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Abstract

Among various techniques designed for studying open-shell species, electron paramagnetic res-

onance (EPR) spectroscopy plays an important role. The key quantity measured by EPR is the

g-tensor describing the coupling between an external magnetic field and molecular electronic spin.

One theoretical framework for quantum chemistry calculations of g-tensors is based on response

theory, which involves substantial developments that are specific to underlying electronic structure

models. A simplified and easier-to-implement approach is based on the state-interaction scheme

in which perturbation is included by considering a small number of states. We describe and

benchmark the state-interaction approach using equation-of-motion coupled-cluster and restricted-

active-space configuration interaction wave functions. The analysis confirms that this approach

can deliver accurate results and highlights caveats of applying it, such as a choice of the reference

state, convergence with respect to the number of states used in calculations, etc. The analysis also

contributes towards a better understanding of challenges in calculations of higher-order properties

using approximate wave functions.
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I. INTRODUCTION

Electron paramagnetic resonance (EPR) spectroscopy [1], which measures the interaction

of the electronic wave function with an external magnetic field, enables studying open-shell

paramagnetic systems[2] such as radicals and transition-metal complexes. It is used exten-

sively to investigate the structure and reactivity of paramagnetic systems,[3] for example,

metallo-proteins,[4] molecular magnets,[5, 6] spin qubits, and reaction intermediates.

Electronic structure calculations play an important role in these studies.[6, 7] In particu-

lar, ab initio calculations can validate the conclusions inferred from experimental data and

can be used to refine underlying models. There are numerous flavors of EPR,[8, 9] but for

the purpose of providing context for g-tensors calculations, we focus on the most common

technique—continuous wave EPR or CW-EPR.[10] In CW-EPR a sample is irradiated with

a radio wave of a fixed frequency and the intensity of the absorbed radiation is measured as

a function of the strength (direction) of an external magnetic field. The magnetic field splits

the energy levels of paramagnetic species by virtue of the Zeeman e↵ect. The magnitude of

the energy di↵erence depends on the strength of the applied magnetic field and the angular

momentum of the magnetic system. When this energy di↵erence matches the energy of

the incoming radio wave, photons are absorbed, inducing transitions between energy levels.

These resonant field strengths appear as peaks in the EPR spectra.

The magnetic response of the system depends on energy levels of the unpaired electrons,

in particular, energy splittings within a multiplet that arise due to relativistic e↵ects.[11]

For electrons confined to molecules, the most significant relativistic interaction is spin–

orbit coupling (SOC). A comprehensive discussion of various terms contributing to SOC

in molecules is provided by the work of Harriman [2] and a detailed benchmark study by

Perera et al. [12] illustrates their significance for small molecules using coupled-cluster

(CC) response theory calculations.[12] These system-dependent energy shifts modify the

profile of EPR spectra and can be used as fingerprints of paramagnetic molecules, providing

information about spin density distributions. In contrast to an isotropic response of the

free electron to an external magnetic field, the response becomes orientation-dependent in

molecules and solids.

Experimental measurements are interpreted by representing magnetic properties by model

spin-Hamiltonians that describe the state of the sample by a set of model spin vectors,
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representing the e↵ective spin at each paramagnetic center.[11] In the simplest example of

just a single unpaired electron modeled by the spin vector ~S in a magnetic field ~B, the spin

Hamiltonian HS is:

HS = µB
~Sg ~B (1)

where µB is the Bohr magneton and g (commonly referred to as the g-tensor) is a 3 ⇥ 3

matrix that parametrically describes the coupling between the model spin and the magnetic

field vectors. For more complex cases, spin Hamiltonians are employed to describe EPR

spectra for single electronic and multiple nuclear spins include parameterized spin–spin and

spin–field interactions,

HS = µB
~Sg ~B + ~SD~S +

X

A

h
µN

~IAg
(A)
N

~B + ~IAD
(A)~IA + ~SA

(A)~IA

i
+
X

A<B

~IAJ
(AB)~IB (2)

where µN is the nuclear Bohr magneton, ~S the electronic spin, and ~IA the nuclear spin of

atom A. The 3 ⇥ 3 matrices D and D
(A) respectively describe the electronic and nuclear

zero-field splittings, i.e., energy gaps between di↵erent spin projections in the absence of

an external magnetic field. The g (g(A)
n ) matrix parameterizes the coupling between the

electronic (nuclear) spin and the magnetic field. A(A) is the hyperfine coupling tensor that

describes the interaction between nuclear and electronic spins, and J
(AB) parameterizes the

interaction between nuclear spins. In the present work, we focus on the calculation of the

components of the electronic matrix g only. Following the common convention, we report

shifts in g-tensor values (�g) relative to the electron spin g-factor, ge=2.002319, so that

g = geI+�g. (3)

Numerous electronic structure methods have been used to evaluate the components of g

in paramagnetic molecules. These approaches broadly fall into two groups—they use either

response theory[13, 14] or a state-interaction ansatz.[15] In the response theory approach

the parameters of the underlying model wave function are adjusted to the perturbing mag-

netic field. Therefore, each electronic structure model requires a separate implementation to

compute the perturbed electronic wave function. A response theory approach has been im-

plemented for many models: unrestricted [16] and restricted open-shell Hartree–Fock (UHF
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and ROHF, respectively),[17–19] density functional theory (DFT),[3, 20–22] multiconfigura-

tional self-consistent field (MCSCF),[23] coupled-cluster with single and double (CCSD) and

higher substitutions (CCSDT and CCSDTQ),[24] and multireference configuration interac-

tion (MRCI).[25] However, it is not yet available for many other correlated methods, such

as equations-of-motion coupled-cluster (EOM-CC),[26–28] algebraic diagrammatic construc-

tion (ADC),[29, 30] and restricted-active-space configuration interaction (RAS-CI).[31, 32]

Consequently, reliable computational treatment of systems with more complex electronic

structures remains challenging. Open-shell systems,[33] in particular, transition-metal com-

pounds, pose challenges to electronic structure theory for which there is not yet a universally

applicable solution.[33, 34]

In state-interaction approaches, the magnetic field and relativistic e↵ects (i.e., SOC) are

treated as couplings between eigenstates of the field-free non-relativistic Hamiltonian. The

eigenstates of the spin–orbit coupled Hamiltonian (i.e., the Kramers pair in spin-doublet

systems), are expressed as a linear combination of a limited number of uncoupled eigen-

states of the spin-free Hamiltonian. The truncation of the set of interacting states to a small

number of states can be justified by perturbation theory arguments. The attractive feature

of the state-interaction approach is that it does not require derivation and implementation of

magnetic-field-perturbed equations and, therefore, is much easier to apply—only electronic

energies and matrix elements of the SOC and angular momentum operators are required.

