
π

VolT

⎛⎝ ∑
S∈R×

π

aS
T
S∩T

⎞⎠

in the parameters �a. The equality of Theorem 5.1, when translated into these parameters, now becomes
the following.

Theorem 5.10. Theorem 5.1 is equivalent to the equality of polynomials I(�a) = V(�a).

Proof. As above, fix an R-multimatroid M and write DM = ∑
S∈R×

π
aShS. Then the left-hand side of (29)

is equal to I(�a) by definition, and Proposition 5.7 shows that the right-hand side of (29) is equal to V(�a).
In particular, Theorem 5.1 is equivalent to the statement that I(�a) = V(�a) on M , the subset of RR×

π

consisting of values of the parameters �a that define an R-multimatroid. Since both sides are polynomial
and M contains an open subset of RR×

π , this is equivalent to the corresponding equality on the entirety
of RR×

π . �

5.3 Proof of Theorem A
Having re-expressed Theorem 5.1 as an equality of polynomials in this way, it follows that the coefficient
of anymonomial in I(�a) agrees with the corresponding coefficient in V(�a). The coefficient of amonomial
in I(�a) is, by definition, an integral of a monomial in the hS’s. On the other hand, the coefficient of the
correspondingmonomial inV(�a) is themixed volume of certain simplices, for which a previously-known
formula is recorded as the following lemma.

Lemma 5.11. For a subset S ⊆ [n], define 
S ⊆ Rn as the convex hull of {0} ∪ {ei | i ∈ S}. Then, for
subsets S1, . . . , Sn of [n] (with repetitions allowed), the mixed volume MV of the corresponding
simplices is given by

MV(
S1 , . . . ,
Sn ) =
⎧⎨⎩1 there exists a bijection ι : [n] → [n] such that ι(i) ∈ Si for each i

0 otherwise.

Proof. Standard results in toric geometry translate mixed volumes to intersection numbers of nef
divisors [24, Chapter 5.4]. Applying this to polystellahedral fans, as done in [22, Section 2.2], one finds
that the lemma is a restatement of [22, Theorem 1.3 and Lemma 5.2]. One can also deduce the lemma
from [33, Theorem 5.1] or from [20, Theorem A(b)]. �

We are now ready to prove Theorem A, whose statement we recall for convenience.
Theorem A. For any collection S1, . . . , Sn ∈ Rπ (with repetitions allowed), we have∫

�π

hS1 · · · hSn = |Tπ (S1, . . . , Sn)|, (A)

where

Tπ (S1, . . . , Sn) :=
{
T ∈ Rmax

π

∣∣∣∣∣ there exists a bijection ι : [n] → T
with ι(i) ∈ Si for each i

}
.

Proof. The left-hand side of (A) is the coefficient of the monomial aS1 · · · aSn in the polynomial I(�a). The
coefficient of the same monomial in V(�a) is, by definition, the sum of mixed volumes

∑
T∈Rmax

π

MV
(

T

S1∩T, . . . ,

T
Sn∩T

)
.
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For each T ∈ Rmax
π , Lemma 5.11 states that

MV
(

T

S1∩T, . . . ,

T
Sn∩T

) =
⎧⎨⎩1 if T ∈ Tπ (S1, . . . , Sn)

0 otherwise,

so the coefficient of aS1 · · · aSn in V(�a) is precisely the right-hand side of (A). Thus, the two sides agree by
Theorem 5.1 and Theorem 5.10. �

6 Intersection Numbers of psi-Classes
One way in which to understand the special role played by the generators hS in the Chow ring of �π is
to look more closely at the uniform case, in which case �π is the fan �r

n studied in [14]. In this section,
we prove that the generators hS in the uniform case are pullbacks of psi-classes under certain forgetful
morphisms, analogously to the results of [17] for the case of Losev–Manin space. This allows us to
reprove some cases of Theorem A from a more geometric perspective, assuming some familiarity with
the tools and language of moduli of curves. Throughout what follows,we assume that π is uniformwith
|Ei| = r for each i, so we can write

E = {10, 11, . . . , 1r−1} � {20, 21, . . . , 2r−1} � · · · � {n0,n1, . . . ,nr−1}, (39)

and we assume that r ≥ 2.

