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ABSTRACT 41 
 42 
Microbial respiration alone releases massive amounts of Carbon (C) into the atmosphere each 43 

year, greatly impacting the global C cycle that fuels climate change. Larger microbial population 44 

growth often leads to larger standing biomass, which in turns leads to higher respiration. How 45 

rising temperatures might influence microbial population growth, however, depends on how 46 

microbial thermal performance curves (TPCs) governing this growth may adapt in novel 47 

environments. This thermal adaptation will in turn depend on there being heritable genetic 48 

variation in TPCs for selection to act upon. While intraspecific variation in TPCs is traditionally 49 

viewed as being mostly environmental (E, or plastic) as a single individual can have an entire 50 

TPC, our study uncovers substantial heritable genetic variation (G) and Gene-by-Environment 51 

interactions (GxE) in the TPC of a widely distributed ciliate microbe. G results in predictable 52 

evolutionary responses to temperature-dependent selection that ultimately shape TPC adaptation 53 

in a warming world. Through mathematical modeling and experimental evolution assays we also 54 

show that TPC GxE leads to predictable temperature-dependent shifts in population genetic 55 

makeup that constrains  the potential for future adaptation to warming. That is, adaptive 56 

evolution can select for decreased genetic variation which subsequently lowers the evolutionary 57 

potential of microbial TPCs. Our study reveals how temperature-dependent adaptive evolution 58 

shapes microbial population growth, a linchpin of global ecosystem function, amidst accelerating 59 

climate warming.  60 

 61 

 62 

 63 

 64 
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INTRODUCTION 65 

Microbes play a central role regulating the global carbon (C) cycle that controls climate 66 

change (Davidson & Janssens, 2006; Falkowski et al., 2008; Trumbore, 2006). Indeed, soil 67 

microbial respiration releases ~94Pg of C into the atmosphere every year (Bond-Lamberty, 2018; 68 

Stell et al., 2021; Xu & Shang, 2016) and microalgae provide the bulk of marine C fixation 69 

globally (30-50 Pg of C/yr) (Arrigo, 2005; Falkowski, 1994; Litchman et al., 2015). Global 70 

warming is expected to alter these microbial processes (Intergovernmental Panel on Climate 71 

Change (IPCC), 2023), but anticipating these effects requires a deeper understanding of the 72 

biotic and abiotic factors influencing microbial respiration in a warming world (Barton et al., 73 

2020; Rocca et al., 2022; Wieczynski et al., 2023). One such factor is microbial population 74 

growth, which influences total standing biomass, and hence, total microbial respiration (Brown 75 

et al., 2004; DeLong et al., 2017; Gillooly et al., 2001; Savage et al., 2004).    76 

To understand and anticipate the effects of global warming, we need to characterize the 77 

evolutionary processes that shape the microbial Thermal Performance Curves responsible for 78 

determining microbial population growth under novel climates. Microbial thermal performance 79 

curves are often measured as change in maximum (intrinsic) population growth rates (denoted r, 80 

the difference between per capita birth and death rates) across temperatures (‘r-TPCs’ 81 

henceforth, Fig 1). They thus determine how a species population growth rate will change in 82 

response to temperature changes. Controlled by temperature-dependent metabolic rates, r-TPCs 83 

are typically unimodal: increasing temperatures lead to rising metabolic rates and population 84 

growth until an ‘optimal’ temperature (Topt) is reached (Fig 1a). Beyond Topt, elevated metabolic 85 

costs slow down or impede growth (Amarasekare & Savage, 2012; Brown et al., 2004; 86 

Rebolledo et al., 2020; Sinclair et al., 2016), Fig 1a). While unimodality is the norm, r-TPC 87 
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shape often varies across species (Kellermann et al., 2019) due to differences in microbial traits 88 

(Wieczynski et al., 2021) and genetic expression between closely related species (Jacob & 89 

Legrand, 2021). Ultimately, however, differences in r-TPC shape are attributed to divergent 90 

evolutionary trajectories across species and environmental conditions (Angilletta, 2009; 91 

Kontopoulos et al., 2020; Malusare et al., 2023).  92 

Despite these recent findings, predicting how r-TPCs might adapt to future warming 93 

climates remains an unsolved but central challenge, as r-TPC adaptation underpins a species’ 94 

ability to cope with environmental change. Thermal adaptation hinges on the evolution  of 95 

intraspecific genetic variation through mutation (Kirkpatrick & Peischl, 2013) and selection 96 

favoring genetic variants that perform better in novel environments (Barrett & Schluter, 2008; 97 

Franks et al., 2007). Characterizing this intraspecific variation in r-TPCs is therefore central to 98 

understanding and predicting how rising temperatures will influence microbial growth in novel 99 

climates (Kling et al., 2023). Most intraspecific variation in microbial r-TPCs is likely coming 100 

from plastic variation in r across temperatures —known as environmental variation (E)—as a 101 

single clonal line or individual can have an entire TPC. However, additive genetic variation (G) 102 

in r-TPCs—upon which selection acts (Frankham, 2005)—is also likely (Kling et al., 2023; Liu 103 

et al., 2020; Singleton et al., 2021), and can ultimately decide how thermal adaptation occurs. 104 

Last, selection may act on plasticity itself, whenever there are fitness consequences associated 105 

with genetic variation in environmental responses (or G × E interactions, (Hoffmann & Sgrò, 106 

2011)). In this case, plasticity can help drive adaptive evolution (Ghalambor et al., 2007; Kling et 107 

al., 2023). Quantifying and characterizing the genetic variation in microbial r-TPCs, as well as 108 

how that variation influences r-TPCs response to selection in novel environments, is thus 109 

paramount.  110 
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In this study we ask: 1) What is the extent of heritable G and G × E variation in r-TPCs? 111 

2) What are the evolutionary consequences of G in r-TPCs under warming, and does G influence 112 

r-TPC shape (henceforth ‘shape parameters’, Fig 1b) in response to selection across 113 

temperatures? Lastly, 3) What are the evolutionary consequences of G × E in r-TPCs under 114 

warming? We address these questions in a globally important ciliate protist species—i.e., 115 

unicellular Eukaryotes that dominate oceanic biomass (Bar-On & Milo, 2019), hold twice the 116 

biomass of the entire Animal Kingdom (Bar-On et al., 2018), rank third in terrestrial biomass 117 

(Bar-On et al., 2018), and underpin global ecosystem functioning (Geisen et al., 2018; Hu et al., 118 

2021; Nguyen et al., 2020; Xiong et al., 2020).  119 

 120 

RESULTS 121 

r-TPC variation and heritability 122 

Intraspecific variation in r-TPCs can be quantified using classic tools from quantitative 123 

genetics where r-TPCs are interpreted as the reaction norm of r across temperatures (Fig 1c-e). 124 

Under this quantitative genetics framework, purely plastic variation (E) should result in similar r-125 

TPCs across genotypes (Fig 1c), additive genetic variation (G) should result in parallel r-TPCs 126 

among genotypes (Fig 1d), and G × E interactions should result in non-parallel r-TPCs among 127 

genotypes (Fig 1e). To quantify these different sources of r-TPCs variation, we leveraged a 128 

collection of 22 unique genotypes of the protist Tetrahymena thermophila from the Cornell 129 

Tetrahymena Stock Center (see Methods, Appendix S1). We quantified r-TPCs using standard 130 

population growth assays across seven temperatures (13, 19, 22, 25, 30, 32, and 38ºC) replicated 131 

six times each (see Methods). These temperatures span below and above the incubation 132 
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temperature of 22ºC and the average summer temperature (~23ºC, (NOAA)) of the species’ 133 

native range (US Northeast, Zufall et al., 2013).  134 

All r-TPCs showed strong unimodal temperature effects on r within genotypes (R2= 135 

0.784, Fig 2a). r-TPCs showed significant variability in shape across genotypes (F= 163.65, p ≤ 136 

0.001, Df = 21, Generalized Eta-Squared (GES, =effect sizes) = 0.832, Fig 2a) and significant G 137 

× E interactions (F=29.7, p ≤ 0.001, Df = 122, GES = 0.840, Fig 2a). Environmental variation (E) 138 

accounted for 71.7% of all observed variation in r-TPCs; genetic variation (G) explained 6.1% of 139 

all variation; Gene-by-Environment interactions (G × E) explained 11.7% of all variation, and 140 

10.5% was residual variation (Fig 2b). These patterns are in line with what is expected for life 141 

history traits (Hoffmann & Sgrò, 2011). After accounting for experimental error in the form of 142 

inter-treatment and replicate variability (see calculation of broad-sense heritability, Methods), r-143 

TPCs were strongly heritable (H2standard=0.76, H2cullis=0.95, H2piepho=0.91).  144 

 145 

Consequences of G: selection and evolvability of r-TPC shape parameters 146 

In the presence of heritable genetic variation (G), r-TPCs shape may evolve under 147 

selection. To understand this phenomenon, we quantified four ‘shape’ parameters controlling the 148 

rising portion of the TPC, i.e., the ‘operational temperature range’ (DeLong et al., 2017; Smith et 149 

al., 2021), Fig 1b). We focus on the rising portion because temperatures within this range often 150 

control ecological responses to warming for T. thermophila in its native range (Deutsch et al., 151 

2008; Schoolfield et al., 1981; Schulte et al., 2011). To do so, we fitted a Sharpe-Schoolfield 152 

model (Schoolfield et al., 1981) on r-TPC data (Fig 1a, b, see Methods) and determined the 153 

critical minimal temperature (CTmin, Fig 1b), the ‘activation energy’ (Ea, Fig 1b), the maximum 154 

population growth (rpeak, Fig 1b), and the temperature of maximal growth (Topt, Fig 1a, b, see 155 
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Methods). We then estimated the intraspecific variation within each parameter, and the form of 156 

selection acting on them with and without taking genetic covariances into account (see Methods). 157 

Genetic covariances among shape parameters can lead to joint parameter evolutionary responses 158 

irrespective of direct selection acting on a given shape parameter, or even preclude parameter 159 

evolution altogether (Hansen & Houle, 2008). To estimate the predicted evolutionary change of 160 

each parameter under different temperature scenarios, we used a modified G-matrix approach 161 

that jointly estimates the genetic variance-covariance among shape parameters and the predicted 162 

parameter change (Δz) across temperatures using a modified Price equation (see Methods, 163 