Furthermore, the state-interaction approach does not assume a vanishing perturbation, so

if all states are included in the calculation, it yields the exact result for the relativistic

states, whereas response theory yields the result corresponding to the non-relativistic states

under a weak perturbation. In other words, the limits of state interaction and response the-

ory are di↵erent, because the state interaction yields g-tensor for an all-orders relativistic

Kramers doublet, whereas response theory yields g-tensor only for the first-order relativis-

tic doublet. The drawback of the state-interaction approach is that the convergence with

respect to the number of states included in the calculation is not known a priori. Despite

these limitations, the state-interaction approach is extensively used[35] for including rel-

ativistic e↵ects in quantum-chemistry calculations, for example, for evaluating spin–orbit

interactions.[11, 36–50]

Several e↵ects contribute to the g-tensor shift and their relative magnitudes are system-

dependent. For molecules composed of light elements and first-row transition-metal com-
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plexes, we use the perturbative approach introduced by Abragam and Bleaney.[51] In these

systems, the main contribution results from a combined e↵ect of paramagnetic SOC and

orbital angular momentum, with smaller contributions from diamagnetic SOC and relativis-

tic mass correction. Following other works that use state-interaction approaches,[39, 44]

we limit ourselves to the paramagnetic spin–orbit coupling orbital and angular momentum

terms.

In the state-interaction approach, the g-tensor is expressed in terms of matrix elements

of spin and angular momentum between spin–orbit coupled states �I , which goes back to an

expression introduced by Gerloch and McMeeking.[15] The starting point for this approach

is the non-relativistic Hamiltonian (H0) perturbed by the spin–orbit part of the Breit–Pauli

Hamiltonian and an external magnetic field (Zeeman term)

H = H0 +H
SOC + µB(L+ geS)B. (4)

The SOC term, HSOC , is computed as matrix elements of the spin–orbit part of the Breit–

Pauli Hamiltonian[36–38, 43, 45, 47–49]

H
SOC

IJ
= hI|HSOC |Ji , (5)

where I and J denote non-relativistic states. To describe the two-electron part of the

paramagnetic SOC, we use an e↵ective one-electron spin–orbit mean-field treatment[43]

using recently reported implementations.[45, 47, 48] Spin–orbit perturbed states are then

obtained by diagonalizing the (SOC) perturbed Hamiltonian matrix

H
eff

IJ
= EI�IJ +H

SOC

IJ
, (6)

constructed using a small number of non-relativistic electronic states with energies {EI}, as

justified by quasi-degenerate perturbation theory. The resulting eigenstates can be used to

compute spin–orbit-perturbed properties, such as matrix elements of dipole moment, spin,

angular momentum operators, or even Dyson orbitals.[46]

Following this strategy, one arrives to the master-matrix approach[39] for computing
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g-tensors. The master-matrix G is computed using the following expression:

Gkl ⌘ (gg>)kl = 2
X

u,v=�,�0

hu|L̂k + geŜk|vihv|L̂l + geŜl|ui. (7)

Here indices l, k denote the Cartesian components of the spin and angular momentum oper-

ators, and � and �0 are the two Kramers’ components of the state of interest. In the matrix

form

Gkl =
X

m=x,y,z

(ge⌃km +⇤km)(ge⌃lm +⇤lm), (8)

where matrices ⌃ and ⇤ are obtained by transforming electronic spin S and angular mo-

mentum L into the basis of the spin–orbit-coupled eigenstates of Eq. (6).

The computed G matrix is then diagonalized:

GC = Cg
d (9)

and the actual g-tensor matrix is assembled as:

g = C

p
gdC

†
. (10)

This procedure is visualized in Fig. 1 and implemented in a post-processing Python script,

which is now included in the ezMagnet suite[52] (see the Supporting Information (SI) for

details).

FIG. 1: Flowchart of state-interaction approach for calculations of g-tensors.

This approach, originally described[15] by Gerloch and McMeeking in 1975, simply follows

from the mapping between the eigenstates of microscopic Hamiltonian, Eq. (4), and the

phenomenological spin Hamiltonian, Eq. (1).
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A useful approximate expression for the g-tensor shift, �g
pert
TJ

, for doublet states is ob-

tained by considering terms linear with the spin–orbit interaction, as was done in the ⇤-

tensor formalism introduced by Abragam and Bleaney[51]

�g
pert
0J = �4L0J

H
SOC

0J

�E0J
, (11)

where L0J are the transition angular moment matrix element, HSOC

0J is the spin–orbit cou-

pling matrix element, and �E0J the energy di↵erence between the ground state and the

excited states, respectively.

In this work, we investigate the performance of the state-interaction approach using EOM-

CC and RAS-CI wave functions obtained in single-reference calculations. We compare the

results with previously published data as well as response-theory calculations using the

unrestricted CCSD ansatz. We hope that these tools will extend the scope of open-shell

systems amenable to high-level treatments.

The structure of the paper is as follows: in Section II we provide a brief overview of

theoretical approaches used (EOM-CC[26] and RAS-CI) and essential computational details.

In Section III we present the results for light molecules and transition-metal complexes and

discuss the performance of various theoretical approaches. In addition to the e↵ects of

di↵erent correlation treatments, we also discuss computed electron distributions and solvent

e↵ects. Our concluding remarks are given in Section IV.

II. THEORETICAL AND COMPUTATIONAL DETAILS

Fig. 2 illustrates the essence of EOM and RAS-CI approaches to tackling open-shell

species.[26, 53] Di↵erent types of target states can be accessed by a judicious choice of

the reference and the excitation operator. Importantly, this approach can describe multi-

configurational wave functions using a single-reference formalism (the term ’single-reference’

refers to technical aspects of how the wave function is generated, i.e., from a single reference

determinant, whereas ’multi-configurational’ refers to the character of wave functions that

comprise more than one configuration with a large coe�cient). When used with closed-shell

references, target open-shell wave functions are naturally spin-adapted. In both theories,

the choice of the reference can a↵ect the quality of the target states. The di↵erence between
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the two approaches is in how the excitation operators are parameterized.

IP

DIP

EA

DEA

EE

SF

FIG. 2: In EOM-CC and RAS-CI methods, di↵erent types of target states can be accessed by dif-
ferent combination of the reference state and excitation operators. For example, doublet electronic
states with one unpaired electron can be described by using ionizing or electron attaching operators
acting on a closed-shell reference. Likewise, states with two unpaired electrons (diradicals) can be
described using doubly ionizing, doubly electron attaching, or spin-flipping operators. Acronyms
defining types of EOM operators: EE (excitation energies), IP (ionization potential), DIP (double
IP), EA (electron attachment), DEA (double electron attachment), SF (spin-flip). Reproduced from
Ref. 53 with permission from the Royal Society of Chemistry.

A. Equation-of-Motion Coupled-Cluster Approach for Open-Shell Systems

EOM methods are capable of describing electronic states with unpaired electrons because

they can start from a closed-shell reference state for which reliable wave functions of suit-

able quality can be obtained with relative ease.[26–28] From a chosen reference, a subspace

of electronic configurations for the target states, the Fock space, is then generated. Of

particular interest here are the EOM methods that either add or remove an electron, i.e.,

EOM-IP and EOM-EA methods[26, 28, 54] (see Fig. 2). The reference wave function can be

either a CCSD or an MP2 state. Using the respective amplitudes, a similarity transformed
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Hamiltonian H̄ can be constructed

H̄ = e
�T

He
T (12)

where T is the excitation operator, which in the case of CCSD is given by the sum of single

and double excitation operators:

