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Abstract
To balance quality and cost, various domain ar-

eas of science and engineering run simulations at

multiple levels of sophistication. Multi-fidelity

active learning aims to learn a direct mapping

from input parameters to simulation outputs at

the highest fidelity by actively acquiring data

from multiple fidelity levels. However, exist-

ing approaches based on Gaussian processes are

hardly scalable to high-dimensional data. Deep

learning-based methods often impose a hierarchi-

cal structure in hidden representations, which only

supports passing information from low-fidelity

to high-fidelity. These approaches can lead to

the undesirable propagation of errors from low-

fidelity representations to high-fidelity ones. We

propose a novel framework called Disentangled

Multi-fidelity Deep Bayesian Active Learning

(D-MFDAL), which learns the surrogate models

conditioned on the distribution of functions at

multiple fidelities. On benchmark tasks of learn-

ing deep surrogates of partial differential equa-

tions including heat equation, Poisson’s equation

and fluid simulations, our approach significantly

outperforms state-of-the-art in prediction accu-

racy and sample efficiency.

1. Introduction
Mathematical modeling and simulations play a crucial role

in various scientific and engineering fields, ranging from dif-

fusion modeling to epidemic simulation. These models can

often be simulated at different levels of sophistication. High-

fidelity models provide highly accurate results but require

more computational resources, while low-fidelity models
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offer less accuracy but are less computationally expensive.

Multi-fidelity modeling, as outlined in (Peherstorfer et al.,

2018), aims to strike a balance between computation cost

and prediction accuracy by using data from multiple levels

of fidelity to learn an accurate high-fidelity surrogate. The

learned surrogate can replicate the behavior of the original

model to eliminate the complex numerical integration.

While Gaussian processes (GPs) remain to be predominant

tools in multi-fidelity modeling (Perdikaris et al., 2016;

Wang et al., 2021), deep learning arises as a more scalable

alternative for high-dimensional data (Cutajar et al., 2019;

Wang & Lin, 2020; Hebbal et al., 2021; Wu et al., 2022).

These methods use a deep neural network to learn a direct

mapping from input parameters to simulation outputs using

multi-fidelity data. However, they also require simulating

massive training data beforehand, which is expensive to

obtain, especially for high-fidelity simulation.

Multi-fidelity deep active learning (MFDAL) (Li et al.,

2022b;a) proposes a framework to acquire data at differ-

ent fidelity levels with deep learning and to reduce the cost

of data simulation. Such models pass information from

low-fidelity to high-fidelity hidden representations through

a neural network (NN). This design requires accurate hidden

representations at each fidelity to propagate useful informa-

tion from low-fidelity to high-fidelity levels. However, in

multi-fidelity active learning, these hidden representations

can be easily erroneous when the number of training data

is highly unbalanced at each fidelity and the data distribu-

tion is dramatically shifted during the beginning stage of

active learning. Moreover, the trained surrogate model will

also have the overfitting issue at the beginning stage with

limited training data at each fidelity level. These overfitted

hidden representations are less accurate and their error will

propagate from low-fidelity to high-fidelity.

To alleviate the overfitting problem, (Wu et al., 2022) pro-

pose a unified neural latent variable model for multi-fidelity

surrogate modeling called Multi-fidelity Hierarchical Neu-

ral Processes (MFHNP). They introduce latent variables to

learn the distributions over functions at each fidelity level.

However, this model still requires a hierarchical structure

to pass information from low-fidelity to high-fidelity levels

via hidden representations of a NN. Therefore, the error

propagation issue remains.
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In this work, we design a novel framework called Dis-

entangled Multi-fidelity Deep Bayesian Active Learning

(D-MFDAL) to learn the multi-fidelity representations in the

functional space. D-MFDAL is able to solve both error prop-

agation and overfitting issues mentioned above. Specifically,

D-MFDAL belongs to the Neural Process (NP) family (Gar-

nelo et al., 2018b;a) to learn the latent variables from the

individual latent representations of the input-output pairs in

the context set. The latent variables are used to represent the

distributions over functions at each fidelity level. D-MFDAL
disentangles these individual latent representations into two

parts for global-local separation. The global representations

are treated as the samples generated from latent represen-

tations among all fidelity levels, while the local ones are

samples generated from latent representations at individual

fidelity level. In this way, D-MFDAL avoids the hierarchical

model architecture.

