
Autonomous Robots (2023) 47:809–830
https://doi.org/10.1007/s10514-023-10118-4

Inverse reinforcement learning for autonomous navigation via
differentiable semantic mapping and planning

Tianyu Wang1 · Vikas Dhiman2 · Nikolay Atanasov1

Received: 1 November 2022 / Accepted: 9 June 2023 / Published online: 6 July 2023
© The Author(s) 2023

Abstract
This paper focuses on inverse reinforcement learning for autonomous navigation using distance and semantic category
observations. The objective is to infer a cost function that explains demonstrated behavior while relying only on the expert’s
observations and state-control trajectory. We develop a map encoder, that infers semantic category probabilities from the
observation sequence, and a cost encoder, defined as a deep neural network over the semantic features. Since the expert cost
is not directly observable, the model parameters can only be optimized by differentiating the error between demonstrated
controls and a control policy computed from the cost estimate. We propose a new model of expert behavior that enables
error minimization using a closed-form subgradient computed only over a subset of promising states via a motion planning
algorithm. Our approach allows generalizing the learned behavior to new environments with new spatial configurations of the
semantic categories. We analyze the different components of our model in a minigrid environment. We also demonstrate that
our approach learns to follow traffic rules in the autonomous driving CARLA simulator by relying on semantic observations
of buildings, sidewalks, and road lanes.

Keywords Inverse reinforcement learning · Semantic mapping · Autonomous navigation

1 Introduction

Autonomous systems operating in unstructured, partially
observed, and changing real-world environments need an
understanding of semantic meaning to evaluate the safety,
utility, and efficiency of their performance. For example,
while a bipedal robot may navigate along sidewalks, an
autonomous car needs to follow the road lanes and traffic
signs. Designing a cost function that encodes such rules by
hand is impractical for complex tasks. It is, however, often
possible to obtain demonstrations of desirable behavior that

B Tianyu Wang
tiw161@eng.ucsd.edu

Vikas Dhiman
vikas.dhiman@maine.edu

Nikolay Atanasov
natanasov@eng.ucsd.edu

1 Electrical and Computer Engineering, University of
California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093,
USA

2 Electrical and Computer Engineering, The University of
Maine, 168 College Ave, Orono, ME 04469, USA

indirectly capture the role of semantic context in the task exe-
cution. Semantic labels provide rich information about the
relationship between object entities and their utility for task
execution. In this work, we consider an inverse reinforcement
learning (IRL) problem in which observations containing
semantic information about the environment are available.

Consider imitating a driver navigating in an unknown
environment as a motivating scenario (see Fig. 1). The car
is equipped with sensors that can reveal information about
the semantic categories of surrounding objects and areas.
An expert driver can reason about a course of action based
on this contextual information. For example, staying on the
road relates to making progress, while hitting the sidewalk or
a tree should be avoided. One key challenge in IRL is to infer
a cost function when such expert reasoning is not explicit.
If reasoning about semantic entities can be learned from
the expert demonstrations, the cost model may generalize
to new environment configurations. To this end, we propose
an IRL algorithm that learns a cost function from seman-
tic features of the environment. Simultaneously recognizing
the environment semantics and encoding costs over them is
a very challenging task. While other works learn a black-
box neural network parametrization to map observations

123

810 Autonomous Robots (2023) 47:809–830

Fig. 1 Autonomous vehicle in an urban street, simulated via the
CARLA simulator (Dosovitskiy et al., 2017). The vehicle is equipped
with a LiDAR scanner, four RGB cameras, and a segmentation algo-
rithm, providing a semantically labeled point cloud. An expert driver
demonstrates lane keeping (green) and avoidance of sidewalks (pink)
and buildings (gray). This paper considers inferring the expert’s cost
function and generating behavior that can imitate the expert’s response
to semantic observations in new operational conditions (Color figure
online)

directly to costs (Wulfmeier et al., 2016; Song, 2019), we take
advantage of semantic segmentation and occupancy mapping
before inferring the cost function. A metric-semantic map
is constructed from causal partial semantic observations of
the environment to provide features for cost function learn-
ing. Contrary to most IRL algorithms, which are based on
the maximum entropy expert model (Ziebart et al., 2008;
Wulfmeier et al., 2016), we propose a new expert model
allowing bounded rational deviations from optimal behav-
ior (Baker et al., 2007). Instead of dynamic programming
over the entire state space, our formulation allows efficient
deterministic search over a subset of promising states. A key
advantage of our approach is that this deterministic planning
process can be differentiated in closed-form with respect to
the parameters of the learnable cost function.

This work makes the following contributions:

1. We propose a cost function representation composed of a
map encoder, capturing semantic class probabilities from
online, first-person, distance and semantic observations
and a cost encoder, defined as a deep neural network over
the semantic features.

2. We propose a new expert model which enables cost
parameter optimization with a closed-form subgradient
of the cost-to-go, computed only over a subset of promis-
ing states.

3. We evaluate our model in autonomous navigation experi-
ments in a 2D minigrid environment (Chevalier-Boisvert
et al., 2018) with multiple semantic categories (e.g. wall,
lawn, lava) as well as an autonomous driving task that

respects traffic rules in the CARLA simulator (Dosovit-
skiy et al., 2017).

2 Related work

2.1 Imitation learning

Imitation learning (IL) has a long history in reinforcement
learning and robotics (Ross et al., 2011; Atkeson & Schaal,
1997; Argall et al., 2009; Pastor et al., 2009; Zhu et al., 2018;
Rajeswaran et al., 2018; Pan et al., 2020). The goal is to learn
a mapping from observations to a control policy to mimic
expert demonstrations. Behavioral cloning (Ross et al., 2011)
is a supervised learning approach that directly maximizes the
likelihood of the expert demonstrated behavior. However, it
typically suffers from distribution mismatch between train-
ing and testing and does not consider long-horizon planning.
Another view of IL is through inverse reinforcement learn-
ing where the learner recovers a cost function under which
the expert is optimal (Neu & Szepesvári, 2007; Ng & Rus-
sell, 2000; Abbeel & Ng, 2004). Recently, Ghasemipour et al.
(2020) and Ke et al. (2020) independently developed a unify-
ing probabilistic perspective for common IL algorithms using
various f-divergence metrics between the learned and expert
policies as minimization objectives. For example, behavioral
cloning minimizes the Kullback–Leibler (KL) divergence
between the learner and expert policy distribution while
adversarial training methods, such as AIRL (Fu et al., 2018)
and GAIL (Ho & Ermon, 2016) minimize the KL divergence
and Jenson Shannon divergence, respectively, between state-
control distributions under the learned and expert policies.

2.2 Inverse reinforcement learning

Learning a cost function from demonstration requires a
control policy that is differentiable with respect to the
cost parameters. Computing policy derivatives has been
addressed by several successful IRL approaches (Neu &
Szepesvári, 2007; Ratliff et al., 2006; Ziebart et al., 2008).
Early works assume that the cost is linear in the feature vector
and aim at matching the feature expectations of the learned
and expert policies. Ratliff et al. (2006) compute subgradients
of planning algorithms to guarantee that the expected reward
of an expert policy is better than any other policy by a margin.
Value iteration networks (VIN) by Tamar et al. (2016) show
that the value iteration algorithm can be approximated by a
series of convolution and maxpooling layers, allowing auto-
matic differentiation to learn the cost function end-to-end.
Ziebart et al. (2008) develop a dynamic programming algo-
rithm to maximize the likelihood of observed expert data and
learn a policy with maximum entropy (MaxEnt). Many works
(Levine et al., 2011; Wulfmeier et al., 2016; Song, 2019)

123

Autonomous Robots (2023) 47:809–830 811

extend MaxEnt to learn a nonlinear cost function using Gaus-
sian Processes or deep neural networks. Finn et al. (2016)
use a sampling-based approximation of the MaxEnt partition
function to learn the cost function under unknown dynamics
for high-dimensional continuous systems. However, the cost
in most existing work is learned offline using full observation
sequences from the expert demonstrations. A major contri-
bution of our work is to develop cost representations and
planning algorithms that rely only on causal partial observa-
tions. In the case where demonstrations are suboptimal with
respect to the true cost function, a learned cost function can
be recovered with preference-based comparisons (Brown et
al., 2020; Jeon et al., 2020), self-supervision (Chen et al.,
2021) or human corrections and improvements (Bajcsy et al.,
2017; Jain et al., 2015). In this work, we assume that only
the demonstrations are provided and we cannot assess the
demonstrator’s suboptimality with respect to the unknown
true cost.

2.3 Mapping and planning

There has been significant progress in semantic segmentation
techniques, including deep neural networks for RGB image
segmentation (Papandreou et al., 2015; Badrinarayanan et al.,
2017; Chen et al., 2018) and point cloud labeling via spherical
depth projection (Wu et al., 2018; Dohan et al., 2015; Milioto
et al., 2019; Cortinhal et al., 2020). Maps that store semantic
information can be generated from segmented images (Sen-
gupta et al., 2012; Lu et al., 2019). Gan et al. (2020) and Sun
et al. (2018) generalize binary occupancy mapping (Hornung
et al., 2013) to multi-class semantic mapping in 3D. In this
work, we parameterize the navigation cost of an autonomous
vehicle as a nonlinear function of such semantic map features
to explain expert demonstrations.

Achieving safe and robust navigation is directly cou-
pled with the quality of the environment representation and
the cost function specifying desirable behaviors. Traditional
approaches combine geometric mapping of occupancy prob-
ability (Hornung et al., 2013) or distance to the nearest
obstacle (Oleynikova et al., 2017) with hand-specified plan-
ning cost functions. Recent advances in deep reinforcement
learning demonstrated that control inputs may be predicted
directly from sensory observations (Levine et al., 2016).
However, special model designs (Khan et al., 2018) that serve
as a latent map are needed in navigation tasks where simple
reactive policies are not feasible. Gupta et al. (2017) decom-
pose visual navigation into two separate stages explicitly:
mapping the environment from first-person RGB images in
local coordinates and planning through the constructed map
with VIN (Tamar et al., 2016). Our model constructs a global
map instead and, yet, remains scalable with the size of the
environment due to our sparse tensor implementation.