T =
X

ai

t
a

i
a
†
a
ai +

1

4

X

abij

t
ab

ij
a
†
a
aia

†
b
aj (13)

with t
a

i
and t

ab

ij
as single and double amplitudes and a

†
a
and ai as creation and annihilation

operators, respectively. Throughout this work, we follow the convention that the indices i

and j denote occupied orbitals whereas a and b denote unoccupied orbitals in the reference

determinant �0. In EOM-CCSD, T amplitudes are found by solving the CCSD equations

for the reference state, and in EOM-MP2, T2 amplitudes are MP2 amplitudes. To obtain

open-shell target states from closed-shell references a set of determinants with the correct

number of electrons is generated. This is achieved by either adding or removing an electron,

depending which option describes the target states better. The respective EOM amplitudes

are found by diagonalizing the e↵ective Hamiltonian H̄. Because H̄ is non-Hermitian, both

the left and right sets of eigenstates need to be computed:

H̄R|0i = ER|0i (14)

LH̄ |0i = EL |0i (15)

The EOM-IP-CCSD operators RIP and LIP have the following form:

RIP =
X

i

riai +
1

2

X

ija

r
a

ij
a
†
a
aiaj (16)

LIP =
X

i

lia
†
i
+

1

2

X

ija

l
a

ij
aaa

†
i
a
†
j

(17)
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The EOM-EA-CCSD operators REA and LEA are

REA =
X

a

r
a
a
†
a
+

1

2

X

iab

r
ab

i
a
†
a
a
†
b
ai (18)

LEA =
X

a

l
a
aa +

1

2

X

iab

l
ab

i
aaaba

†
i

(19)

The advantage of EOM-CC treatment is that it includes both dynamic and non-dynamic

correlation and that multiple states can be computed in a single step, which results in their

balanced treatment and simplifies the calculations of transition properties (here, spin–orbit

couplings and matrix elements of the angular momentum operator). The disadvantage is

that each EOM method can only describe a particular set of target states. As we illustrate

below, this sometimes presents a problem. Additional details for the EOM protocol for

g-tensor calculations are given in the SI.

B. Coupled-Cluster Response Theory

In response theory properties are defined as derivatives of the energy.[14] In this formal-

ism, the g-tensor is given as

g =
1

µB

✓
@
2
E

@✏B@✏S

◆

B,S=0

(20)

where ✏B and ✏S are magnetic field and SOC strengths, respectively. By applying the well-

established procedures of CC response theory,[24] we obtain the g-tensor by solving the

amplitude response equations

�h�µ| L̄y |�0i+
X

⌫

h�µ|
⇥
H̄, ⌧⌫

⇤
|�0i

✓
@T

@✏y

◆

⌫

= 0 (21)

and the response Lagrange multiplier equations

�
X

µ

h�0|
@⇤

@✏y
|�µi h�µ| H̄ � E0 |�⌫i =� h�0(1 + ⇤)| [µ̄y, ⌧⌫ ] |�0i

+
X

⇢

h�0(1 + ⇤)|
⇥⇥
H̄, ⌧⇢

⇤
, ⌧⌫

⇤
|�0i

✓
@T

@✏y

◆

⇢

, (22)
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where ⌧ denotes excitation operators with the indices µ, ⌫, and ⇢ running over all single and

double excitations, and ⇤ is the Lagrange multiplier vector. For the exact expressions for

the CC g-tensor we refer to the work of Gauss, Kállay, and Neese.[24] From the perturbed

amplitudes and Lagrange multipliers, the perturbed density is obtained as

D
L

pq
=

@Dpq

@✏L
= h0|⇤L

e
�T
�
a
†
p
, aq

 
e
T |0i+ h0| (1 + ⇤)

⇥
e
�T
�
a
†
p
, aq

 
e
T
, T

L
⇤
|0i , (23)

with D denoting electron density and the braces {} denoting commutators. The g-tensor is

obtained by contracting the perturbed density with respect to the angular momentum with

the spin–orbit integrals

g =
X

pq

D
L

pq
H

SOC

pq
, (24)

where H
SOC is the mean-field spin–orbit coupling term of the Hamiltonian. Following the

work of Gauss, Kállay, and Neese, [24] we implemented the response-theory calculations for

spin-unrestricted CCSD in the Q-Chem electronic structure package.[55, 56]

C. Restricted Active Space Configuration Interaction

The RAS-CI method is an attractive alternative to the approaches based on multi-

reference functions such as complete-active-space (CAS) methods. RAS-CI is a single-

reference approach in which the orbital space is split into three subspaces: RAS1 (doubly

occupied orbitals), RAS2 (the active space, including fully correlated orbitals), and RAS3

(virtual orbitals), as shown in Fig. 3. Excitations that generate electron vacancies in RAS1

are called holes (h) and excitations that generate electrons in RAS3 are called particles (p).

As in EOM-CC and other single-reference methods, the performance of RAS-CI depends

on the choice of the reference wave function �0 (usually, the Hartree–Fock determinant)

and an excitation operator R̂ that generates the target states  I . Because RAS-CI is a

configuration interaction method, the target states are expressed as linear combinations

of Slater determinants and amplitudes are obtained by an iterative diagonalization of the
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FIG. 3: Representation of RAS1, RAS2, and RAS3 subspaces in RAS orbital space [53].

Hamiltonian Ĥ.

| Ii = R̂ |�0i =
X

i

ci |�ii (25)

X

j

D
�i|Ĥ|�j

E
cj = Eci (26)

Here, we use RAS-CI within the hole and particle (h,p) approach, RAS-CI(h, p), in which the

excitation operator R̂ is expanded in terms of single holes and particles. The hole/particle

truncation of the excitation operator is attractive because of its low computational cost and

can be expressed as:

R̂ = R̂0 + R̂h + R̂p (27)

with

R̂0 =
X

{s}

r
{s}

 
n0Y

s2RAS2

a
†
s

!0

@
n0Y

p2|0i

ap

1

A , (28)

R̂h =
X

{s},i

r
{s}
i

 
n0+1Y

s2RAS2

a
†
s

!
ai

0

@
n0Y

p2|0i

ap

1

A , (29)

R̂p =
X

{s},a

r
a{s}

a
†
a

 
n0�1Y

s2RAS2

a
†
s

!0

@
n0Y

p2|0i

ap

1

A , (30)

where {r} are the CI amplitudes, i, s and a run over all possible orbitals in RAS1, RAS2, and

RAS3, respectively, index p is restricted to the n0 RAS2 occupied orbitals in the reference

configuration, and {s} indicates a string of RAS2 spin-orbitals. Note that R̂0 contains
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all possible configurations within RAS2, i.e., it is a CAS, whereas R̂h and R̂p generate all

electronic configurations with one hole in RAS1 and one electron in RAS3, respectively.

Typically, RAS1 (RAS3) contains the entire set of orbitals below (above) the RAS2 set.

In this work, we use four di↵erent excitation operators within the RAS-CI(h, p) frame-

work: particle- and spin-conserving excitations (EE), spin-flip (SF) operators that generate

states with di↵erent MS with respect to the reference configuration �0, electron attaching

(EA) and ionizing (IP) operators that add or remove electrons, respectively (see Fig. 2).

One of the main advantages of the RAS-CI(h, p) approach relative to other multiconfigu-

rational methods is that the presence of configurations beyond the fully correlated orbital

space can be used as a guide to expand and improve the RAS2 space by including relevant

RAS1/RAS3 orbitals. Details on the selection of the RAS2 space, reference configuration,

and excitation operator for each studied system are given in the SI. All RAS-CI calculations

of electronic state energies and interstate couplings have been performed with the Q-Chem

package.[55]

III. RESULTS AND DISCUSSION

To benchmark the state-interaction protocol using EOM-CC and RAS-CI wave func-

tions, we use three small molecules from Bolvin’s study [39] (H2O+, NO2, CO
�
2 ) and eight

first-row transition metal complexes shown in Fig. 4. The geometries of H2O+, NO2, CO
�
2

were taken from Ref. 39 and the geometries of transition-metal complexes were taken from

Singh et al.[44] All Cartesian geometries are given in the SI. Symmetry labels and molecu-

lar orientations follow Mulliken’s convention,[57] which is di↵erent from Q-Chem’s standard

orientation.[58] All calculations were carried out with the def2-TZVP basis set unless indi-

cated otherwise.

