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ABSTRACT

Microbial respiration alone releases massive amounts of Carbon (C) into the atmosphere each
year, greatly impacting the global C cycle that fuels climate change. Larger microbial population
growth often leads to larger standing biomass, which in turns leads to higher respiration. How
rising temperatures might influence microbial population growth, however, depends on how
microbial thermal performance curves (TPCs) governing this growth may adapt in novel
environments. This thermal adaptation will in turn depend on there being heritable genetic
variation in TPCs for selection to act upon. While intraspecific variation in TPCs is traditionally
viewed as being mostly environmental (E, or plastic) as a single individual can have an entire
TPC, our study uncovers substantial heritable genetic variation (G) and Gene-by-Environment
interactions (GxE) in the TPC of a widely distributed ciliate microbe. G results in predictable
evolutionary responses to temperature-dependent selection that ultimately shape TPC adaptation
in a warming world. Through mathematical modeling and experimental evolution assays we also
show that TPC GxE leads to predictable temperature-dependent shifts in population genetic
makeup that constrains the potential for future adaptation to warming. That is, adaptive
evolution can select for decreased genetic variation which subsequently lowers the evolutionary
potential of microbial TPCs. Our study reveals how temperature-dependent adaptive evolution
shapes microbial population growth, a linchpin of global ecosystem function, amidst accelerating

climate warming.
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INTRODUCTION

Microbes play a central role regulating the global carbon (C) cycle that controls climate
change (Davidson & Janssens, 2006; Falkowski et al., 2008; Trumbore, 2006). Indeed, soil
microbial respiration releases ~94Pg of C into the atmosphere every year (Bond-Lamberty, 2018;
Stell et al., 2021; Xu & Shang, 2016) and microalgae provide the bulk of marine C fixation
globally (30-50 Pg of C/yr) (Arrigo, 2005; Falkowski, 1994; Litchman et al., 2015). Global
warming is expected to alter these microbial processes (Intergovernmental Panel on Climate
Change (IPCC), 2023), but anticipating these effects requires a deeper understanding of the
biotic and abiotic factors influencing microbial respiration in a warming world (Barton et al.,
2020; Rocca et al., 2022; Wieczynski et al., 2023). One such factor is microbial population
growth, which influences total standing biomass, and hence, total microbial respiration (Brown
et al., 2004; DeLong et al., 2017; Gillooly et al., 2001; Savage et al., 2004).

To understand and anticipate the effects of global warming, we need to characterize the
evolutionary processes that shape the microbial Thermal Performance Curves responsible for
determining microbial population growth under novel climates. Microbial thermal performance
curves are often measured as change in maximum (intrinsic) population growth rates (denoted r,
the difference between per capita birth and death rates) across temperatures (‘r-TPCs’
henceforth, Fig 1). They thus determine how a species population growth rate will change in
response to temperature changes. Controlled by temperature-dependent metabolic rates, r-TPCs
are typically unimodal: increasing temperatures lead to rising metabolic rates and population
growth until an ‘optimal’ temperature (Top) is reached (Fig 1a). Beyond Ty, elevated metabolic
costs slow down or impede growth (Amarasekare & Savage, 2012; Brown et al., 2004;

Rebolledo et al., 2020; Sinclair et al., 2016), Fig 1a). While unimodality is the norm, r-TPC
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88  shape often varies across species (Kellermann et al., 2019) due to differences in microbial traits

89  (Wieczynski et al., 2021) and genetic expression between closely related species (Jacob &

90 Legrand, 2021). Ultimately, however, differences in r-TPC shape are attributed to divergent

91  evolutionary trajectories across species and environmental conditions (Angilletta, 2009;

92  Kontopoulos et al., 2020; Malusare et al., 2023).

93 Despite these recent findings, predicting how r-TPCs might adapt to future warming

94  climates remains an unsolved but central challenge, as r-TPC adaptation underpins a species’

95  ability to cope with environmental change. Thermal adaptation hinges on the evolution of

96 intraspecific genetic variation through mutation (Kirkpatrick & Peischl, 2013) and selection

97  favoring genetic variants that perform better in novel environments (Barrett & Schluter, 2008;

98  Franks et al., 2007). Characterizing this intraspecific variation in r-TPCs is therefore central to

99  understanding and predicting how rising temperatures will influence microbial growth in novel
100  climates (Kling et al., 2023). Most intraspecific variation in microbial r-TPCs is likely coming
101  from plastic variation in r across temperatures —known as environmental variation (E)—as a
102  single clonal line or individual can have an entire TPC. However, additive genetic variation (G)
103  in r-TPCs—upon which selection acts (Frankham, 2005)—is also likely (Kling et al., 2023; Liu
104  etal., 2020; Singleton et al., 2021), and can ultimately decide how thermal adaptation occurs.
105  Last, selection may act on plasticity itself, whenever there are fitness consequences associated
106  with genetic variation in environmental responses (or G x E interactions, (Hoffmann & Sgro,
107  2011)). In this case, plasticity can help drive adaptive evolution (Ghalambor et al., 2007; Kling et
108  al., 2023). Quantifying and characterizing the genetic variation in microbial r-TPCs, as well as
109  how that variation influences r-TPCs response to selection in novel environments, is thus

110  paramount.
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111 In this study we ask: 1) What is the extent of heritable G and G X E variation in r-TPCs?
112 2) What are the evolutionary consequences of G in r-TPCs under warming, and does G influence
113  r-TPC shape (henceforth ‘shape parameters’, Fig 1b) in response to selection across

114  temperatures? Lastly, 3) What are the evolutionary consequences of G X E in r-TPCs under

115  warming? We address these questions in a globally important ciliate protist species—i.e.,

116  unicellular Eukaryotes that dominate oceanic biomass (Bar-On & Milo, 2019), hold twice the
117  biomass of the entire Animal Kingdom (Bar-On et al., 2018), rank third in terrestrial biomass
118  (Bar-On et al., 2018), and underpin global ecosystem functioning (Geisen et al., 2018; Hu et al.,
119  2021; Nguyen et al., 2020; Xiong et al., 2020).

120

121 RESULTS

122 r-TPC variation and heritability

123 Intraspecific variation in r-TPCs can be quantified using classic tools from quantitative
124 genetics where r-TPCs are interpreted as the reaction norm of 7 across temperatures (Fig 1c-e).
125  Under this quantitative genetics framework, purely plastic variation (E) should result in similar r-
126  TPCs across genotypes (Fig 1c), additive genetic variation (G) should result in parallel r-TPCs
127  among genotypes (Fig 1d), and G x E interactions should result in non-parallel r-TPCs among
128  genotypes (Fig le). To quantify these different sources of r-TPCs variation, we leveraged a

129  collection of 22 unique genotypes of the protist Tetrahymena thermophila from the Cornell

130  Tetrahymena Stock Center (see Methods, Appendix S1). We quantified r-TPCs using standard
131 population growth assays across seven temperatures (13, 19, 22, 25, 30, 32, and 38°C) replicated

132  six times each (see Methods). These temperatures span below and above the incubation
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133  temperature of 22°C and the average summer temperature (~23°C, (NOAA)) of the species’

134  native range (US Northeast, Zufall et al., 2013).