6.1 Background on the moduli space
The papers [14, 15] study the moduli space Lr

n parameterizing the following data:

• an r-pinwheel curve C, which is a rational curve consisting of a central projective line from which
r chains of projective lines (called spokes) emanate;

• an order-r automorphism σ of C;
• a pair of distinct fixed points x± ∈ C of σ ;
• n labeled r-tuples (zj1)j∈Zr , . . . , (z

j
n)j∈Zr of points z

j
i ∈ C (called light points) satisfying

σ(zji) = zj+1 mod r
i

• for each i, j, which are allowed to coincide with one another and with x±; and
• an additional labeled r-tuple (y�)�∈Zr satisfying

σ(y�) = y�+1 mod r

• for each �, whose elements are distinct from one another as well as from x± and zji.

Thesemarked points are subject to a stability condition, the details of which can be found in [15, Section
2.1]; see Figure 8 for an example element. Note that via the expression (39) we can view the light points
as indexed by elements of E, and the light points on any given spoke form a colored set.

When r = 2, themoduli spaceLr
n is the toric moduli space constructed by Batyrev–Blume [5, 6], which

is the toric variety XBn associated to the type-B permutohedral fan �2
n . When r > 2, on the other hand,

the moduli space is no longer toric, so in particular it no longer coincides with X�r
n . Nevertheless, the

main result of [14] is that Lr
n can be viewed as a wonderful compactification (the closure of a very affine

variety) inside X�r
n , and that the inclusion induces an isomorphism

A∗(�r
n)

∼= A∗(Lr
n).

Furthermore, for any chain C of colored subsets of E, the class of the torus-invariant stratum in X�r
n

corresponding to the cone σC restricts to a boundary stratum SC ⊆ Lr
n. Roughly, if C is a chain of length

k, then SC is the closure of the locally closed subvariety SC consisting of curves in which each spoke
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Fig. 8. A sample element of L3
4, where each circle represents a projective line and σ is the rotational

automorphism. Not pictured are the marked points x+ and x−, which are the two fixed points of σ and must both
lie on the central component.

has length k and the distribution of marked points is specified by C ; see [15, Section 4] for the precise
definition.

In particular, the generator xS ∈ A∗(�r
n) restricts to the boundary divisor [XS] ∈ A∗(Lr

n), which is
the class of the closure of the locus XS of curves in which each spoke has length one and the light
marked points on the y0-spoke are precisely those indexed by S. The generators hS, on the other hand,

restrict to pullbacks of certain psi-classes. To explain this, we introduce the moduli space M1
S, which

parameterizes the following data:

• a curve C that consists of a chain of projective lines;
• a pair of distinct points x± ∈ C;
• a tuple (zi)i∈S of points zi ∈ C (again called light points), which are allowed to coincide with one

another and with x±; and
• an additional marked point y ∈ C, which is not allowed to coincide with any other marked point.

These marked points, again, are subject to a stability conditionmade precise in [15, Section 3.1]; to state

it succinctly, one can view M1
S as a Hassett space M0,w with weight vector

w =
⎛⎜⎝1
2

+ ε,
1
2

+ ε, ε, . . . , ε︸ ︷︷ ︸
|S| copies

, 1

⎞⎟⎠
for 0 < ε < 1/(|S| + 2). This, in particular, forces that x± lie together on one end-component of the chain
C and y lies on the opposite end-component.