Stinchcombe et al., 2014). This approach allowed us to estimate the selection gradient (β) acting 164 

directly on the shape parameters while controlling for  effects of environmentally induced trait-165 

fitness covariances (see Methods), which provides a better estimate of selection on the traits of 166 

interest than the standard multivariate breeder's equation (Lande, 1979; Lande & Arnold, 1983; 167 

Stinchcombe et al., 2014).  168 

Without accounting for genetic associations, selection operated differentially across 169 

shape parameters and was temperature dependent: rpeak was under negative directional selection 170 

at low temperatures (<20°C, Fig 3a, Appendix S1), under weakly positive or no selection at 171 

intermediate temperatures (between 20 and 30°C, Fig 3a, Appendix S1), and under strong 172 

positive directional selection in high temperatures. Parameter Ea followed a similar pattern (Fig 173 

3b, Appendix S2). However, CTmin was found to be under negative selection at low/intermediate 174 

temperatures (Fig 3c, Appendix S3) but no selection at high temperatures (Fig 3c, Appendix S3). 175 

Lastly, Topt was under no selection at low temperatures but under weak then strong stabilizing 176 

selection at intermediate and high temperatures, respectively (Fig 3d, Appendix S4). 177 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

We found clear positive genetic covariances between shape parameters, specifically, 178 

between rpeak and Ea, CTmin and Ea, and CTmin and Topt (Fig 3e). Accounting for these genetic 179 

associations, we again found differences in selection across shape parameters whose magnitude 180 

and direction also shifted with temperature (Fig 3f), resulting in predicted temperature-dependent 181 

shifts in parameter responses (Fig 3g). Specifically, our multivariate selection analysis suggested 182 

that selection would favor higher rpeak and Ea at high temperatures (Fig 3f), however, predicted 183 

responses in both cases should result in low values at low temperatures and high values at high 184 

temperatures (Fig 3g), consistent with our univariate analysis. Similarities of the adaptive 185 

landscapes for both shape parameters are mostly given by their strong positive genetic 186 

correlation (Fig 3e), and their response at low temperatures are likely driven by genetic 187 

correlations with CTmin. Indeed, we identified mostly negative selection on CTmin (except at high 188 

temperatures, where no significant selection was found) and no selection for Topt, also in 189 

accordance with the univariate analysis (Fig 3f). Overall, the evolutionary responses followed 190 

predicted trajectories from the estimates of selection closely (Fig 3f-g), suggesting little effect of 191 

potential antagonistic selection on genetic constraints in r-TPC shape. 192 

 193 

Consequences of G × E: differential sorting of standing genetic variation across temperatures  194 

In the presence of G × E—where genotypes express different r-TPCs at different 195 

temperatures—small differences in TPCs can lead to differential growth among genotypes across 196 

temperatures, leading to clonal sorting and swift changes in population genetic makeup, i.e., 197 

evolution (Fig 4a, b). We tested this form of temperature-mediated rapid evolution induced by r-198 

TPC GxE through an experimental evolution assay: we competed two fluorescently tagged 199 

genotypes (Fig 4c, AXS and CU4106, see Methods) with different r-TPCs (Fig 4d), hence 200 
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differing in relative fitness across temperatures (Fig 4d, inset). We observed significant 201 

temperature-dependent clonal sorting (Fig 4e), which matched theoretical predictions from a 202 

model of genetic evolution (Fig 4f). The model predicts genetic frequencies in a mixture 203 

population using parameters taken from each genotype’s r-TPC, as well as patterns of relative 204 

fitness (Fig 4d) between the genotypes from r-TPC data (see Methods). Despite quantitative 205 

discrepancies—notably at 19ºC where the model predicted a polymorphic population, but the 206 

data indicated otherwise (Fig 4e, f)—it correctly predicted observed changes in genetic 207 

frequencies across most temperatures, thus suggesting that temperature-dependent selection 208 

acting on G × E r-TPC variation can drive adaptive evolution in population genetic makeup.  209 

Interestingly, the results of this experiment were also consistent with our estimated 210 

predicted responses to selection (cf Fig 3 and Fig 4): lower temperatures led to higher 211 

frequencies for the CU4106 genotype, which shows lower Ea and CTmin, compared to AXS (Fig 212 

4d), while at higher temperatures, there was selection in favor of AXS, so that the ensuing 213 

population should have an average r-TPC with higher Ea (Fig 4d) as well. Therefore, such 214 

temperature-dependent selection on r-TPC G × E variation could lead to rapid r-TPC evolution 215 

through clonal sorting which could be predictable in nature (but see Nosil et al., 2018 for a 216 

counterpoint). Naturally, our lab-based study by necessity simplifies the complexities of how 217 

organisms contend with nature. Nonetheless, our experimental test of our mathematical 218 

predictions provides an important proof of principle in predicting evolutionary responses to a 219 

warming climate.   220 

 221 

DISCUSSION 222 

Our study reveals genetic variation in r-TPCs (Fig 2). While >70% of all TPC variation is 223 
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environmental (E), TPCs remain highly heritable (H2>0.7, with G+G × E~18%) once controlled 224 

for inter-treatment and replicate variability, thus allowing selection to shape r-TPCs in new 225 

climates. We also show that different r-TPC shape parameters (Fig 1b) are under different 226 

selection regimes (Fig 3), and this selection is temperature-dependent, in some cases flipping 227 

from negative to positive with temperature (Fig 3). These temperature-dependent selection 228 

regimes should result in lower CTmin, rpeak, and Ea at cold temperatures while warmer 229 

temperatures should favor higher rpeak and Ea with no discernible effect on Topt (Fig 3). Lastly, 230 

we show that G × E interactions are prevalent in these r-TPCs (Fig 1), which in turn can lead to 231 

rapid—but predictable—shifts in population genetic makeup across temperatures (Fig 4), and 232 

suggests that plasticity will help drive thermal adaptation (Ghalambor et al., 2007).  233 

While the evolution of microbial TPCs in deep evolutionary time is likely the product of 234 

adaptation to local habitats (Kontopoulos et al., 2020; Phillips et al., 2014), how r-TPCs will 235 

adapt to rising temperatures is an open question. The ‘Colder-is-Better’ (CIB) hypothesis posits 236 

that rising temperatures reduce growth, leading to the evolution of lower rpeak in a warming world 237 

(J. Kingsolver & Huey, 2008). Conversely, the Warmer-Is-Better (WIB) hypothesis posits that 238 

growth increases in warmer temperatures, leading to TPCs with higher rpeak (Frazier et al., 2006; 239 

Pawar et al., 2015). Lastly, the Generalist-Specialist-Tradeoff (GST) hypothesis posits that 240 

species either exhibit rapid growth within a narrow temperature range (i.e., temperature 241 

specialists), or slower growth over a broader temperature range (i.e., temperature generalists) so 242 

that higher rpeak should also result in higher CTmin and lower CTmax (Seebacher et al., 2015). 243 

There is evidence supporting all three hypotheses (DeLong et al., 2018; Kontopoulos et al., 244 

2020), but most of it comes from inter-species comparisons that overlook intra-specific variation 245 

and genetic associations between shape parameters, and therefore cannot readily make 246 
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predictions about r-TPC evolutionary trajectories for any given species. Without accounting for 247 

genetic associations, our results would suggest, based on selection alone, support for WIB, with 248 

clear directional selection for higher rpeak and E_a under warming climates (Fig 3a, b). 249 

Accounting for genetic associations, however, showed support for multiple hypotheses 250 

simultaneously, suggesting a more complex and nuanced evolutionary r-TPC response than 251 

currently predicted by theory. Indeed, our analyses supported WIB, as warming should favor r-252 

TPCs with high rpeak and high Ea (Fig 3f, g), while countering GST, as there was no selection in 253 

favor of higher CTmin with higher rpeak (Fig 3f, g). Lastly, Topt was predicted to respond the least 254 

to temperature (Fig 3g), as it showed only a small predicted decrease in colder temperatures 255 

(likely though indirect selection)—which is arguably in support of CIB—except  >30ºC, in 256 

which case Topt showed no clear pattern of evolutionary response to temperature —arguably 257 

against WIB. Thus, like many studies, our ability to make predictions is context specific, and 258 

identifying those contexts (e.g., temperature) remains an important avenue for future work. Our 259 

results clearly emphasize the importance of intraspecific variation and genetic associations to 260 

predict r-TPC evolution, and both support and generalize existing TPC evolution hypotheses.  261 

We also uncovered an interesting mechanism of rapid thermal adaptation whenever there 262 

is G × E in r-TPCs. While adaptation requires sufficient genetic variation upon which to act, the 263 

adaptive sorting of standing genetic variation often leads to a reduction in genetic variation, 264 

which can slow down the adaptive process or even impede future adaptation altogether (Pauls et 265 

al., 2013). Our results show that, in the presence of extensive G × E variation in r-TPCs, rapid 266 

shifts in genetic makeup are possible (Fig 4), resulting in predictable and rapid local adaptation 267 

to novel conditions—i.e., phenotypic plasticity can be adaptive in novel climates. However, in 268 

our system, rising temperatures led to an initial increase in additive genetic variance t (as both 269 
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genotypes become prevalent, Fig 4e, f), which should facilitate adaptation, then a reduction in 270 

additive genetic variation (as genotype CU4106 becomes less prevalent, Fig 4e, f), which in turn 271 

could impede adaptive evolution in the future. It is unclear why at 19ºC AXS is absent from the 272 

experimental populations despite the model predicting that its presence, and otherwise good 273 

agreement between model and data at other temperatures. This temperature-dependent effect on 274 

population genetic makeup may have important but poorly understood consequences for the 275 

conservation of genetically depauperate species under warming whenever large amounts of G × 276 

E are expected (Pauls et al., 2013).  277 

Using a phylogenetic approach, a recent study found that TPC adaptation in deep time 278 

likely occurred gradually across six different Tetrahymena species (Montagnes et al., 2022). 279 

While seemingly in contrast with our finding that r-TPCs can evolve rapidly through 280 

temperature-dependent selection on r-TPC G × E variation, we argue that the mechanism of r-281 

TPC evolution uncovered here is likely only at play as a form of rapid evolutionary response to 282 

fast-changing environmental conditions, and may or may not result in longer term indefinite r-283 