We design a unified evidence lower bound (ELBO) for the

joint distribution among all fidelity levels as the training

loss and introduce the multi-fidelity regularization term to

enforce similar global representations across the fidelity

levels for the same sample. Furthermore, we extend the ac-

quisition function, latent information gain (Wu et al., 2023),

designed for Bayesian active learning on NP-based models

to multi-fidelity setting and design an efficient algorithm for

budget-constrained batch active learning.

In summary, our contributions include:

• A scalable Disentangled Multi-fidelity Deep Bayesian

Active Learning framework (D-MFDAL). The disentan-

gled representation makes it flexible and efficient to

share global information across all fidelity levels.

• A novel acquisition function called Multi-fidelity La-

tent Information Gain (MF-LIG) and an efficient algo-

rithm for budget-constrained greedy-based batch active

learning implementation.

• Superior performance in multiple benchmark studies

of learning deep surrogates of partial differential equa-

tions and complex fluid prediction task in both passive

learning and active learning settings.

2. Background
Muti-Fidelity Modeling. Formally, given input domain

X ⊆ R
dx and output domain Y ⊆ R

dy , a model is a

(stochastic) function f : X → Y . The evaluations of f
incur computational costs c > 0. The computational costs c
are higher at higher fidelity level (c1 < ... < cK). In multi-

fidelity modeling, we have a set of functions {f1, · · · , fK}
that approximate f with increasing accuracy and computa-

tional cost. Our target is to learn a deep surrogate model

f̂K based on data from K fidelity levels and N different

parameter settings (scenarios) {xk,n, yk,n}K,N
k=1,n=1.

Neural Processes. Neural processes (NPs) (Garnelo et al.,

2018b) are a family of conditional latent variable models

for implicit stochastic processes (SPs) (Wang & Van Hoof,

2020). NPs combine GPs and neural networks (NNs). Like

GPs, NPs can represent distributions over functions and can

estimate the uncertainty of the predictions. But they are

more scalable in high dimensions and allow continual and

active learning out-of-the-box (Jha et al., 2022).

According to Kolmogorov Extension Theorem (Øksendal,

2003), NPs meet exchangeability and consistency condi-

tions to define SPs. Formally, NP includes latent vari-

ables z ∈ R
dz and model parameters θ and is trained

by the context set Dc ≡ {xc
n, y

c
n}Nn=1 and target sets

Dt ≡ {xt
m, ytm}Mm=1. Here Dc and Dt are randomly split

from the training set D. Learning the posterior of z and θ is

equivalent to maximizing the following posterior likelihood:

p(yt1:M |xt
1:M ,Dc, θ) =

∫
p(z|Dc, θ)

M∏
m=1

p(ytm|z, xt
m, θ)dz

(1)

Since marginalizing over the latent variables z is intractable,

the NP family (Garnelo et al., 2018b; Kim et al., 2019)

uses approximate inference and derives the corresponding

evidence lower bound (ELBO):

log p(yt1:M |xt
1:M ,Dc, θ) ≥

Eqφ(z|Dc∪Dt)

[ M∑
m=1

log p(ytm|z, xt
m, θ) + log

qφ(z|Dc)

qφ(z|Dc ∪ Dt)

]

(2)

Note that this variational approach approximates the in-

tractable true posterior p(z|Dc, θ) with the approximate

posterior qφ(z|Dc). This approach is also an amortized in-

ference method as the global parameters φ are shared by all

context data points. It is efficient during the test time (no

per-data-point optimization) (Volpp et al., 2020).

3. Methodology
Our proposed D-MFDAL is presented in two sections. First,

we describe the disentangled neural processes architecture,

specifically designed for multi-fidelity surrogate modeling

and the associated training procedure. Secondly, we intro-

duce a new acquisition function (MF-LIG) for multi-fidelity

active learning, which extends Latent Information Gain (Wu

et al., 2023). Additionally, we present a greedy-based algo-

rithm for batch active learning under budget constraints.
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Figure 1. Graphical model: Left and Middle: two multi-fidelity surrogate modeling baselines. Both have hierarchical structures. They use

the hidden variable hk or the latent variable zk to pass information from low-fidelity to high-fidelity levels and therefore suffer from the

error propagation issue. Right: D-MFDAL disentangles the latent representations rk,n shown in MFHNP into local representations Lk,n

and global representations Gk,n, and directly uses them to infer the latent variable zk. zk are conditionally independent of each other

given the local and global representations. Shaded circles denote observed variables and hollow circles represent latent variables. The

directed edges represent conditional dependence.