Remark 6.1. We briefly digress to notice that, for any T ∈ Rmax
π , the toric variety X�T associated

to the affine permutohedral fan (defined in Remark 2.6) can be identified with an open

subvariety UT ⊆ M1
T. When one observes that M1

T can be identified with the toric variety
of the stellahedral fan, this open inclusion is the inclusion of toric varieties corresponding to
the inclusion of the affine permutohedral fan, in the stellahedral fan. To provide a modular
description, for any element of M1

T, let C0 ⊆ C be the component containing x±, and choose
coordinates C0 in which x+ = 1, x− = −1, and the unique node of C0 (or the point y, if there
is no node) is equal to 0. Define UT to consist of those curves for which, in these coordinates,
one has zi �= ∞ for each i. Via these coordinates, UT can be viewed as an iterated blow-up of An

along the loci where k coordinates are equal to zero, in decreasing order from k = n to k = 2,
and this gives an identification UT = X�T .

In light of this observation, the inclusion of fans �T ↪→ �r
n induces an inclusion

UT ↪→ X�r
n ,

and the intersection of UT with Lr
n ↪→ X�r

n is the union of the locally closed boundary strata SC

forC a chain of subsets of T. As T varies, these intersectionsUT∩Lr
n coverL

r
n, so this observation
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can be viewed as the moduli-theoretic analogue of the covering of �π by the fans �T described
in Remark 2.6 and the covering of IPC(M) by the polytopes IP(M(T)) described in Remark 4.15.

Returning to the definition of hS via psi-classes, recall that one can define psi-classes on any Hassett

space as the first Chern classes of the cotangent line bundles at the marked points. In the case of M1
S,

this in particular yields a class

ψy := c1(Ly) ∈ A1(M1
S),

where Ly, roughly speaking, is the line bundle on M1
S whose fiber at a marked curve C is the cotangent

line to C at the point y. More precisely, Ly = σ ∗
y ωC1

S/M1
S
, where C1

S → M1
S is the universal curve and

σy : M
1
S → C1

S is the section corresponding to the marked point y.
Now, any S ∈ R×

π induces a morphism

FS : L
r
n → M1

S

that forgets all of the marked points in C except for x±, y0, and the light marked points zji indexed by
ij ∈ S. Equipped with the morphism FS, we claim that the generators hS can be described as follows.

Lemma 6.2. Under the isomorphism A∗(�r
n)

∼= A∗(Lr
n) given by xS �→ [XS], one has

hS = F∗
S(ψy).

Proof. Similarly to the boundary divisors on Lr
n, there are boundary divisors D1

T ∈ A1
(
M1

S

)
for each

nonempty subset T ⊆ S. Namely, D1
T is the class of closure of the locus of curves consisting of two

components, one containing the marked points y and zi with i ∈ T, and the other containing the
remaining marked points.

We claim, first, that

ψy =
∑

∅�=T⊆S

D1
T. (40)

The proof is by induction on |S|. When |S| = 0, the moduli space M1
S

∼= M0,3 is a single point, so both

sides of (40) are zero for dimension reasons. Suppose, now, that (40) holds on M1
S′ with |S′| = |S| − 1. To

prove that it holds on M1
S, consider the forgetful map

f : M1
S → M1

S\{�}

given by forgetting one of the light points z� and stabilizing. A standard comparison argument (see, e.g.,

[28, Lemma 1.3.1]) shows that the following equation holds in A∗
(
M1

S

)
:

f ∗ψy = ψy − D1
{�}, (41)

in which the ψy on the left-hand side lies on M1
S\{�} and the ψy on the right-hand side lies on M1

S. (The
idea of the proof of (41) is that the line bundles Ly and f ∗Ly agree away from the locus of curves that
are stabilized under f , which is precisely the subvariety whose class is D1

{�}.) On the other hand, the
boundary divisors are related under f by

f ∗D1
T = D1

T + D1
T∪{�} (42)

for any nonempty subset T ⊆ S \ {�}. Pulling back both sides of the equation (40) on M1
S\{�} under f and

applying equations (41) and (42), one obtains

ψy − D1
{�} =

∑
∅�=T⊆S\{∗}

D1
T + D1

T∪{�}.