135 All r-TPCs showed strong unimodal temperature effects on » within genotypes (R?=

136  0.784, Fig 2a). r-TPCs showed significant variability in shape across genotypes (F= 163.65, p <
137  0.001, Dr= 21, Generalized Eta-Squared (GES, =effect sizes) = 0.832, Fig 2a) and significant G
138  x E interactions (F=29.7, p <0.001, Dr= 122, GES = 0.840, Fig 2a). Environmental variation (E)
139  accounted for 71.7% of all observed variation in r-TPCs; genetic variation (G) explained 6.1% of
140  all variation; Gene-by-Environment interactions (G X E) explained 11.7% of all variation, and
141 10.5% was residual variation (Fig 2b). These patterns are in line with what is expected for life
142  history traits (Hoffmann & Sgro, 2011). After accounting for experimental error in the form of
143  inter-treatment and replicate variability (see calculation of broad-sense heritability, Methods), r-
144  TPCs were strongly heritable (H?standard=0.76, H2cunis=0.95, H%piepho=0.91).

145

146  Consequences of G: selection and evolvability of r-TPC shape parameters

147 In the presence of heritable genetic variation (G), r-TPCs shape may evolve under

148  selection. To understand this phenomenon, we quantified four ‘shape’ parameters controlling the
149  rising portion of the TPC, i.e., the ‘operational temperature range’ (DeLong et al., 2017; Smith et
150 al., 2021), Fig 1b). We focus on the rising portion because temperatures within this range often
151  control ecological responses to warming for 7. thermophila in its native range (Deutsch et al.,
152  2008; Schoolfield et al., 1981; Schulte et al., 2011). To do so, we fitted a Sharpe-Schoolfield

153  model (Schoolfield et al., 1981) on r-TPC data (Fig 1a, b, see Methods) and determined the

154  critical minimal temperature (CTmin, Fig 1b), the ‘activation energy’ (E., Fig 1b), the maximum

155  population growth (rpeak, Fig 1b), and the temperature of maximal growth (Top, Fig 1a, b, see


https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.30.590804; this version posted May 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

156  Methods). We then estimated the intraspecific variation within each parameter, and the form of
157  selection acting on them with and without taking genetic covariances into account (see Methods).
158  Genetic covariances among shape parameters can lead to joint parameter evolutionary responses
159  irrespective of direct selection acting on a given shape parameter, or even preclude parameter
160  evolution altogether (Hansen & Houle, 2008). To estimate the predicted evolutionary change of
161  each parameter under different temperature scenarios, we used a modified G-matrix approach
162  that jointly estimates the genetic variance-covariance among shape parameters and the predicted
163  parameter change (Az) across temperatures using a modified Price equation (see Methods,

164  Stinchcombe et al., 2014). This approach allowed us to estimate the selection gradient (p) acting
165  directly on the shape parameters while controlling for effects of environmentally induced trait-
166 fitness covariances (see Methods), which provides a better estimate of selection on the traits of
167  interest than the standard multivariate breeder's equation (Lande, 1979; Lande & Arnold, 1983;
168  Stinchcombe et al., 2014).

169 Without accounting for genetic associations, selection operated differentially across

170  shape parameters and was temperature dependent: rpeak Was under negative directional selection
171 at low temperatures (<20°C, Fig 3a, Appendix S1), under weakly positive or no selection at

172  intermediate temperatures (between 20 and 30°C, Fig 3a, Appendix S1), and under strong

173  positive directional selection in high temperatures. Parameter E. followed a similar pattern (Fig
174 3b, Appendix S2). However, CTmin was found to be under negative selection at low/intermediate
175  temperatures (Fig 3¢, Appendix S3) but no selection at high temperatures (Fig 3¢, Appendix S3).
176  Lastly, Tope was under no selection at low temperatures but under weak then strong stabilizing

177  selection at intermediate and high temperatures, respectively (Fig 3d, Appendix S4).
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178 We found clear positive genetic covariances between shape parameters, specifically,

179  between rpeak and Ea, CTmin and Ea, and CTmin and Topt (Fig 3e). Accounting for these genetic

180  associations, we again found differences in selection across shape parameters whose magnitude
181  and direction also shifted with temperature (Fig 3f), resulting in predicted temperature-dependent
182  shifts in parameter responses (Fig 3g). Specifically, our multivariate selection analysis suggested
183  that selection would favor higher rpeak and E, at high temperatures (Fig 3f), however, predicted
184  responses in both cases should result in low values at low temperatures and high values at high
185  temperatures (Fig 3g), consistent with our univariate analysis. Similarities of the adaptive

186  landscapes for both shape parameters are mostly given by their strong positive genetic

187  correlation (Fig 3e), and their response at low temperatures are likely driven by genetic

188  correlations with CTmin. Indeed, we identified mostly negative selection on CTmin (except at high
189  temperatures, where no significant selection was found) and no selection for Top, also in

190  accordance with the univariate analysis (Fig 3f). Overall, the evolutionary responses followed
191  predicted trajectories from the estimates of selection closely (Fig 3f-g), suggesting little effect of
192  potential antagonistic selection on genetic constraints in r-TPC shape.

193

194  Consequences of G x E: differential sorting of standing genetic variation across temperatures
195 In the presence of G x E—where genotypes express different r-TPCs at different

196  temperatures—small differences in TPCs can lead to differential growth among genotypes across
197  temperatures, leading to clonal sorting and swift changes in population genetic makeup, i.e.,

198  evolution (Fig 4a, b). We tested this form of temperature-mediated rapid evolution induced by r-
199  TPC GxE through an experimental evolution assay: we competed two fluorescently tagged

200  genotypes (Fig 4c, AXS and CU4106, see Methods) with different r-TPCs (Fig 4d), hence
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201  differing in relative fitness across temperatures (Fig 4d, inset). We observed significant

202  temperature-dependent clonal sorting (Fig 4e), which matched theoretical predictions from a
203  model of genetic evolution (Fig 4f). The model predicts genetic frequencies in a mixture