TPC change. Indeed, selection often “erases its traces” (Haller & Hendry, 2014) with selection 284 

most often being strongest in novel conditions and diminishing as populations adapt (Caruso et 285 

al., 2017). Montagnes et al. (2021) also found poor support for WIB (which they referred to as 286 

thermodynamic-constraint) in contrast with our findings, which show some level of support for 287 

WIB. However, their study did uncover mixed support for CIB (which they call biochemical-288 

adaptation, or hotter is not better) and poor support for GST, as did we, suggesting that some of 289 

the evolutionary responses uncovered here may be constrained by evolutionary history in deep 290 

time.  291 
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Overall, TPCs control the fate of populations (Seebacher & Little, 2021; Sinclair et al., 292 

2016), ecological interactions (Bideault et al., 2019; Enquist et al., 2015), food web structure and 293 

dynamics (Barbour & Gibert, 2021; Gibert et al., 2022), and ecosystem processes (Antiqueira et 294 

al., 2018; Gibert et al., 2015). Yet, TPC evolution in a rapidly warming world remains a 295 

conspicuous unknown. Here, we shed light on how r-TPC intraspecific variation drives 296 

temperature-dependent evolution in a microbial r-TPC, as well as its consequence for rapid shifts 297 

in population genetic makeup that either facilitates or precludes future thermal adaptation. In 298 

doing so, we emphasize the importance of temperature in mediating rapid microbial evolutionary 299 

change as we grapple with understanding and predicting how organisms in the planet may 300 

respond to an increasingly warm world. 301 

 302 

METHODS 303 

Tetrahymena thermophila genotypes 304 

We quantified intraspecific variation in r-TPCs in the protist Tetrahymena thermophila—305 

a freshwater species that is distributed across the eastern United States (Zufall et al., 2013) and 306 

part of a genus of cosmopolitan distribution and importance (Lynn & Doerder, 2012). We used 307 

22 unique T. thermophila genotypes: 19 from the Cornell Tetrahymena Stock Center and 3 308 

strains from the Chalker lab (Washington University, Appendix S5). The genotypes vary in 309 

geographic origin and have specific genetic differences (Appendix S5). Our goal in using these 310 

genotypes was simply to have a source of genetic variation, not to select any particular genotypes 311 

on the basis of their functional significance. Because most of these genotypes are derived from 312 

laboratory cultures, this assemblage of genotypes likely harbors—collectively—less genetic 313 

variation than would be found in natural isolates from across the species’ distribution (Zufall et 314 
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al., 2013). Upon reception, we transferred the cultures from axenic Proteose Peptone growth 315 

medium to Timothy Hay growth medium inoculated with a bacterial community from Duke 316 

Forest Gate 9 pond/Wilbur pond (Lat 36.013914, Long -78.979720, fully described elsewhere 317 

(Rocca et al., 2022) and a wheat kernel as a Carbon source (Altermatt et al., 2015). We 318 

maintained these stock cultures in Percival (Perry, IA) AL-22 growth chambers under light (12hr 319 

day-night cycle) and temperature controlled conditions (22°C) in 250mL borosilicate jars filled 320 

with 150mL of liquid medium. Because T. thermophila is a natural bacterivore, these 321 

experimental conditions are more realistic than purely axenic ones. 322 

 323 

Quantifying TPCs and TPC shape parameters  324 

 We quantified the r-TPCs of all genotypes in 3cm diameter Petri dish microcosms with 325 

3mL of growth medium through growth assays at seven temperatures (13, 19, 22, 25, 30, 32, 326 

38°C), each replicated six times, totaling 1056 microcosms. We chose these temperatures 327 

because they capture the range of temperatures at which T. thermophila is known to grow well 328 

(Zufall et al., 2013). Microcosms were initialized by pipetting three individual cells from stock 329 

cultures under a scope (Leica stereomicroscope model M205C) and allowing them to grow for 330 

24hrs, after which we censused the microcosms through whole-population counts under the 331 

scope, and calculated intrinsic growth rate, r, as log(final density/initial density)/time (Voronov, 332 

2005; Wieczynski et al., 2021), with time = 1 day. We fitted a Sharpe-Schoolfield model 333 

(“nls.multstart” v1.3.0 package in R, (Padfield, 2023)) to obtain r-TPC shape parameters CTmin 334 

(minimum temperature at which the population can grow), CTmax (maximum temperature at 335 

which the population can grow), rpeak (maximum growth rate), Topt (temperature at which rpeak is 336 

achieved), Ea (thermal sensitivity of the rising portion of the TPC) and Ed (thermal sensitivity of 337 
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the declining portion of the r-TPC, Fig 1b). Only parameters Ea, rpeak, CTmin and Topt could be 338 

unequivocally estimated with our data, as fits were less well constrained at higher temperatures, 339 

and so we focused all subsequent analyses on those (Fig 1b). These parameters also control the 340 

rising portion of the r-TPC in the so-called ‘operational temperature range’ (DeLong et al., 2017; 341 

Smith et al., 2021), which also is the temperature range within which ecological responses to 342 

temperature are expected for organisms in their native geographic ranges.  343 

 344 
Quantifying sources of phenotypic variation in r-TPCs and r-TPC heritability 345 

 To address whether and how r-TPCs may adapt to changing temperatures, we quantified 346 

standing genetic variation in r-TPC shape and how much of this variation was heritable. To do 347 

so, we estimated how much of the total observed r-TPC variation was explained by 348 

environmental variation (E), genetic variation (G) or Gene-by-Environment interactions (G × E, 349 

Fig 1c-e). The shape of r-TPCs are often assumed to be controlled by plastic physiological 350 

responses as a single genotype can often express an entire r-TPC ((J. G. Kingsolver et al., 2004), 351 

Fig 1c). We therefore expected to find a large amount of E. However, different genotypes may 352 

still express different TPCs (Singleton et al 2021, Fig 1d), and those could do so differentially 353 

across temperatures, leading to both G and G × E ((Ørsted et al., 2019), Fig 1e).  354 

We estimated E, G and G × E using the function gxeVarComps() in R package 355 

statgenGxE v1.0.5. To do so, the procedure fits two models: first, it fits a fixed effects linear 356 

model with r as the response variable, and temperature, genotype, and the interaction between 357 

temperature and genotype as predictors to calculate effect sizes, significance levels, and Best 358 

Linear Unbiased Estimators (BLUEs, (Baksalary & Puntanen, 1990; Henderson, 1975)). BLUEs 359 

are subsequently used to calculate r-TPC broad-sense heritability (see below). Second, it re-fits 360 

the model with all terms as random effects to calculate the variance component of each term (i.e., 361 
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G, E and G × E) and Best Linear Unbiased Predictors (BLUPs, (Henderson, 1975)), which are 362 

also subsequently used in the calculation of heritability. Using function H2cal() in R package inti 363 

v0.6.2 we calculated the broad-sense heritability (H2) in three ways: 1) standard heritability, 364 

whereH^2=G/P, P = G+(G×E/m)+(ResidVar/(m*r)), m is the number of temperature treatments 365 

and r the number of replicates (which accounts for inter-treatment and replicate variability , in 366 

ways that G/P does not, (Baksalary & Puntanen, 1990; Henderson, 1975)), 2) Cullis heritability, 367 

where H^2= 1-vBLUE/2G, and vBLUE is the mean variance of the difference of two BLUEs 368 

(Cullis et al., 2006), and, 3) Piepho heritability, where H^2= G/(G+vBLUP), and vBLUP is the 369 

mean variance of a difference of two BLUPs (Piepho & Möhring, 2007).   370 

 371 

Consequences of G: selection on r-TPC shape parameters and evolutionary potential 372 

To understand how TPCs might evolve in different temperatures, we assessed: 1) 373 

selection direction/form and magnitude on TPC shape parameters, 2) the impact of temperature 374 

on such selection, and, 3) potential evolution of shape parameters under these selection regimes. 375 

We measured selection in two different ways: one that neglects genetic correlations between 376 

shape parameters but can be used to estimate non-linear selective effects (e.g., stabilizing 377 

selection), and one that accounts for genetic correlations but neglects non-linear terms but 378 

enables predictions of evolutionary potential. The first approach answered the first two questions 379 

while the second approach complemented the answer to the second question and addressed the 380 

third. In doing so, we are explicitly quantifying how selection on r-TPC shape parameters 381 

changes across temperatures, or what MacColl (2011) called “eco-evo landscapes” (MacColl, 382 

2011).  383 
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In the first approach, we quantified the relationship between parameter values and 384 

absolute fitness—estimated here as, r—which is often assumed to be a suitable proxy for 385 

absolute fitness (Lande, 1976, 1979). This is because r reflects the birth and death rates per 386 

individual, two important fitness components (Lande, 1982; Partridge & Harvey, 1988). We 387 

considered three temperature ranges: low (<20°C), medium (between 20°C and 30°C), and high 388 

(>30°C). For each temperature range, we considered the relationship between r and the observed 389 

parameter value across genotypes (i.e., the adaptive landscape) (Lande, 1976, 1979). A positive 390 

relationship would be evidence of positive directional selection, a negative relationship, evidence 391 

of negative directional selection, and the absence of a relationship would occur whenever there is 392 

no directional selection. Stabilizing selection would result in a hump-shaped concave-down 393 

relationship, with intermediary values having higher fitness than extreme values, and disruptive 394 

selection with a concave-up relationship where extreme values have higher fitness (Lande & 395 

Arnold, 1983). We analyzed these data using polynomial regression in R v4.3.1 with r as the 396 

response variable, both linear and quadratic terms for the shape parameter and temperature as 397 

explanatory variables with additive effects, an interaction between the linear and quadratic 398 

effects of the shape parameter with temperature (See Appendices S1-S4). We doubled our 399 

quadratic regression coefficients (Stinchcombe et al., 2008).   400 

To predict possible r-TPC shape evolution across temperatures and evaluate the effects of 401 

the genetic association among shape parameters in this evolutionary response, we used the 402 

modified G-matrix approach proposed by Stinchcombe et al. (2014). This approach fuses the 403 

multivariate breeder’s (Lande, 1979) and Price’s (Price, 1972) equations to estimate the direct 404 