Rearranging this equation yields the equation (40) on M1
S.
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Having proven (40), we deduce the lemma by pulling back both sides under FS : L
r
n → M1

S. Namely, it
is straightforward from the definitions of the boundary divisors to see that

F∗
S(D

1
T) =

∑
R∩S=T

[XR],

so (40) yields

F∗
S(ψy) =

∑
∅�=T⊆S

∑
R∩S=T

[XR] =
∑

R∩S�=∅

[XR],

which is precisely hS under the identification of [XR] ∈ A1(Lr
n) with xR ∈ A1(�r

n). �

Remark 6.3. One might wonder why we do not also consider classes F∗
S(ψx± ) or F∗

S(ψzi ), which can
also be defined for any S. But in fact, one can show that

F∗
S(ψx± ) = 0 and F∗

S(ψzi ) = −h{i} for any i ∈ S,

so no new divisors on Lr
n are obtained in this way. The key point in the proof of these observations

is that the analogues for ψx± and ψzi of equation (41) are

f ∗ψx± = ψx± and f ∗ψzi = ψzi ,

since the marked points x± and zi never lie on a component contracted by f . Iterating this

observation and using that ψx± = 0 on M1
∅

for dimension reasons shows that ψx± = 0 on

every M1
S. On the other hand, one can check (e.g., using [35, Lemma 2.7]) that ψzi = −ψy on

M1
{1}, from which the equation F∗

S(ψzi ) = −h{i} follows.

6.2 Geometric perspective on Theorem A
Given the perspectives on xS via boundary divisors on Lr

n and hS via psi-classes, one can prove at least
some cases of Theorem A using geometric techniques from the study of moduli of curves. Although
we were not able to prove Theorem A in full generality using these techniques, we believe that it is
an illuminating perspective that deserves further exploration, so we illustrate the ideas in this last
subsection. Throughout what follows, we identify xS and hS with their images under the isomorphism
A∗(�r

n)
∼= A∗(Lr

n), so that xS is the boundary divisor associated to S and hS is defined via these boundary
divisors by (5), or equivalently (via Lemma 6.2) it is given by hS = F∗

Sψy.
We begin with a lemma that follows directly from the relations in A∗(�r

n)
∼= A∗(Lr

n). Here, for every
S ∈ Rπ , we denote by S the image of S in [n]—in other words, the set obtained from S by forgetting the
superscripts.

Lemma 6.4. Let k ∈ [n], and let S ∈ Rπ be such that k ∈ S. Then,

h{kj} · xS = 0

for all j ∈ Zr.

Proof. By assumption we have ki ∈ S for some i ∈ Zr, and without loss of generality, we can assume i �= j,
since the linear relation (4) in A∗(Lr

n) implies h{kj} = h{kj′ }. Thus, we have kj /∈ S, so the quadratic relations

(3) for A∗(Lr
n) imply that xS′xS = 0 for all S′ ∈ Rπ containing kj. Since

h{kj} =
∑
kj∈S′

xS′ ,

it follows that h{kj}xS = 0, as claimed. �

This lemma already allows us to give a geometric proof of Lemma A in the case where the sets
S1, . . . , Sn ∈ Rπ define a maximal chain.
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Proposition 6.5. Let (S1 � S2 � · · · � Sn) ∈ MaxChain(Rπ ). Then∫
Lr

n

hS1hS2 · · · hSn = 1,

so in particular, Theorem A holds in this case.

