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ABSTRACT

The yield of a chemical reaction quantifies the percentage of the
target product formed in relation to the reactants consumed during
the chemical reaction. Accurate yield prediction can guide chemists
toward selecting high-yield reactions during synthesis planning,
offering valuable insights before dedicating time and resources to
wet lab experiments. While recent advancements in yield predic-
tion have led to overall performance improvement across the entire
yield range, an open challenge remains in enhancing predictions
for high-yield reactions, which are of greater concern to chemists.
In this paper, we argue that the performance gap in high-yield pre-
dictions results from the imbalanced distribution of real-world data
skewed towards low-yield reactions, often due to unreacted starting
materials and inherent ambiguities in the reaction processes. Despite
this data imbalance, existing yield prediction methods continue to
treat different yield ranges equally, assuming a balanced training
distribution. Through extensive experiments on three real-world
yield prediction datasets, we emphasize the urgent need to reframe
reaction yield prediction as an imbalanced regression problem. Fi-
nally, we demonstrate that incorporating simple cost-sensitive re-
weighting methods can significantly enhance the performance of
yield prediction models on underrepresented high-yield regions.
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1 INTRODUCTION

Recent advancements in machine learning have introduced a para-
digm shift in the field of computational chemistry [5]. These break-
throughs have led to a diverse array of machine learning models
that now play critical roles in assisting chemists across a broad spec-
trum of tasks, including but not limited to retrosynthesis, product
prediction, and drug discovery. Among this multifaceted landscape,
the prediction of reaction yields [1, 12, 13, 15, 17] emerges as an
issue of paramount importance in the domain of synthesis planning,
where complex molecules are synthesized through a sequence of
reaction steps. Based on the empirical categorization, yields above
67% are classified as high yields and those below 33% are classified
as low yields [17]. In this context, the occurrence of a low-yield
reaction within this sequence can drastically impact the feasibility
and overall efficiency of the synthesis process. As a result, chemists
often prioritize the accurate prediction of high-yield reactions.
While the introduction of numerous yield prediction models
has indeed showcased improved performance across the entire
yield range, the challenge of effectively enhancing performance for
high-yield reactions remains an open problem [9]. In real-world
scenarios, yield data often exhibits a highly imbalanced distribution,
with high yield values being much rarer than lower ones, despite
their greater importance to chemists in synthesis planning. In this
paper, we argue that the increased difficulty in predicting high-yield
reactions stems from its limited availability of data samples, often due
to unreacted starting materials and inherent ambiguities in the reac-
tion processes. Despite the presence of such data imbalance, existing
yield prediction methods continue to treat different yield ranges
equally with the false assumption of a balanced data distribution.
To gain a deeper insight into the field’s actual progress, we
conduct extensive experiments to benchmark six state-of-the-art
yield prediction methods on three real-world datasets. Surprisingly,
the results become less impressive than claimed when we take
data imbalance into account. We discover that the overall good
performance across the entire yield spectrum primarily results from
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enhancing performance in areas with sufficient data, typically the
low-yield range, while overlooking the significant performance gap in
underrepresented high-yield regions. This finding has motivated us to
revisit reaction yield prediction and reformulate it as an imbalanced
regression problem, a well-established topic in machine learning.
Unlike imbalanced classification, reaction yield prediction in-
volves regression rather than classification, and there has been
limited exploration of addressing data imbalance in the regression
context [11]. Most prior research on imbalanced regression has
directly adapted the SMOTE algorithm [3] to regression settings
[2, 14]. However, the continuous nature of target labels in regres-
sion tasks makes these adaptations less practical. A more intuitive
solution is to apply cost-sensitive re-weighting strategies [4, 7, 16]
that can be seamlessly combined with various regression models.
We demonstrate that incorporating these simple methods can sig-
nificantly enhance the performance of existing yield prediction
models on underrepresented high-yield regions without sacrificing
the overall performance too much. We believe these findings have
the potential to redirect the future research direction in reaction
yield prediction, benefiting both chemistry and machine learning
communities. In summary, the contributions of this paper include:

o We are the first to introduce the novel concept of reformulating
reaction yield prediction as an imbalanced regression problem.

e We conduct comprehensive experiments on three real-world yield
prediction datasets to uncover and understand the limitations of
existing models when predicting high-yield reactions.

e We demonstrate that incorporating cost-sensitive re-weighting
methods into existing yield prediction models can lead to signifi-
cant performance improvements on high-yield reactions.