(i.e., acting on the focal trait) and indirect effects of selection (i.e., acting on another trait the 405 

focal trait is genetically linked to) on an evolving population. The potential evolutionary 406 
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response of each r-TPC shape parameter to natural selection, Δz, is derived from the covariance 407 

of the parameters with a measure of fitness. In practical terms, we estimated the additive genetic 408 

variance-covariance matrix, G, of all shape parameters, and the mean-standardized r as a 409 

measure of fitness, as done before (Lande 1976, 1972, 1989). We then created a Gw-matrix, 410 

which includes G and a vector of predicted trait change, Δz, as the last column and row. Δz is 411 

defined element-wise as Δzi=cova(wi,zi), with cova being the additive genetic covariance, wi the 412 

relative fitness of the i-th shape parameter, and zi the i-th shape parameter. Because the Δzi 413 

calculated in this way is equivalent to the genetic selection differentials, we can then calculate 414 

the selection gradient as β =Gw-1 Δz. The sign of Δzi indicates the direction of the response. 415 

Alignment between Δzi and βi indicates direct responses to selection (Hansen and Houle 2008), 416 

that is, shape parameters that directly respond to selection as imposed by temperature, while 417 

misalignment would be indicative of indirect selection through correlated responses with other 418 

shape parameters. This approach correctly estimates Δz even in the absence of information on all 419 

pleiotropic effects in the system, while also estimating selection on each trait individually (Heath 420 

& Stinchcombe, 2014; Stinchcombe et al., 2014). Furthermore, β estimated in this way controls 421 

for the potential effects of environmentally induced trait-fitness covariances.  422 

  To calculate G, for each temperature, we compiled all r-TPC shape parameters and r for 423 

each genetic variant and calculated the between-genotype covariance matrix, L. For lines derived 424 

from the same population, L is proportional to the additive genetic covariance matrix of the 425 

original population, or Gr. As inbreeding tends to increase between-genotype genetic variation 426 

due to drift, L is inflated in relation to G by a factor equal to two times the inbreeding 427 

coefficient, F (Falconer & Mackay, 1996). Genetic correlation among traits were obtained by 428 

estimating the correlation version of G as Gcor=SGS where S is a diagonal matrix containing the 429 
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inverse of each trait’s standard deviation. We estimated uncertainty using a Bayesian posterior 430 

sample of covariance matrices as implemented in the evolqg v3.0 package (Melo et al. 2015). 431 

This method derives the covariance matrices analytically from a multivariate normal likelihood 432 

function and an inverse Wishart prior (Murphy 2012). We then took 1000 posterior samples for 433 

Gw and derived statistics for Δz, ꞵ and G. To evaluate if Δz, ꞵ and Gcor  estimates were 434 

statistically meaningful, we inspected the 95% maximum density interval to evaluate if the 435 

posterior distribution significantly overlapped with the expected value due to lack of signal 436 

(value=0). 437 

 438 

Experimental test of consequences of G × E for population genetic makeup across temperatures 439 

 If r-TPCs show G × E in shape, slight differences in intrinsic growth rates can lead to 440 

temperature-mediated clonal sorting (Fig 4a, b). We assessed how differences in r-TPCs across 441 

genotypes could influence thermal adaptation through sorting of standing variance using the 442 

coefficient of selection, s, which equals 1- w, where w is the relative fitness of each genotype 443 

(measured as the quotient of the r of each focal genotype, Fig 4d). The coefficient of selection 444 

measures the magnitude of selection acting against a given genotype relative to the focal 445 

genotype; the larger the value of s, the stronger the selection against the given genotype. 446 

Differences in s across genotypes and temperatures would indicate large potential for 447 

temperature-mediated clonal sorting.  448 

We then tested whether temperature-mediated clonal sorting occurs by setting up an 449 

experimental evolution assay that competed two fluorescently marked strains that showed 450 

significantly different in r-TPCs and relative fitness (AXS and CU4106, Fig 4d, Fig4d inset) 451 

across six temperature treatments (19, 22, 25, 30, 32, 38ºC) each replicated seven times, with 452 
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additional single-strain controls per temperature. Microcosms were initialized at equal densities 453 

(5 individuals per genotype) in 3cm diameter Petri dishes. We added CdCl2 on days 2 and 7 to 454 

induce fluorescence and counted on days 3 and 8. Fluorescently tagged genotypes may lose their 455 

ability to fluoresce over time—however, they carry a Paromomycin resistance gene so that 456 

fluorescing individuals can be selected for through Paromomycin exposure. We treated the 457 

microcosms with 100µg/mL of Paromomycin prior to censusing, then used a Novocyte 2000R 458 

flow cytometer (Agilent, Santa Clara, CA) to count individual cells and estimate relative 459 

frequencies based on fluorescence (See Appendix S6 and Appendix S7). Because antibiotics can 460 

influence the protists and the bacterial communities they feed on in multiple ways, we replicated 461 

the entire experiment in Paromomycin-free conditions, but this did not qualitatively alter our 462 

results (see Appendix Fig S8).  463 

To confirm fluorescence of the two strains (Fig 4c), cells were mounted on glass slides 464 

with mounting medium (Winey et al., 2012). Images were taken with a Leica Thunder Cell 465 

Culture inverted microscope equipped with an HC PL APO 63X/1.40 N.A. oil-immersion 466 

objective lens. Fluorescent signals were captured using a 510-nm excitation laser and a 535/15-467 

nm emission filter for YFP (expressed in genotype AXS), and a 395-nm excitation laser and a 468 

Leica DFT51011 quad-band filter set for autofluorescence (exhibited by both genotypes). All 469 

images were captured at a single Z plane using the same exposure settings; the resulting images 470 

were processed in ImageJ (see Fig 4c and Appendix Figure S9). 471 

Last, observed changes in genetic frequencies were compared to predicted frequencies by 472 

a modified version of a classic model of genetic evolution in discrete time parameterized with 473 

the r-TPC of each strain in the experimental evolution assay (Fig 4f). The model tracks the 474 

frequency of each strain 𝑓", and assumes that their absolute fitness, 𝑊" , is a function of their 475 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

reproductive output (r), following early work by Lande (Lande, 1976, 1979). The frequency of 476 

each strain in the population is then determined by the classic recursive equation, 𝑓"(𝑡 + 1) =477 

𝑓"(𝑡)𝑊"/𝑊+   [Eq 1.], where 𝑊+  is the average fitness in the population (∑ 𝑓"𝑟".
"/0 ), such that 𝑊"/𝑊+  is 478 

the relative fitness of the i-th strain. Alternatively, we can calculate the fitness of each strain 479 

relative to that of a focal strain (we call it 𝑆23456, Fig 4d inset). Then the relative fitness equation 480 

becomes 𝑊"/𝑊+789:;<. In our experiment, we only have two strains (AXS and CU4106), so either 481 

strain can be the focal strain, but this choice does not alter the evolutionary dynamics. Our focal 482 

strain was CU4016. We used each strain’s r-TPC (Fig 4d) to calculate the relative fitness of each 483 

strain as 𝑊AXS/𝑊CU4016 for AXS and 𝑊CU4016/𝑊CU4016 for CU4106 (Fig 4d, inset) –thus 484 

replacing each strain’s fitness, 𝑊", with their r-TPC (Lande 1976). We then replaced these 485 

empirically parameterized measures of relative fitness in our recursive equation (Eq 1.) and 486 

numerically solved the recursive equation over time to make testable predictions of how genetic 487 

frequencies should change across temperatures. Despite this model not accounting for density, 488 

frequency, and other forms of selection and ecological processes, is does a good job at 489 

qualitatively reproducing the observed evolutionary dynamics (Fig 4e, f), therefore supporting 490 

the hypothesis that observed shifts in genetic frequencies are due to GxE in r-TPCs and 491 

temperature-mediated selection. 492 

 493 

 494 

 495 

 496 
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 497 

Fig. 1: a. General shape of the r-TPC. b. r-TPC shape parameters. Blue-colored shape 498 
parameters indicate those measured in this study, namely, rpeak, E_a, CTmin and Topt. c. 499 
Environmental variation (E) in r-TPCs results from the expression of a different r across 500 
temperatures. In the classic reaction norm approach, this would be observed as different r values 501 
across temperatures, but equal across genotypes within temperatures (middle panel). d. Genetic 502 
variation (G) in r-TPCs occurs whenever different genotypes express TPCs with different 503 
heights, such that in the classic reaction norm approach observed r values vary across but in such 504 
a way that the slope of the effect of the genotype on r is additive (middle panel). e. Gene-by-505 
Environment interactions (G × E) occur whenever TPCs vary in both heights and slopes across 506 
genotypes, such that, in the classic reaction norm approach, r varies across genotypes and 507 
temperatures in a multiplicative fashion.  508 
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 509 
 510 
Fig. 2: a. Observed r-TPCs for all 22 genotypes. Dots represent observed r values, bold lines 511 
represent Sharpe-Schoolfield model fits, and dash lines represent average TPCs across all 512 
experimental genotypes. b. All 22 TPCs are superimposed and dashed lines represent the average 513 
r-TPC. Inset: amount of variation due to residual, G × E, G, and E effects. 514 
 515 
 516 
 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 
 525 
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 526 
 527 
Fig. 3: a. Estimated adaptive landscape across temperatures (i.e., change in fitness with a change 528 
in the underlying shape parameter) for rpeak. Color indicates temperature (blue: 10–20ºC, yellow: 529 
20–30ºC, red: 30–40ºC) b. As in a, but for Ea. c. As in a, but for CTmin. d. As in a, but for Topt. e. 530 
Observed genetic associations between shape parameters. Each dot is a genotype color-coded as 531 
in Fig. 2. In gray, 95% confidence ellipses. ρ represents correlation coefficients. f. Estimated 532 
multivariate selection coefficient (β, 95% maximum density intervals) for all shape parameters 533 
across temperatures, or eco-evo landscapes (MacColl, 2011). g. Predicted evolutionary change 534 
(Δz, 95% maximum density intervals) for all shape parameters, across temperatures.      535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
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 549 
 550 
 551 
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 553 
 554 
Fig. 4: a. G × E variation in r-TPCs leads to differential growth of each genotype across 555 
temperatures. b. Differential growth across temperatures leads to clonal sorting and rapid shifts 556 
in genetic frequencies across temperatures. c. First column: Differential Interference Contrast 557 
(DIC) microscopy for two genotypes of the protist Tetrahymena thermophila (CU4106 and 558 
AXS). Second column: fluorescence microscopy image overlayed on DIC. Only AXS fluoresces 559 
(green) due to the expression of Yellow Fluorescent Protein (YFP). Third column: as in the 560 
second column, but for autofluorescence (A. Flu, in pink), which both genotypes exhibit. Fourth 561 
column: Overlayed DIC, YFP and A.Flu images showing how the different strains fluoresce 562 
once all sources of fluorescence are accounted for. d. r-TPC for genotypes CU4106 and AXS. 563 
Inset: Measures of relative fitness for both CU4106 and AXS. This predicts an increase in AXS 564 
frequency relative to CU4106 at intermediate temperatures relative to low or high temperatures. 565 
e. Observed genetic frequencies across temperatures. f. Predicted genetic frequencies across 566 
temperatures.   567 
 568 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