Proof. The proof is by induction on n. As a base case, suppose that n = 1. Then the integral in question
is ∫

Lr
1

hS,

in which S is a singleton. But hS = xS when n = 1, so we have∫
Lr

1

hS =
∫
Lr

1

xS,

which equals 1 because Lr
1

∼= P1 and the boundary divisor xS is the class of a single point.
Now, suppose that the lemma holds on Lr

n−1. The hypothesis that the chain is maximal implies that
S1 = {kj} for some kj ∈ E, and we claim that, if S′

i := Si \ {kj} for each i ∈ [n], then∫
Lr

n

hS1 · · · hSn =
∫
Lr

n−1

hS′
2
· · · hS′

n . (43)

If we can prove this, then the proposition will follow by the induction hypothesis.
To prove (43), we first note that, whenever S ∈ Rπ is such that k ∈ S, Lemma 6.4 implies

hS1xS = h{kj} · xS = 0.

It follows that, in the product hS1hS2 · · · hSn , one can replace hSi for each i ∈ {2, . . . ,n} by∑
S∩Si �=∅

k/∈S

xS = φ∗
(
hS′

i

)
,

where φ : Lr
n → Lr

n−1 is the forgetful map forgetting the light orbit indexed by k. That is,

hS1hS2 · · · hSn = hS1φ
∗(hS′

2
· · · hS′

n

)
.

It therefore follows from the projection formula that

∫
Lr

n

hS1 · · · hSn =
∫
Lr

n−1

φ∗(hS1 )hS′
2
· · · hS′

n ,

so to prove (43), it suffices to prove that φ∗(hS1 ) = 1. To see this, express

hS1 = xS1 +
∑
S⊇S1|S|≥2

xS.

Then

φ∗(hS1 ) = (φ|XS1
)∗

(
1XS1

)
+

∑
S⊇S1|S|≥2

(φ|XS )∗
(
1XT

)
,

where we recall that XS ⊆ Lr
n is the subvariety such that [XS] = xS ∈ A1(Lr

n). Geometrically, one sees

that φ|XS1
: XS1 → Lr

n−1 is an isomorphism, so (φ|XS1
)∗

(
1XS1

)
= 1 (see, e.g., [15, Proposition 5.5]). On the
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other hand, for each S appearing in the summation above, φ|XS : XS → Lr
n−1 reduces the dimension, so

(π |XS )∗
(
1XS

) = 0. Thus, we indeed have φ∗
(
hS1

) = 1, so the proposition is proved. �

Remark 6.6. In fact, the proof of Proposition 6.5 holds as long as the underlying sets are strictly
nested (that is, S1 � · · · � Sn), without necessarily assuming the stronger condition that S1 �

· · · � Sn.

Remark 6.7. The equation (43) can also be used to prove that Theorem A holds in the case where
S1, . . . , Sn are pairwise disjoint. The main idea of the argument is to use the relations in A∗(Lr

n)

to argue that ∫
Lr

n

hS1 · · · hSn−1hSn =
∑
a∈Sn

∫
Lr

n

hS1 · · · hSn−1h{a}

by applying the pairwise disjoint hypothesis, and then to apply (43) to rewrite this as∑
a∈Sn

∫
Lr

n−1

hS1\{a} · · · hSn\{a}.

This sets up an induction on n from which Theorem A immediately follows.

Building off of Proposition 6.5, one can prove TheoremA for collections S1, . . . , Sn ∈ Rπ that are nested
but not strictly nested. The key ingredient in the proof of this generalization is the following geometric
lemma.

Lemma 6.8. Let S ∈ Rπ , and choose any element � ∈ S. Then,

(hS)2 =
⎧⎨⎩hShS\{�} if |S| > 1,

0 if |S| = 1
.

Proof. When |S| = 1, the result follows from Lemma 6.4. Now, suppose that |S| > 1. Choose any element
� ∈ S, and set

S′ := S \ {�}.

By Lemma 6.2, we have hS = F∗
S(ψy) and hS′ = F∗

S′ (ψy). Furthermore, if f : M1
S → M1

S′ is the map forgetting
the light marked point z�, we have FS′ = f ◦ FS. Applying (41) then shows

hShS′ = F∗
S(ψy)F∗

S(f
∗(ψy))

= F∗
S(ψy)F∗

S(ψy − D1
{�})

= F∗
S(ψy)

2 − F∗
S(ψy · D1

{�})

= (hS)2 − F∗
S(ψy · D1

{�}).