GK,i

G1,i zr
1

zr
K

yr
1,i

xr
K,i

yr
K,i

xr
1,i

I

Figure 2. Graphical model: Inference graph for the reference con-

text pairs {xr
k,i, y

r
k,i}. Shaded circles denote observed variables

and hollow circles represent latent variables. The directed edges

represent conditional dependence.

3.1. Disentangled Multi-fidelity Neural Processes

We design a NP based model, Disentangled Multi-fidelity

Neural Processes (DMFNP), to efficiently integrate infor-

mation from multiple fidelity levels without the hierarchical

structure.

Local and Global Latent Representations. The key idea

of the D-MFDAL model is to disentangle latent representa-

tions rk,n into local representations Lk,n and global repre-

sentations Gk,n, see Figure 1 right. Intuitively, Gk,n embeds

the information from the context pair {xc
k,n, y

c
k,n} that can

be shared to all fidelity levels, where k is the fidelity level

of the context pair and n is the scenario index. On the other

hand, Lk,n embeds the information from the context pair

{xc
k,n, y

c
k,n} that is only for the fidelity level k.

Multi-fidelity Bayesian Context Aggregation. We ex-

tend Bayesian aggregation (BA) (Volpp et al., 2020) to infer

latent variables zk. We learn the local and global represen-

tation Lk,n, Gk,n together with the corresponding variance

σ2
Lk,n

, σ2
Gk,n

. The local representation Lk,n can be consid-

ered as a sample of p(zk). On the other hand, we treat the

global representation Gk,n as K copies of samples of p(zk)
across all fidelity levels. Then we aggregate local and global

representations of context data pairs to infer z following the

graph in Figure 1. We implement it using the factorized

Gaussian observation model with the following form:

p(Lk,n|zk) = N (Lk,n|zk, diag(σ2
Lk,n

)),

Lk,n = encφ(x
C
k,n, y

C
k,n).

p(Gk,n|zk) = N (Gk,n|zk, diag(σ2
Gk,n

)),

p(Gk,n|zm) = N (Gk,n|zm, diag(σ2
Gk,n

)), for all m �= k

Gk,n = encφ(x
C
k,n, y

C
k,n). (3)

We use factorized Gaussian priors

p0(zk) := N (zk|μzk,0
, diag(σ2

zk,0
))

to derive a multi-fidelity Gaussian aggregation model

and update the parameters of the posterior distribution
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qφ(zk|Dc) in a closed form:

σ2
zk

=
[
(σ2

zk,0
)� +

N∑
n=1

(σ2
Lk,n

)�) +
K∑
j=1

[

N∑
n=1

(σ2
Gj,n

)�)]
]�

,

μzk = μzk,0
+ σ2

zk
	 [ N∑

n=1

(Lk,n − μzk,0
)
 (σ2

Lk,n
)

+

K∑
j=1

[

N∑
n=1

(Gj,n − μzk,0
)
 (σ2

Gj,n
)]
]
. (4)

where �, 	 and 
 denote element-wise inversion, product,

and division, respectively.

Unified ELBO. We design a unified ELBO based on

the D-MFDAL model. For multi-fidelity surrogate mod-

eling, we infer the latent variables zk at each fidelity level.

Therefore, we use K encoders qφk
(zk|Dc) and K decoders

pθk(y
t
k|zk, xt

k) for k ∈ {1, ...,K}. When K = 2, we can

derive the corresponding ELBO containing 4 terms as:

log p(yt1, y
t
2|xt

1, x
t
2,Dc, θ)

≥Eqφ(z1,z2|Dc∪Dt)

[
log p(yt1, y

t
2|z1, z2, xt

1, x
t
2, θ)+

log
qφ(z1, z2|Dc)

qφ(z1, z2|Dc ∪ Dt)

]

=Eqφ2
(z2|Dc∪Dt)qφ1

(z1|Dc∪Dt)

[
log p(yt2|z2, xt

2, θ2)+

log p(yt1|z1, xt
1, θ1) + log

qφ2
(z2|Dc)

qφ2
(z2|Dc ∪ Dt)

+

qφ1
(z1|Dc)

qφ1
(z1|Dc ∪ Dt)

]
(5)

Such a unified ELBO objective can be generalized to ac-

commodate any desired number of fidelity levels.