As discussed above, the quality of the results depends critically on the choice of the refer-

ence and the excitation operator for both EOM-CC and RAS-CI methods. In RAS-CI, the

exact partitioning of the orbital spaces is also critical. An important di↵erence between the

two methods is that EOM-CC includes dynamic correlation through the similarity trans-

formation, whereas RAS-CI(h, p) includes only a small portion of dynamic correlation.[32]

This is expected to have an impact on transition-metal complexes, where a high level of

correlation is needed for accurate description of relevant states.
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FIG. 4: Transition-metal complexes studied. N-2-mercapto-2-methyl-propyl-2’-pyridylmethyl en-
iminato (PyMS) ligand in [Fe(PyMS)2]

+ is depicted in a simplified way.

A. Molecules composed of light atoms

Table I compares g-tensor shifts computed by the state-interaction approach using EOM-

IP-CCSD, RAS-CI, and CASPT2 treatments with the CCSD response theory results and

experimental data (CASPT2 results are from Ref. 39). The CCSD state used for the EOM-

IP and response calculations is the lowest-energy solution corresponding to the closed-shell

reference. The analysis uses Mulliken’s molecular orientation.[57]

TABLE I: Ground-state �g values for molecules composed of light elements computed with EOM-
IP, RAS-CI, and CCSD (response) with the def2-TZVP basis set, and compared to CASPT2 and
experimental values.

molecule EOM-IP RAS-CI CCSD CASPT2a Exp.a

H2O
+ �gxx -0.1 0.0 0.1 – 0.2

�gyy 16.0 15.2 15.4 15.6 18.8
�gzz 4.8 4.0 4.5 3.9 4.8

NO2 �gxx 3.8 2.5 3.8 3.8 3.9
�gyy -3.4 -9.5 -10.8 -12.1 -11.3
�gzz -0.3 -0.4 -0.5 1.5 -0.3

CO –
2 �gxx 1.1 -0.3 1.3 1.0 0.7

�gyy -1.9 -4.1 -5.0 -5.8 -4.8
�gzz -0.9 -0.4 -0.6 – -0.5

a CASPT2 and experimental results are from Ref. 39.

EOM-IP calculations based on the default Hartree–Fock reference show varying agree-

ment with the experimental results. RAS-CI and CCSD (response) g-tensor shifts agree well
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with the experiment for all three molecules. The CASPT2 results also match the experi-

mental values well, except for the �gzz component of NO2.

In H2O+, the spin-doublet ground state belongs to B1 irreducible representation (irrep).

Consistent with the symmetry selection rules, �gxx, �gyy, and �gzz result from interactions

of the ground state with states of A2, A1, and B2 irreps, respectively. All methods show

the same deviation of 3 ppt in �gyy relative to the experimental value, consistent with the

previous MRCI studies.[59, 60]

Table S2 in the SI illustrates the dependence of the �g values on the number of states

included in the state-interaction calculations for EOM-IP using water cation. For both

EOM-IP and RAS-CI (not shown), the computed g-tensor shifts reach a qualitative agree-

ment with the experimental values with just one state per irrep and change by less than

0.25 ppt upon including higher-energy states. Thus, for this molecule the state-interaction

scheme converges quickly and smoothly with respect to the number of states included in the

calculation. However, this is not the case for other examples (see, for example, Fig. S5 in

the SI; more on this below).

In NO2 and CO –
2 , the ground state is of A1 symmetry and �gxx, �gyy, and �gzz arise

from the interactions with B2, B1, and A2 states, respectively. For NO2, the EOM-IP value

of the �gyy component of the g-tensor is less than half the experimental value. RAS-CI

results show good qualitative agreement, but yield too-low absolute values for �gxx and

�gyy due to the insu�cient treatment of dynamic correlation.

For CO –
2 , RAS-CI underestimates �gyy and yields a wrong sign for �gxx. For EOM-EA

calculation, only �gzz is in qualitative agreement with experiment, whereas the �gxx and

�gyy components do not match the experimental values, and �gxx has a wrong sign. We

attribute the disappointing performance of EOM-IP for NO2 and EOM-EA for CO –
2 to

the failure of the chosen combination of the EOM model and the reference configuration

to describe all important state interactions on an equal footing and, therefore, cannot be

remedied by increasing the number of states included in the calculation. This means that

response-theory calculations using these methods (EOM-IP/EA) will su↵er from the same

problem. In the following, we provide a detailed analysis and ways to improve the results.
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1. The e↵ect of the reference in EOM-IP/EA calculations: NO2 and CO –
2 examples

By analyzing the EOM-IP states that contribute to the SOC Hamiltonian, Eq. (6), the

discrepancies relative to experiment can be explained and the results improved. As reported

by Bolvin,[39] large contributions to the g-tensor arise when there is a large transition

angular momentum between an excited state and the ground state. For the three molecules

discussed here, this requirement is only fulfilled by excitations within the partially occupied

frontier orbitals derived from the respective atomic p-orbitals, as expected from the El-

Sayed’s rules.[61, 62] Thus, for these molecules each g-tensor component is dominated by

very few or even only one excited state.

In NO2, the ground state (X2A1) is described by the electron configuration [5114]6a11 (five

doubly occupied orbitals of A1, one of A2, one of B1, and four of B2 symmetries, and one

singly occupied 6a1 orbital). The �gxx component is dominated by the 22B2 state with

the [6113]3b12 configuration. The �gyy component is dominated by the 12B1 state with the

[5114]4b11 configuration. The �gzz component is dominated by the 72A2 state with three

unpaired electrons in the [5113]6b112b
1
14b

1
2 configuration.

The data presented in Table I uses the reference state corresponding to the closed-shell

configuration [6114]. As we identify the excitations necessary to obtain our target ground

state and the respective dominant excited states for each�g component, the picture becomes

clearer. For the�gxx component, both the ground and dominant excited states are connected

to the reference state via removal of an electron from a single orbital—the 6a1 orbital for the

ground state and the 3b2 orbital for the dominant 22B2 state. However, to reach the major

contributing state to the �gyy component, i.e., the 12B1 state, it is necessary to remove

two electrons from the 6a1 orbital and add an electron to the 4b1 orbital. To connect the

reference configuration to 72A2 (responsible for the �gzz component), two electrons need to

be removed—one from the 6a1 and one from the 2b1 orbitals—and one electron needs to be

added to the 4b2 orbital.

Because the configurations generated from the reference state by higher excitation levels

(e.g., 2h1p in EOM-IP) are described less accurately than configurations generated by lower-

level excitations (e.g., 1h), both the energy di↵erences and transition properties involving

these states are a↵ected, which explains the errors in the �gyy and �gzz components. To

illustrate how one can circumvent this problem, we recomputed the g-shift of NO2 using other
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reference states and in one case using EOM-EA instead of EOM-IP to ensure that the ground

and dominant excited states are generated at the same excitation level. Specifically, we used

EOM-EA based on a [5114] reference configuration to improve the �gyy component and

EOM-IP based on a [5124] reference configuration to investigate the mismatch in excitation

levels for the �gzz component.