204  population using parameters taken from each genotype’s r-TPC, as well as patterns of relative
205 fitness (Fig 4d) between the genotypes from r-TPC data (see Methods). Despite quantitative
206  discrepancies—notably at 19°C where the model predicted a polymorphic population, but the
207  data indicated otherwise (Fig 4e, f)—it correctly predicted observed changes in genetic

208 frequencies across most temperatures, thus suggesting that temperature-dependent selection
209 acting on G x E r-TPC variation can drive adaptive evolution in population genetic makeup.
210 Interestingly, the results of this experiment were also consistent with our estimated
211 predicted responses to selection (cf Fig 3 and Fig 4): lower temperatures led to higher

212  frequencies for the CU4106 genotype, which shows lower E, and CTwin, compared to AXS (Fig
213  4d), while at higher temperatures, there was selection in favor of AXS, so that the ensuing
214 population should have an average r-TPC with higher E. (Fig 4d) as well. Therefore, such
215  temperature-dependent selection on r-TPC G x E variation could lead to rapid r-TPC evolution
216  through clonal sorting which could be predictable in nature (but see Nosil et al., 2018 for a
217  counterpoint). Naturally, our lab-based study by necessity simplifies the complexities of how
218  organisms contend with nature. Nonetheless, our experimental test of our mathematical

219  predictions provides an important proof of principle in predicting evolutionary responses to a
220  warming climate.

221

222  DISCUSSION

223 Our study reveals genetic variation in r-TPCs (Fig 2). While >70% of all TPC variation is
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224  environmental (E), TPCs remain highly heritable (H>>0.7, with G+G x E~18%) once controlled
225  for inter-treatment and replicate variability, thus allowing selection to shape r-TPCs in new

226  climates. We also show that different r-TPC shape parameters (Fig 1b) are under different

227  selection regimes (Fig 3), and this selection is temperature-dependent, in some cases flipping
228  from negative to positive with temperature (Fig 3). These temperature-dependent selection

229  regimes should result in lower CTmin, Ipeak, and E; at cold temperatures while warmer

230  temperatures should favor higher rpeak and Ea with no discernible effect on Top: (Fig 3). Lastly,
231 we show that G x E interactions are prevalent in these r-TPCs (Fig 1), which in turn can lead to
232  rapid—but predictable—shifts in population genetic makeup across temperatures (Fig 4), and
233  suggests that plasticity will help drive thermal adaptation (Ghalambor et al., 2007).

234 While the evolution of microbial TPCs in deep evolutionary time is likely the product of
235  adaptation to local habitats (Kontopoulos et al., 2020; Phillips et al., 2014), how r-TPCs will
236  adapt to rising temperatures is an open question. The ‘Colder-is-Better’ (CIB) hypothesis posits
237  that rising temperatures reduce growth, leading to the evolution of lower rpeak in @ warming world
238  (J. Kingsolver & Huey, 2008). Conversely, the Warmer-Is-Better (WIB) hypothesis posits that
239  growth increases in warmer temperatures, leading to TPCs with higher rpeak (Frazier et al., 2006;
240  Pawar et al., 2015). Lastly, the Generalist-Specialist-Tradeoff (GST) hypothesis posits that

241 species either exhibit rapid growth within a narrow temperature range (i.e., temperature

242  specialists), or slower growth over a broader temperature range (i.e., temperature generalists) so
243  that higher rpeax should also result in higher CTmin and lower CTmax (Seebacher et al., 2015).

244  There is evidence supporting all three hypotheses (DeLong et al., 2018; Kontopoulos et al.,

245  2020), but most of it comes from inter-species comparisons that overlook intra-specific variation

246  and genetic associations between shape parameters, and therefore cannot readily make

10
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247  predictions about r-TPC evolutionary trajectories for any given species. Without accounting for
248  genetic associations, our results would suggest, based on selection alone, support for WIB, with
249  clear directional selection for higher rpeak and E_a under warming climates (Fig 3a, b).

250  Accounting for genetic associations, however, showed support for multiple hypotheses

251  simultaneously, suggesting a more complex and nuanced evolutionary r-TPC response than

252  currently predicted by theory. Indeed, our analyses supported WIB, as warming should favor r-
253  TPCs with high rpeax and high E. (Fig 3f, g), while countering GST, as there was no selection in
254 favor of higher CTmin with higher rpeax (Fig 31, g). Lastly, Top: was predicted to respond the least
255  to temperature (Fig 3g), as it showed only a small predicted decrease in colder temperatures
256  (likely though indirect selection)}—which is arguably in support of CIB—except >30°C, in

257  which case Topt showed no clear pattern of evolutionary response to temperature —arguably
258  against WIB. Thus, like many studies, our ability to make predictions is context specific, and
259  identifying those contexts (e.g., temperature) remains an important avenue for future work. Our
260 results clearly emphasize the importance of intraspecific variation and genetic associations to
261  predict r-TPC evolution, and both support and generalize existing TPC evolution hypotheses.
262 We also uncovered an interesting mechanism of rapid thermal adaptation whenever there
263 is G x E in r-TPCs. While adaptation requires sufficient genetic variation upon which to act, the
264  adaptive sorting of standing genetic variation often leads to a reduction in genetic variation,
265  which can slow down the adaptive process or even impede future adaptation altogether (Pauls et
266  al., 2013). Our results show that, in the presence of extensive G x E variation in r-TPCs, rapid
267  shifts in genetic makeup are possible (Fig 4), resulting in predictable and rapid local adaptation
268  to novel conditions—i.e., phenotypic plasticity can be adaptive in novel climates. However, in

269  our system, rising temperatures led to an initial increase in additive genetic variance t (as both

11
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270  genotypes become prevalent, Fig 4e, f), which should facilitate adaptation, then a reduction in
271  additive genetic variation (as genotype CU4106 becomes less prevalent, Fig 4e, f), which in turn
272 could impede adaptive evolution in the future. It is unclear why at 19°C AXS is absent from the
273  experimental populations despite the model predicting that its presence, and otherwise good
274  agreement between model and data at other temperatures. This temperature-dependent effect on
275  population genetic makeup may have important but poorly understood consequences for the
276  conservation of genetically depauperate species under warming whenever large amounts of G x
277  E are expected (Pauls et al., 2013).

278 Using a phylogenetic approach, a recent study found that TPC adaptation in deep time
279  likely occurred gradually across six different Tetrahymena species (Montagnes et al., 2022).
280  While seemingly in contrast with our finding that r-TPCs can evolve rapidly through

281  temperature-dependent selection on r-TPC G x E variation, we argue that the mechanism of r-
282  TPC evolution uncovered here is likely only at play as a form of rapid evolutionary response to
283  fast-changing environmental conditions, and may or may not result in longer term indefinite r-
284  TPC change. Indeed, selection often “erases its traces” (Haller & Hendry, 2014) with selection
285  most often being strongest in novel conditions and diminishing as populations adapt (Caruso et
286 al., 2017). Montagnes et al. (2021) also found poor support for WIB (which they referred to as
287  thermodynamic-constraint) in contrast with our findings, which show some level of support for
288  WIB. However, their study did uncover mixed support for CIB (which they call biochemical-
289  adaptation, or hotter is not better) and poor support for GST, as did we, suggesting that some of
290 the evolutionary responses uncovered here may be constrained by evolutionary history in deep

291  time.