26 

REFERENCES 569 

Altermatt, F., Fronhofer, E. A., Garnier, A., Giometto, A., Hammes, F., Klecka, J., Legrand, D., Mächler, 570 

E., Massie, T. M., Pennekamp, F., Plebani, M., Pontarp, M., Schtickzelle, N., Thuillier, V., & 571 

Petchey, O. L. (2015). Big answers from small worlds: A user’s guide for protist microcosms as a 572 

model system in ecology and evolution. Methods in Ecology and Evolution, 6(2), 218–231. 573 

https://doi.org/10.1111/2041-210X.12312 574 

Amarasekare, P., & Savage, V. (2012). A Framework for Elucidating the Temperature Dependence of 575 

Fitness. The American Naturalist, 179(2), 178–191. https://doi.org/10.1086/663677 576 

Angilletta, M. J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. OUP Oxford. 577 

Antiqueira, P. A. P., Petchey, O. L., & Romero, G. Q. (2018). Warming and top predator loss drive 578 

ecosystem multifunctionality. Ecology Letters, 21(1), 72–82. https://doi.org/10.1111/ele.12873 579 

Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles. Nature, 437(7057), Article 580 

7057. https://doi.org/10.1038/nature04159 581 

Baksalary, J. K., & Puntanen, S. (1990). Characterizations of the best linear unbiased estimator in the 582 

general Gauss-Markov model with the use of matrix partial orderings. Linear Algebra and Its 583 

Applications, 127, 363–370. https://doi.org/10.1016/0024-3795(90)90349-H 584 

Barbour, M. A., & Gibert, J. P. (2021). Genetic and plastic rewiring of food webs under climate change. 585 

Journal of Animal Ecology, 90(8), 1814–1830. https://doi.org/10.1111/1365-2656.13541 586 

Bar-On, Y. M., & Milo, R. (2019). The Biomass Composition of the Oceans: A Blueprint of Our Blue 587 

Planet. Cell, 179(7), 1451–1454. https://doi.org/10.1016/j.cell.2019.11.018 588 

Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the 589 

National Academy of Sciences, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115 590 

Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & 591 

Evolution, 23(1), 38–44. https://doi.org/10.1016/j.tree.2007.09.008 592 

Barton, S., Jenkins, J., Buckling, A., Schaum, C.-E., Smirnoff, N., Raven, J. A., & Yvon-Durocher, G. 593 

(2020). Evolutionary temperature compensation of carbon fixation in marine phytoplankton. 594 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 

Ecology Letters, 23(4), 722–733. https://doi.org/10.1111/ele.13469 595 

Bideault, A., Loreau, M., & Gravel, D. (2019). Temperature Modifies Consumer-Resource Interaction 596 

Strength Through Its Effects on Biological Rates and Body Mass. Frontiers in Ecology and 597 

Evolution, 7. https://www.frontiersin.org/articles/10.3389/fevo.2019.00045 598 

Bond-Lamberty, B. (2018). New Techniques and Data for Understanding the Global Soil Respiration 599 

Flux. Earth’s Future, 6(9), 1176–1180. https://doi.org/10.1029/2018EF000866 600 

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a Metabolic 601 

Theory of Ecology. Ecology, 85(7), 1771–1789. https://doi.org/10.1890/03-9000 602 

Caruso, C. M., Martin, R. A., Sletvold, N., Morrissey, M. B., Wade, M. J., Augustine, K. E., Carlson, S. 603 

M., MacColl, A. D. C., Siepielski, A. M., & Kingsolver, J. G. (2017). What Are the 604 

Environmental Determinants of Phenotypic Selection? A Meta-analysis of Experimental Studies. 605 

The American Naturalist, 190(3), 363–376. https://doi.org/10.1086/692760 606 

Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with 607 

correlated data. Journal of Agricultural, Biological, and Environmental Statistics, 11(4), 381–608 

393. https://doi.org/10.1198/108571106X154443 609 

Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and 610 

feedbacks to climate change. Nature, 440(7081), Article 7081. 611 

https://doi.org/10.1038/nature04514 612 

DeLong, J. P., Bachman, G., Gibert, J. P., Luhring, T. M., Montooth, K. L., Neyer, A., & Reed, B. 613 

(2018). Habitat, latitude and body mass influence the temperature dependence of metabolic rate. 614 

Biology Letters, 14(8), 20180442. https://doi.org/10.1098/rsbl.2018.0442 615 

DeLong, J. P., Gibert, J. P., Luhring, T. M., Bachman, G., Reed, B., Neyer, A., & Montooth, K. L. 616 

(2017). The combined effects of reactant kinetics and enzyme stability explain the temperature 617 

dependence of metabolic rates. Ecology and Evolution, 7(11), 3940–3950. 618 

https://doi.org/10.1002/ece3.2955 619 

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, 620 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of 621 

the National Academy of Sciences, 105(18), 6668–6672. 622 

https://doi.org/10.1073/pnas.0709472105 623 

Enquist, B. J., Norberg, J., Bonser, S. P., Violle, C., Webb, C. T., Henderson, A., Sloat, L. L., & Savage, 624 

V. M. (2015). Chapter Nine - Scaling from Traits to Ecosystems: Developing a General Trait 625 

Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories. In S. Pawar, G. 626 

Woodward, & A. I. Dell (Eds.), Advances in Ecological Research (Vol. 52, pp. 249–318). 627 

Academic Press. https://doi.org/10.1016/bs.aecr.2015.02.001 628 

Falkowski, P. G. (1994). The role of phytoplankton photosynthesis in global biogeochemical cycles. 629 

Photosynthesis Research, 39(3), 235–258. https://doi.org/10.1007/BF00014586 630 

Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The Microbial Engines That Drive Earth’s 631 

Biogeochemical Cycles. Science, 320(5879), 1034–1039. 632 

https://doi.org/10.1126/science.1153213 633 

Frankham, R. (2005). Stress and adaptation in conservation genetics. Journal of Evolutionary Biology, 634 

18(4), 750–755. https://doi.org/10.1111/j.1420-9101.2005.00885.x 635 

Franks, S. J., Sim, S., & Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in 636 

response to a climate fluctuation. Proceedings of the National Academy of Sciences, 104(4), 637 

1278–1282. https://doi.org/10.1073/pnas.0608379104 638 

Frazier, M. R., Huey, R. B., & Berrigan, D. (2006). Thermodynamics Constrains the Evolution of Insect 639 

Population Growth Rates: “Warmer Is Better.” The American Naturalist, 168(4), 512–520. 640 

https://doi.org/10.1086/506977 641 

Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L. D., 642 

Jousset, A., Krashevska, V., Singer, D., Spiegel, F. W., Walochnik, J., & Lara, E. (2018). Soil 643 

protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42(3), 293–323. 644 

https://doi.org/10.1093/femsre/fuy006 645 

Ghalambor, C. K., McKAY, J. K., Carroll, S. P., & Reznick, D. N. (2007). Adaptive versus non-adaptive 646 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

phenotypic plasticity and the potential for contemporary adaptation in new environments. 647 

Functional Ecology, 21(3), 394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x 648 

Gibert, J. P., Dell, A. I., DeLong, J. P., & Pawar, S. (2015). Chapter One—Scaling-up Trait Variation 649 

from Individuals to Ecosystems. In S. Pawar, G. Woodward, & A. I. Dell (Eds.), Advances in 650 

Ecological Research (Vol. 52, pp. 1–17). Academic Press. 651 

https://doi.org/10.1016/bs.aecr.2015.03.001 652 

Gibert, J. P., Grady, J. M., & Dell, A. I. (2022). Food web consequences of thermal asymmetries. 653 

Functional Ecology, 36(8), 1887–1899. https://doi.org/10.1111/1365-2435.14091 654 

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and 655 

temperature on metabolic rate. Science (New York, N.Y.), 293(5538), 2248–2251. 656 

https://doi.org/10.1126/science.1061967 657 

Haller, B. C., & Hendry, A. P. (2014). Solving the paradox of stasis: Squashed stabilizing selection and 658 

the limits of detection. Evolution; International Journal of Organic Evolution, 68(2), 483–500. 659 

https://doi.org/10.1111/evo.12275 660 

Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate 661 

characters. Journal of Evolutionary Biology, 21(5), 1201–1219. https://doi.org/10.1111/j.1420-662 

9101.2008.01573.x 663 

Heath, K. D., & Stinchcombe, J. R. (2014). Explaining Mutualism Variation: A New Evolutionary 664 

Paradox? Evolution, 68(2), 309–317. https://doi.org/10.1111/evo.12292 665 

Henderson, C. R. (1975). Best Linear Unbiased Estimation and Prediction under a Selection Model. 666 

Biometrics, 31(2), 423–447. https://doi.org/10.2307/2529430 667 

Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 668 

Article 7335. https://doi.org/10.1038/nature09670 669 

Hu, S. K., Herrera, E. L., Smith, A. R., Pachiadaki, M. G., Edgcomb, V. P., Sylva, S. P., Chan, E. W., 670 

Seewald, J. S., German, C. R., & Huber, J. A. (2021). Protistan grazing impacts microbial 671 

communities and carbon cycling at deep-sea hydrothermal vents. Proceedings of the National 672 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

Academy of Sciences, 118(29), e2102674118. https://doi.org/10.1073/pnas.2102674118 673 

Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 – The Physical 674 

Science Basis: Working Group I Contribution to the Sixth Assessment Report of the 675 

Intergovernmental Panel on Climate Change. Cambridge University Press. 676 

https://doi.org/10.1017/9781009157896 677 

Jacob, S., & Legrand, D. (2021). Phenotypic plasticity can reverse the relative extent of intra- and 678 

interspecific variability across a thermal gradient. Proceedings of the Royal Society B: Biological 679 