This paper is a revised and extended version of our pre-
vious conference publications (Wang et al., 2020a, b). In our
previous work (Wang et al., 2020a), we proposed differen-
tiable mapping and planning stages to learn the expert cost
function. The cost function is parameterized as a neural net-
work over binary occupancy probabilities, updated from local
distance observations. An A* motion planning algorithm
computes the policy at the current state and backpropagates
the gradient in closed-form to optimize the cost parameter-
ization. We proposed an extension of the occupancy map
from binary to multi-class in Wang et al. (2020b), which
allows the cost function to capture semantic features from
the environment. This paper unifies our results in a common
differentiable multi-class mapping and planning architecture
and presents an in-depth analysis of the various model com-
ponents via experiments in a minigrid environment and the
CARLA simulator. This work also introduces a new sparse
tensor implementation of the multi-class occupancy mapping
stage to enable its use in large environments.

3 Problem formulation

3.1 Environment and agent models

Consider an agent aiming to reach a goal in an a priori
unknown environment with different terrain types. Figure 2
shows a grid-world illustration of this setting. Let xt ∈ X
denote the agent state (e.g., pose, twist, etc.) at discrete time
t . In this work, we will consider xt ∈ SE(2) composed of
2D position and orientation. Let xg ∈ X be the goal state.
The agent state evolves according to known deterministic
dynamics, xt+1 = f (xt , ut), with control input ut ∈ U . The
control space U is assumed finite. Let K = {0, 1, 2, . . . , K }
be a set of class labels, where 0 denotes “free” space and
k ∈ K\ {0} denotes a particular semantic class such as road,
sidewalk, or car. Let m∗ : X → K be a function specifying
the true semantic occupancy of the environment by labeling
states with semantic classes. We implicitly assume that m∗
assigns labels to agent positions rather than to other state
variables. We do not introduce an output function, mapping
an agent state to its position, to simplify the notation. Let
M be the space of possible environment realizations m∗. Let
c∗ : X ×U ×M → R≥0 be a cost function specifying desir-
able agent behavior in a given environment, e.g., according to
an expert user or an optimal design. We assume that the agent
does not have access to either the true semantic map m∗ or
the true cost function c∗. However, the agent is able to obtain
point-cloud observations P t = {(

pl , yl

)}
l ∈ P at each step

t , where pl is the measurement location. In the following
sections, we consider pl ∈ R

2 for MiniGrid experiments in
Sect. 7 and pl ∈ R

3 for CARLA experiments in Sect. 8.

123

812 Autonomous Robots (2023) 47:809–830

Fig. 2 A 9 × 9 grid environment with cells from four semantic classes:
empty, wall, lawn, lava. An autonomous agent (red triangle, facing
down) starts from the top left corner and is heading towards the goal
in the bottom right. The agent prefers traversing the lawn but dislikes
lava. LiDAR points detect the semantic labels of the corresponding tiles
(gray on empty, white on wall, purple on lawn and cyan on lava) (Color
figure online)

The vector of weights yl = [
y1

l , . . . , yK
l

]�
, where yk

l ∈ R,
indicates the likelihood that semantic class k ∈ K\ {0} was
observed. For example, yl ∈ R

K can be obtained from the
softmax output of a semantic segmentation algorithm (Papan-
dreou et al., 2015; Badrinarayanan et al., 2017; Chen et al.,
2018) that predicts the semantic class of the corresponding
measurement location pl in an RGBD image. The observed
point cloud P t depends on the agent state xt and the envi-
ronment realization m∗.

3.2 Expert model

We assume the expert chooses a control according to a
Boltzmann-rational policy (Ramachandran & Amir, 2007;
Neu & Szepesvári, 2007) given the true cost c∗ and the true
environment m∗,

We assume that an expert user or algorithm demonstrates
desirable agent behavior in the form of a training set D :={
(xt,n, u∗

t,n, P t,n, xg,n)
}Tn ,N

t=1,n=1. The training set consists of
N demonstrated executions with different lengths Tn for n ∈
{1, . . . , N }. Each demonstration trajectory contains the agent
states xt,n , expert controls u∗

t,n , and sensor observations P t,n

encountered during navigation to a goal state xg,n .
The design of an IRL algorithm depends on a model of

the stochastic control policy π∗(u | x; c∗, m∗) used by the
expert to generate the training data D, given the true cost c∗
and environment m∗. The state of the art relies on the MaxEnt
model (Ziebart et al., 2008), which assumes that the expert
minimizes the weighted sum of the stage cost c∗(x, u; m∗)
and the negative policy entropy over the agent trajectory.

We propose a new model of expert behavior to explain
rational deviation from optimality. We assume that the expert
is aware of the optimal value function:

Q∗(xt , ut ; c∗, m∗)

:= min
T ,ut+1:T −1

T −1∑
k=t

c∗(xk, uk; m∗)

s.t. xk+1 = f (xk, uk), xT = xg. (1)

but does not always choose strictly rational actions. Instead,
the expert behavior is modeled as a Boltzmann policy over
the optimal value function:

π∗(ut | xt ; c∗, m∗)

= exp(− 1
α

Q∗(xt , ut ; c∗, m∗))∑
u∈U exp(− 1

α
Q∗(xt , u; c∗, m∗))

(2)

where α is a temperature parameter. The Boltzmann policy
stipulates an exponential preference of controls that incur
low long-term costs. We will show in Sect. 5 that this expert
model allows very efficient policy search as well as compu-
tation of the policy gradient with respect to the stage cost,
which is needed for inverse cost learning. In contrast, the
MaxEnt policy requires either value iteration over the full
state space (Ziebart et al., 2008) or sampling-based estima-
tion of a partition function (Finn et al., 2016). Appendix A
provides a comparison between our model and the MaxEnt
formulation.

3.3 Problem statement

Given the training set D, our goal is to:

• learn a cost function estimate ct : X×U×P t ×� → R≥0

that depends on an observation sequence P1:t from the
true latent environment and is parameterized by θ ∈ �,

• design a stochastic policy πt from ct such that the agent
behavior under πt matches the demonstrations in D.

The optimal value function corresponding to a stage cost
estimate ct is:

Qt (xt , ut ; P1:t , θ)

:= min
T ,ut+1:T −1

T −1∑
k=t

ct (xk, uk; P1:t , θ)

s.t. xk+1 = f (xk, uk), xT = xg. (3)

Following the expert model proposed in Sect. 3.2, we define
a Boltzmann policy corresponding to Qt :

πt (ut | xt ; P1:t , θ)

∝ exp

(
− 1

α
Qt (xt , ut ; P1:t , θ)

)
(4)

and aim to optimize the stage cost parameters θ to match the
demonstrations in D.

123

Autonomous Robots (2023) 47:809–830 813

Fig. 3 Architecture for cost function learning from demonstrations
with semantic observations. Our main contribution is a cost represen-
tation, combining a probabilistic semantic map encoder, with recurrent
dependence on semantic observations P1:t , and a cost encoder, defined

over the semantic features ht . Efficient forward policy computation and
closed-form subgradient backpropagation are used to optimize the cost
representation parameters θ in order to explain the expert behavior

Problem 1 Given demonstrations D, optimize the cost func-
tion parameters θ so that log-likelihood of the demonstrated
controls u∗

t,n is maximized by policy functions πt,n obtained
according to (4):

min
θ

L(θ) := −
N∑

n=1

Tn∑
t=1

log πt,n(u∗
t,n | xt,n; P1:t,n, θ). (5)

The problem setup is illustrated in Fig. 3. An important
consequence of our expert model is that the computation of
the optimal value function corresponding to a given stage cost
estimate is a standard deterministic shortest path (DSP) prob-
lem (Bertsekas, 1995). However, the challenge is to make
the value function computation differentiable with respect to
the cost parameters θ in order to propagate the loss in (5)
back through the DSP problem to update θ . Once the param-
eters are optimized, the associated agent behavior can be
generalized to navigation tasks in new partially observable
environments by evaluating the cost ct based on the observa-
tions P1:t iteratively and re-computing the associated policy
πt .

4 Cost function representation

We propose a cost function representation with two compo-
nents: a semantic occupancy map encoder with parameters
� and a cost encoder with parameters φ. The model is differ-
entiable by design, allowing its parameters to be optimized
by the subsequent planning algorithm described in Sect. 5.

4.1 Semantic occupancymap encoder

We develop a semantic occupancy map that stores the like-
lihood of the different semantic categories in K in different
areas of the map. We discretize the state space X into J

cells and let m = [
m1, . . . , m J

]� ∈ KJ be an a priori
unknown vector of true semantic labels over the cells. Given
the agent states x1:t and observations P1:t over time, our

model maintains the semantic occupancy posterior P(m =
k | x1:t , P1:t), where k = [

k1, . . . , k J
]� ∈ KJ . The rep-

resentation complexity may be reduced significantly if one
assumes independence among the map cells m j : P(m = k |
x1:t , P1:t) = ∏J

j=1 P(m j = k j | x1:t , P1:t).
We generalize the binary occupancy grid mapping algo-

rithm (Thrun et al., 2005; Hornung et al., 2013) to obtain
incremental Bayesian updates for the mutli-class probability
at each cell m j . In detail, at time t − 1, we maintain a vector
ht−1, j of class log-odds at each cell and update them given
the observation P t obtained from state xt at time t .