2 THE EXAMINATION OF EXISTING YIELD
PREDICTION METHODS

In this section, we begin by introducing the definitions of reaction
yield prediction and imbalanced regression. We then proceed to
evaluate six yield prediction methods on three real-world datasets.

2.1 Preliminaries

Definition 1: Reaction yield prediction. Reaction yield predic-
tion is a regression problem that predicts the yield value y € [0, 100]
of a chemical reaction rxn = (R, P) composed of multiple reactant
molecules R and a single product molecule P.

Definition 2: Imbalanced regression. Let D = {(x;, yi)}f.\il
denote the training dataset of a regression problem, where x; €
R s the input feature vector and y; € R is the label. We divide
the label space Y into K disjoint bins with equal intervals, i.e.,
[bo, b1), [b1,b2), ..., [bk—-1,bK). Let Cx be the set of data samples

in the k-th bin with k € {1, 2, ..., B}. The data imbalance occurs

maxe |Cel o, ¢

when the label distribution is highly skewed, i.e., ming [Cx]

2.2 Evaluation Settings for Yield Prediction

2.2.1 Datasets. We use three real-world datasets for predicting
reaction yields, sourced from either high-throughput experimen-
tation (HTE) or electronic laboratory notebooks (ELN). Following
prior research on imbalanced regression [4, 8, 16], we categorize
the bins within the target yield space into three disjoint subsets:
many-shot (bins with over #ypper reactions), medium-shot (bins with

791

Yihong Ma et al.

Few-shot region Medium-shot region BEm Many-shot region

Yield Distribution of B-H Error Distribution of B-H

v 150
g 412 § 10 4
S 100 4 =
2 ol | | |
B + 7
g 50 é
# 0 0+
0 25 50 75 100 0 25 50 75 100
" Yield Distribution of S-M Error Distribution of S-M
E <209 §
‘5 1004 1 10 A
g =
= k
# 0 0-
0 25 50 75 100 0 25 50 75 100
" Yield Distribution of AZ Error Distribution of AZ
c <145 =
s 8 s01
g 10 4 5
131 % 257
# 0 : : . , '_oyl','"',"'l',
0 25 50 75 100 0 25 50 75 100
Yield (%) Yield (%)

Figure 1: A comparison between yield distributions (left) and
test error distributions (right) on three real-world datasets.

#lower 1O #upper reactions), and few-shot (bins with fewer than #14yer
reactions) regions, based on their respective numbers of training
samples. For all three datasets, we set the bin size |by — by._;| to 1.
The left section of Figure 1 visualizes the division of these regions.

e B-H [1]: It comprises 3,955 Buchward-Hartwig reactions from
HTE, with the number of reactions per bin varying between 1
and 412. Here, #|gyer is set to 25, and #ypper is set to 50.

e S-M [10]: It consists of 5,760 Suzuki-Miyaura reactions from HTE,
with the number of reactions per bin ranging from 1 to 209. Here,
#lower 18 set to 20, and #ypper is set to 65.

e AZ [12]: It includes 750 Buchward-Hartwig reactions from ELN
at AstraZeneca, with the number of reactions per bin ranging
from 0 to 145. Here, #|ower is set to 3, and #ypper is set to 5.

2.2.2  Yield prediction methods.

e Machine learning methods: Random Forest (RF), XGBoost,
Support Vector Machines (SVM);

e Deep learning methods: Multi-layer Perceptron (MLP), Yield-
GNN [12], Yield-BERT [13].

2.2.3  Evaluation pipeline. We report yield prediction results on
many-shot, medium-shot, and few-shot regions as well as on the
entire yield space (i.e., the all region). In all three datasets, 70% of
the data is used for training and the remaining 30% is reserved for
testing. Our evaluation employs common yield prediction metrics:
mean absolute error (MAE) and root mean square error (RMSE).
Additionally, we also utilize the geometric mean of L; errors (G-
Mean) as a supplementary metric. Lower values (]) of MAE, RMSE,
and G-Mean indicate better yield prediction performance.