Multi-Fidelity Regularization. Since Gk,n is the global

representation, any (Gk1,i, Gk2,i) pair should be similar

across fidelity levels for the same scenario i. However,

since the output dimensions are different at each fidelity

level, D-MFDAL cannot share the encoder at different fi-

delity levels. Therefore, we introduce reference context data

Dr
k = {xr

k,i, y
r
k,i}Ii=1, which is shared across all fidelity

levels (see Figure 2 for the inference graph). I is the total

number of reference scenarios. We design the multi-fidelity

regularization term to minimize the Jensen–Shannon diver-

gence between the inferred posterior zrk distribution from

(xr
k,i, y

r
k,i) pairs (where k < K) and the posterior zrK dis-

tribution from (xr
K,i, y

r
K,i) pairs. Note that D-MFDAL does

not require additional data as we use the initial training data

as reference data for fair comparison.

We use factorized Gaussian priors for reference latent repre-

sentations zrk:

p0(z
r
k) := N (zrk|μzr

k,0
, diag(σ2

zr
k,0

))

The posterior distribution qφ(z
r
k|Dr

k) can be written as:

σ2
zr
k
=

[
(σ2

zr
k,0

)� +

N∑
n=1

(σ2
Gk,n

)�)
]�

,

μzr
k
= μzr

k,0
+ σ2

zr
k
	 [ N∑

n=1

(Gk,n − μzr
k,0

)
 (σ2
Gk,n

)
]
.

(6)

We further derive the multi-fidelity regularization using the

sum of Jensen-Shannon divergence between the highest

fidelity level K and all other lower fidelity levels k as:

K∑
k=1

JSD(qφ(z
r
k|Dr

k), qφ(z
r
K |Dr

K))

=
1

2

K∑
k=1

Eqφ(zr
k|Dr

k)

[
log

qφ(z
r
K |Dr

K)

qφ(zrk|Dr
k)

]

+
1

2

K∑
k=1

Eqφ(zr
K |Dr

K)

[
log

qφ(z
r
k|Dr

k)

qφ(zrK |Dr
K)

]
(7)

Training Procedure. D-MFDAL is designed for scalable

training, which means the model inference time should

scale at most linearly with respect to the number of fidelity

levels. It can be realized by using the disentangled latent

representations to share the information across the fidelity

levels. In this way, the latent variables zk are conditionally

independent to each other given the global representations

G and the local representations L. Therefore, we no longer

require nested Monte Carlo (MC) sampling of zk from low-

fidelity to high-fidelity levels as in previous models with

hierarchical structures.

For the training loss including ELBO in Equation 5 and

multi-fidelity regularization in Equation 7, we use MC sam-

pling to optimize the following objective function:

LMC =
∑K

k=1

[
1
S

∑S
s=1 log p(y

t
k|xt

k, z
(s)
k )

−KL[q(zk|,Dc,Dt))‖p(zk|Dc)]

+JSD(q(zrk|Dr
k), q(z

r
K |Dr

K))]

]
(8)

where the latent variables z
(s)
k is sampled by qφ1

(zk|Dc).
The sampling time scales linearly w.r.t. the number of fi-

delity levels.
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Multi-fidelity Deep Bayesian Active Learning Framework
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Figure 3. Illustration of the multi-fidelity deep Bayesian active learning framework (D-MFDAL). Given simulation parameters and data,

D-MFDAL trains a deep surrogate model to infer the latent variables at each fidelity level. The inferred latent variables allow prediction

and uncertainty quantification. The uncertainty is used to calculate the acquisition function (e.g. MF-LIG) to select the next set of

parameters to query and simulate more data to add to the training set.

3.2. Multi-Fidelity Active Learning

In this section, we propose the novel acquisition function

MF-LIG based on the model architecture of D-MFDAL for

multi-fidelity active learning. Furthermore, we design a

greedy batch multi-fidelity active learning algorithm with

budget constraints for data efficiency.

Weighted Information Gain (IG). Define the search

space as S = {(xk,n, yk,n)}K,N
k=1,n=1 with K fidelity lev-

els and N input parameters for each fidelity. We flatten the

search space and define the acquisition function as:

IG(xk,n, yk,n) =
1

ck
[H(w)−H(w|xk,n, yk,n)] (9)

where ck is the computational cost for level k. This is a

naive implementation of IG for Bayesian active learning.