Definition 1 The vector of class log-odds associated with cell

m j at time t is ht, j =
[
h0

t, j , . . . , hK
t, j

]�
with elements:

hk
t, j := log

P(m j = k | x1:t , P1:t)
P(m j = 0 | x1:t , P1:t)

for k ∈ K. (6)

Note that by definition, h0
t, j = 0. Applying Bayes rule to (6)

leads to a recursive Bayesian update for the log-odds vector:

hk
t, j = hk

t−1, j + log
p(P t | m j = k, xt)

p(P t | m j = 0, xt)

= hk
t−1, j +

∑
(pl , yl)∈P t

(
log

P(m j = k | xt , (pl , yl))

P(m j = 0 | xt , (pl , yl))
− hk

0, j

)
,

(7)

where p(P t | m j = k, xt) is the likelihood of observing
P t from agent state xt when cell m j has semantic label k.
Here, we assume that the observations

(
pl , yl

) ∈ P t at time
t , given the cell m j and state xt , are independent among each
other and of the previous observations P1:t−1. The semantic
class posterior can be recovered from the log-odds vector ht, j

via a softmax function P(m j = k | x1:t , P1:t) = σ k(ht, j),
where σ : R

K+1 → R
K+1 satisfies:

σ(z) =
[
σ 0(z), . . . , σ K (z)

]�
,

σ k(z) = exp (zk)∑
k′∈K exp (zk′

)
,

123

814 Autonomous Robots (2023) 47:809–830

log
σ k(z)

σ k′
(z)

= zk − zk′
. (8)

To complete the Bayesian update in (7), we propose a para-
metric inverse observation model, P(m j = k | xt , (pl , yl)),
relating the class likelihood of map cell m j to a labeled point(

pl , yl

)
obtained from state xt .

Definition 2 Consider a labeled point
(

pl , yl

)
observed from

state xt . Let Jt,l ⊂ {1, . . . , J } be the set of map cells inter-
sected by the sensor ray from xt toward pl . Let m j be an
arbitrary map cell and d(x, m j) be the distance between x
and the center of mass of m j . Define the inverse observation
model of the class label of cell m j as:

P(m j = k | xt , (pl , yl))

=
{

σ k(�l ȳlδ pt,l, j), δ pt,l, j ≤ ε, j ∈ Jt,l

σ k(h0, j), otherwise,
(9)

where �l ∈ R
(K+1)×(K+1) is a learnable parameter matrix,

δ pt,l, j := d(xt , m j) − ∥∥ pl − xt
∥∥

2, ε > 0 is a hyperparam-

eter (e.g., set to half the size of a cell), and ȳl := [
0, y�

l

]�
is augmented with a trivial observation for the “free” class.

Intuitively, the inverse observation model specifies that
cells intersected by the sensor ray are updated according to
their distance to the ray endpoint and the detected semantic
class probability, while the class likelihoods of other cells
remain unchanged and equal to the prior. For example, if
m j is intersected, the likelihood of the class label is deter-
mined by a softmax squashing of a linear transformation of
the measurement vector yl with parameters �l , scaled by the
distance δ pt,l, j . Otherwise, Definition 2 specifies an uninfor-
mative class likelihood in terms of the prior log-odds vector
h0, j of cell m j (e.g., h0, j = 0 specifies a uniform prior over
the semantic classes).

Definition 3 The log-odds vector of the inverse observation
model associated with cell m j and point observation (pl , yl)

from state xt is g j (xt , (pl , yl)) with elements:

gk
j (xt , (pl , yl)) = log

P(m j = k | xt , (pl , yl))

P(m j = 0 | xt , (pl , yl))
. (10)

The log-odds vector of the inverse observation model, g j ,
specifies the increment for the Bayesian update of the cell
log-odds ht, j in (7). Using the softmax properties in (8) and
Definition 2, we can express g j as:

g j (xt , (pl , yl)) =
{

�l ȳlδ pt,l, j , δ pt,l, j ≤ ε, j ∈ Jt,l

h0, j , otherwise.
(11)

Note that the inverse observation model definition in (9)
resembles a single neural network layer. One can also specify

Fig. 4 Illustration of the log-odds update in (13) for a single point
observation. The sensor ray (blue) hits an obstacle (black) in cell m j .
The log-odds increment g j − h0, j on each cell is shown in grayscale
(Color figure online)

Fig. 5 The semantic occupancy probability of each class for the exam-
ple in Fig. 2. Using the map encoder described in Sect. 4.1, the semantic
categories (wall, lawn, lava, etc.) can be identified correctly after train-
ing

a more expressive multi-layer neural network that maps the
observation yl and the distance differential δ pt,l, j along the
l-th ray to the log-odds vector:

g j (xt , (pl , yl);�l)

=
{

NN(ȳl , δ pt,l, j ;�l) δ pt,l, j ≤ ε, j ∈ Jt,l

h0, j otherwise.
(12)

Proposition 1 Given a labeled point cloud P t = {(
pl , yl

)}
l

obtained from state xt at time t, the Bayesian update of the
log-odds vector of any map cell m j is:

ht, j = ht−1, j +
∑

(pl , yl)∈P t

[
g j (xt , (pl , yl)) − h0, j

]
. (13)

Figure 4 illustrates the increment of the log-odds vector
ht, j for a single point

(
pl , yl

)
. The log-odds are increased

more at m j than other cells far away from the observed point.
When ε in (12) is set to half the cell size, values of the cells
beyond the observed point are unchanged. Figure 5 shows

123

Autonomous Robots (2023) 47:809–830 815

the semantic class probability prediction for the example in
Fig. 2 using the inverse observation model in Definition 2
and the log-odds update in (13).

4.2 Cost encoder

We also develop a cost encoder that uses the semantic occu-
pancy log odds ht to define a cost function estimate ct (x, u)

at a given state-control pair (x, u). A convolutional neural
network (CNN) (Goodfellow et al., 2016) with parameters φ

can extract cost features from the multi-class occupancy map:
ct = CNN(ht ;φ). We adopt a fully convolutional network
(FCN) architecture (Badrinarayanan et al., 2017) to parame-
terize the cost function over the semantic class probabilities.
The model is a multi-scale architecture that performs down-
samples and upsamples to extract feature maps at different
layers. Features from multiple scales ensure that the cost
function is aware of both local and global context from the
semantic map posterior. FCNs are also translation equivariant
(Cohen & Welling, 2016), ensuring that map regions of the
same semantic class infer the same cost, irrespective of the
specific locations of those regions. Our model architecture
(illustrated in Fig. 7) consists of a series of convolutional lay-
ers with 32 channels, batch normalization (Ioffe & Szegedy,
2015) and ReLU layers, followed by a max-pooling layer
with 2×2 window with stride 2. The feature maps go through
another series of convolutional layers with 64 channels, batch
normalization, ReLU and max-pooling layers before they are
upsampled by reusing the max-pooling indices. The feature
maps then go through two series of upsampling, convolu-
tion, batch normalization and ReLU layers to produce the
final cost function ct . We add a small positive constant to the
ReLU output to ensure that ct > 0 and there are no negative
cycles or cost-free paths during planning.

In summary, the semantic map encoder (parameterized
by {�l}l) takes the agent state history x1:t and point cloud
observation history P1:t as inputs to encode a semantic map
probability as discussed in Sect. 4.1. The FCN cost encoder
(parameterized by φ) in turn defines a cost function from the
extracted semantic features. The learnable parameters of the
cost function, ct (x, u; P1:t , θ), are θ = {{�l}l ,φ

}
.

5 Cost learning via differentiable planning

We focus on optimizing the parameters θ of the cost rep-
resentation ct (x, u; P1:t , θ) developed in Sect. 4. Since the
true cost c∗ is not directly observable, we need to differen-
tiate the loss function L(θ) in (5), which, in turn, requires
differentiating through the DSP problem in (3) with respect
to the cost function estimate ct .

Previous works rely on dynamic programming to solve
the DSP problem in (3). For example, the VIN model (Tamar

et al., 2016) approximates T iterations of the value itera-
tion algorithm by a neural network with T convolutional and
minpooling layers. This allows VIN to be differentiable with
respect to the stage cost ct but it scales poorly with the size
of the problem due to the full Bellman backups (convolu-
tions and minpooling) over the state and control space. We
observe that it is not necessary to determine the optimal cost-
to-go Qt (x, u) at every state x ∈ X and control u ∈ U .
Instead of dynamic programming, a motion planning algo-
rithm, such as a variant of A* (Likhachev et al., 2004) or RRT
(LaValle, 1998; Karaman & Frazzoli, 2011), may be used to
solve problem (3) efficiently and determine the optimal cost-
to-go Qt (x, u) only over a subset of promising states. The
subgradient method of Shor (2012); Ratliff et al. (2006) may
then be employed to obtain the subgradient of Qt (xt , ut)

with respect to ct along the optimal path.

5.1 Deterministic shortest path

Given a cost estimate ct , we use the A* algorithm (Algo-
rithm 1) to solve the DSP problem in (3) and obtain the
optimal cost-to-go Qt . The algorithm starts the search from
the goal state xg and proceeds backwards towards the cur-
rent state xt . It maintains an O P E N set of states, which may
potentially lie along a shortest path, and a C L O SE D list of
states, whose optimal value minu Qt (x, u) has been deter-
mined exactly. At each iteration, the algorithm pops a state
x from O P E N with the smallest g(x) + εh(xt , x) value,
where g(x) is an estimate of the cost-to-go from x to xg and
h(xt , x) is a heuristic function that does not overestimate
the true cost from xt to x and satisfies the triangle inequal-
ity. We find all predecessor states x′ and their corresponding
control u′ that lead to x under the known dynamics model
x = f (x′, u′) and update their g values if there is a lower
cost trajectory from x′ to xg through x. The algorithm ter-
minates when all neighbors of the current state xt are in the
C L O SE D set. The following relations are satisfied at any
time throughout the search:

Qt (x, u) = ct (x, u) + g(f (x, u)),∀ f (x, u) ∈ C L O SE D,

Qt (x, u) ≤ ct (x, u) + g(f (x, u)),∀ f (x, u) /∈ C L O SE D.

The algorithm terminates only after all neighbors f (xt , u)

of the current state xt are in C L O SE D to guarantee that
the optimal cost-to-go Qt (xt , u) at xt is exact. A simple
choice of heuristic that guarantees the above relations is
h(x, x′) = 0, which reduces A* to Dijkstra’s algorithm.
Alternatively, the cost encoder output may be designed to
ensure that ct (x, u) ≥ 1, which allows using Manhattan dis-
tance, h(x, x′) = ‖x − x′‖1, as the heuristic.