12
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292 Overall, TPCs control the fate of populations (Seebacher & Little, 2021; Sinclair et al.,
293  2016), ecological interactions (Bideault et al., 2019; Enquist et al., 2015), food web structure and
294  dynamics (Barbour & Gibert, 2021; Gibert et al., 2022), and ecosystem processes (Antiqueira et
295  al, 2018; Gibert et al., 2015). Yet, TPC evolution in a rapidly warming world remains a

296  conspicuous unknown. Here, we shed light on how r-TPC intraspecific variation drives

297  temperature-dependent evolution in a microbial r-TPC, as well as its consequence for rapid shifts
298  in population genetic makeup that either facilitates or precludes future thermal adaptation. In
299  doing so, we emphasize the importance of temperature in mediating rapid microbial evolutionary
300 change as we grapple with understanding and predicting how organisms in the planet may

301  respond to an increasingly warm world.

302

303 METHODS

304  Tetrahymena thermophila genotypes

305 We quantified intraspecific variation in r-TPCs in the protist Tetrahymena thermophila—
306 a freshwater species that is distributed across the eastern United States (Zufall et al., 2013) and
307  part of a genus of cosmopolitan distribution and importance (Lynn & Doerder, 2012). We used
308 22 unique T. thermophila genotypes: 19 from the Cornell Tetrahymena Stock Center and 3

309 strains from the Chalker lab (Washington University, Appendix S5). The genotypes vary in

310  geographic origin and have specific genetic differences (Appendix S5). Our goal in using these
311 genotypes was simply to have a source of genetic variation, not to select any particular genotypes
312 on the basis of their functional significance. Because most of these genotypes are derived from
313  laboratory cultures, this assemblage of genotypes likely harbors—collectively—Iess genetic

314  variation than would be found in natural isolates from across the species’ distribution (Zufall et
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315 al.,, 2013). Upon reception, we transferred the cultures from axenic Proteose Peptone growth
316  medium to Timothy Hay growth medium inoculated with a bacterial community from Duke
317  Forest Gate 9 pond/Wilbur pond (Lat 36.013914, Long -78.979720, fully described elsewhere
318  (Rocca et al., 2022) and a wheat kernel as a Carbon source (Altermatt et al., 2015). We

319  maintained these stock cultures in Percival (Perry, IA) AL-22 growth chambers under light (12hr
320 day-night cycle) and temperature controlled conditions (22°C) in 250mL borosilicate jars filled
321 with 150mL of liquid medium. Because 7. thermophila is a natural bacterivore, these

322  experimental conditions are more realistic than purely axenic ones.

323

324  Quantifying TPCs and TPC shape parameters

325 We quantified the r-TPCs of all genotypes in 3cm diameter Petri dish microcosms with
326  3mL of growth medium through growth assays at seven temperatures (13, 19, 22, 25, 30, 32,
327  38°C), each replicated six times, totaling 1056 microcosms. We chose these temperatures

328  Dbecause they capture the range of temperatures at which 7. thermophila is known to grow well
329  (Zufall et al., 2013). Microcosms were initialized by pipetting three individual cells from stock
330  cultures under a scope (Leica stereomicroscope model M205C) and allowing them to grow for
331 24hrs, after which we censused the microcosms through whole-population counts under the

332  scope, and calculated intrinsic growth rate, r, as log(final density/initial density)/time (Voronov,
333  2005; Wieczynski et al., 2021), with time = 1 day. We fitted a Sharpe-Schoolfield model

334  (“nls.multstart” v1.3.0 package in R, (Padfield, 2023)) to obtain r-TPC shape parameters CTmin
335  (minimum temperature at which the population can grow), CTmax (maximum temperature at
336  which the population can grow), rpeak (maximum growth rate), Topt (temperature at which rpeax s

337  achieved), E. (thermal sensitivity of the rising portion of the TPC) and Eq (thermal sensitivity of
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338 the declining portion of the r-TPC, Fig 1b). Only parameters Ea, rpeak, CTmin and Top: could be
339  unequivocally estimated with our data, as fits were less well constrained at higher temperatures,
340 and so we focused all subsequent analyses on those (Fig 1b). These parameters also control the
341  rising portion of the r-TPC in the so-called ‘operational temperature range’ (DeLong et al., 2017;
342  Smith et al., 2021), which also is the temperature range within which ecological responses to
343  temperature are expected for organisms in their native geographic ranges.

344
345  Quantifying sources of phenotypic variation in r-TPCs and r-TPC heritability

346 To address whether and how r-TPCs may adapt to changing temperatures, we quantified
347  standing genetic variation in r-TPC shape and how much of this variation was heritable. To do
348  so, we estimated how much of the total observed r-TPC variation was explained by

349  environmental variation (E), genetic variation (G) or Gene-by-Environment interactions (G X E,
350  Fig lc-e). The shape of r-TPCs are often assumed to be controlled by plastic physiological

351  responses as a single genotype can often express an entire r-TPC ((J. G. Kingsolver et al., 2004),
352  Fig lc). We therefore expected to find a large amount of E. However, different genotypes may
353  still express different TPCs (Singleton et al 2021, Fig 1d), and those could do so differentially
354  across temperatures, leading to both G and G x E ((Qrsted et al., 2019), Fig le).

355 We estimated E, G and G X E using the function gxeVarComps() in R package

356  statgenGxE v1.0.5. To do so, the procedure fits two models: first, it fits a fixed effects linear
357  model with r as the response variable, and temperature, genotype, and the interaction between
358 temperature and genotype as predictors to calculate effect sizes, significance levels, and Best
359  Linear Unbiased Estimators (BLUEs, (Baksalary & Puntanen, 1990; Henderson, 1975)). BLUEs
360 are subsequently used to calculate r-TPC broad-sense heritability (see below). Second, it re-fits

361  the model with all terms as random effects to calculate the variance component of each term (i.e.,

15
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362 G, E and G x E) and Best Linear Unbiased Predictors (BLUPs, (Henderson, 1975)), which are
363  also subsequently used in the calculation of heritability. Using function H2cal() in R package inti
364  v0.6.2 we calculated the broad-sense heritability (H?) in three ways: 1) standard heritability,
365  whereH"*=G/P, P = G+(GXE/m)+ResidVar/(m*r)), m is the number of temperature treatments
366  and r the number of replicates (which accounts for inter-treatment and replicate variability , in
367  ways that G/P does not, (Baksalary & Puntanen, 1990; Henderson, 1975)), 2) Cullis heritability,
368  where H"2= 1-vBLUE/2G, and vBLUE is the mean variance of the difference of two BLUEs
369  (Cullis et al., 2006), and, 3) Piepho heritability, where H?>= G/(G+vBLUP), and vBLUP is the
370  mean variance of a difference of two BLUPs (Piepho & Mohring, 2007).