In this paper, we study the continuous input parameter and

discrete fidelity level setting:

IG(yk(xk)) =
1

ck
[H(w)−H(w|yk(xk))]. (10)

In practice, we do not know yk(xk) before querying the sim-

ulator. The best we can do is to use the weighted information

gain (EIG) to replace the weighted IG:

EIG(xk) =
1

ck
Ep(yk(xk))[H(w)−H(w|yk(xk)]. (11)

Latent Information Gain for Multi-Fidelity Active
Learning. For multi-fidelity active learning, our goal is

to improve the model performance at the highest fidelity

level. Therefore, weighted IG/EIG is suboptimal as it treats

all the model parameters w at each fidelity level equally

important. To find the optimal solution, we design a new ac-

quisition function called Multi-Fidelity Latent Information

Gain (MF-LIG).

We start by searching for an xk to optimize the EIG with

respect to the model parameters used at the highest fidelity

level. We can write the corresponding acquisition function:

MF-EIG(xk) =
1

ck
Ep(yk(xk))[H(wK)−H(wK |yk(xk))].

(12)

where wK are the model parameters at the fidelity level K.

The next step is to use the inferred latent variable zk of

D-MFDAL to replace wk as they are learned from the con-

text set {xc
k,n, y

c
k,n}Nn=1 to represent fk(.) of the ground

truth simulators and are capable of performing conditional

modeling p(ytk,m(xt
k,m)|zk) at each fidelity level k. We

then propose a new acquisition function MF-LIG measur-

ing the weighted expected information gain between the

prediction and the latent variables at the highest fidelity

level:

as(xk) = MF-LIG(xk)

=
1

ck
Ep(yk(xk))KL[p(zK |yk(xk))‖p(zK))]. (13)
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Algorithm 1 Batch MF-LIG

Input: costs {c1, ..., cK}, budget B, training set D.

Initialize the current selected data index j ← 0, selected

data set Dq
j ← ∅, current cost Cj ← 0.

while Cj ≤ B do
(x∗, k∗) = argmax(x,k)MF-LIG(xk)
j ← j + 1
Dq

j ← Dq
j−1 ∪ {((x∗, k∗, ŷ(x∗, k∗))}

D ← D ∪Dq
j

Cj ← Cj−1 + ck∗

end while
Return Dq

j

Batch Multi-Fidelity Active Learning Algorithm. We

follow the greedy active learning algorithm by (Li et al.,

2022a) using our proposed MF-LIG for budget-constrained

batch active learning. Since MF-LIG is also a mutual in-

formation based acquisition function, the guaranteed near

(1− 1/e) approximation for the greedy algorithm also ap-

plies in our case. Our approach is summarized in Algorithm

1 and the overall framework is visualized in Figure 3.

4. Related Work
Multi-fidelity Modeling. Multi-fidelity surrogate model-

ing is widely used in science and engineering fields, from

aerospace systems (Brevault et al., 2020) to climate science

(Hosking, 2020; Valero et al., 2021) (Valero et al., 2021).

The pioneering work of (Kennedy & O’Hagan, 2000) uses

GPs to relate models at multiple fidelity with an autore-

gressive model. (Le Gratiet & Garnier, 2014) proposed

recursive GP with a nested structure in the input domain

for fast inference. (Perdikaris et al., 2015; 2016) deals with

high-dimensional GP settings by taking the Fourier trans-

formation of the kernel function. (Perdikaris et al., 2017)

proposed multi-fidelity Gaussian processes (NARGP) but

assumes a nested structure in the input domain to enable a

sequential training process at each fidelity level. Wang et al.

(2021) proposed a Multi-Fidelity High-Order GP model to

speed up the physical simulation. They extended the classi-

cal Linear Model of Coregionalization (LMC) to nonlinear

case and placed a matrix GP prior on the weight functions.

Deep Gaussian processes (DGPs) (Cutajar et al., 2019) de-

sign a single objective to optimize kernel parameters at each

fidelity level jointly. However, DGPs are not scalable for

applications with high-dimensional data.

Deep learning has been applied to multi-fidelity modeling.