123

816 Autonomous Robots (2023) 47:809–830

Algorithm 1: A* motion planning

1 Function Plan(xt , xg, ct , h, ε):
2 O P E N ← {

xg
}
, C L O SE D ← {}

3 g(x) ← ∞,∀x ∈ X , g(xg) ← 0
4 while ∃u ∈ U s.t. f (xt , u) /∈ C L O SE D do
5 Remove x from O P E N with smallest g(x) + εh(xt , x)

and insert in C L O SE D
6 for

(
x′, u′) ∈ Predecessors(x) do

7 if x′ /∈ C L O SE D and g(x′) > g(x) + ct (x′, u′)
then

8 g(x′) ← g(x) + ct (x′, u′)
9 C H I L D(x′) ← x

10 if x′ ∈ O P E N then
11 Update priority of x′ with g(x′) + εh(xt , x′)
12 else
13 O P E N ← O P E N ∪ {

x′}

14 return g(f (xt , u)) ∀u ∈ U
15 Function Predecessors(x):
16 return

{
(x′, u′) ∈ X × U | x = f (x′, u′)

}

Finally, a Boltzmann policy πt (u | x) can be defined using
the g values returned by A* for any x ∈ X :

πt (u | x) ∝ exp

(
− 1

α
(ct (x, u) + g(f (x, u)))

)
. (14)

The policy discourages controls that lead to states outside
of C L O SE D because ct (x, u) + g(f (x, u)) overestimates
Qt (x, u). For any unvisited states, the policy is uniform since
g values are initialized to infinity. In practice, we only need
to query the policy at the current state xt , which is always in
C L O SE D, for the loss function L(θ) in (5) during training
and policy inference during testing.

5.2 Backpropagation through planning

Having solved the DSP problem in (3) for a fixed cost func-
tion ct , we now discuss how to optimize the cost parameters
θ such that the planned policy in (14) minimizes the loss
in (5). Our goal is to compute the gradient dL(θ)

dθ
, using the

chain rule, in terms of ∂L(θ)
∂ Qt (xt ,ut)

, ∂ Qt (xt ,ut)
∂ct (x,u)

, and ∂ct (x,u)
∂θ

. The
first gradient term can be obtained analytically from (5) and
(4), as we show later, while the third one can be obtained via
backpropagation (automatic differentiation) through the neu-
ral network cost model ct (x, u; P1:t , θ) developed in Sect. 4.
We focus on computing the second gradient term.

We rewrite Qt (xt , ut) in a form that makes its subgradient
with respect to ct (x, u) obvious. Let T (xt , ut) be the set of
trajectories, τ = xt , ut , xt+1, ut+1, . . . , xT −1, uT −1, xT ,
of length T − t + 1 that start at xt , ut , satisfy transi-
tions xt+1 = f (xt , ut), and terminate at xT = xg . Let
τ ∗ ∈ T (xt , ut) be an optimal trajectory corresponding to
the optimal cost-to-go Qt (xt , ut). Define a state-control vis-

Fig. 6 Learned cost function for the example in Fig. 2. The cost of
control “right" is the smallest at the agent’s location after training. The
agent correctly predicts that it should move right and step on the lawn

itation function which counts the number of times transition
(x, u) appears in τ :

μτ (x, u) :=
T −1∑
k=t

1(xk ,uk)=(x,u). (15)

The optimal cost-to-go Qt (xt , ut) can be viewed as a mini-
mum over trajectories T (xt , ut) of the inner product between
the cost function ct and the visitation function μτ :

Qt (xt , ut) = min
τ∈T (xt ,ut)

∑
x∈X ,u∈U

ct (x, u)μτ (x, u), (16)

where X can be assumed finite because both T and U are
finite. We use the subgradient method (Shor, 2012; Ratliff
et al., 2006) to compute a subgradient of Qt (xt , ut) with
respect to ct .

Lemma 1 Let f (x, y) be differentiable and convex in x.
Then, ∇x f (x, y∗), where y∗ := arg min y f (x, y), is a
subgradient of the piecewise-differentiable convex function
g(x) := min y f (x, y).

Applying Lemma 1 to (16) leads to the following subgra-
dient of the optimal cost-to-go function:

∂ Qt (xt , ut)

∂ct (x, u)
= μτ∗(x, u) (17)

which can be obtained along the optimal trajectory τ ∗ by
tracing the C H I L D relations returned by Algorithm 1. Fig-
ure 8 shows an illustration of this subgradient computation

123

Autonomous Robots (2023) 47:809–830 817

Fig. 7 A fully convolutional encoder-decoder neural network similar
to that in Badrinarayanan et al. (2017) is used as the cost encoder to
learn features from semantic map ht to cost function ct

Fig. 8 Subgradient of the optimal cost-to-go Qt (xt , ut) for each control
ut with respect to the cost ct (x, u) in Fig. 6

with respect to the cost estimate in Fig. 6 for the example in
Fig. 2. The result in (17) and the chain rule allow us to obtain
a complete subgradient of L(θ).

Proposition 2 A subgradient of the loss function L(θ) in (5)
with respect to θ can be obtained as:

∂L(θ)

∂θ
= −

N∑
n=1

Tn∑
t=1

d log πt,n(u∗
t,n | xt,n)

dθ

= −
N∑

n=1

Tn∑
t=1

∑
ut,n∈U

d log πt,n(u∗
t,n | xt,n)

d Qt,n(xt,n, ut,n)

d Qt,n(xt,n, ut,n)

dθ

= −
N∑

n=1

Tn∑
t=1

∑
ut,n∈U

1

α

(
1{ut,n=u∗

t,n} − πt,n(ut,n | xt,n)
)

×
∑

(x,u)∈τ∗

∂ Qt,n(xt,n, ut,n)

∂ct (x, u)

∂ct (x, u)

∂θ
(18)

5.3 Algorithms

The computation graph implied by Proposition 2 is illus-
trated in Fig. 3. The graph consists of a cost representation
layer and a differentiable planning layer, allowing end-to-end
minimization of L(θ) via stochastic subgradient descent. The
training algorithm for solving Problem 1 is shown in Algo-
rithm 2. The testing algorithm that enables generalizing the
learned semantic mapping and planning behavior to new sen-
sory data in new environments is shown in Algorithm 3.

Algorithm 2: Train cost parameters θ

Input: Dataset D={
(xt,n, u∗

t,n, P t,n, xg,n)
}Tn ,N

t=1,n=1
1 while θ not converged do
2 L(θ) ← 0
3 for n = 1, . . . , N and t = 1, . . . , Tn do
4 Update ct,n using xt,n and P t,n as in Sec. 4
5 Get Qt,n(xt,n, u) from Alg. 1 with cost ct,n
6 Get πt,n(u | xt,n) in (4) from Qt,n(xt,n, u)

7 L(θ) ← L(θ) − log πt,n(u∗
t,n | xt,n)

8 Update θ ← θ − η∇L(θ) via Prop. 2

Output: Trained cost function parameters θ

Algorithm 3: Test control policy πt

Input: Start state xs , goal state xg , cost parameters θ

1 Current state xt ← xs
2 while xt �= xg and navigation not failed do
3 Make an observation P t
4 Update ct using xt and P t as in Sec. 4
5 Get Qt (xt , u) from Alg. 1 with cost ct
6 Get πt (u | xt) in (4) from Qt (xt , u)

7 xt ← f (xt , ut) with ut := arg max
u

πt (u | xt)

Output: Navigation succeeds or fails at xt

6 Sparse tensor implementation

In this section, we propose a sparse tensor implementation of
the map and cost variables introduced in Sect. 4. The region
explored during a single navigation trajectory is usually a
small subset of the full environment due to the agent’s limited
sensing range. The map and cost variables ht , gt , ct (x, u)

thus contains many 0 elements corresponding to “free” space
or unexplored regions and only a small subset of the states in
ct (x, u) are queried during planning and parameter optimiza-
tion in Sect. 5. Representing these variables as dense matrices
is computationally and memory inefficient. Instead, we pro-
pose an implementation of the map encoder and cost encoder
that exploits the sparse structure of these matrices. Choy et al.
(2019) developed the Minkowski Engine, an automatic dif-
ferentiation neural network library for sparse tensors. This

123

818 Autonomous Robots (2023) 47:809–830

library is tailored for our case as we require automatic dif-
ferentiation for operations among the variables ht , gt , ct in
order to learn the cost parameters θ .

During training, we pre-compute the variable δ pt,l, j over
all points pl from a point cloud P t and all grid cells m j . This
results in a matrix Rt ∈ R

K×J where the entry corresponding
to cell m j stores the vector ylδ pt,l, j .1 The matrix Rt is then
converted to COOrdinate list (COO) format (Tew, 2016),
specifying the nonzero indices C t ∈ R

Nnz×1 and their fea-
ture values Ft ∈ R

Nnz×K , where Nnz � J if Rt is sparse. To
construct C t and Ft , we append non-zero features ylδ pt,l, j

to Ft and their coordinates j in Rt to C t . The inverse obser-
vation model log-odds gt can be computed from C t and Ft

via (11) and represented in COO format as well. Hence, a
sparse representation of the semantic occupancy log-odds ht

can be obtained by accumulating gt over time via (13).
We use the sparse tensor operations (e.g., convolu-

tion, batch normalization, pooling, etc.) provided by the
Minkowski Engine in place of their dense tensor counter-
parts in the cost encoder defined in Sect. 4.2. For example,
the convolution kernel does not slide sequentially over each
entry in a dense tensor but is defined only over the indices in
C t , skipping computations at the 0 elements. To ensure that
the sparse tensors are compatible in the backpropagtion step
of the cost parameter learning (Sect. 5.2), the analytic subgra-
dient in (18) should also be provided in sparse COO format.
We implement a custom operation in which the forward func-
tion computes the cost-to-go Qt (xt , ut) from ct (x, u) via
Algorithm 1 and the backward function multiplies the sparse
matrix ∂ Qt (xt ,ut)

∂ct (x,u)
with the previous gradient in the compu-

tation graph, ∂L(θ)
∂ Qt (xt ,ut)

, to get ∂L(θ)
∂ct (x,u)

. The output gradient
∂L(θ)

∂ct (x,u)
is used as input to the downstream operations defined

in Sects. 4.2 and 4.1 to update the cost parameters θ .