Sciences, 288(1953), 20210428. https://doi.org/10.1098/rspb.2021.0428 680 

Kellermann, V., Chown, S. L., Schou, M. F., Aitkenhead, I., Janion-Scheepers, C., Clemson, A., Scott, M. 681 

T., & Sgrò, C. M. (2019). Comparing thermal performance curves across traits: How consistent 682 

are they? Journal of Experimental Biology, 222(11), jeb193433. 683 

https://doi.org/10.1242/jeb.193433 684 

Kingsolver, J. G., Izem, R., & Ragland, G. J. (2004). Plasticity of Size and Growth in Fluctuating 685 

Thermal Environments: Comparing Reaction Norms and Performance Curves. Integrative and 686 

Comparative Biology, 44(6), 450–460. 687 

Kingsolver, J., & Huey, R. (2008). Size, temperature, and fitness: Three rules. Evolutionary Ecology 688 

Research, 10, 251–268. 689 

Kirkpatrick, M., & Peischl, S. (2013). Evolutionary rescue by beneficial mutations in environments that 690 

change in space and time. Philosophical Transactions of the Royal Society B: Biological 691 

Sciences, 368(1610), 20120082. https://doi.org/10.1098/rstb.2012.0082 692 

Kling, J. D., Lee, M. D., Walworth, N. G., Webb, E. A., Coelho, J. T., Wilburn, P., Anderson, S. I., Zhou, 693 

Q., Wang, C., Phan, M. D., Fu, F., Kremer, C. T., Litchman, E., Rynearson, T. A., & Hutchins, D. 694 

A. (2023). Dual thermal ecotypes coexist within a nearly genetically identical population of the 695 

unicellular marine cyanobacterium Synechococcus. Proceedings of the National Academy of 696 

Sciences, 120(47), e2315701120. https://doi.org/10.1073/pnas.2315701120 697 

Kontopoulos, D.-G., Smith, T. P., Barraclough, T. G., & Pawar, S. (2020). Adaptive evolution shapes the 698 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 

present-day distribution of the thermal sensitivity of population growth rate. PLOS Biology, 699 

18(10), e3000894. https://doi.org/10.1371/journal.pbio.3000894 700 

Lande, R. (1976). Natural Selection and Random Genetic Drift in Phenotypic Evolution. Evolution, 30(2), 701 

314–334. https://doi.org/10.2307/2407703 702 

Lande, R. (1979). Quantitative Genetic Analysis of Multivariate Evolution, Applied to Brain:body Size 703 

Allometry. Evolution, 33(1Part2), 402–416. https://doi.org/10.1111/j.1558-5646.1979.tb04694.x 704 

Lande, R. (1982). A Quantitative Genetic Theory of Life History Evolution. Ecology, 63(3), 607–615. 705 

https://doi.org/10.2307/1936778 706 

Lande, R., & Arnold, S. J. (1983). THE MEASUREMENT OF SELECTION ON CORRELATED 707 

CHARACTERS. Evolution, 37(6), 1210–1226. https://doi.org/10.1111/j.1558-708 

5646.1983.tb00236.x 709 

Litchman, E., de Tezanos Pinto, P., Edwards, K. F., Klausmeier, C. A., Kremer, C. T., & Thomas, M. K. 710 

(2015). Global biogeochemical impacts of phytoplankton: A trait-based perspective. Journal of 711 

Ecology, 103(6), 1384–1396. 712 

Liu, L., Wang, Y., Zhang, D., Chen, Z., Chen, X., Su, Z., & He, X. (2020). The Origin of Additive 713 

Genetic Variance Driven by Positive Selection. Molecular Biology and Evolution, 37(8), 2300–714 

2308. https://doi.org/10.1093/molbev/msaa085 715 

Lynn, D. H., & Doerder, F. P. (2012). The life and times of Tetrahymena. Methods in Cell Biology, 109, 716 

9–27. https://doi.org/10.1016/B978-0-12-385967-9.00002-5 717 

MacColl, A. D. C. (2011). The ecological causes of evolution. Trends in Ecology & Evolution, 26(10), 718 

514–522. https://doi.org/10.1016/j.tree.2011.06.009 719 

Malusare, S. P., Zilio, G., & Fronhofer, E. A. (2023). Evolution of thermal performance curves: A meta-720 

analysis of selection experiments. Journal of Evolutionary Biology, 36(1), 15–28. 721 

https://doi.org/10.1111/jeb.14087 722 

Montagnes, D. J. S., Wang, Q., Lyu, Z., & Shao, C. (2022). Evaluating thermal performance of closely 723 

related taxa: Support for hotter is not better, but for unexpected reasons. Ecological Monographs, 724 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 

92(3), e1517. https://doi.org/10.1002/ecm.1517 725 

Nguyen, B.-A. T., Chen, Q.-L., He, J.-Z., & Hu, H.-W. (2020). Microbial regulation of natural antibiotic 726 

resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. The 727 

Science of the Total Environment, 705, 135882. https://doi.org/10.1016/j.scitotenv.2019.135882 728 

NOAA. (n.d.). NOAA NCEI U.S. Climate Normals Quick Access. Retrieved January 23, 2024, from 729 

https://www.ncei.noaa.gov/access/us-climate-normals/#dataset=normals-730 

monthly&timeframe=30&location=MA&station=USW00014739 731 

Nosil, P., Villoutreix, R., de Carvalho, C. F., Farkas, T. E., Soria-Carrasco, V., Feder, J. L., Crespi, B. J., 732 

& Gompert, Z. (2018). Natural selection and the predictability of evolution in Timema stick 733 

insects. Science (New York, N.Y.), 359(6377), 765–770. https://doi.org/10.1126/science.aap9125 734 

Ørsted, M., Hoffmann, A. A., Rohde, P. D., Sørensen, P., & Kristensen, T. N. (2019). Strong impact of 735 

thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity, 736 

122(3), 315–325. https://doi.org/10.1038/s41437-018-0117-7 737 

Padfield, D. (2023). Robust Non-Linear Regression using AIC Scores (1.3.0) [R]. 738 

Partridge, L., & Harvey, P. H. (1988). The Ecological Context of Life History Evolution. Science, 739 

241(4872), 1449–1455. https://doi.org/10.1126/science.241.4872.1449 740 

Pauls, S. U., Nowak, C., Bálint, M., & Pfenninger, M. (2013). The impact of global climate change on 741 

genetic diversity within populations and species. Molecular Ecology, 22(4), 925–946. 742 

https://doi.org/10.1111/mec.12152 743 

Pawar, S., Dell, A. I., & Savage, V. M. (2015). Chapter 1—From Metabolic Constraints on Individuals to 744 

the Dynamics of Ecosystems. In A. Belgrano, G. Woodward, & U. Jacob (Eds.), Aquatic 745 

Functional Biodiversity (pp. 3–36). Academic Press. https://doi.org/10.1016/B978-0-12-417015-746 

5.00001-3 747 

Phillips, B. L., Llewelyn, J., Hatcher, A., Macdonald, S., & Moritz, C. (2014). Do evolutionary 748 

constraints on thermal performance manifest at different organizational scales? Journal of 749 

Evolutionary Biology, 27(12), 2687–2694. https://doi.org/10.1111/jeb.12526 750 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

Piepho, H.-P., & Möhring, J. (2007). Computing Heritability and Selection Response From Unbalanced 751 

Plant Breeding Trials. Genetics, 177(3), 1881–1888. https://doi.org/10.1534/genetics.107.074229 752 

Price, G. R. (1972). Extension of covariance selection mathematics. Annals of Human Genetics, 35(4), 753 

485–490. https://doi.org/10.1111/j.1469-1809.1957.tb01874.x 754 

Rebolledo, A. P., Sgrò, C. M., & Monro, K. (2020). Thermal performance curves reveal shifts in optima, 755 

limits and breadth in early life. Journal of Experimental Biology, 223(22), jeb233254. 756 

https://doi.org/10.1242/jeb.233254 757 

Rocca, J. D., Yammine, A., Simonin, M., & Gibert, J. P. (2022). Protist Predation Influences the 758 

Temperature Response of Bacterial Communities. Frontiers in Microbiology, 13. 759 

https://www.frontiersin.org/articles/10.3389/fmicb.2022.847964 760 

Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B., & Charnov, E. L. (2004). Effects of Body Size 761 

and Temperature on Population Growth. The American Naturalist, 163(3), 429–441. 762 

https://doi.org/10.1086/381872 763 

Schoolfield, R. M., Sharpe, P. J. H., & Magnuson, C. E. (1981). Non-linear regression of biological 764 

temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical 765 

Biology, 88(4), 719–731. https://doi.org/10.1016/0022-5193(81)90246-0 766 

Schulte, P. M., Healy, T. M., & Fangue, N. A. (2011). Thermal Performance Curves, Phenotypic 767 

Plasticity, and the Time Scales of Temperature Exposure. Integrative and Comparative Biology, 768 

51(5), 691–702. https://doi.org/10.1093/icb/icr097 769 

Seebacher, F., Ducret, V., Little, A. G., & Adriaenssens, B. (2015). Generalist–specialist trade-off during 770 

thermal acclimation. Royal Society Open Science, 2(1), 140251. 771 

https://doi.org/10.1098/rsos.140251 772 

Seebacher, F., & Little, A. G. (2021). Plasticity of Performance Curves in Ectotherms: Individual 773 

Variation Modulates Population Responses to Environmental Change. Frontiers in Physiology, 774 

12. https://www.frontiersin.org/articles/10.3389/fphys.2021.733305 775 

Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., Dong, Y., 776 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 

Harley, C. D. G., Marshall, D. J., Helmuth, B. S., & Huey, R. B. (2016). Can we predict 777 

ectotherm responses to climate change using thermal performance curves and body temperatures? 778 

Ecology Letters, 19(11), 1372–1385. https://doi.org/10.1111/ele.12686 779 

Singleton, A. L., Liu, M. H., Votzke, S., Yammine, A., & Gibert, J. P. (2021). Increasing temperature 780 

weakens the positive effect of genetic diversity on population growth. Ecology and Evolution, 781 

11(24), 17810–17816. https://doi.org/10.1002/ece3.8335 782 

Smith, T. P., Clegg, T., Bell, T., & Pawar, S. (2021). Systematic variation in the temperature dependence 783 

of bacterial carbon use efficiency. Ecology Letters, 24(10), 2123–2133. 784 

https://doi.org/10.1111/ele.13840 785 

Stell, E., Warner, D., Jian, J., Bond-Lamberty, B., & Vargas, R. (2021). Spatial biases of information 786 

influence global estimates of soil respiration: How can we improve global predictions? Global 787 