TABLE II: Shifts in the g-matrix components (in ppt) of NO2 molecule computed at the EOM-
XX-CCSD/def-TZVP level with di↵erent reference configurations and excitation operators (XX =
IP, EA).

EOM-IP/[6114] EOM-EA/[5114] EOM-IP/[5124] Exp.a

�gxx 3.8 1.6 -0.0 3.9
�gyy -3.4 -11.2 -11.0 -11.3
�gzz -0.3 0.8 -0.0 -0.3

From Ref. 39.

Table II presents the g-tensor shifts computed using these three di↵erent references

([6114], [5114], and [5124]). For each of the reference configuration, the g-matrix com-

ponent for which the configuration was selected for agrees well with the experimental value.

EOM-IP based on the reference with the [6114] configuration results in a good agreement

between the computed �gxx and �gzz components and the experiment. EOM-EA based on

the [5114] reference configuration results in a good agreement for the �gyy component and

EOM-IP based on the [5124] reference configuration results in a good agreement for the �gzz

component. Whereas the �gzz component computed with the [6114] reference is in better

agreement with the experimental value than the one obtained from the [5124] reference that

was specifically selected for its calculation, the di↵erence between the results is within the

range of deviations observed for other components.

TABLE III: Shifts in the g-matrix components (in ppt) of CO –
2 molecule computed at the EOM-

XX-CCSD/def-TZVP level with di↵erent reference configurations and excitation operators (XX =
IP, EA).

EOM-EA/[5114] EOM-IP/[6114] Exp.a

�gxx 0.1 1.1 0.7
�gyy -5.0 -1.9 -4.8
�gzz -0.2 -0.9 -0.5

From Ref. 39.

In the same way, optimal reference configurations can be selected for each component of

the g-tensor of CO –
2 , as illustrated in Table III. The ground state, X2A1, is dominated by
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the configuration [5114]6a11. EOM-IP based on the [6114] configuration describes well several

states that make dominant contributions to the �gxx component as well as the [6014]1a12

configuration that dominates the �gzz component. For the �gzz component, the dominant

configuration is [6104]b11, which is better described by EOM-EA based on the [5114] reference.

2. Analysis of RAS-CI results

To determine the main cause for the discrepancies of RAS-CI results with respect to

experimental g-shifts, we first explore the impact of the errors in the excitation energies to

the main contributing states. For that, we calculate �g values by replacing the RAS-CI

state energies with the experimental (when available) or accurate computational values in

the relativistic Hamiltonian (Eq. (6)), while using RAS-CI interstate SOCs and angular

momentum matrix elements. Table IV shows the results of these calculations.

TABLE IV: RAS-CI and best estimated excitation energies (�E in eV) to the states responsible
for the dominant contributions to �gkk (ppt, k = x, y, z). RAS-CI(c) denotes �g computed with
the reference (best) energies.

�E �gkk

molecule sym. RAS-CI best k RAS-CI RAS-CI(c) best
H2O

+ A1 2.0 2.1a y 15.2 15.1 18.8a

B2 6.6 5.9a z 4.0 4.4 4.8a

NO2 B2 10.4 7.7b x 2.5 3.3 3.8a

B1 3.0 2.8a y -9.5 -10.1 -11.7a

A2 12.6 9.8a z -0.4 -0.1 0.5a

CO –
2 B2 9.9 8.9b x -0.3 -0.2 1.0b

B1 3.7 3.4b y -4.1 -4.5 5.8b

a Using experimental energies from Ref. 60. b Using CASPT2 energies from Ref. 39.

In H2O
+, RAS-CI excitation energy to 12A1 is very close to the experimental value.

Therefore, the corrected RAS-CI �gyy in H2O
+ barely changes with respect to the original

RAS-CI calculation. However, the RAS-CI energy for 12B2 is 0.7 eV too high and using

corrected energy indeed improves �gzz. Similarly, RAS-CI excitation energies for the states

with dominant contributions to �g components in NO2 are overestimated. Correcting tran-

sition energies in H
eff noticeably improves g-tensor shifts. Finally, correction of excitation

energies in CO –
2 improves �gyy, but has a rather small e↵ect on �gxx, despite the fact that

it involves a correction of 1 eV in the excitation energy of a high-lying B2 state.
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In summary, replacing excitation energies in H
eff (diagonal terms) with more accurate

values is a simple and e�cient strategy to improve �g from RAS-CI. In the spirit of com-

posite approaches, this provides a simple strategy to mitigate the consequences of the lack

of dynamical correlation in RAS-CI in the computation of g-matrix elements. However,

the missing electron correlation in RAS-CI might not only a↵ect the accuracy of excitation

energies, but also tune the character of electronic states thus a↵ecting the computed spin–

orbit and angular momentum interstate couplings. These e↵ects cannot be recovered by the

simple shift of excitation energies.

B. First-Row Transition-Metal Complexes

We now proceed to calculations of ground-state g-tensor shifts for the first-row transition-

metal complexes featuring various electronic configurations and coordination patterns (Fig.

4). We anticipate strong dependence of g-tensors computed with single-reference EOM-

CC and RAS-CI approaches on the chosen reference determinant. In general, reference

configurations with empty (d0), fully occupied (d10), or semi-occupied (high-spin d
5) metal

3d-shell are preferred due to symmetry (correct description of orbital degeneracies) and

energy (better treatment of d-d energy gaps) considerations. For example, complexes with

nine d -electrons, such as Cu(II) complexes, can be well described by removing an electron

from a closed-shell d10 reference state, whereas complexes with one d -electron, such as Cr(V)

compounds, can be well described by electron attachment to a d
0 reference configuration.

Below, we organize the discussion of the results based on the electronic configuration of

the metal, i.e., d9, d7, d5, and d
1 complexes. In all cases, we explore the performance of

the state-interaction approach using EOM-CC/MP2 and RAS-CI treatments, and compare

them with the CCSD response values, NEVPT2 results from Singh et al.[44], and with the

experimental data.

1. d9 complexes: [CuCl4]
2– and [Cu(mnt)2]

2–

Table V shows g-tensor shifts for the two investigated d
9 complexes, [CuCl4]

2– and

[Cu(mnt)2]
2– . The g-tensor shifts computed with the EOM-IP, RAS-CI, and linear-response

CCSD agree rather well with the previous calculations[44] using NEVPT2 and the experi-
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mental values.[63, 64] In general, RAS-CI overestimates �g (in all directions) with respect

to experiment, similar to NEVPT2 calculations. The errors in the linear response CCSD

shifts are considerably smaller, although they are still too large. In all cases, EOM-IP gives

the best results.

TABLE V: �g values (in ppt) for [CuCl4]
2– and [Cu(mnt)2]

2– complexes computed with the EOM-
IP, RAS-CI (state-interaction), and CCSD (response) approaches and compared with the NEVPT2
and experimental values.

Complex EOM-IP RAS-CI CCSD NEVPT2a Exp.b

[CuCl4]
2– �gxx 46 67 66 77 44

�gyy 46 67 66 77 44
�gzz 289 398 332 454 218

[Cu(mnt)2]
2– �gxx 25 69 32 56 21
�gyy 25 72 34 57 24
�gzz 116 329 140 238 84

a From Ref. 44. b Experimental values for [CuCl4]
2– and [Cu(mnt)2]

2– are from Refs. 63
and 64, respectively.