7 MiniGrid experiment

We first demonstrate our inverse reinforcement learning
approach in a synthetic minigrid environment (Chevalier-
Boisvert et al., 2018). We consider a simplified setting to help
visualize and understand the differentiable semantic mapping
and planning components.2 A more realistic autonomous
driving setting is demonstrated in Sect. 8.

1 In our experiments, we found that storing only yl at the cell m j where
pl lies, instead of along the sensor ray, does not degrade performance.
2 Our code for the minigrid experiments is open-sourced at https://
github.com/tianyudwang/sirl.

7.1 Experiment setup

7.1.1 Environment

Grid environments of sizes 16×16 and 64×64 are generated
by sampling a random number of random length rectangles
with semantic labels from K := {empty, wall, lava, lawn}.
One such environment is shown in Fig. 9. The agent motion
is modeled over a 4-connected grid such that a control ut

from U := {up, down, left, right} causes a transition from xt

to one of the four neighboring tiles xt+1. A wall tile is not
traversable and a transition to it does not change the agent’s
position.

7.1.2 Sensor

At each step t , the agent receives 72 labeled points P t ={
pl , yl

}
l , obtained from ray-tracing a 360◦ field of view at

angular resolution of 5◦ with maximum range of 3 grid cells
and returning the grid location pl of the hit point and its
semantic class encoded in a one-hot vector yl . See Fig. 2 for
an illustration. The sensing range is smaller than the environ-
ment size, making the environment only partially observable
at any given time.

7.1.3 Demonstrations

Expert demonstrations are obtained by running a shortest
path algorithm on the true map m∗, where the cost of arriving
at an empty, wall, lava, or lawn tile is 1, 100, 10, 0.5, respec-
tively. We generate 10,000, 1000, and 1000 random map
configurations for training, validation, and testing, respec-
tively. Start and goal locations are randomly assigned and
maps without a feasible path are discarded. To avoid over-
fitting, we use the model parameters that perform best in
validation for testing.

7.2 Models

7.2.1 DeepMaxEnt

We use the DeepMaxEnt IRL algorithm of Wulfmeier
et al. (2016) as a baseline. DeepMaxEnt is an exten-
sion of the MaxEnt IRL algorithm (Ziebart et al., 2008),
which uses a deep neural network to learn a cost function
directly from LiDAR observations. In contrast to our model,
DeepMaxEnt does not have an explicit map representation.
The cost representation is a multi-scale FCN (Wulfmeier et
al., 2016) adapted to the 16 × 16 and 64 × 64 domains.
Value iteration over the cost matrix is approximated by a finite
number of Bellman backup iterations, equal to the number
of map cells. The original experiments in Wulfmeier et al.
(2016) use the mean and variance of the height of 3D LiDAR

123

Autonomous Robots (2023) 47:809–830 819

Table 1 Validation and test
results for the 16 × 16 and
64 × 64 minigrid environments

Model 16 × 16 64 × 64

NLL Acc (%) TSR (%) MHD NLL Acc (%) TSR (%) MHD

DeepMaxEnt 0.333 87.7 85.5 0.783 0.160 92.5 86.3 2.305

Ours 0.247 91.9 93.0 0.208 0.153 95.2 95.6 1.097

We report the negative log-likelihood (NLL) and prediction accuracy (Acc) of the validation set expert controls
and the trajectory success rate (TSR) and modified Hausdorff distance (MHD) between the agent and the expert
trajectories on the test set. See Sect. 7.3 for precise definitions of the metrics

points in each cell, as well as a binary indicator of cell vis-
ibility, as input features to the FCN neural network. Since
our synthetic experiments are in 2D, the point count in each
grid cell is used instead of the height mean and variance.
This is a fair adaptation since Wulfmeier et al. (2016) argued
that obstacles generally represent areas of larger height vari-
ance which corresponds to more points within obstacles
cells for our observations. We compare against the original
DeepMaxEnt model in Sect. 8.

7.2.2 Ours

Our model takes as inputs the semantic point cloud P t and the
agent position xt at each time step and updates the semantic
map probability via Sect. 4.1. The cost encoder goes through
two scales of convolution and down(up)-sampling as intro-
duced in Sect. 4.2. The models are trained using the Adam
optimizer (Kingma & Ba, 2014) in Pytorch (Paszke et al.,
2019). The neural network model training and online infer-
ence during testing are performed on an Intel i7-7700K CPU
and an NVIDIA GeForce GTX 1080Ti GPU.

7.3 Evaluationmetrics

The following metrics are used for evaluation: negative
log-likelihood (NLL) and control accuracy (Acc) for the
validation set and trajectory success rate (TSR) and mod-
ified Hausdorff distance (MHD) for the test set. Given
learned cost parameters θ∗ and a validation set D ={
(xt,n, u∗

t,n, P t,n, xg,n)
}Tn ,N

t=1,n=1, policiesπt,n(· | xt,n; P1:t,n,

θ∗) are computed online via Algorithm 1 at each demon-
strated state xt,n and are evaluated according to:

NLL(θ∗, D) = − 1∑N
n=1 Tn

N ,Tn∑
n=1,t=1

log πt,n(u∗
t,n | xt,n; P1:t,n, θ∗)

(19)

Acc(θ∗, D) = 1∑N
n=1 Tn

N ,Tn∑
n=1,t=1

1{
u∗

t,n=arg max
u

πt,n(u|xt,n ;P1:t,n ,θ∗)

}.

(20)

In the test set, the agent is initialized at the starting pose and
iteratively applies control inputs ut,n = arg max

u
πt,n(u |

xt,n; P1:t,n, θ∗) as described in Algorithm 3. The agent tra-
jectories can deviate from expert trajectories and the agent
has to recover from states which were not encountered by the
expert. To find whether the agent eventually reaches the goal,
we report the success rate TSR, where success is defined as
reaching the goal state xg,n within twice the number of steps
of the expert trajectory. In addition, MHD compares how far
the agent trajectories τ A

n deviate from the expert trajectories
τ E

n :

MHD
({

τ A
n

}
,
{
τ E

n

})

= 1

N

N∑
n=1

max

{
1

T A

T A∑
t=1

d(τ A
t,n, τ E

n),
1

T E

T E∑
t=1

d(τ E
t,n, τ A

n)

}
,

(21)

where d(τ A
t,n, τ

E
n) is the minimum Euclidean distance from

the state τ A
t,n at time t in τ A

n to any state in τ E
n .

7.4 Results

The results are shown in Table 1. Our model outperforms
DeepMaxEnt in every metric. Specifically, low NLL on the
validation set indicates that map encoder and cost encoder in
our model are capable of learning a cost function that matches
the expert demonstrations. During testing in unseen environ-
ment configurations, our model also achieves a higher score
in successfully reaching the goal. In addition, the difference
in the agent trajectory and the expert trajectory is smaller, as
measured by the MHD metric.

The outputs of our model components, i.e., map encoder,
cost encoder and subgradient computation, are visualized in
Fig. 9. The map encoder integrates past observations and
holds a correct estimate of the semantic probability of each
cell. The subgradients in the last column enable us to propa-
gate the negative log-likelihood of the expert controls back to
the cost model parameters. The cost visualizations indicate
that the learned cost function correctly assigns higher costs
to wall and lava cells (in brighter scale) and lower costs to
lawn cells (in darker scale).

123

820 Autonomous Robots (2023) 47:809–830

Fig. 9 Examples of probabilistic multi-class occupancy estimation,
cost encoder output, and subgradient computation. The first column
shows the agent in the true environment at different time steps. The sec-
ond column shows the semantic occupancy estimates of the different
cells. The third column shows the predicted cost of arriving at each cell.

Note that the learned cost function correctly assigns higher costs (in
brighter scale) to wall and lava cells and lower costs (in darker scale) to
lawn cells. The last column shows subgradients obtained via 17 during
backpropagation to update the cost parameters (Color figure online)

123

Autonomous Robots (2023) 47:809–830 821

Table 2 Average inference speed comparison between our model and
DeepMaxEnt for predicting one control in testing

Grid size 16 × 16 64 × 64

DeepMaxEnt 5.8 ms 19.7 ms

Ours 2.7 ms 3.1 ms

7.5 Inference speed

The problem setting in this paper requires the agent to replan
at each step when a new observation P t arrives and updates
the cost function ct . Our planning algorithm is computation-
ally efficient because it searches only through a subset of
promising states to obtain the optimal cost-to-go Qt (xt , ut).
On the other hand, the value iteration in DeepMaxEnt has
to perform Bellman backups on the entire state space even
though most of the environment is not visited and the cost
in these unexplored regions is inaccurate. Table 2 shows the
average inference speed to predict a new control ut at each
step during testing.

8 CARLA experiment

Building on the insights developed in the 2D minigrid envi-
ronment in Sect. 7, we design an experiment in a realistic
autonomous driving simulation.

8.1 Experiment setting

8.1.1 Environment

We evaluate our approach using the CARLA simulator
(0.9.9) (Dosovitskiy et al., 2017), which provides high-
fidelity autonomous vehicle simulation in urban environ-
ments. Demonstration data is collected from maps
{T own01, T own02, T own03}, while T own04 is used for
validation and T own05 for testing. T own05 includes differ-
ent street layouts (e.g., intersections, buildings and freeways)
and is larger than the training and validation maps.

8.1.2 Sensors

The vehicle is equipped with a LiDAR sensor that has 20
meters maximum range and 360◦ horizontal field of view.
The vertical field of view ranges from 0◦ (facing forward)
to −40◦ (facing down) with 5◦ resolution. A total of 56000
LiDAR rays are generated per scan P t and point measure-
ments are returned only if a ray hits an obstacle (see Fig. 10).
The vehicle is also equipped with 4 semantic segmentation
cameras that detect 13 different classes, including road, road
line, sidewalk, vegetation, car, building, etc. The cameras

Fig. 10 Example of 3D LiDAR points and semantic segmentation
camera facing four directions. The LiDAR points are annotated with
semantic class labels

face front, left, right, and rear, each capturing a 90◦ horizon-
tal field of view (see Fig. 10). The semantic label of each
LiDAR point is retrieved by projecting the point in the cam-
era’s frame and querying the pixel value in the segmented
image.