371

372  Consequences of G: selection on r-TPC shape parameters and evolutionary potential

373 To understand how TPCs might evolve in different temperatures, we assessed: 1)

374  selection direction/form and magnitude on TPC shape parameters, 2) the impact of temperature
375  on such selection, and, 3) potential evolution of shape parameters under these selection regimes.
376  We measured selection in two different ways: one that neglects genetic correlations between
377  shape parameters but can be used to estimate non-linear selective effects (e.g., stabilizing

378  selection), and one that accounts for genetic correlations but neglects non-linear terms but

379  enables predictions of evolutionary potential. The first approach answered the first two questions
380  while the second approach complemented the answer to the second question and addressed the
381  third. In doing so, we are explicitly quantifying how selection on r-TPC shape parameters

382  changes across temperatures, or what MacColl (2011) called “eco-evo landscapes” (MacColl,

383 2011).
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384 In the first approach, we quantified the relationship between parameter values and

385  absolute fitness—estimated here as, »—which is often assumed to be a suitable proxy for

386  absolute fitness (Lande, 1976, 1979). This is because r reflects the birth and death rates per

387  individual, two important fitness components (Lande, 1982; Partridge & Harvey, 1988). We

388  considered three temperature ranges: low (<20°C), medium (between 20°C and 30°C), and high
389  (>30°C). For each temperature range, we considered the relationship between » and the observed
390 parameter value across genotypes (i.e., the adaptive landscape) (Lande, 1976, 1979). A positive
391 relationship would be evidence of positive directional selection, a negative relationship, evidence
392  of negative directional selection, and the absence of a relationship would occur whenever there is
393  no directional selection. Stabilizing selection would result in a hump-shaped concave-down

394  relationship, with intermediary values having higher fitness than extreme values, and disruptive
395  selection with a concave-up relationship where extreme values have higher fitness (Lande &

396  Arnold, 1983). We analyzed these data using polynomial regression in R v4.3.1 with r as the

397  response variable, both linear and quadratic terms for the shape parameter and temperature as
398  explanatory variables with additive effects, an interaction between the linear and quadratic

399 effects of the shape parameter with temperature (See Appendices S1-S4). We doubled our

400 quadratic regression coefficients (Stinchcombe et al., 2008).

401 To predict possible r-TPC shape evolution across temperatures and evaluate the effects of
402  the genetic association among shape parameters in this evolutionary response, we used the

403 modified G-matrix approach proposed by Stinchcombe et al. (2014). This approach fuses the
404  multivariate breeder’s (Lande, 1979) and Price’s (Price, 1972) equations to estimate the direct
405 (i.e., acting on the focal trait) and indirect effects of selection (i.e., acting on another trait the

406  focal trait is genetically linked to) on an evolving population. The potential evolutionary
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407  response of each r-TPC shape parameter to natural selection, Az, is derived from the covariance
408  of the parameters with a measure of fitness. In practical terms, we estimated the additive genetic
409  variance-covariance matrix, G, of all shape parameters, and the mean-standardized r as a

410 measure of fitness, as done before (Lande 1976, 1972, 1989). We then created a Gw-matrix,

411 which includes G and a vector of predicted trait change, Az, as the last column and row. Az is
412  defined element-wise as Azi=cova(wi,zi), with cova being the additive genetic covariance, w; the
413  relative fitness of the i-th shape parameter, and z; the i-th shape parameter. Because the Az;

414  calculated in this way is equivalent to the genetic selection differentials, we can then calculate
415  the selection gradient as p =Gw!' Az. The sign of Az; indicates the direction of the response.

416  Alignment between Az; and f; indicates direct responses to selection (Hansen and Houle 2008),
417  that is, shape parameters that directly respond to selection as imposed by temperature, while

418  misalignment would be indicative of indirect selection through correlated responses with other
419  shape parameters. This approach correctly estimates Az even in the absence of information on all
420 pleiotropic effects in the system, while also estimating selection on each trait individually (Heath
421 & Stinchcombe, 2014; Stinchcombe et al., 2014). Furthermore, P estimated in this way controls
422  for the potential effects of environmentally induced trait-fitness covariances.

423 To calculate G, for each temperature, we compiled all r-TPC shape parameters and » for
424  each genetic variant and calculated the between-genotype covariance matrix, L. For lines derived
425  from the same population, L is proportional to the additive genetic covariance matrix of the

426  original population, or Gr. As inbreeding tends to increase between-genotype genetic variation
427  due to drift, L is inflated in relation to G by a factor equal to two times the inbreeding

428  coefficient, F' (Falconer & Mackay, 1996). Genetic correlation among traits were obtained by

429  estimating the correlation version of G as Geor=SGS where S is a diagonal matrix containing the
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430 inverse of each trait’s standard deviation. We estimated uncertainty using a Bayesian posterior
431  sample of covariance matrices as implemented in the evolqg v3.0 package (Melo et al. 2015).
432  This method derives the covariance matrices analytically from a multivariate normal likelihood
433  function and an inverse Wishart prior (Murphy 2012). We then took 1000 posterior samples for
434 Gy and derived statistics for Az, B and G. To evaluate if Az, B and Geor estimates were

435  statistically meaningful, we inspected the 95% maximum density interval to evaluate if the

436  posterior distribution significantly overlapped with the expected value due to lack of signal
437  (value=0).

438

439  Experimental test of consequences of G x E for population genetic makeup across temperatures
440 If r-TPCs show G x E in shape, slight differences in intrinsic growth rates can lead to
441  temperature-mediated clonal sorting (Fig 4a, b). We assessed how differences in r-TPCs across
442  genotypes could influence thermal adaptation through sorting of standing variance using the
443  coefficient of selection, s, which equals 1- w, where w is the relative fitness of each genotype
444  (measured as the quotient of the  of each focal genotype, Fig 4d). The coefficient of selection
445  measures the magnitude of selection acting against a given genotype relative to the focal

446  genotype; the larger the value of s, the stronger the selection against the given genotype.

447  Differences in s across genotypes and temperatures would indicate large potential for

448  temperature-mediated clonal sorting.