In order to rationalize the errors in our calculations, in particular the systematic over-

estimation of �g by RAS-CI, we analyze the results for [CuCl4]
2– . The ground state of

[CuCl4]
2– has a square planar (D4h) geometry. The electronic configuration is X2B1g, with

the unpaired electron residing on the molecular orbital derived from the �-antibonding com-

bination of the 3dx2�y2 orbital of the metal and the symmetry-adapted combination of the

(px, py)-orbitals of the ligands (Fig. 5).

Analysis of the dependence of �g values on the number of excited states included in the

Hamiltonian treated within the quasi-degenerate perturbation theory,[65] Eq. (6), indicates

that the lowest excitations are the main contributions to the computed values (Fig. 5).

Specifically, the first excited state (12B2g), with the unpaired electron on the copper’s dxy

orbital, results in the largest shift in gzz, whereas the twofold degenerate 12Eg state, with the

spin density mostly on the (dxz, dyz) orbital pair, is the main contributor to �gxx and �gyy.

The positive sign of the computed shifts in the three directions can be rationalized by the

nature of the electronic transitions from the ground state to 12B2g and 12Eg, i.e., electron

promotions from doubly occupied molecular orbitals to the ground-state singly occupied

molecular orbital (SOMO), as expected from the ligand-field theory.[66]

By considering the perturbative SOC correction of the Kramers-pair wave function,[39]

one can attribute the deviation of the RAS-CI �g values to the errors in the interstate SOCs
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FIG. 5: Frontier molecular orbitals describing the main electronic transitions from the ground
(X2B1g) to the excited 12B2g and 12Eg states of [CuCl4]

2– .

and energy gaps (Eq. 6 in Ref. 44). In particular, within the state-interaction approach,

the change in the g-shifts induced by an excited state increases with the strength of the

SOC and decreases with the increase of the energy gap. Therefore, the overestimation of

SOCs and the underestimation of excitation energies result in too large �g. In this case,

both the errors in the transition energies and SOCs between the ground and the low-lying

excited states of [CuCl4]
2– obtained at the RAS-CI level (Table VI) contribute to the overall

overestimation of �g values. Hence, we conclude that the missing electron correlation in

the RAS-CI ansatz noticeably a↵ects the accuracy of the energy gaps and the character of

the electronic wave functions, e.g., spin density distribution, and that both e↵ects result in

too-large �g values (Table S5 in the SI).

TABLE VI: Excitation energies (�E, in eV) and SOC constants (SOCC in cm�1) between the
ground state and 12B2g and 12Eg excited states of [CuCl4]

2– described with the EOM-IP and
RAS-CI.

�E SOCC
State RAS-CI EOM-IP Exp.b RAS-CI EOM-IP
12B2g 1.315 1.446 1.552 1022 890
12Eg 1.604 1.725 1.763 498 412

From Ref. 63.

Coordination with the bidentate maleonitriledithiolate (mnt) ligand reduces the molecular

symmetry of [Cu(mnt)2]
2– to D2h, lifting the degeneracy between �gxx and �gyy. The

ground-state spin density in this compound corresponds to a non-bonding dxy orbital, giving
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rise to the X2B1g state. The shifts in the g-tensor components arise, for the most part,

from the interaction of the ground state with the lowest 2B2g (�gxx), 2B3g (�gyy), and

2Ag (�gzz) excited doublets, respectively derived from the electronic transition between the

doubly occupied dxy orbital and the unoccupied dxz, dyz, and dx2�y2 (Fig. S1 in the SI),

respectively.

2. d7 complexes: [Co(mnt)2]
2– and [Ni(mnt)2]

–

The two studied d
7 complexes, [Co(mnt)2)]

2– and [Ni(mnt)2]
– , have a D2h ground-state

structure, with an unpaired electron on the molecular orbital involving the dyz orbital of

the metal, giving rise to the X2B3g configuration. Symmetry selection rules applied to the

perturbative expression of the ground-state �g, Eq. (11), predict that excited states con-

tributing to the shifts in the xx, yy, and zz directions should belong to the Ag, B1g, and

B2g irreps, respectively. Table VII shows computed �g for [Co(mnt)2)]
2– and [Ni(mnt)2]

– .

EOM-IP and RAS-CI g-tensor components for the [Co(mnt)2)]
2– complex are in qualitative

agreement with the NEVPT2[44] and experimental values.[67] Interestingly, EOM-IP im-

proves upon the NEVPT2 values, especially for the xx-component, which is overestimated

by the latter by more than 400 ppt. On the other hand, RAS-CI underestimates the prin-

cipal xx-component by 250 ppt and notably improves �gyy with respect to NEVPT2 and

EOM-IP, while overestimating �gzz.

TABLE VII: �g (in ppt) for [Co(mnt)2]
2– and [Ni(mnt)2]

– complexes computed at the EOM-MP2,
RAS-CI (state-interaction) and CCSD (response with SVPD basis) levels, and compared to the
NEVPT2 and experimental values.

Complex EOM-MP2 RAS-CI CCSD NEVPT2a Exp.
[Co(mnt)2]

2– �gxx 868 549 1207 796b

�gyy -99 -43 -101 -25b,d

�gzz 17 33 29 23b,d

[Ni(mnt)2]
– �gxx 37 -1 114 485 158b,125c

�gyy 37 28 48 74 40b, 19c

�gzz -2 -4 3 -11 -4b, -17c

a From Ref. 44. b From Ref .68. c From Ref .69. d Ref. 68 indicates �gyy = 23 and
�gzz = �25 ppt, but since our calculations systematically produce �gyy < 0 and �gzz > 0,

we have reassigned the experimental values accordingly.

In the ground state of [Co(mnt)2)]
2– , the unpaired electron occupies the dyz orbital of the
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metal, with no involvement of the ligand orbitals (Fig. 6). The main contribution to �gxx

comes from the lowest 2Ag state, corresponding to the electron transition from a doubly

occupied orbital with strong dz2 character to the ground-state SOMO (dyz), and exhibiting

a rather strong spin–orbit interaction with X2B3g (SOCC = 614 cm�1 at the RAS-CI level).

The much smaller magnitude for the yy and zz shifts can be rationalized in terms of larger

energy gaps and weaker SOCs of the main contributing states, 2B1g (d1
yz

! d
0
xy
) and 2B2g

(d2
xz

! d
1
yz
), respectively.

The spin-doublet ground electronic state of [Ni(mnt)2]
– also belongs to the B3g irrep,

but the spin density on the metal is considerably smaller than in the Co complex (Fig. 6).

EOM-IP and RAS-CI produce rather accurate �gyy and �gzz values for [Ni(mnt)2]
– , better

than the respective NEVPT2 and CCSD response values, but are not able to reproduce the

large shift in gxx. EOM-IP largely underestimates �gxx (by 120 ppt) whereas the RAS-CI

shift is very small (and negative). Such disagreement originates in the strong stabilization

(large negative energy) of the doubly occupied dz2 orbital in the Hartree–Fock reference

employed in both approaches (EOM-IP and RAS-CI). As a result, the energy of the 2Ag

(d2
z2

! SOMO) excited state responsible for �gxx is probably overestimated by EOM-IP,

producing too low shifts in gxx. RAS-CI calculations with 20 states are not even able to

recover the excitation from dz2 to the ground state SOMO, which explains the nearly zero

shift in the xx-component.