2.2.4 Implementation details. For RF, XGBoost, SVM, and MLP, the
input features include structural fingerprints (e.g., ECFP), chemical
properties (e.g., NMR shifts, HOMO/LUMO energies, vibrations,
dipole moments), and reaction-specific parameters (e.g., scale, vol-
ume, temperature). For Yield-BERT, the SMILES string of the re-
action is used as input; an encoder based on a pre-trained BERT
[6] for SMILES is employed, with a k-Nearest Neighbors (kNN) re-
gressor serving as the decoder. For YieldGNN, we construct graph
structures to represent the molecules involved in the reaction; a
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MAE | RMSE | G-Mean |
Dataset Method
All Many Med. Few All Many Med. Few All Many Med. Few
RF 5.5+0.2  4.4+02  6.0+0.2 6.7+0.6 8.1+03  7.4+03  8.4+04 9.1+0.8 2.8+0.1 1.8+0.1 3.6+0.2 4.1+0.4
XGBoost 4.7£0.2 3.8+0.2 5.2+0.2 5.7+0.5 6.9+0.3 6.1+0.4 7.1£0.5 7.8+0.7 2.7+0.1 2.0+0.1 3.2+0.1 3.4+0.3
B-H SVM 14.6+0.3 129405 12.9+0.7 26.1+1.1 | 18.5+0.4 15.8+0.5 17.2+0.8 28.6+0.9 | 9.2£0.3  8.7+0.5  7.7+0.6  22.2x1.6
MLP 4.5+0.2  3.4+03  5.3x0.2 5.3+0.4 7.0+0.5  6.0+1.0  7.6+0.6 7.3+0.6 2.5+0.1 1.8+0.1 3.1x0.1 3.3+0.3
YieldGNN 8.7+7.9  8.6+9.5 7.6+4.6  12.8+14.5 | 11.1+8.7 10.6+9.1 10.1+5.9 14.7+14.7 | 3.0£04  2.3+05  3.5+0.4 3.9+0.5
Yield-BERT | 5.5+0.3  3.840.3  6.6£0.4  6.6%0.5 8.4+04 7.1x14  9.1x0.6 8.9+0.8 3.2+0.1  2.2¢01  4.1x04  4.1x05
Avg. Ranking - 1.2 1.8 3.0 - 1.2 2.2 2.7 - 1.2 1.8 3.0
RF 8.0+0.2 6.1+0.4 8.8+0.3 12.8+6.1 11.8+0.4 11.2+0.9 12.0+0.3 15.9+7.6 4.0+0.2 2.3+0.1 5.1+0.3 9.8+3.8
XGBoost 7.2+0.2  6.1x0.4  7.7x0.2 6.8+4.7 10.5+0.2 10.1+0.8 10.7x0.2  9.7x6.3 4.1+0.1 3.1x0.2  4.6+0.1 3.9+2.7
S-M SVM 16.5+0.2 14.8+0.5 17.1+0.2 31.6+6.0 | 20.3+0.2 18.7+0.6 20.8+0.3 33.0x6.1 | 11.1x0.2  9.6+0.3 11.7+0.3  30.3x6.0
MLP 7.5+0.3  6.1+0.5 8.1+0.4 8.5+6.8 11.1+0.4 10.7+0.9 11.2+0.5 12.3+9.3 | 4.1x02  2.9+0.2  4.8+0.3 4.5+3.5
YieldGNN 9.1+1.2 7.2+0.9 9.9+1.9 10.8+7.3 | 12.6+1.5 10.8+1.4 13.2+2.2 13.5+8.2 5.4+0.6 4.1£0.5 6.1+1.2 8.0+6.9
Yield-BERT | 9.1+0.4  6.3+0.4  10.24#0.5  5.145.4 13.3+0.6 11.2+0.9 14.1x6.3  7.7+7.6 5.0+0.2  3.3x0.2  6.0+0.3 2.3x27
Avg. Ranking - 1.2 2.3 2.5 - 1.3 2.3 2.3 - 1.2 2.5 2.3
RF 20.3+0.8 19.1x0.7 23.6x2.5 32.0x4.3 | 25.2x0.9 23.6x0.8 29.8+3.0 36.4+3.9 | 13.8+0.8 13.1x0.6 16.0+3.0 26.0+6.4
XGBoost 20.6+1.0 19.5+1.0 23.9+3.4 30.4+6.1 | 27.2+13 25.6+1.3 31.9+3.6 37.9+6.0 | 11.8+1.0 11.3x1.1 14.0+3.6 19.7+6.5
AZ SVM 25.0+0.8 23.5+0.7 28.0+2.4 41.7+3.9 | 28.9+0.9 27.1x0.7 32.5x2.4 43.9+3.8 | 18.6x0.9 17.5x0.7 20.8+2.9 37.6%5.8
MLP 22.1+1.7  21.5+13 25.0+5.0 26.0+£6.9 | 29.7+2.1 28.9+1.9 33.4+49 32.8+7.4 | 12.0+1.2 11.6+0.9 14.6+5.0 15.6+6.7
YieldGNN | 22.5+0.8 21.5+0.6 25.5+3.3 33.4+6.7 | 28.0+1.0 26.5+1.0 32.0+3.7 38.6+6.0 | 15.2+1.1 14.6+0.9 17.0#3.1 25.7+9.2
Yield-BERT | 25.6+2.5 24.3+2.6 28.7+3.8 38.4+10.1 | 32.5+3.0 30.7£3.0 37.5+3.6 45.2+9.9 | 15.7+1.5 15.1+x1.7 18.0+4.7 26.2+10.8
Avg. Ranking - 1.0 2.0 3.0 - 1.0 2.2 2.8 - 1.0 2.0 3.0