For example, (Guo et al., 2022) uses deep neural networks to

combine parameter-dependent output quantities. (Meng &

Karniadakis, 2020) propose a composite neural network for

multi-fidelity data from inverse PDE problems. (Meng et al.,

2021) propose Bayesian neural nets for multi-fidelity mod-

eling. (De et al., 2020) use transfer learning to fine-tune the

high-fidelity surrogate model with the deep neural network

trained with low-fidelity data. (Cutajar et al., 2019; Hebbal

et al., 2021) propose deep GPs to capture nonlinear corre-

lations between fidelities, but their method cannot handle

the case where different fidelities have data with different

dimensions. Tangentially, multi-fidelity methods have also

recently been investigated in Bayesian optimization, active

learning and bandit problems (Li et al., 2020b; 2022a; Perry

et al., 2019; Kandasamy et al., 2017).

Neural Processes (NPs) (Garnelo et al., 2018a; Kim et al.,

2018; Louizos et al., 2019; Singh et al., 2019) provide

scalable and expressive alternatives than GPs for modeling

stochastic processes. It lies between GPs and NN. However,

none of the existing NP models can efficiently incorporate

multi-fidelity data. Previous work by (Raissi & Karniadakis,

2016) combines multi-fidelity GP with deep learning by

placing a GP prior on the features learned by deep neural

networks. Their model, however, remains closer to GPs.

Quite recently, (Wang & Lin, 2020) proposed multi-fidelity

neural process with physics constraints (MFPC-Net). They

use NP to learn the correlation between multi-fidelity data

by mapping both the input and output of the low-fidelity

model to high-fidelity model output. But their model re-

quires paired data and cannot utilize the remaining unpaired

data at the low-fidelity level.

Bayesian Active Learning. Bayesian active learning is

well studied in statistics and machine learning (Chaloner

& Verdinelli, 1995; Cohn et al., 1996). GPs are popular

for posterior estimation, e.g. (Houlsby et al., 2011; Zimmer

et al., 2018), but often struggle in high dimension. Deep neu-

ral networks provide scalable solutions for active learning.

Deep active learning has been applied to discrete problems

such as image classification (Gal et al., 2017) and sequence

labeling (Siddhant & Lipton, 2018). The data are queried

based on different types of acquisition functions, such as

predictive entropy and Bayesian Active Learning by Dis-

agreement (BALD) (Houlsby et al., 2011). Kirsch et al.

(2019) further developed BatchBALD, a greedy approach

that incrementally selects a set of unlabeled images based on

BALD score to issue batch queries for active learning. This

batch acquisition function based on BALD is submodular,

and therefore its corresponding greedy approach achieves a

1− 1
e approximation. Similarly, (Li et al., 2020a) propose the

optimization-based method DMFAL which is optmization-

based and supports mutli-fidelity surrogate modeling, and

BMFAL (Li et al., 2022a) uses greedy approach to further

extend DMFAL to support batch active-learning.

6



Disentangled Multi-Fidelity Deep Bayesian Active Learning

Task Setting DMFAL NARGP MFHNP D-MFDAL

Heat 2

Nested 0.177±2.94e-6 0.313 ±3.47e-6 0.115±8.34e-5 0.1 ±4.92e-5
Non-nested 0.170±1.21e-6 0.311±1.71e-7 0.078±1.02e-4 0.04 ±6.4e-9
Full 0.138 ± 4.0e-8 0.31±2.12e-6 0.026±4.01e-5 0.015±1.42e-5

Heat 3

Nested 0.173 ± 1.6e-7 0.311±2.56e-6 0.145±5.11e-5 0.13 ±2.32e-5
Non-nested 0.162±2.35e-6 0.31 ±1.05e-6 0.152±8.86e-5 0.112±2.06e-5
Full 0.137±1.23e-7 0.309±3.46e-6 0.111±4.82e-6 0.108±4.85e-8

Poisson 2

Nested 0.179 ± 3.9e-7 0.595±8.71e-8 0.107±7.07e-5 0.097±5.63e-5
Non-nested 0.157±4.56e-5 0.596±1.74e-5 0.102±4.25e-4 0.084±5.74e-4
Full 0.107 ± 6.58e-5 0.585±9.84e-5 0.093±2.55e-4 0.07 ±2.99e-4

Possion 3

Nested 0.177±3.99e-5 0.594±6.3e-6 0.281±2.85e-5 0.126±1.03e-5
Non-nested 0.129±6.51e-5 0.592±3.77e-5 0.317±8.67e-5 0.131±3.22e-5