FIG. 6: Ground-state spin densities in [Co(mnt)2]
2– (top) and [Ni(mnt)2)]

– (bottom) computed
at the RAS-CI/def3-TZVP level (iso value = 0.002).
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3. d5 complexes: [Mn(CN)5NO]2– and [Fe(PyMS)2]
+

Table VIII reports �g values for the two investigated d
5 complexes, [Mn(CN)5NO]2– and

[Fe(PyMS)2]
+. We note that �g computed with EOM-MP2, RAS-CI, and CCSD (linear

response) are in qualitative agreement with the experimental values, reproducing the correct

order and signs of the shifts in the g-matrix components.

TABLE VIII: �g shifts (in ppt) for [Mn(CN)5NO]2– and [Fe(PyMS)2]
+ complexes computed

with EOM-MP2, RAS-CI (state-interaction), and CCSD (linear response), and compared to the
NEVPT2 and experimental values. To achieve balanced description of the relevant states in EOM-
MP2 calculations, �gxx and �gyy were computed by EOM-IP whereas �gzz was computed by
EOM-EA.

complex EOM-MP2 RAS-CI CCSD NEVPT2b Exp.c

[Mn(CN)5NO]2– �gxx 29 22a 9 17 24
�gyy 29 22a 9 17 24
�gzz -34 -3 -11 0 -13

[Fe(PyMS)2]
+ �gxx 59 27 78 106 88

�gyy 41 13 34 -47 28
�gzz 92 87 142 170 128

a Averaged xx and yy components (�gxx = 28 and �gyy = 15 ppt). b From Ref. 44. c

From Refs. 70 and 71.

[Mn(CN)5NO]2– has a C4v symmetry and the X2B2 ground state, with the unpaired elec-

tron on the non-bonding dxy orbital of the metal. The degenerate shifts of the g-components

in the xy-plane result from the interaction of the ground state with the twofold 2E excited

state with a single unpaired electron in the ⇡-bonding orbital between the (dxz, dyz) pair and

the ⇡-orbitals of the NO ligand (Fig. S3 in the SI). The main contribution to �gzz arises

from the lowest 2B1 state, derived by the electron transition from the doubly occupied ⇡-

bonding (dxz, dyz) orbitals to the ⇡-antibonding (dxz, dyz) pair (Fig. S3 in the SI). EOM-IP

and RAS-CI shifts in the xx and yy-directions agree well with the experiment, although

RAS-CI artificially breaks the degeneracy between �gxx and �gyy as a consequence of the

symmetry breaking in the ROHF reference (Fig. S5 in the SI). However, EOM-IP produces

a too negative �gzz value whereas RAS-CI underestimates its magnitude. Linear-response

CCSD and NEVPT2 underestimate �gxx and �gyy, and produce rather di↵erent results for

the zz-component.

The [Fe(PyMS)2]
+ complex (C1 symmetry) has a doublet ground state with spin den-

sity on a non-bonding dz2-like orbital in the xy-plane (as shown in Fig. 4, the z-axis passes
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through the metal and between the two S atoms). EOM-IP and RAS-CI recover qualitatively

the experimental (positive) g-shifts, but systematically underestimate their magnitude, ex-

cept for the yy-component with EOM-IP. CCSD response provides the most accurate �g

values, with errors within the 6-14 ppt range. Interestingly, we identified several low-lying

states contributing to �gzz inducing either negative or positive shifts. Importantly, some

sizeable �gzz > 0 contributions involve electron excitations from rather low-lying doubly

occupied orbitals to the ground-state SOMO (Fig. S3 in the SI), which might explain the

failure of NEVPT2 with a (11, 13) active space[44] to recover the positive zz-shift.

4. d1 complexes: [VO(H2O)5]
2+ and [CrN(CN)5]

3–

[CrN(CN)5]
3– has a doublet ground state and C4v geometry. This symmetry is also

present in the first coordination shell of [VO(H2O)5]
2+ (VO6 moiety), but it is lowered to

C2 when hydrogen atoms are included. Despite this symmetry lowering, we analyze both

compounds in terms of the C4v group, because hydrogen atoms have a minor e↵ect on

the frontier molecular orbitals in this molecule. Moreover, experiment indicates that, in

solution, hydrogen atoms in [VO(H2O)5]
2+ appear as equivalent,[72, 73] probably due to

dynamic averaging.

The ground state in both complexes (X2B2) has a single electron in the non-bonding dxy

orbital. The computed �g components result from the interaction of X2B2 with excitations

from the singly occupied dxy to unoccupied orbitals with d character, consistent with the

negative shifts in all directions (Table IX). �g values in the xy-plane arise due to the

interaction of the ground state with the lowest 2E state, which has a single electron in

the �-antibonding orbital between the (dxz, dyz) of the metal and (px, py) of the ligands

(Fig. 7). �gzz is dominated by the interaction with the lowest 2B1 state with a spin density

localized on the dx2�y2 metal orbital (Fig. 7). All computational methods agree well with the

experimental values. They correctly reproduce signs and ordering of the shifts, and yield

absolute values that are close to the experimental values. In [VO(H2O)5]
2+, all methods

yield accurate results. Only the magnitude of the zz-component obtained with RAS-CI is

a bit too small, whereas EOM-MP2 and NEVPT2 underestimate the magnitude of �gxx

and �gyy. In [CrN(CN)5]
3– , EOM-MP2 and CCSD shifts are very close to experiment, with

errors in the order of 2-4 ppt whereas RAS-CI yields too large |�g| values.
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TABLE IX: �g (in ppt) for the [VO(H2O)5]
2+ and [CrN(CN)5]

3– complexes computed with EOM-
MP2, RAS-CI (state-interaction), and CCSD (response), and compared to the NEVPT2 and ex-
perimental values.

complex EOM-MP2 RAS-CI CCSD NEVPT2a Exp.
[VO(H2O)5]

2+ �gxx -14 -18 -20 -14 -19b

�gyy -11 -18 -20 -14 -19b

�gzz -72 -58 -76 -78 -72b

[CrN(CN)5]
3– �gxx -6 -10 -6 -4 -3c

�gyy -6 -10 -6 -4 -3c

�gzz -31 -43 -29 -42 -27c

a From Ref. 44. b From Ref. 72. c From Ref. 74.

FIG. 7: Frontier molecular orbital diagram of [CrN(CN)5]
3– computed at the ROHF/def2-TZVP

level.

5. Non-innocent ligands and spin density distribution

An accurate description of g-tensors requires a correct description of the metal-ligand

bonding. The quality of the description is related to the spin density produced by di↵erent

methods, which requires a proper correlation treatment of the metal-ligand interaction.

Table X shows the spin density populations obtained with UHF, RAS-CI, and EOM-MP2

as well as the available experimental values.

Particularly interesting are the three dithiolate complexes. The non-innocent nature of

the dithiolene ligand, manifested by the contribution of the ligand to the redox state of the

transition metal ion,[75] strongly depends on the nature of the transition metal. For all

the electronic structure methods, the magnitude of the computed spin density at the metal

follows the [Co(mnt)2]
2–

> [Cu(mnt)2]
2–

> [Ni(mnt)2]
– order.
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FIG. 8: Löwdin spin density of [CuCl4]
2– ground state computed at the EOM-IP-CCSD/def2-

TZVP level.