449 We then tested whether temperature-mediated clonal sorting occurs by setting up an
450  experimental evolution assay that competed two fluorescently marked strains that showed

451  significantly different in r-TPCs and relative fitness (AXS and CU4106, Fig 4d, Fig4d inset)

452  across six temperature treatments (19, 22, 25, 30, 32, 38°C) each replicated seven times, with
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453  additional single-strain controls per temperature. Microcosms were initialized at equal densities
454 (5 individuals per genotype) in 3cm diameter Petri dishes. We added CdCl, on days 2 and 7 to
455  induce fluorescence and counted on days 3 and 8. Fluorescently tagged genotypes may lose their
456  ability to fluoresce over time—however, they carry a Paromomycin resistance gene so that

457  fluorescing individuals can be selected for through Paromomycin exposure. We treated the

458  microcosms with 100pug/mL of Paromomycin prior to censusing, then used a Novocyte 2000R
459  flow cytometer (Agilent, Santa Clara, CA) to count individual cells and estimate relative

460 frequencies based on fluorescence (See Appendix S6 and Appendix S7). Because antibiotics can
461  influence the protists and the bacterial communities they feed on in multiple ways, we replicated
462  the entire experiment in Paromomycin-free conditions, but this did not qualitatively alter our
463  results (see Appendix Fig S8).

464 To confirm fluorescence of the two strains (Fig 4c¢), cells were mounted on glass slides
465  with mounting medium (Winey et al., 2012). Images were taken with a Leica Thunder Cell

466  Culture inverted microscope equipped with an HC PL APO 63X/1.40 N.A. oil-immersion

467  objective lens. Fluorescent signals were captured using a 510-nm excitation laser and a 535/15-
468 nm emission filter for YFP (expressed in genotype AXS), and a 395-nm excitation laser and a
469  Leica DFT51011 quad-band filter set for autofluorescence (exhibited by both genotypes). All
470  images were captured at a single Z plane using the same exposure settings; the resulting images
471  were processed in ImagelJ (see Fig 4c and Appendix Figure S9).

472 Last, observed changes in genetic frequencies were compared to predicted frequencies by
473  amodified version of a classic model of genetic evolution in discrete time parameterized with
474  the r-TPC of each strain in the experimental evolution assay (Fig 4f). The model tracks the

475  frequency of each strain f;, and assumes that their absolute fitness, WW;, is a function of their
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476  reproductive output (1), following early work by Lande (Lande, 1976, 1979). The frequency of
477  each strain in the population is then determined by the classic recursive equation, f;(t + 1) =
478  f;(t)W;/W [Eq 1.], where W is the average fitness in the population (X1, f;7;), such that W;/W is
479  the relative fitness of the i-th strain. Alternatively, we can calculate the fitness of each strain

480  relative to that of a focal strain (we call it S¢,cq;, Fig 4d inset). Then the relative fitness equation
481  becomes W;/Ws focar- 111 OUL experiment, we only have two strains (AXS and CU4106), so either

482  strain can be the focal strain, but this choice does not alter the evolutionary dynamics. Our focal
483  strain was CU4016. We used each strain’s r-TPC (Fig 4d) to calculate the relative fitness of each
484  strain as Wyxs/Wcuao1e for AXS and Weyao16/Weuao1e for CU4106 (Fig 4d, inset) —thus

485  replacing each strain’s fitness, W;, with their r-TPC (Lande 1976). We then replaced these

486  empirically parameterized measures of relative fitness in our recursive equation (Eq 1.) and
487  numerically solved the recursive equation over time to make testable predictions of how genetic
488  frequencies should change across temperatures. Despite this model not accounting for density,
489  frequency, and other forms of selection and ecological processes, is does a good job at

490 qualitatively reproducing the observed evolutionary dynamics (Fig 4e, f), therefore supporting
491  the hypothesis that observed shifts in genetic frequencies are due to GXE in r-TPCs and

492  temperature-mediated selection.

493

494

495

496
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555  Fig. 4: a. G x E variation in r-TPCs leads to differential growth of each genotype across

556  temperatures. b. Differential growth across temperatures leads to clonal sorting and rapid shifts
557  in genetic frequencies across temperatures. ¢. First column: Differential Interference Contrast
558  (DIC) microscopy for two genotypes of the protist Tetrahymena thermophila (CU4106 and

559  AXS). Second column: fluorescence microscopy image overlayed on DIC. Only AXS fluoresces
560  (green) due to the expression of Yellow Fluorescent Protein (YFP). Third column: as in the

561  second column, but for autofluorescence (A. Flu, in pink), which both genotypes exhibit. Fourth
562  column: Overlayed DIC, YFP and A.Flu images showing how the different strains fluoresce
563  once all sources of fluorescence are accounted for. d. r-TPC for genotypes CU4106 and AXS.
564  Inset: Measures of relative fitness for both CU4106 and AXS. This predicts an increase in AXS
565  frequency relative to CU4106 at intermediate temperatures relative to low or high temperatures.
566  e. Observed genetic frequencies across temperatures. f. Predicted genetic frequencies across
567  temperatures.
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Appendix S1. r_peak Stats Table

Estimate SD P-value
Linear term 1.81 0.16 <0.001
Quadratic term -0.28 0.12 0.24
Low Temp -6.25 0.26 <0.001
Med Temp -3.20 0.26 <0.001
Linear*LowTemp -2.13 0.22 <0.001
Linear*MedTemp -1.27 0.22 <0.001
Quadratic*LowTemp 0.14 0.17 0.70
Quadratic*MedTemp -0.08 0.17 0.82

Appendix S2. E_a Stats Table

Estimate SD P-value
Linear term 1.61 0.15 <0.001
Quadratic term -0.12 0.13 0.62
Low Temp -6.07 0.27 <0.001
Med Temp -3.06 0.27 <0.001
Linear:LowTemp -2.03 0.21 <0.001
Linear:MedTemp -1.20 0.21 <0.001
Quadratic:LowTemp -0.22 0.18 0.53
Quadratic:MedTemp -0.34 0.18 0.33
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Appendix S3. CT_min Stats Table

Estimate SD P-value
Linear term 0.44 0.18 0.02
Quadratic term -0.12 0.13 0.66
Low Temp -6.15 0.32 <0.001
Med Temp -3.21 0.32 <0.001
Linear*LowTemp -1.19 0.26 <0.001
Linear*MedTemp -0.88 0.26 <0.001
Quadratic*LowTemp -0.04 0.19 0.90
Quadratic*MedTemp -0.06 0.19 0.89