Full 0.121±1.47e-5 0.58 ±1.02e-4 0.335±2.37e-5 0.101±1.81e-4

Fluid

Nested 0.294±8.02e-8 0.358±1.26e-3 0.26 ±1.11e-6 0.21 ±5.13e-6
Non-nested 0.331±6.86e-7 0.371±2.41e-3 0.263±1.67e-5 0.237±3.14e-6
Full 0.275±4.59e-7 0.353±9.28e-4 0.234±4.82e-6 0.207±1.31e-5

Table 1. Passive learning performance (nRMSE) comparison of 4 different methods applied to the Heat and Poisson simulators with two

and three fidelities and fluid simulation with Navier-Stokes equation. Each set of data is restructured into three settings to mimic different

stages during active learning.
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Figure 4. Active learning performance comparison for Heat and Poisson simulation with two and three fidelity levels, fluid simulation

with two fidelity levels using Navier-Stokes equation. Performance is measured at the highest fidelity level.

5. Experiments
5.1. Datasets

We evaluate our methods on learning surrogate models of

partial differential equations (PDE) benchmark, and a more

complex fluid dynamics prediction task.

Partial Differential Equations. We include 4 benchmark

tasks in computational physics. The goal is to predict the

spatial solution fields of 2 PDEs, including Heat and Pois-

son’s equations (Olsen-Kettle, 2011). The ground-truth data

is generated from the numerical solver. High-fidelity and

low-fidelity examples are generated by solvers running with

dense and coarse meshes, respectively. The output dimen-

sion is the same as the flattened mesh points. For both Heat

and Poisson’s equation with two-fidelity setting, they have

16 × 16 meshes at low fidelity level and 32 × 32 meshes

at high fidelity level. For three-fidelity setting, they both

have additional 64× 64 meshes at the highest fidelity level.

We calculate the relative cost of querying at each fidelity

level ck based on the averaged computation time for data

generation. We always set c1 = 1 as a reference.
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Fluid Simulation. We also test D-MFDAL on a more chal-

lenging fluid dynamics simulation task. This computation-

ally challenging simulation is based on the Navier-Stokes

equation and the Boussinesq approximation (Holl et al.,

2020). We obtain the ground truth data by simulating the

velocity field of smoke dynamics in a 50× 50 grid. Initially,

a static incompressible smoke cloud of radius 5 is placed at

the lower center of the domain together with a consistent

inflow force is applied to the center at the initial position

of the smoke. The inflow force varies in magnitude and

direction for different scenarios. The two-dimensional input

controls the magnitude of the inflow force at x and y direc-

tions. The output is the first component of the velocity field

by applying the inflow for 30 time stamps. We simulated

the low fidelity ground truth with a 32× 32 mesh and high

fidelity with a 64× 64 mesh.

5.2. Experiment Setup

We consider two groups of experiments:

• Passive Learning: model accuracy and robustness

test by comparing the performance between D-MFDAL
versus other baseline models using the entire training

dataset.

• Active Learning: budget-constrained batch multi-

fidelity active learning comparison between D-MFDAL
with the MF-LIG acquisition function versus other

multi-fidelity active learning frameworks.

For passive learning, we evaluate the performance of our

model under three settings: nested, non-nested, and full. Let

X1 and X2 to be two training input sets at 2 fidelity levels.

The “full” setting means that X1 = X2 and both sets have a

large number of scenarios uniformly distributed in the input

space, mimicking the final and convergent stage of active

learning. The “nested” setting means that X2 ⊂ X1 and the

“nonnested” settings means that X1 ∧ Xq = X r, where X r

includes the inputs for the reference set. These two settings

are used to mimic the early stage of active learning where

the number of low-fidelity data points is much larger than

the high-fidelity data points. We use these three settings to

test the robustness of D-MFDAL and other baselines. For

comparison, we consider state-of-the-art baselines for multi-

fidelity surrogate modeling, including DMFAL (Li et al.,

2020a), NARGP (Perdikaris et al., 2017), and MFHNP (Wu

et al., 2022).