8.1.3 Demonstrations

In each map, we collect 100 expert trajectories by running
an autonomous navigation agent provided by the CARLA
Python API. On the graph of all available waypoints, the
expert samples two waypoints as start and goal and searches
the shortest path as a list of waypoints. The expert uses a
PID controller to generate a smooth and continuous trajec-
tory to connect the waypoints on the shortest path. The expert
respects traffic rules, such as staying on the road, and keep-
ing in the current lane. The ground plane is discretized into a
256×256 grid of 0.5 meter resolution. Expert trajectories that
do not fit in the given grid size are discarded. For planning
purposes, the agent motion is modeled over a 4-connected
grid with control space U := {up, down, left, right}. A
planned sequence of such controls is followed using the
CARLA PID controller. Simulation features not related to
the experiment are disabled, including spawning other vehi-
cles and pedestrians, changing traffic signals and weather
conditions, etc. Designing an agent that understands more
complicated environment settings with other moving objects
and changing traffic lights will be considered in future
research.

8.2 Models andmetrics

8.2.1 DeepMaxEnt

We use the DeepMaxEnt IRL algorithm Wulfmeier et al.
(2016) with a multi-scale FCN cost encoder as a baseline
again. Unlike the previous 2D experiment in Sect. 7, we
use the input format from the original paper. Specifically,

123

822 Autonomous Robots (2023) 47:809–830

observed 3D point clouds are mapped into a 2D grid with
three channels: the mean and variance of the height of the
points as well as the cell visibility of each cell. This model
does not utilize the point cloud semantic labels.

8.2.2 DeepMaxEnt + Semantics

The input features are augmented with additional channels
that contain the number of points in a cell of each particu-
lar semantic class. This model uses the additional semantic
information but does not explicitly map the environment over
time.

8.2.3 Ours

We ignore the height information in the 3D point clouds
P1:t and maintain a 2D semantic map. The cost encoder
is a two scale convolution and down(up)-sampling neural
network, described in Sect. 4.2. Additionally, our model is
implemented using sparse tensors, described in Sect. 6, to
take advantage of the sparsity in the map ht and cost ct . The
models are implemented using the Minkowski Engine (Choy
et al., 2019) and the PyTorch library (Paszke et al., 2019) and
are trained with the Adam optimizer (Kingma & Ba, 2014).
The neural network training and the online inference dur-
ing testing are performed on an Intel i7-7700K CPU and an
NVIDIA GeForce GTX 1080Ti GPU.

8.2.4 Metrics

The metrics, NLL, Acc, TSR, and MHD, introduced in
Sect. 7.3, are used for evaluation.

8.3 Results

Table 3 shows the performance of our model in comparison
toDeepMaxEnt and DeepMaxEnt + Semantics. Our
model learns to generate policies closest to the expert demon-
strations in the validation map T own04 by scoring best in
NLL and Acc metrics. During testing in map T own05, the
models predict controls at each step online to generate the
agent trajectory. Ours achieves the highest success rate of
reaching the goal without hitting sidewalks and other obsta-
cles. Among the successful trajectories, Ours is also closest
to the expert by achieving the minimum MHD. The results
demonstrate that the map encoder captures both geometric
and semantic information, allowing accurate cost estimation
and generation of trajectories that match the expert behavior.
Figure 11 shows an example of a generated trajectory during
testing in the previously unseen T own05 environment (also
see Extension 1). The map encoder predicts correct seman-
tic class labels for each cell and the cost encoder assigns
higher costs to sidewalks than the road. We notice that the

Fig. 11 Examples of semantic occupancy estimation and cost encoding
during different steps in a test trajectory marked in red (also see Exten-
sion 1). The left column shows the most probable semantic class of the
map encoder and the right column shows the cost to arrive at each state.
Our model correctly distinguishes the road from other categories (e.g.,
sidewalk, building, etc) and assigns lower cost to road than sidewalks
(Color figure online)

addition of semantic information actually degrades the per-
formance of DeepMaxEnt. We conjecture that the increase
in the number of input channels, due to the addition of the
number of LiDAR points per category, makes the convolu-
tional neural network layers prone to overfit on the training
set but generalize poorly on the validation and test sets. Addi-
tional examples of agent trajectories and semantic mapping
predictions are given in Online Resource 1. We also report
runtime analysis for test-time model inference in Table 4.

123

Autonomous Robots (2023) 47:809–830 823

Table 3 Test results from the CARLA Town05 environment, including
the negative log-likelihood (NLL) and prediction accuracy (Acc.) of the
validation set expert controls and the trajectory success rate (TSR) and

modified Hausdorff distance (MHD) between the agent and the expert
trajectories on the test set

Model NLL Acc (%) TSR (%) MHD

DeepMaxEnt 0.673 85.3 89 4.331

DeepMaxEnt + Semantics 0.742 82.6 87 4.752

Ours 0.406 94.2 93 2.538

Table 4 Runtime analysis of our model during testing in the CARLA
simulator

Simulation Data preprocessing Model inference

39.3 ± 1.5 ms 14.9 ± 3.2 ms 6.4 ± 2.5 ms

We report per-step runtime averaged over 100 test trajectories

Each time step is divided into (1) simulator update, where
the agent is set at new states and image and lidar observa-
tions are generated, (2) data preprocessing, where semantic
labels are retrieved for point clouds and data are moved to
GPU, and (3) model inference.

8.4 Evaluation with dynamic obstacles

In this section, we study the effects of dynamic obstacles in
the scene on our model’s map and cost encoders. We cre-
ate three different scenarios where the agent vehicle has to
overtake a lower speed non-player character (NPC vehicle).
In Scenario 1, the NPC is spawned in the left lane to the
agent and 20 ms ahead. The agent is expected to stay in its
own lane when overtaking the NPC. In Scenario 2, the NPC
is spawned in the same lane as the agent and 20 ms ahead.
The agent has to move to its left lane to overtake the NPC.
Scenario 3 is a mixture of the first two where the NPC could
be either in the same lane or in the left lane to the agent. A
visualization of the first two scenarios is shown in Fig. 12.
Training and evaluation are conducted in the T own05 map
since it contains multi-lane streets while other maps contain
mostly single-lane streets. We sample 100 trajectories for
testing within the top-left quadrant of the map and 200 tra-
jectories for training from other quadrants as illustrated in
Fig. 13. We train our model in all three scenarios and test it
in the same scenario where it is trained. Each trajectory is
discretized on a 128 × 128 grid of 1 meter resolution.

To effectively capture the most current information of the
dynamic NPC vehicle, we multiply the grid log-odds ht, j

with a decay rate γ ∈ {1.0, 0.9, 0.8, 0.7}, i.e.,

hk
t, j = γ hk

t−1, j + log
p(P t | m j = k, xt)

p(P t | m j = 0, xt)
. (22)

Fig. 12 Two scenarios with dynamic obstacles. Left column (scenario
1): the agent vehicle (blue) keeps in its own lane when overtaking the
NPC vehicle (red) in the left lane. Right column (scenario 2): when
the NPC and agent vehicles are spawned in the same lane, the agent
switches to the left lane to overtake (Color figure online)

The map encoder is the same as in previous experiments when
γ = 1.0, while when γ < 1 past observation information is
slowly removed. Note that we use the same decay rate across
all semantic classes since we do not assume prior knowledge
of which classes are dynamic or static. Alternatively, it is
possible to use a different decay rate for each class, hk

t−1, j →
γ khk

t−1, j , or set γ k as a learnable parameter to be optimized
with the overall objective in (5). The semantic probabilities

123

824 Autonomous Robots (2023) 47:809–830

Fig. 13 Bird’s-eye view of the T own05 map. The top-left quadrant is
resevered for testing while training trajectories are sampled from other
regions

Fig. 14 Semantic probability of each class with different decay rate
γ ∈ {1, 0.9, 0.8, 0.7}

and cost encoder output of the same trajectory with different
decay rates is shown in Fig. 14.

We report the results of our model with different decay
rates in each scenario in Table 5. In addition to the TSR and
MHD metrics, we report the collision rate (CR) between the
agent and the NPC vehicles in the test trajectories. We find
that CR is higher in Scenario 2 than in Scenario 1, which is

expected as lane changing is a harder task when a moving
NPC vehicle is present. The performance in the mixed sce-
nario is on par with that in Scenario 2, suggesting that our
policy class in (4) may not capture a multi-modal distribu-
tion in the demonstrated behaviors effectively. Within each
scenario, we find that the model generally works better when
the decay rate γ is close to 1.0. We suspect that since both
vehicles are moving forward in the same direction, it does
not hurt to map the NPC’s past locations. However, when γ is
small, forgetting the NPC’s history makes its semantic prob-
ability smaller (as shown in Fig. 14), and thus the agent has a
higher chance of colliding into the NPC vehicle. Finally, we
find that MHD is consistent across all settings which shows
that the agent trajectories are close to the expert’s, when they
are successful.

8.5 Evaluation with noisy semantic observations

In this section, we study how noisy semantic observations
can affect downstream cost prediction and policy inference.
First, we consider noise added to the contours of each seg-
mentation region. We replace each pixel value in the original
600×800 semantic segmentation image with a random pixel
within its local 5 × 5 pixel window. This makes the segment
boundaries blurry while the interior of each semantic region
is unchanged (see Fig. 15b). With this noise model, only 0.2%
of the lidar points are labeled incorrectly. We considered two
additional noise models in which 2% and 20% of all pixels
are randonmly changed to an incorrect label chosen among
the remaining semantic labels (see Fig. 15c, d).