Table 1: Reaction yield prediction results on three real-world datasets. We report the average performance across 10 repetitions
in all experiments and present the average rankings for the many-shot, medium-shot, and few-shot regions, respectively.

GNN is used to encode the reaction, while an MLP is used to decode
the reaction embedding into yield predictions. We employ the L;
distance as the training loss £ in all experiments.

2.3 Uncovering and Understanding the
Performance Gap in High-Yield Predictions

Figure 1 provides an insightful comparison between yield distribu-
tions and test error distributions, both as functions of yield values.
Regarding the yield distribution, we note that the few-shot region
predominantly comprises high-yield reactions, while the many-shot
region primarily consists of low-yield reactions. Specifically in the
B-H and S-M datasets, 81% and 100% of the few-shot reactions fall
into the high-yield category, while 89% and 100% of the many-shot
reactions belong to the low-yield category. This finding establishes
a clear connection between yield values and their distributions.

To quantify the impact of data imbalance on prediction errors, we
compute the Pearson correlation coefficients between the testing
error distribution and the training yield distribution. Across all
three reaction yield prediction datasets, we consistently observe
negative correlation coefficients, with values of -0.42, -0.28, and -
0.07, respectively. Moreover, in the right part of Figure 1, it is evident
that the few-shot region (in orange) exhibits the largest test error,
while the many-shot region (in blue) demonstrates the smallest
error. To complement this observation, we further evaluate the
yield prediction performance of six state-of-the-art models using
three metrics and report the average performance rankings for the
three regions in Table 1. As a result, the average ranking indicates a
decline in model performance as we transition from the many-shot
region to the medium-shot and few-shot regions.

Therefore, both observations from Figure 1 and Table 1 converge
to the same conclusion: During the training process, low-yield
values with a larger number of data samples tend to be learned
better in comparison to those high yields with fewer samples. This
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highlights the demand for specialized machine learning techniques
that can effectively address the challenge of data imbalance.

3 MITIGATING DATA IMBALANCE FOR
BETTER HIGH-YIELD PREDICTIONS

In this section, we present two cost-sensitive re-weighting methods
for imbalanced regression, which can be seamlessly integrated into
the learning process of existing yield prediction models. We also
provide evidence of their effectiveness in high-yield predictions.

3.1 Cost-sensitive Re-weighting Methods

The key idea is to assign a weight w; € ‘W to each training sample
(xi, yi), resulting in the following modified loss function £

N
1 .
L'=5 ; wiL(yi, §i), 1
where L is a loss function for regression tasks, such as L; loss,
MSE loss, and Huber loss. The distinctiveness of each re-weighting
method arises from the various designs of training weights W.

3.1.1  Focal loss. The Focal loss [7] is a specialized loss function de-
signed to address imbalanced learning problems. It assigns varying
weights to individual training samples based on their prediction
difficulties. The goal is to reduce the impact of easily predictable
samples while amplifying the importance of challenging samples
during the training process. The weight w; is defined as:

@)

where siGmoID(-) is the sigmoid function, and «, y are hyper-
parameters. This results in the scaling factor of each training sample
ranging from 0 to 1, depending on the prediction error. Notably,
when y = 0, the Focal loss is equivalent to the original loss £. In
all experiments, we set & to 0.2 and y to 1.