For active learning, we use the same 8 uniformly sampled

data points across all fidelity levels as the reference data for

initial training. We run 25 iterations and at each iteration,

the active learning framework queries the simulator for the

input with the highest acquisition function score until it

reaches the budget limit of 20 per iteration. We compare

our method against DMFAL (Li et al., 2020a), BMFAL-

Random (Li et al., 2022a), BMFAL (Li et al., 2022a) and

MF-BALD (Gal et al., 2017) as baselines, using the same

hyperparameter settings as in the literature.

For both passive and active learning, we randomly generate

512 data points as the test set for 4 benchmark tasks and 256
data points as the test set for fluid simulation. We use the

normalized Root Mean Squared Error (nRMSE) to measure

prediction performance at the highest fidelity level, as our

goal is to mimic the dynamics at the highest fidelity level.

All experiment results are averaged over 3 random runs.

Our code is available at https://github.com/Rose-STL-

Lab/Multi-Fidelity-Deep-Active-Learning.

5.3. Experimental Results

Passive Learning Performance. We test the passive learn-

ing performance of D-MFDAL and baselines across 5 tasks

and 3 settings. The results are shown in Table 1. It can

be seen that our model consistently outperforms all base-

lines across all settings and tasks. Furthermore, D-MFDAL
performs particularly well under challenging nested and dis-

joint settings where the number of training data available

at the highest fidelity level is limited. For example, in the

complex fluid simulation, we find D-MFDAL with only 8
data points at the high fidelity level under the nested setting

outperforming all other baselines in the full setting.

The results show that D-MFDAL is capable of utilizing the

information from the low fidelity levels to make good pre-

dictions at the highest fidelity level. D-MFDAL is also quite

robust as it almost has the best model performance under all

three representative active learning settings. These advan-

tages show that D-MFDAL is suitable for Bayesian active

learning throughout the training process.

Active Learning Performance. Figure 4 shows the

nRMSE versus the number of iterations in active training.

Our proposed D-MFDAL with MF-LIG always has the best

nRMSE performance throughout the active learning process.

Furthermore, D-MFDAL converges to offline performance

iterations faster than all other baselines for the Poisson2,

Poisson3, Heat3 and Fluid experiments. Figure 5 is the

visualization of prediction residuals for D-MFDAL, as well

as 4 other baselines. We visualize the residual between the

predictions and the truth to highlight the performance dif-

ference across 5 datasets. A higher residual value indicates

lower accuracy. We randomly select 3 samples from the

test set for each task. It can also be found that D-MFDAL
with MF-LIG outperforms other baselines as it successfully

predicts the true patterns among all 15 samples.

Ablation Study. In Figure 6, we compare active learning

performance at 3 fidelity levels on the Heat3 dataset. We
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Figure 6. Active learning performance comparison for Heat3 simulation at three fidelity levels. Performance is measured at each fidelity

level. k represents the fidelity level. D-MFDAL outperforms the baselines across all fidelity levels.

find that the performance of D-MFDAL is always the best

at each fidelity level, although the MF-LIG is designed to

optimize the surrogate modeling performance at the highest

fidelity level. Specifically, we find that the performance gap

between D-MFDAL and the other baselines is consistently

evident across all active learning iterations and fidelity lev-

els. It shows one of the other advantages of our proposed

D-MFDAL. That is, we can utilize the data at the high fi-

delity level to reversely improve the model performance at

the low fidelity level. Although it is not the goal to improve

surrogate modeling performance at lower fidelity levels in

our tasks, it makes D-MFDAL flexible to be applied to gen-

eral setups such as multi-task surrogate modeling where

multiple tasks are considered.

6. Conclusion
To conclude, we design a multi-fidelity deep active learn-

ing framework, D-MFDAL, to learn functional relationships

across multiple fidelity levels. D-MFDAL disentangles the

individual latent representations, separating them into global

and local terms to tackle issues of error propagation and

overfitting. We design a unified ELBO over the joint dis-

tribution across all fidelity levels to serve as the training

loss and include a multi-fidelity regularization term to in-

fer the global representations across different levels of fi-

delity. Additionally, we generalize the acquisition function,

latent information gain, used in Bayesian active learning for

NP-based models to multi-fidelity settings and design an

efficient algorithm for budget-constrained batch active learn-

ing. We conduct extensive empirical evaluations on several

benchmark studies and complex spatiotemporal simulations

to demonstrate the superior performance of our proposed

D-MFDAL for both passive learning and active learning. For

future work, we plan to extend this method for multi-task

active learning.
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