Change Biology, 27(16), 3923–3938. https://doi.org/10.1111/gcb.15666 788 

Stinchcombe, J. R., Agrawal, A. F., Hohenlohe, P. A., Arnold, S. J., & Blows, M. W. (2008). Estimating 789 

Nonlinear Selection Gradients Using Quadratic Regression Coefficients: Double or Nothing? 790 

Evolution, 62(9), 2435–2440. https://doi.org/10.1111/j.1558-5646.2008.00449.x 791 

Stinchcombe, J. R., Simonsen, A. K., & Blows, Mark. W. (2014). ESTIMATING UNCERTAINTY IN 792 

MULTIVARIATE RESPONSES TO SELECTION. Evolution, 68(4), 1188–1196. 793 

https://doi.org/10.1111/evo.12321 794 

Trumbore, S. (2006). Carbon respired by terrestrial ecosystems – recent progress and challenges. Global 795 

Change Biology, 12(2), 141–153. https://doi.org/10.1111/j.1365-2486.2006.01067.x 796 

Voronov, D. A. (2005). [Calculating the intrinsic growth rate: Comparison of definition and model]. 797 

Zhurnal Obshchei Biologii, 66(5), 425–430. 798 

Wieczynski, D. J., Singla, P., Doan, A., Singleton, A., Han, Z.-Y., Votzke, S., Yammine, A., & Gibert, J. 799 

P. (2021). Linking species traits and demography to explain complex temperature responses 800 

across levels of organization. Proceedings of the National Academy of Sciences, 118(42), 801 

e2104863118. https://doi.org/10.1073/pnas.2104863118 802 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 

Wieczynski, D. J., Yoshimura, K. M., Denison, E. R., Geisen, S., DeBruyn, J. M., Shaw, A. J., Weston, 803 

D. J., Pelletier, D. A., Wilhelm, S. W., & Gibert, J. P. (2023). Viral infections likely mediate 804 

microbial controls on ecosystem responses to global warming. FEMS Microbiology Ecology, 805 

99(3), fiad016. https://doi.org/10.1093/femsec/fiad016 806 

Winey, M., Stemm-Wolf, A. J., Giddings, T. H., & Pearson, C. G. (2012). Cytological analysis of 807 

Tetrahymena thermophila. Methods in Cell Biology, 109, 357–378. https://doi.org/10.1016/B978-808 

0-12-385967-9.00013-X 809 

Xiong, W., Song, Y., Yang, K., Gu, Y., Wei, Z., Kowalchuk, G. A., Xu, Y., Jousset, A., Shen, Q., & 810 

Geisen, S. (2020). Rhizosphere protists are key determinants of plant health. Microbiome, 8(1), 811 

27. https://doi.org/10.1186/s40168-020-00799-9 812 

Xu, M., & Shang, H. (2016). Contribution of soil respiration to the global carbon equation. Journal of 813 

Plant Physiology, 203, 16–28. https://doi.org/10.1016/j.jplph.2016.08.007 814 

Zufall, R. A., Dimond, K. L., & Doerder, F. P. (2013). Restricted distribution and limited gene flow in the 815 

model ciliate Tetrahymena thermophila. Molecular Ecology, 22(4), 1081–1091. 816 

https://doi.org/10.1111/mec.12066 817 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

1 

Online Supplementary Materials: Temperature-dependent selection shapes microbial 
thermal performance curves and population genetic makeup 

 
Megan H. Liu1, Ze-Yi Han1, Yaning Yuan1, Katrina DeWitt1, Daniel J. Wieczynski1, Kathryn M. 

Yammine2, Andrea Yammine1, Rebecca Zufall3, Adam Siepielski4, Douglas Chalker5, Masayuki Onishi1, 
Fabio A. Machado6, Jean P. Gibert1 

 
1Department of Biology, Duke University, Durham, NC, 27708, USA 
2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA 
3Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA 
4Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA 
5Department of Biology, Washington University, Saint Louis, MI, USA 
6Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA 
 
 
 
 
 
INDEX: 
 
Appendix S1. r_peak Stats Table ............................................................................................................. 2 
Appendix S2. E_a Stats Table .................................................................................................................. 2 
Appendix S3. CT_min Stats Table ........................................................................................................... 3 
Appendix S4. T_opt Stats Table .............................................................................................................. 3 
Appendix S5. Genotype Table ................................................................................................................. 4 
Appendix S6. Flow Cytometry Frequency Calculations ........................................................................... 6 
Appendix S7. Table of Frequency Calculations ........................................................................................ 8 
Appendix S8. Alternative Experimental Conditions With and Without Antibiotics... .............................. 11 
Appendix S9. Differential Fluorescence Across Strains.......................................................................... 12 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.590804doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.590804
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Appendix S1. r_peak Stats Table 

 Estimate SD P-value  

Linear term 1.81 0.16 ≤0.001 

Quadratic term -0.28 0.12 0.24 

Low Temp -6.25 0.26 ≤0.001 

Med Temp -3.20 0.26 ≤0.001 

Linear*LowTemp -2.13 0.22 ≤0.001 

Linear*MedTemp -1.27 0.22 ≤0.001 

Quadratic*LowTemp 0.14 0.17 0.70 

Quadratic*MedTemp -0.08 0.17 0.82 

Appendix S2. E_a Stats Table 

 Estimate SD P-value  

Linear term 1.61 0.15 ≤0.001 

Quadratic term -0.12 0.13 0.62 

Low Temp -6.07 0.27 ≤0.001 

Med Temp -3.06 0.27 ≤0.001 

Linear:LowTemp -2.03 0.21 ≤0.001 

Linear:MedTemp -1.20 0.21 ≤0.001 

Quadratic:LowTemp -0.22 0.18 0.53 

Quadratic:MedTemp -0.34 0.18 0.33 
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Appendix S3. CT_min Stats Table 

 Estimate SD P-value  

Linear term 0.44 0.18 0.02 

Quadratic term -0.12 0.13 0.66 

Low Temp -6.15 0.32 ≤0.001 

Med Temp -3.21 0.32 ≤0.001 

Linear*LowTemp -1.19 0.26 ≤0.001 

Linear*MedTemp -0.88 0.26 ≤0.001 

Quadratic*LowTemp -0.04 0.19 0.90 

Quadratic*MedTemp -0.06 0.19 0.89 

 

Appendix S4. T_opt Stats Table 

 Estimate SD P-value 

Linear term -0.32 0.20 0.11 

Quadratic term -2.10 0.21 ≤0.001 

Low Temp -7.43 0.40 ≤0.001 

Med Temp -3.95 0.40 ≤0.001 

Linear*LowTemp 0.01 0.28 0.98 

Linear*MedTemp -0.23 0.28 0.42 

Quadratic*LowTemp 2.52 0.30 ≤0.001 

Quadratic*MedTemp 1.42 0.30 0.02 
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Appendix S5. Genotype Table 

Name Original 
Provenance 

Provenance Stock ID Mutations 

20395-1 Lake Warren in 
Alstead, NH, lat. 
43 07.310, long. -
72 17.840 

Cornell Tetrahymena 
Stock Center 

SD01557 NA 

SB3539-I  Cornell Tetrahymena 
Stock Center 

SD00660 chx1[C3]-
1/chx1[C3]-1 
(CHX1[C3]; cy-s, 
I), 
 
C3 strain - 
functional 
heterokaryon 
carrying 
cycloheximide 
resistance in 
micronucleus. 

B*VII  Cornell Tetrahymena 
Stock Center 

SD00023 B strain star line. 
Lacks a genetically 
functional 
micronucleus. 

B2192 III Frankel lab (Leslie 
Jenkins) 

Cornell Tetrahymena 
Stock Center 

SD01754 Derived from a 
cross of B2086 II x 
B2086 VIa. 
Isogenic with 
B2192 IVB 

CU428.2  Cornell Tetrahymena 
Stock Center 

SD00178 mpr1-1/mpr1-1 
(MPR1; mp-s, VII) 

DMCK72H Chalker Lab, 
Washington 
University in St. 
Louis 

   

19877 SG69-4 in Guys 
Mills, PA (lat. 41 
38.023, long. -79 
53.514, elevation 
1660 ft) 

Cornell Tetrahymena 
Stock Center 

SD01555 Cech's self-splicing 
intron is present. 
Cytochrome 
oxidase I haplotype 
= WPA1 

19617-1 FS136E in PA 
(latitude 41.46, 
longitude -78.88) 

Cornell Tetrahymena 
Stock Center 

SD03089  
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IMB6 (GFP) Chalker Lab, 
Washington 
University in St. 
Louis 

   

A*V  Cornell Tetrahymena 
Stock Center 

SD00014  Lacks a 
genetically 
functional 
micronucleus. 

20441-1 Gregg Lake in 
Antrim, NH (lat. 43 
02.605, long. -71 
59.383 

Cornell Tetrahymena 
Stock Center 

SD01560  

CU427-4  Cornell Tetrahymena 
Stock Center 

SD00715 chx1-1/chx1-1 
(CHX1; cy-s, VI) 

SB1518  Cornell Tetrahymena 
Stock Center 

SD01537 gal1-1/gal1-1; tyr-
14/tyr-14  

IA388  Cornell Tetrahymena 
Stock Center 

SD01454 elo1-1/elo1-1 
(elo1; II) 

21157-1  FS343S in PA 
(latitude 41.45, 
longitude -78.88) 

Cornell Tetrahymena 
Stock Center 

SD03114  

CU438-1  Cornell Tetrahymena 
Stock Center 

SD00189 pmr1-1/pmr1-1  

CU304  Cornell Tetrahymena 
Stock Center 

SD00051 CHX1/CHX1; 
chx2-1/chx2-1; 
mpr1-1/mpr1-1 

CU4106  Cornell Tetrahymena 
Stock Center 

SD01010 mpr1-1/mpr1-1 

AXS Chalker Lab, 
Washington 
University in St. 
Louis 

   

C*III  Cornell Tetrahymena 
Stock Center 

SD00024 C strain star line. 
Lacks a genetically 
functional 
micronucleus. 
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Appendix S6. Flow Cytometry Frequency Calculations 

 
 Each microcosm was censused with a Novocyte 2000R flow cytometer and analyzed using 

NovoExpress software v15.0. The flow cytometer detects  particles (e.g., cells, debris, bacteria) based on 

how they scatter light and fluoresce 1. Light scattering properties can be used to quantify cell size (FSC-

H), and we detected fluorescence in the Phycoerythrin (PE-H, yellow) and Fluorescein isothiocyanate 

(FITC-H) channels. We gated the data in NovoExpress to select for the largest particles which in our case 

were all  Tetrahymena thermophila cells. The data are plotted in Fig 8.1. We used a  PE-H versus FITC-H 

plot to parse the different fluorescent signals between the two experimental strains: CU4106 (which 

autofluoresces exclusively) and AXS (which autofluoresces and expresses Yellow Fluorescent Protein, or 

YFP). Control microcosms, which contained exclusively one of either strain for each temperature 

treatment, were used to determine the exact expected fluorescence range for each individual cell. An 

“AutoF” and “YFP” gate were created based on these controls (Figure 1). These control gating filters 

were then applied over each experimental microcosm, allowing us to identify cell strain based on their 

fluorescence pattern.  