Appendix S4. T opt Stats Table

Estimate SD P-value
Linear term -0.32 0.20 0.11
Quadratic term -2.10 0.21 <0.001
Low Temp -7.43 0.40 <0.001
Med Temp -3.95 0.40 <0.001
Linear*LowTemp 0.01 0.28 0.98
Linear*MedTemp -0.23 0.28 0.42
Quadratic*LowTemp 2.52 0.30 <0.001
Quadratic*MedTemp 1.42 0.30 0.02
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Appendix S5. Genotype Table

Name Original Provenance Stock ID Mutations
Provenance
20395-1 Lake Warren in Cornell Tetrahymena SD01557 NA
Alstead, NH, lat. Stock Center
43 07.310, long. -
72 17.840
SB3539-1 Cornell Tetrahymena SD00660 chxl[C3]-
Stock Center 1/chx1[C3]-1
(CHXI1[C3]; cy-s,
D),
C3 strain -
functional
heterokaryon
carrying
cycloheximide
resistance in
micronucleus.
B*VII Cornell Tetrahymena SD00023 B strain star line.
Stock Center Lacks a genetically
functional
micronucleus.
B2192 111 Frankel lab (Leslie | Cornell Tetrahymena SD01754 Derived from a
Jenkins) Stock Center cross of B2086 1I x
B2086 Vla.
Isogenic with
B2192 IVB
CU428.2 Comnell Tetrahymena SD00178 mprl-1/mpri-1
Stock Center (MPRI; mp-s, VII)
DMCK72H Chalker Lab,
Washington
University in St.
Louis
19877 SG69-4 in Guys Cornell Tetrahymena SDO1555 Cech's self-splicing
Mills, PA (lat. 41 Stock Center intron is present.
38.023, long. -79 Cytochrome
53.514, elevation oxidase I haplotype
1660 ft) = WPAI1
19617-1 FS136E in PA Cornell Tetrahymena SD03089
(latitude 41.46, Stock Center
longitude -78.88)
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IMB6 (GFP) [ Chalker Lab,
Washington
University in St.
Louis
A*V Cornell Tetrahymena SD00014 Lacks a
Stock Center genetically
functional
micronucleus.
20441-1 Gregg Lake in Cornell Tetrahymena SD01560
Antrim, NH (lat. 43 [ Stock Center
02.605, long. -71
59.383
CU427-4 Cornell Tetrahymena SD00715 chx1-1/chx1-1
Stock Center (CHXT1; cy-s, VI)
SB1518 Cornell Tetrahymena SD01537 gall-1/gall-1; tyr-
Stock Center 14/tr-14
TA388 Comnell Tetrahymena SD01454 elol-1/elol-1
Stock Center (elol; 1)
21157-1 FS343S in PA Cornell Tetrahymena SD03114
(latitude 41.45, Stock Center
longitude -78.88)
CU438-1 Cornell Tetrahymena SD00189 pmrl-1/pmri-1
Stock Center
CU304 Cornell Tetrahymena SD00051 CHX1/CHXI;
Stock Center chx2-1/chx2-1;
mprl-1/mprl-1
CU4106 Cornell Tetrahymena SD01010 mprl-1/mpri-1
Stock Center
AXS Chalker Lab,
Washington
University in St.
Louis
C*II Cornell Tetrahymena SD00024 C strain star line.
Stock Center Lacks a genetically
functional
micronucleus.
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Appendix S6. Flow Cytometry Frequency Calculations

Each microcosm was censused with a Novocyte 2000R flow cytometer and analyzed using
NovoExpress software v15.0. The flow cytometer detects particles (e.g., cells, debris, bacteria) based on
how they scatter light and fluoresce '. Light scattering properties can be used to quantify cell size (FSC-
H), and we detected fluorescence in the Phycoerythrin (PE-H, yellow) and Fluorescein isothiocyanate
(FITC-H) channels. We gated the data in NovoExpress to select for the largest particles which in our case
were all Tetrahymena thermophila cells. The data are plotted in Fig 8.1. We used a PE-H versus FITC-H
plot to parse the different fluorescent signals between the two experimental strains: CU4106 (which
autofluoresces exclusively) and AXS (which autofluoresces and expresses Yellow Fluorescent Protein, or
YFP). Control microcosms, which contained exclusively one of either strain for each temperature
treatment, were used to determine the exact expected fluorescence range for each individual cell. An
“AutoF” and “YFP” gate were created based on these controls (Figure 1). These control gating filters
were then applied over each experimental microcosm, allowing us to identify cell strain based on their

fluorescence pattern.
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Appendix S6 Figure 1. This plot shows an AXS control sample, where 65% of AXS individuals
fluoresced in the autofluorescence gating range.
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We used two CU4106 control microcosms and nine AXS control microcosms per temperature.
Additional AXS controls were necessary to increase detection precision while gating. Non-YFP tagged
cells (CU-4106) fluoresced more weakly in the FITC-H channel than YFP-tagged cells (AXS) and
generally fluoresced more strongly in the PE-H channel than non-YPF tagged cells fluorescence. CU4106
controls were detected exclusively in the autofluorescent gate. However, AXS controls were detected in
both the autofluorescent (“AutoF”) and YFP gates, meaning that we could expect AXS cells to show up
in the AutoF gate under experimental conditions, thus making it harder to parse YFP-tagged from non-
YFP tagged cells.

To resolve that, we thus used the control microcosms to adjust the relative frequencies of each
strain in each experimental microcosm, calculated as follows. For each single-strain control microcosm,
we calculated the proportion of cells detected in each of the two gates across temperatures (Table X). We
then used the proportion of AXS cells across control replicates to adjust the observed number of AXS
cells (i.e., cells showing up on the YFP gate) to ensure our estimate was as accurate as possible. We then
subtracted this adjusted count from the total number of individuals in each microcosm to generate our
final adjusted experimental count of CU4106 individuals. See Appendix Table 10 below for pertinent

data.
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Appendix S7. Table of Frequency Calculations

temp rep AB +/- proportion  CU4106 adjusted AXS adjusted total
count CU4106 count coun AXS count
t