We find that these noise models have very little influ-
ence on the policy inference. To understand this, we study
how much the map encoder output changes when using
noisy semantic images. We calculate the total variation dis-
tance between the semantic map probabilities obtained from
the original and perturbed semantic images. Specifically, let
Pa := P(m j = k | x1:T , P1:T) be the semantic posterior
probability of a trajectory using the original semantic seg-
mentation images and, correspondingly, let Pb, Pc, Pd denote
the posteriors using perturbed images from Fig. 15. The total
variation distance between two discrete probability measures
is

T V (Pa, Pb) := 1

2

∑
k

|Pa(m j = k) − Pb(m
j = k)| (23)

Table 6 and Fig. 16 show the maximum and a histogram,
respectively, of the total variation across all grid cells. These
results show that our map encoder is robust to noise even
when 20% of the labels in the semantic images are wrong.

123

Autonomous Robots (2023) 47:809–830 825

Table 5 Test results with dynamic obstacles from CARLA Town05 map, including trajectory success rate (TSR), collision rate (CR), and modified
Hausdorff distance (MHD) between the agent and the expert trajectories on the test set

Decay rate γ Scenario 1 (no lane change) Scenario 2 (lane change required) t Scenario 3 (mixed scenario)

TSR (%) CR (%) MHD TSR (%) CR (%) MHD TSR (%) CR (%) MHD

1.0 92 2 2.878 84 12 2.528 84 8 2.708

0.9 92 3 2.795 88 11 2.446 84 9 2.690

0.8 90 2 2.721 78 15 2.512 80 11 2.912

0.7 86 7 3.224 73 24 2.885 78 16 2.948

Fig. 15 Noisy semantic segmentation observations: a original image, b each pixel is replaced with a random pixel within its local 5 × 5 pixel
window c 2% of all pixels are randomly changed, d 20% of all pixels are randomly changed

Table 6 Maximum total variation distance between the original and
perturbed semantic probabilities across all grid cells

max
m j

T V (Pa, Pb) max
m j

T V (Pa, Pc) max
m j

T V (Pa, Pd)

0.002 0.185 0.511

Fig. 16 Histogram of the total variation distance between the seman-
tic probabilities from the original and the perturbed semantic images.
Even with 20% incorrectly labeled pixels in the semantic segmentation
images, most semantic probabilities are unaffected

9 Conclusion

This paper introduced an inverse reinforcement learning
approach for inferring navigation costs from demonstrations
with semantic category observations. Our cost model consists

of a probabilistic multi-class occupancy map and a deep fully
convolutional cost encoder defined over the class likelihoods.
The cost function parameters are optimized by computing the
optimal cost-to-go of a deterministic shortest path problem,
defining a Boltzmann control policy over the cost-to-go, and
backprogating the log-likelihood of the expert controls with a
closed-form subgradient. Experiments in simulated minigrid
environments and the CARLA autonomous driving simu-
lator show that our approach outperforms methods that do
not encode semantic information probabilistically over time.
Our work offers a promising solution for learning complex
behaviors from visual observations that generalize to new
environments.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10118-
4.

Author Contributions Conceptualization: TW, NA; Methodology: TW,
NA; Software, investigation, and analysis: TW, VD; Writing, review
and editing: TW, VD, NA; Supervision: NA.

Funding We gratefully acknowledge support from NSF CRII IIS-
1755568, ONR SAI N00014-18-1-2828 and NSF No. 2218063.

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

123

826 Autonomous Robots (2023) 47:809–830

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Comparison between Boltz-
mann andmaximum entropy policies

This appendix compares the MaxEnt expert model of Ziebart
et al. (2008) to the expert model proposed in Sect. 3.2. The
MaxEnt model has been widely studied in the context of
reinforcement learning and inverse reinforcement learning
(Haarnoja et al., 2017; Finn et al., 2016; Levine, 2018). On
the other hand, while a Boltzmann policy is a well-known
method for exploration in reinforcement learning, it has not
been used to model expert or learner behavior in inverse rein-
forcement learning.

The work of Haarnoja et al. (2017) shows that both a Boltz-
mann policy and the MaxEnt policy are special cases of an
energy-based policy:

π(ut | xt) ∝ exp(−E(xt , ut)) (A1)

with appropriate choices of the energy function E . We study
the two policies in the discounted infinite-horizon setting, as
this is the most widely used setting for the MaxEnt model.
Extensions to first-exit and finite-horizon formulations are
possible. Consider a Markov decision process with finite state
space X , finite control space U , transition model p(x′ | x, u),
stage cost c(x, u), and discount factor γ ∈ (0, 1).

Proposition 3 (Haarnoja et al. (2017, Thm. 1)) Define the
maximum entropy Q-value as:

QM E (xt , ut) := c(xt , ut)

+ min
π

Eπ,p

[∞∑
k=t+1

γ k−t (c(xk, uk) − αH(π(· | xk)))

]
,

(A2)

where H(π(· | x)) = −∑
u∈U π(u | x) log π(u | x) is the

Shannon entropy of π(· | x). Then, the maximum entropy
policy satisfies:

πM E (ut | xt) ∝ exp

(
− 1

α
QM E (xt , ut)

)
. (A3)

Similarly, define the usual Q-value as:

Q B M (xt , ut) := c(xt , ut)

+ min
π

Eπ,p

[∞∑
k=t+1

γ k−t c(xk, uk)

]
(A4)

and the Boltzmann policy associated with it as:

πB M (ut | xt) ∝ exp

(
− 1

α
Q B M (xt , ut)

)
. (A5)

The value functions QM E and Q B M can be seen as the
fixed points of the following Bellman contraction operators:

TM E [Q](xt , ut) := c(xt , ut)

− γαEp

⎡
⎣log

∑
ut+1∈U

exp

(
− 1

α
Q(xt+1, ut+1)

)⎤⎦ (A6)

TB M [Q](xt , ut) := c(xt , ut) + γ Ep

[
min

ut+1∈U
Q(xt+1, ut+1)

]
.

(A7)

In the latter, the Q values are bootstrapped with a “hard” min
operator, while in the former they are bootstrapped with a
“soft” min operator given by the log-sum-exponential opera-
tion. The form of the Bellman equations resembles the online
SARSA update and offline Q-learning update in reinforce-
ment learning. Consider temporal difference control with
transitions (x, u, c, x′, u′) using SARSA backups:

Q(x, u) ← Q(x, u) + η[c(x, u) + γ Q(x′, u′) − Q(x, u)]

and Q-learning backups:

Q(x, u) ← Q(x, u) + η[c(x, u) + γ min
u′ Q(x′, u′) − Q(x, u)]

where η is a step-size parameter. If we additionally assume
that the controls are sampled from the energy-based policy
in (A1) defined by Q, the SARSA algorithm specifies the
MaxEnt policy, while the Q-learning algorithm specifies the
Boltzmann policy.

We show a visualization of the MaxEnt and Boltzmann
policies, πM E , πB M , as well as their corresponding value
functions QM E , Q B M , in the infinite horizon setting with
discount γ = 0.95 and α = 1. The 4-connected grid environ-
ment in Fig. 17 has obstacles only along the outside border.
The true cost is 0 to arrive at the goal (which is an absorbing
state), 1 to any state (except the goal) inside the grid, infinity
to any obstacle outside the border. Note that QM E and Q B M

are very different in absolute value. In fact, QM E is nega-
tive for all states due to the additional entropy term in (A2).

123

Autonomous Robots (2023) 47:809–830 827

Fig. 17 Value functions corresponding to the MaxEnt and Boltz-
mann policies in infinite horizon setting with discount γ = 0.95.
The environment only has obstacles around the outer boundary. The
start state is marked in green and the goal in red. The controls are
{right, down, left, up} at each state with constant true cost of 0 to arrive
at the goal (which is an absorbing state), 1 to any state except the goal

in the grid and infinity to any obstacle outside the border. Darker color
indicates higher cost-to-go values to reach the goal (top two rows) or
higher probability of choosing a control (bottom two rows). Although
the absolute values of QM E and Q B M are different, both have similar
relative value differences across the controls, providing well-performing
policies πM E and πB M (Color figure online)

123

828 Autonomous Robots (2023) 47:809–830

However, the relative value differences across the controls
are similar and, thus, both policies πM E and πB M generate
desirable paths from start to goal.

References

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse
reinforcement learning. In International conference on machine
learning (p. 1).

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009).
A survey of robot learning from demonstration. Robotics and
Autonomous Systems, 57(5), 469–483.

Atkeson, C. G., & Schaal, S. (1997). Robot learning from demonstra-
tion. In International conference on machine learning (Vol. 97, pp.
12–20).

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A
deep convolutional encoder-decoder architecture for image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(12), 2481–2495.

Bajcsy, A., Losey, D. P., O’malley, M. K., & Dragan, A. D. (2017).
Learning robot objectives from physical human interaction. In
Conference on robot learning.

Baker, C. L., Tenenbaum, J. B., & Saxe, R. R. (2007). Goal inference
as inverse planning. In Annual meeting of the cognitive science
society (Vol. 29).

Bertsekas, D. (1995). Dynamic programming and optimal control.
Athena Scientific.

Brown, D. S., Goo, W., & Niekum, S. (2020). Betterthan-demonstrator
imitation learning via automatically-ranked demonstrations. In
Conference on robot learning (pp. 330–359).

Chen, L., Paleja, R., & Gombolay, M. (2021). Learning from suboptimal
demonstration via self-supervised reward regression. In Confer-
ence on robot learning.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018).
Encoder–decoder with atrous separable convolution for semantic
image segmentation. In European conference on computer vision
(pp. 801–818).

Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018). Minimalis-
tic grid-world environment for OpenAI Gym. https://github.com/
maximecb/gym-minigrid. GitHub.

Choy, C., Gwak, J., & Savarese, S. (2019). 4D spatio-temporal convnets:
Minkowski convolutional neural networks. In IEEE conference on
computer vision and pattern recognition (pp. 3075–3084).

Cohen, T., & Welling, M. (2016). Group equivariant convolutional
networks. In International conference on machine learning (pp.
2990–2999).

Cortinhal, T., Tzelepis, G., & Aksoy, E. E. (2020). SalsaNext: Fast,
uncertainty-aware semantic segmentation of lidar point clouds for
autonomous driving. arXiv preprint arXiv:2003.03653.

Dohan, D., Matejek, B., & Funkhouser, T. (2015). Learning hierarchical
semantic segmentations of lidar data. In International conference
on 3D vision (pp. 273–281).