w; = stemotp(a L (y;, i)Y
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MAE | RMSE | G-Mean |
Dataset Method
All Few All Few All Few
Vanilla 4.5+02  53+04 | 7.0+05  7.3206 | 2.5x0.1  3.3x03
B-H +Focal 4.6+02 50403 | 6.5+03  6.8+05 | 2.8+0.1  3.0+0.4
+LDS 4.8+03  4.6x05 71207 6.3x0.5 2.8+0.2  2.8+04
+Focal+LDS | 4.7x0.2 5.4+0.4 6.7+0.2 7.3£0.5 2.8+0.1 3.4+0.4
Vanilla 7.540.3 8.5+6.8 | 11.1x0.4 12.3%93 | 4.1x0.2 4.5+35
SM +Focal 8.5:0.1 7.0+23 | 12.0£03 10.0s3.6 | 5.0x0.1  3.5+1.1
+LDS 8.0+03  6.1+28 | 11.3x0.4  8.1+3.8 4.7+0.2 3.8+1.7
+Focal+LDS | 8.6+0.3 5.7£2.2 | 12.0£04  7.8+32 5.1+0.1 3.0+13
Vanilla 22.1+1.7  26.0+6.9 | 29.7+2.1 32.8+7.4 | 12.0+1.2  15.6%6.7
AZ +Focal 22.0+1.0 26.2+4.4 | 29.5+1.3 33.2+5.0 | 13.0£0.7 16.1%5.9
+LDS 222413  24.4+65 | 29.1x1.6 30.6+6.8 | 12.9+0.8 14.8+7.3
+Focal+LDS | 22.0+1.0 25.7+5.9 | 29.3+1.2 33.2%7.6 | 12.5+0.8 14.2x4.9

Table 2: Comparison of reaction yield prediction perfor-
mance with and without cost-sensitive re-weighting methods
on all and few-shot regions. The best results are highlighted
in bold, and the second-best results are underlined.

3.1.2  Label distribution smoothing. Label distribution smoothing
(LDS) [16] assigns varying weights to training samples based on
their label density. The objective is to mitigate the impact of re-
dundant samples while accentuating the significance of sparsely
represented samples during training. To account for the continuity
of labels, a Gaussian kernel is employed to smooth the empirical
label density distribution of the label space Y. The weight w; for
each training sample is defined as:

1

j=—— 3
M T, K y)ICeldy ©

_y-yI1?
20°

with kernel size ¢ and standard deviation o, and Cj. denotes the

set of training samples in the k-th bin where y; € [bg_1, bg). In all

experiments, we set £ to 5 and o to 2.

where K(y,y’) = exp ( ) represents a Gaussian kernel

3.2 Effectiveness in High-Yield Predictions

Table 2 presents the experiment results on the same three yield pre-
diction datasets, demonstrating the effectiveness of cost-sensitive
re-weighting methods (i.e., Focal loss, LDS, and the combination
of both) when integrated with existing yield prediction models.
Across all three datasets, imbalanced regression methods consis-
tently achieve the best results in all 9 combinations of evaluation
metrics (MAE, RMSE, and G-Mean) in the few-shot region. Mean-
while, the base model (“Vanilla”) without any imbalanced regression
designs maintains its superiority in 6 out of 9 combinations in the
all region. This observation is understandable and aligns with the
trade-off between prediction performance in underrepresented data
regions and performance across the entire dataset.

However, it’s important to note that while there is a performance
drop in the all region, this drop is not significant compared to the
substantial performance improvement observed in the few-shot re-
gion. Specifically, the average performance drops are 6.7%, 15.7%,
and 0.7%, while the average performance improvements are 14.0%,
34.3%, and 7.3% on each dataset, respectively. This observation
underscores the effectiveness of incorporating simple imbalanced
regression methods into existing yield prediction models as a plug-
in module. Furthermore, it is important to highlight that by tailoring
more sophisticated imbalanced regression techniques to yield pre-
diction, we could anticipate a further performance improvement.
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4 CONCLUSION

In this paper, we have highlighted a critical issue in reaction yield
prediction — the prevalent focus on achieving superior performance
across the entire yield spectrum, often at the expense of overlook-
ing yield regions with limited training samples, particularly the
high-yield areas, which are of greater concern to chemists. Through
extensive experiments on three real-world datasets, we have em-
phasized the urgent need to reframe reaction yield prediction as an
imbalanced regression problem. Moreover, we have demonstrated
that by incorporating simple cost-sensitive re-weighting techniques,
we can significantly enhance the performance of yield prediction
models in underrepresented high-yield regions.
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