 
Appendix S6 Figure 1. This plot shows an AXS control sample, where 65% of AXS individuals  
fluoresced in the autofluorescence gating range.  
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We used two CU4106 control microcosms and nine AXS control microcosms per temperature. 

Additional AXS controls were necessary to increase detection precision while gating. Non-YFP tagged 

cells (CU-4106)  fluoresced more weakly in the FITC-H channel than YFP-tagged cells (AXS) and 

generally fluoresced more strongly in the PE-H channel than non-YPF tagged cells fluorescence. CU4106 

controls were detected exclusively in the autofluorescent gate. However, AXS controls were detected in 

both the autofluorescent (“AutoF”) and YFP gates, meaning that we could expect AXS cells to show up 

in the AutoF gate under experimental conditions, thus making it harder to parse YFP-tagged from non-

YFP tagged cells.  

 To resolve that, we thus used the control microcosms to adjust the relative frequencies of each 

strain in each experimental microcosm, calculated as follows. For each single-strain control microcosm, 

we calculated the proportion of cells detected in each of the two gates across temperatures (Table X). We 

then used the proportion of AXS cells across control replicates to adjust the observed number of AXS 

cells (i.e., cells showing up on the YFP gate) to ensure our estimate was as accurate as possible. We then 

subtracted this adjusted count from the total number of individuals in each microcosm to generate our 

final adjusted experimental count of CU4106 individuals. See Appendix Table 10 below for pertinent 

data. 
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Appendix S7. Table of Frequency Calculations 

 temp rep AB +/- proportion CU4106 
count 

adjusted 
CU4106 count 

AXS 
coun
t 

adjusted 
AXS count 

total 

1 19 Sample1 NoAB 0.51421189 5 5.000000 0 0.000000 5 

2 19 Sample2 AB 0.01271186 71 71.000000 0 0.000000 71 

3 19 Sample2 NoAB 0.51421189 20 18.110553 2 3.889447 22 

4 19 Sample3 NoAB 0.51421189 37 34.165829 3 5.834171 40 

5 19 Sample4 AB 0.01271186 53 53.000000 0 0.000000 53 

6 19 Sample4 NoAB 0.51421189 17 17.000000 0 0.000000 17 

7 19 Sample6 AB 0.01271186 49 49.000000 0 0.000000 49 

8 19 Sample6 NoAB 0.51421189 9 8.055276 1 1.944724 10 

9 19 Sample7 AB 0.01271186 76 76.000000 0 0.000000 76 

10 19 Sample7 NoAB 0.51421189 32 32.000000 0 0.000000 32 

11 22 Sample1 AB 0.58564815 73 72.292490 1 1.707510 74 

12 22 Sample1 NoAB 0.40142857 105 99.035587 4 9.964413 109 

13 22 Sample2 AB 0.58564815 77 74.877470 3 5.122530 80 

14 22 Sample2 NoAB 0.40142857 34 11.633452 15 37.366548 49 

15 22 Sample3 AB 0.58564815 12 9.877470 3 5.122530 15 

16 22 Sample3 NoAB 0.40142857 37 32.526690 3 7.473310 40 

17 22 Sample4 AB 0.58564815 22 2.897233 27 46.102767 49 

18 22 Sample6 AB 0.58564815 13 12.292490 1 1.707510 14 

19 22 Sample6 NoAB 0.40142857 13 11.508897 1 2.491103 14 

20 22 Sample7 AB 0.58564815 7 6.292490 1 1.707510 8 

21 22 Sample7 NoAB 0.40142857 21 21.000000 0 0.000000 21 

22 25 Sample1 AB 0.27131609 162 33.084581 48 176.915419 210 

23 25 Sample1 NoAB 0.55903491 254 129.370065 158 282.629935 412 

24 25 Sample2 AB 0.27131609 358 113.597851 91 335.402149 449 
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25 25 Sample2 NoAB 0.55903491 179 73.301194 134 239.698806 313 

26 25 Sample3 AB 0.27131609 309 169.341629 52 191.658371 361 

27 25 Sample3 NoAB 0.55903491 192 104.443526 111 198.556474 303 

28 25 Sample4 AB 0.27131609 246 165.427863 30 110.572137 276 

29 25 Sample4 NoAB 0.55903491 261 212.094582 62 110.905418 323 

30 25 Sample5 AB 0.27131609 263 220.028194 16 58.971806 279 

31 25 Sample5 NoAB 0.55903491 180 169.745638 13 23.254362 193 

32 25 Sample6 AB 0.27131609 597 438.541464 59 217.458536 656 

33 25 Sample6 NoAB 0.55903491 193 127.529844 83 148.470156 276 

34 25 Sample7 AB 0.27131609 291 145.970153 54 199.029847 345 

35 25 Sample7 NoAB 0.55903491 184 137.460974 59 105.539026 243 

36 30 Sample1 AB 0.13819840 1445 902.470286 87 629.529714 1532 

37 30 Sample1 NoAB 0.44750154 263 235.838158 22 49.161842 285 

38 30 Sample2 AB 0.13819840 732 588.572604 23 166.427396 755 

39 30 Sample2 NoAB 0.44750154 244 202.022608 34 75.977392 278 

40 30 Sample3 AB 0.13819840 1566 1191.841576 60 434.158424 1626 

41 30 Sample3 NoAB 0.44750154 460 399.503170 49 109.496830 509 

42 30 Sample4 AB 0.13819840 848 93.447179 121 875.552821 969 

43 30 Sample4 NoAB 0.44750154 341 249.637440 74 165.362560 415 

44 30 Sample5 AB 0.13819840 328 128.448841 32 231.551159 360 

45 30 Sample5 NoAB 0.44750154 372 307.799282 52 116.200718 424 

46 30 Sample6 NoAB 0.44750154 354 287.330024 54 120.669976 408 

47 30 Sample7 AB 0.13819840 1908 1459.009892 72 520.990108 1980 

48 30 Sample7 NoAB 0.44750154 233 209.542045 19 42.457955 252 

49 32 Sample1 AB 0.21434368 536 169.459535 100 466.540465 636 

50 32 Sample1 NoAB 0.28314509 161 90.110769 28 98.889231 189 

51 32 Sample2 AB 0.21434368 580 492.030288 24 111.969712 604 
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52 32 Sample2 NoAB 0.28314509 215 171.960110 17 60.039890 232 

53 32 Sample3 AB 0.21434368 578 515.688121 17 79.311879 595 

54 32 Sample3 NoAB 0.28314509 252 219.087143 13 45.912857 265 

55 32 Sample4 AB 0.21434368 2101 1873.744911 62 289.255089 2163 

56 32 Sample4 NoAB 0.28314509 121 77.960110 17 60.039890 138 

57 32 Sample5 AB 0.21434368 550 201.786558 95 443.213442 645 

58 32 Sample5 NoAB 0.28314509 109 60.896593 19 67.103407 128 

59 32 Sample6 AB 0.21434368 473 418.018930 15 69.981070 488 

60 32 Sample6 NoAB 0.28314509 259 183.047253 30 105.952747 289 

61 32 Sample7 AB 0.21434368 2796 1890.645050 247 1152.35495
0 

3043 

62 32 Sample7 NoAB 0.28314509 201 157.960110 17 60.039890 218 

63 38 Sample2 AB 0.07118688 1135 273.862817 66 927.137183 1201 

64 38 Sample2 NoAB 0.07573333 795 380.056343 34 448.943657 829 

65 38 Sample3 AB 0.07118688 1051 385.575813 51 716.424187 1102 

66 38 Sample3 NoAB 0.07573333 1912 264.429596 135 1782.57040
4 

2047 

67 38 Sample4 AB 0.07118688 5506 3209.634179 176 2472.36582
1 

5682 

68 38 Sample4 NoAB 0.07573333 1146 718.852117 35 462.147883 1181 

69 38 Sample5 AB 0.07118688 537 484.809868 4 56.190132 541 

70 38 Sample5 NoAB 0.07573333 710 295.056343 34 448.943657 744 

71 38 Sample6 AB 0.07118688 1323 1179.477136 11 154.522864 1334 

72 38 Sample6 NoAB 0.07573333 1307 1111.732397 16 211.267603 1323 

73 38 Sample7 AB 0.07118688 1160 886.001805 21 294.998195 1181 

74 38 Sample7 NoAB 0.07573333 959 324.380289 52 686.619711 1011 
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Appendix S8. Alternative Experimental Conditions With and Without Antibiotics 

 
Fig Appendix S8: a) r-TPC for genotypes CU4106 and AXS. Inset: Measures of relative fitness 
for both CU4106 and AXS. This predicts an increase in AXS frequency relative to CU4106 at 
intermediate temperatures relative to low or high temperatures. b) Predicted genetic frequencies 
across temperatures. c) Observed genetic frequencies across temperatures with Paromomycin. d) 
As in c) but without Paromomycin.   
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Appendix S9. Differential Fluorescence Across Strains 

 
1st column: Differential Interference Contrast (DIC) microscopy for CU4016 and AXS protist  
Tetrahymena thermophila (CU4106 and AXS). Subsequent columns display raw fluorescence  
microscopy images. Photos are unimposed and uncorrected for relative fluorescence levels. 
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