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017).
CARLA: An open urban driving simulator. In Proceedings of the
1st annual conference on robot learning (pp. 1–16).

Finn, C., Christiano, P., Abbeel, P., & Levine, S. (2016). A con-
nection between generative adversarial networks, inverse rein-
forcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852.

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep
inverse optimal control via policy optimization. In: International
conference on machine learning (pp. 49–58).

Fu, J., Luo, K., & Levine, S. (2018). Learning robust rewards with
adverserial inverse reinforcement learning. In International con-
ference on learning representations.

Gan, L., Zhang, R., Grizzle, J. W., Eustice, R. M., & Ghaffari, M. (2020).
Bayesian spatial kernel smoothing for scalable dense semantic
mapping. IEEE Robotics and Automation Letters, 5(2), 790–797.

Ghasemipour, S. K. S., Zemel, R., & Gu, S. (2020). A divergence mini-
mization perspective on imitation learning methods. In Conference
on robot learning (pp. 1259–1277).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., & Malik, J. (2017).
Cognitive mapping and planning for visual navigation. In Com-
puter vision and pattern recognition (CVPR).

Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017). Reinforcement
learning with deep energy-based policies. In International confer-
ence on machine learning (pp. 1352–1361).

Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning.
In Advances in neural information processing systems (pp. 4565–
4573).

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard,
W. (2013). OctoMap: An efficient probabilistic 3D mapping frame-
work based on octrees. Autonomous Robots, 34(3), 189–206.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Interna-
tional conference on machine learning (Vol. 37, pp. 448–456).

Jain, A., Sharma, S., Joachims, T., & Saxena, A. (2015). Learning pref-
erences for manipulation tasks from online coactive feedback. The
International Journal of Robotics Research, 34, 1296–1313.

Jeon, H. J., Milli, S., & Dragan, A. (2020). Rewardrational (implicit)
choice: A unifying formalism for reward learning. Advances in
Neural Information Processing Systems, 33, 4415–4426.

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics
Research, 30(7), 846–894.

Ke, L., Choudhury, S., Barnes, M., Sun, W., Lee, G., & Srinivasa, S.
(2020). Imitation learning as f-divergence minimization. In Inter-
national workshop on the algorithmic foundations of robotics.

Khan, A., Zhang, C., Atanasov, N., Karydis, K., Kumar, V., & Lee, D.
D. (2018). Memory augmented control networks. In International
conference on learning representations.

Kingma, D. P., & Ba, J. (2014). ADAM: A method for stochastic opti-
mization. In International conference on learning representations.

LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path
planning (TR 98-11). Department of Computer Science, Iowa State
University.

Levine, S. (2018). Reinforcement learning and control as probabilistic
inference: Tutorial and review. arXiv preprint arXiv:1805.00909.

Levine, S., Popovic, Z., & Koltun, V. (2011). Nonlinear inverse rein-
forcement learning with Gaussian processes. In Advances in neural
information processing systems (pp. 19–27).

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training
of deep visuomotor policies. The Journal of Machine Learning
Research, 17(1), 1334–1373.

Likhachev, M., Gordon, G., & Thrun, S. (2004). ARA*: Anytime A*
with provable bounds on sub-optimality. In Advances in neural
information processing systems (pp. 767–774).

Lu, C., van de Molengraft, M. J. G., & Dubbelman, G. (2019). Monoc-
ular semantic occupancy grid mapping with convolutional varia-
tional encoder–decoder networks. IEEE Robotics and Automation
Letters, 4(2), 445–452.

Milioto, A., Vizzo, I., Behley, J., & Stachniss, C. (2019). RangeNet++:
Fast and accurate lidar semantic segmentation. In IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS) (pp.
4213–4220).

123

Autonomous Robots (2023) 47:809–830 829

Neu, G., & Szepesvári, C. (2007). Apprenticeship learning using inverse
reinforcement learning and gradient methods. In Conference on
uncertainty in artificial intelligence (pp. 295–302).

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforcement
learning. In International conference on machine learning (pp.
663–670).

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., & Nieto, J. (2017).
Voxblox: Incremental 3D Euclidean signed distance fields for
onboard MAV planning. In IEEE/RSJ international conference on
intelligent robots and systems (IROS) (pp. 1366–1373).

Pan, Y., Cheng, C.-A., Saigol, K., Lee, K., Yan, X., Theodorou, E.
A., & Boots, B. (2020). Imitation learning for agile autonomous
driving. The International Journal of Robotics Research, 39(2–3),
286–302.

Papandreou, G., Chen, L.-C., Murphy, K. P., & Yuille, A. L. (2015).
Weakly- and semi-supervised learning of a deep convolutional
network for semantic image segmentation. In IEEE international
conference on computer vision (pp. 1742–1750).

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and
generalization of motor skills by learning from demonstration. In
IEEE international conference on robotics and automation (pp.
763–768).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Desmaison,
A. (2019). Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information processing sys-
tems (pp. 8026–8037).

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J.,
Todorov, E., & Levine, S. (2018). Learning complex dexterous
manipulation with deep reinforcement learning and demonstra-
tions. In Proceedings of robotics: Science and systems (RSS).

Ramachandran, D., & Amir, E. (2007). Bayesian inverse reinforcement
learning. In International joint conferences on artificial intelli-
gence organization (Vol. 7, pp. 2586–2591).

Ratliff, N. D., Bagnell, J. A., & Zinkevich, M. A. (2006). Maximum
margin planning. In International conference on machine learning
(pp. 729–736).

Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation
learning and structured prediction to no-regret online learning. In
International conference on artificial intelligence and statistics
(pp. 627–635).

Sengupta, S., Sturgess, P., Ladickỳ, L., & Torr, P. H. (2012). Auto-
matic dense visual semantic mapping from street-level imagery.
In IEEE/RSJ international conference on intelligent robots and
systems (pp. 857–862).

Shor, N. Z. (2012). Minimization methods for nondifferentiable func-
tions (Vol. 3). Springer.

Song, Y. (2019). Inverse reinforcement learning for autonomous ground
navigation using aerial and satellite observation data (unpublished
master’s thesis). Carnegie Mellon University.

Sun, L., Yan, Z., Zaganidis, A., Zhao, C., & Duckett, T. (2018).
Recurrent-OctoMap: Learning state-based map refinement for
long-term semantic mapping with 3D-Lidar data. IEEE Robotics
and Automation Letters, 3(4), 3749–3756.

Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016). Value
iteration networks. In Advances in neural information processing
systems (pp. 2154–2162).

Tew, P. A. (2016). An investigation of sparse tensor formats for tensor
libraries (unpublished doctoral dissertation). Massachusetts Insti-
tute of Technology.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT
Press.

Wang, T., Dhiman, V., & Atanasov, N. (2020a). Learning navigation
costs from demonstration in partially observable environments. In
IEEE international conference on robotics and automation.

Wang, T., Dhiman, V., & Atanasov, N. (2020b). Learning navigation
costs from demonstrations with semantic observations. In Confer-
ence on learning for dynamics and control.

Wu, B., Wan, A., Yue, X., & Keutzer, K. (2018). SqueezeSeg: Convo-
lutional neural nets with recurrent CRF for real-time road-object
segmentation from 3D lidar point cloud. In International confer-
ence on robotics and automation (pp. 1887–1893).

Wulfmeier, M., Wang, D. Z., & Posner, I. (2016). Watch this: Scalable
cost-function learning for path planning in urban environments.
In IEEE/RSJ international conference on intelligent robots and
systems (IROS) (pp. 2089–2095).

Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., Tunyasuvu-
nakool, S., Kramar, J., Hadsell, R., de Freitas, N., & Heess, N.
(2018). Reinforcement and imitation learning for diverse visuo-
motor skills. In Robotics: Science and systems.

Ziebart, B. D., Maas, A., Bagnell, J., & Dey, A. K. (2008). Maximum
entropy inverse reinforcement learning. In AAAI conference on
artificial intelligence (pp. 1433–1438).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Tianyu Wang is a PhD student
in Electrical and Computer Engi-
neering at the University of Cal-
ifornia San Diego, CA, USA. He
received a B.S. degree in Physics
from Haverford College, PA in
2016 and an M.S. degree in Elec-
trical and Computer Engineering
from the University of California
San Diego, La Jolla, CA in 2018.
His research interests include rein-
forcement learning and imitation
learning with applications to
robotics and autonomous driving.

Vikas Dhiman is an Assistant
Professor in the ECE department
at the University of Maine. His
works lie in the localization, map-
ping and control algorithms for
applications in robotics. He was
a Postdoctoral Researcher at the
University of California, San
Diego (2019-21). He graduated in
Elec. Engg (2008) from Indian
Institute of Technology, Roorkee,
earned his MS (2014) from Uni-
versity at Buffalo, and received
his PhD (2019) from the Univer-
sity of Michigan, Ann Arbor.

123

830 Autonomous Robots (2023) 47:809–830

Nikolay Atanasov is an Assis-
tant Professor of Electrical and
Computer Engineering at the Uni-
versity of California San Diego,
La Jolla, CA, USA. He obtained
a B.S. degree in Electrical Engi-
neering from Trinity College,
Hartford, CT, USA in 2008, and
M.S. and Ph.D. degrees in Electri-
cal and Systems Engineering from
University of Pennsylvania, Phila-
delphia, PA, USA in 2012 and
2015, respectively. Dr. Atanasov’s
research focuses on robotics, con-
trol theory, and machine learning

with emphasis on active perception problems for autonomous mobile
robots. He works on probabilistic models that unify geometric and
semantic information in simultaneous localization and mapping (SLAM)
and on optimal control and reinforcement learning algorithms for min-
imizing probabilistic model uncertainty. Dr. Atanasov’s work has been
recognized by the Joseph and Rosaline Wolf award for the best Ph.D.
dissertation in Electrical and Systems Engineering at the University
of Pennsylvania in 2015, the Best Conference Paper Award at the
IEEE International Conference on Robotics and Automation (ICRA)
in 2017, the NSF CAREER Award in 2021, and the IEEE RAS Early
Academic Career Award in Robotics and Automation in 2023.

123