However, we have ψy · D1
{�} = 0, because in the divisor D1

{�}, the marked point y lies on a genus-zero
component with only three special points, so its cotangent line bundle is trivial. Therefore, hShS′ = (hS)2,
as claimed. �

Proposition 6.9. Let S1, . . . , Sn ∈ R×
π be such that S1 ⊆ S2 ⊆ · · · ⊆ Sn. Then,

∫
Lr

n

hS1hS2 · · · hSn =
⎧⎨⎩1 if |Si| ≥ i for all i ∈ [n],

0 otherwise.

In particular, Theorem A holds in this case.
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Proof. First, we prove that the integral equals zero whenever |Si| < i for some i ∈ [n]; the proof is by
induction on the smallest i for which this occurs. Since each Si has size at least 1, the base case is i = 2:
that is, we suppose that |S2| < 2. This means that S1 = S2 = {�} for some � ∈ E, but then

hS1hS2 = h{�}h{�} = 0

by Lemma 6.8.
Now, fix i > 1, and suppose that the integral equals zero for all chains

C ′ = (S′
1 ⊆ S′

2 ⊆ · · · ⊆ S′
n)

of colored sets such that |S′
i−1| < i − 1. Fix a chain

C = (S1 ⊆ S2 ⊆ · · · ⊆ Sn)

with |Si−1| = i − 1 but |Si| < i. This forces that Si−1 = Si, and so there exists some k < i with

Sk−1 � Sk = Sk+1 = · · · = Si−1 = Si.

Now, choose any � ∈ Sk−1 \ Sk, and for each j ∈ {k, . . . , i − 1}, set S′
j := Sj \ {�}. Then

hSjhSi = hS′
j
hSi

by Lemma 6.8. It follows that we can replace the chain C with the chain

C ′ := (S1 ⊆ · · · ⊆ Sk−1 ⊆ S′
k ⊆ · · · ⊆ S′

i−1 ⊆ Si ⊆ · · · ⊆ Sn)

without affecting the integral in question, but the integral for the chain C ′ equals zero by the induction
hypothesis.

We have therefore proven that the integral equals zero unless |Si| ≥ i for all i, and what remains to
be shown is that it equals 1 when this condition is satisfied. This proof is again by induction, this time
on the number

r(C ) := ∣∣{i ∈ {1, . . . ,n − 1} ∣∣ Si = Si+1
}∣∣

of repetitions in C .
If r(C ) = 0, then C is strictly nested and the statement follows from Proposition 6.5. Suppose, then,

that C = (S1 ⊆ · · · ⊆ Sn) is a chain with at least one repetition and that the proposition holds for all
chains C ′ with r(C ′) < r(C ).

Let i be the minimum index such that Si = Si+1. It follows that Si−1 � Si, so there exists x ∈ Si \ Si−1.
Let

Ti := Si \ {x},

which is nonempty by the condition |Si+1| ≥ i + 1 ≥ 2. Then,

hSihSi+1 = hTihSi+1 .

by Lemma 6.8, so we can replace the chain C by the chain

C ′ := (S1 ⊆ · · · ⊆ Si−1 ⊆ Ti ⊆ Si+1 ⊆ · · · ⊆ Sn)

without affecting the integral in question. As long as Si−1 � Ti, we have r(C ′) < r(C ) and therefore the
integral equals 1 by the induction hypothesis. If Si−1 = Ti, then we we repeat the argument, replacing
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Si−1 by Ti−1 := Si−1 \ {y} for y ∈ Si−1 \ Si−2. This process eventually terminates, so the integral equals 1 by
the inductive hypothesis, completing the proof. �
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