1 19 Samplel NoAB 0.51421189 5 5.000000 0 0.000000 5
2 19 Sample2 AB 0.01271186 71 71.000000 0 0.000000 71
3 19 Sample2 NoAB 0.51421189 20 18.110553 2 3.889447 22
4 19 Sample3 NoAB 0.51421189 37 34.165829 3 5.834171 40
5 19 Sample4 AB 0.01271186 53 53.000000 0 0.000000 53
6 19 Sample4 NoAB 0.51421189 17 17.000000 0 0.000000 17
7 19 Sample6 AB 0.01271186 49 49.000000 0 0.000000 49
8 19 Sample6 NoAB 0.51421189 9 8.055276 1 1.944724 10
9 19 Sample7 AB 0.01271186 76 76.000000 0 0.000000 76
10 19 Sample7 NoAB 0.51421189 32 32.000000 0 0.000000 32
11 22 Samplel AB 0.58564815 73 72.292490 1 1.707510 74
12 22 Samplel NoAB 0.40142857 105 99.035587 4 9.964413 109
13 22 Sample2 AB 0.58564815 77 74.877470 3 5.122530 80
14 22 Sample2 NoAB 0.40142857 34 11.633452 15 37.366548 49
15 22 Sample3 AB 0.58564815 12 9.877470 3 5.122530 15
16 22 Sample3 NoAB 0.40142857 37 32.526690 3 7.473310 40
17 22 Sample4 AB 0.58564815 22 2.897233 27 46.102767 49
18 22 Sample6 AB 0.58564815 13 12.292490 1 1.707510 14
19 22 Sample6 NoAB  0.40142857 13 11.508897 1 2491103 14
20 22 Sample7 AB 0.58564815 7 6.292490 1 1.707510 8
21 22 Sample7 NoAB 0.40142857 21 21.000000 0 0.000000 21
22 25 Samplel AB 0.27131609 162 33.084581 48 176.915419 210
23 25 Samplel NoAB 0.55903491 254 129.370065 158  282.629935 412
24 25 Sample2 AB 0.27131609 358 113.597851 91 335.402149 449
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25 25 Sample2 NoAB 0.55903491 179 73.301194 134 239.698806 313
26 25 Sample3 AB 0.27131609 309 169.341629 52 191.658371 361
27 25 Sample3 NoAB 0.55903491 192 104.443526 111 198.556474 303
28 25 Sample4 AB 0.27131609 246 165.427863 30 110.572137 276
29 25 Sample4 NoAB 0.55903491 261 212.094582 62 110.905418 323
30 25 Sample5 AB 0.27131609 263 220.028194 16 58.971806 279
31 25 Sample5 NoAB 0.55903491 180 169.745638 13 23.254362 193
32 25 Sample6 AB 0.27131609 597 438.541464 59 217.458536 656
33 25 Sample6 NoAB 0.55903491 193 127.529844 &3 148.470156 276
34 25 Sample7 AB 0.27131609 291 145.970153 54 199.029847 345
35 25 Sample7 NoAB 0.55903491 184 137.460974 59 105.539026 243
36 30 Samplel AB 0.13819840 1445 902.470286 87 629.529714 1532
37 30 Samplel NoAB 0.44750154 263 235.838158 22 49.161842 285
38 30 Sample2 AB 0.13819840 732 588.572604 23 166.427396 755
39 30 Sample2 NoAB 0.44750154 244 202.022608 34 75.977392 278
40 30 Sample3 AB 0.13819840 1566 1191.841576 60 434.158424 1626
41 30 Sample3 NoAB 0.44750154 460 399.503170 49 109.496830 509
42 30 Sample4 AB 0.13819840 848 93.447179 121 875.552821 969
43 30 Sample4 NoAB 0.44750154 341 249.637440 74 165.362560 415
44 30 Sample5 AB 0.13819840 328 128.448841 32 231.551159 360
45 30 Sample5 NoAB 0.44750154 372 307.799282 52 116.200718 424
46 30 Sample6 NoAB 0.44750154 354 287.330024 54 120.669976 408
47 30 Sample7 AB 0.13819840 1908 1459.009892 72 520.990108 1980
48 30 Sample7 NoAB 0.44750154 233 209.542045 19 42.457955 252
49 32 Samplel AB 0.21434368 536 169.459535 100 466.540465 636
50 32 Samplel NoAB 0.28314509 161 90.110769 28 98.889231 189
51 32 Sample2 AB 0.21434368 580 492.030288 24 111.969712 604
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52 32 Sample2 NoAB 0.28314509 215 171.960110 17 60.039890 232
53 32 Sample3 AB 0.21434368 578 515.688121 17 79.311879 595
54 32 Sample3 NoAB 0.28314509 252 219.087143 13 45912857 265
55 32 Sample4 AB 0.21434368 2101 1873.744911 62 289.255089 2163
56 32 Sample4 NoAB 0.28314509 121 77.960110 17 60.039890 138
57 32 Sample5 AB 0.21434368 550 201.786558 95 443.213442 645
58 32 Sample5 NoAB 0.28314509 109 60.896593 19 67.103407 128
59 32 Sample6 AB 0.21434368 473 418.018930 15 69.981070 488
60 32 Sample6 NoAB  0.28314509 259 183.047253 30 105.952747 289
61 32 Sample7 AB 0.21434368 2796 1890.645050 247  1152.35495 3043
0
62 32 Sample7 NoAB 0.28314509 201 157.960110 17 60.039890 218
63 38 Sample2 AB 0.07118688 1135 273.862817 66 927.137183 1201
64 38 Sample2 NoAB 0.07573333 795 380.056343 34 448.943657 829
65 38 Sample3 AB 0.07118688 1051 385.575813 51 716.424187 1102
66 38 Sample3 NoAB 0.07573333 1912 264.429596 135 1782.57040 2047
4
67 38 Sample4 AB 0.07118688 5506 3209.634179 176  2472.36582 5682
1
68 38 Sample4 NoAB 0.07573333 1146 718.852117 35 462.147883 1181
69 38 Sample5 AB 0.07118688 537 484.809868 4 56.190132 541
70 38 Sample5 NoAB 0.07573333 710 295.056343 34 448.943657 744
71 38 Sample6 AB 0.07118688 1323 1179477136 11 154.522864 1334
72 38 Sample6 NoAB 0.07573333 1307 1111.732397 16 211.267603 1323
73 38 Sample7 AB 0.07118688 1160 886.001805 21 294.998195 1181
74 38 Sample7 NoAB 0.07573333 959 324.380289 52 686.619711 1011

10
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Appendix S8. Alternative Experimental Conditions With and Without Antibiotics
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Fig Appendix S8: a) r-TPC for genotypes CU4106 and AXS. Inset: Measures of relative fitness
for both CU4106 and AXS. This predicts an increase in AXS frequency relative to CU4106 at
intermediate temperatures relative to low or high temperatures. b) Predicted genetic frequencies
across temperatures. ¢) Observed genetic frequencies across temperatures with Paromomycin. d)
As in ¢) but without Paromomycin.
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Appendix S9. Differential Fluorescence Across Strains

DIC YFP Autofluorescence Merge

1st column: Differential Interference Contrast (DIC) microscopy for CU4016 and AXS protist

Tetrahymena thermophila (CU4106 and AXS). Subsequent columns display raw fluorescence
microscopy images. Photos are unimposed and uncorrected for relative fluorescence levels.
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