TABLE X: Spin population of the metals in the ground state of transition-metal complexes com-
puted with di↵erent electronic-structure methods.

complex UHF RAS-CIa EOM-IP-MP2b Exp.
[CuCl4]

2– 0.87 0.75 0.64 0.62c

[Cu(mnt)2]
2– 0.78 0.80 0.48 0.39d

[Ni(mnt)2]
– -0.07 0.01 0.20 0.32d

[Co(mnt)2]
2– 1.04 0.93 0.76 -

a Mulliken analysis. b Löwdin analysis. c Obtained
from adjusted X↵ method.[76] d Derived from a

combination of XAS and ENDOR
spectroscopy.[77]

The mean-field (UHF) solution to the ground state overestimates the metal spin density

in [CuCl4]
2– and [Cu(mnt)2]

2– compounds, but underestimates it in the nickel complex.

Overall, electron correlation e↵ects through the post-HF treatment in EOM-MP2 recover

the experimental values, whereas the RAS-CI spin density on the metal shows only partial

improvement upon UHF, especially in [Ni(mnt)2]
– for which the spin density on the Ni atom

is very small.

A possible way to improve this result is by changing the Hartree–Fock reference to

the Kohn–Sham DFT reference, which tends to yield more accurate ground state-spin

densities.[78] Indeed, the ground-state spin population on the Ni using DFT orbitals in-

creases to 0.46. Thus, using KS-DFT orbitals in RAS-CI calculations might help to obtain

more accurate g-tensor values, similar to other uses of DFT orbitals in correlated calculations
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of open-shell species.[33]

EOM-IP-MP2 and EOM-IP-CCSD provide rather accurate spin densities because of the

e↵ective inclusion of all configurations with single and double holes on the metal and on

the ligand orbitals. As a result, for these complexes they produce the best g-tensor shifts

(as compared to the experimental values, except for [Ni(mnt)2]
�) and also reproduces the

trends in spin densities.

6. Comparison with NEVPT2 results

For the transition-metal complexes discussed by Neese and coworkers,[44] the performance

of the state-interaction approach using EOM states depends on the number of d -electrons.

Unsurprisingly, for d9 EOM-IP and for d1 EOM-EA perform well, nearly always better than

active-space methods, especially, when the latter do not include the doubly occupied metal

and ligand orbitals in the active space. For d7, EOM-IP results are of mixed quality—worse

than NEVPT2 for the Co complex and better than NEVPT2 for the Ni complex (although

still not great). It would be interesting to see how other EOM methods (e.g., double EA or

triple IP) perform for these systems, once the requisite properties are implemented.

C. Solvent E↵ects

We use [Co(mnt)2]
2– complex to investigate e↵ects of the solvent on g-tensors. Neese

and co-workers[44] reported that solvent e↵ects are relatively modest, e.g., contributing less

than 10 percent change in �g. For the [Co(mnt)2]
2– complex, our EOM-IP results in an

xx-component of 868 ppt with CPCM and 1172 without which is an significant improvement

towards the experimental value of 795 ppt, as shown in Table XI.

The large di↵erences in �g computed with and without solvent are caused mostly by the

change in energy gaps, i.e., 0.007 versus 0.01 eV for the def2-TZVP results. However, the

solvent also a↵ects spin densities. Fig. 9 illustrates the e↵ect of the solvent on the singly

occupied natural orbital in the Co(mnt)2�2 complex. The isosurfaces containing 99.5 % of

electron density without solvent e↵ect and including CPCM reveal that the singly occupied

natural orbital is localized on the Co center when no solvent e↵ects are included, as it has

been shown in Fig. 6. When CPCM is added, the orbital is distributed more evenly over the
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TABLE XI: Solvent e↵ect on the computed EOM-IP-MP2 �g (in ppt) for [Co(mnt)2]
2– complex.

�gxx �gyy �gzz

[Co(mnt)2]
2–

exp. 796 -25 23
def2-TZVP, symmetry, no solvent 1172 -187 -85
def2-TZVP, no symmetry, CPCM 868 -99 17
def2-SVPD, symmetry, no solvent 1746 -323 -439
def2-SVPD, no symmetry, no solvent 1736 -319 -433
def2-SVPD, no symmetry, CPCM 1321 -99 -237

[Ni(mnt)2]
–

exp. 39 157 -4.3
def2-TZVP, symmetry, no solvent 37 37 -2
def2-TZVP, no symmetry, CPCM 32 33 -1

sulfur atoms of the ligands—this can be explained in terms of solvent screening electrostatic

interactions and therefore stabilizing charge-transfer character, which moves the spin density

away from the metal thus reducing the SOCC.

FIG. 9: Singly occupied natural orbital in Co(mnt)2�2 without including solvent e↵ects (top) and
including solvent e↵ects via CPCM (bottom).
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IV. CONCLUSIONS

We presented a protocol for computing g-tensors using state-interaction framework, fol-

lowing the work of Bolvin.[39] The main advantage of this approach relative to response

theory is that it can be applied with relative ease to any quantum chemistry method that

can furnish spin–orbit couplings and matrix elements of the angular momentum operators.

Moreover, within this protocol, di↵erent electronic structure models can be combined in the

spirit of composite approaches or externally corrected methods. The disadvantage is that

the protocol is not black-box and careful analysis of the convergence with respect to the

zero-order states is required.

We applied this protocol to the EOM-CC and RAS-CI methods using a set of open-

shell molecules, including transition-metal complexes. We only investigated doublet states,

but the approach can be extended to other multiplicities. The results show that both

treatments can deliver accurate results within this framework. For comparison, we also

presented results obtained with CCSD response-theory approach. In addition to the g-

tensor values, we also discussed the underlying spin densities. We carefully analyzed the

results in terms of underlying molecular orbitals and wave function to explain the relative

importance of leading contributions; this analysis provides insight into the strengths and

weaknesses of the quantum-chemistry methods employed.

In our analysis, we highlighted the issues faced by EOM-CC and RAS-CI. Both methods

are sensitive to the reference choice, and, as in other properties calculation, the quality of

the computed property depends not only by the quality of the state itself, but also on the

quality of excited states —or, more generally, spectral properties of the model Hamiltonian.

Importantly, this issue—sensitivity to the spectral properties—will, most likely, a↵ect the

quality of the results within response-theory implementation, in a similar fashion as was

observed in calculations of non-linear optical properties using the EOM-CC framework.[79,

80] Our analysis of di�cult cases (such as NO2) can provide insights into the performance

of other methods in the context of g-tensors calculations.

RAS-CI method a↵ords greater flexibility than EOM-IP by virtue of producing more

excited states by careful selection of the active space, but the results may be a↵ected by the

insu�cient treatment of dynamic correlation and the sensitivity to the reference orbitals.

We also discussed other factors a↵ecting g-tensors, such as basis sets and solvent e↵ects.

30



In conclusion, our work introduces a useful tool for computational studies of magnetic

molecules, including transition-metal complexes, and also contributes towards a better un-

derstanding of the e↵ects of correlation treatment on magnetic properties.

Supporting information

Description of the Python post-processing script; inputs for EOM-CC and RAS-CI cal-

culations; Cartesian geometries; active-space selection; convergence analysis.
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