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Abstract

Key points

Network control theory (NCT) is a simple and powerful tool for studying
how network topology informs and constrains the dynamics of a system.
Compared to other structure-function coupling approaches, the strength
of NCT lies inits capacity to predict the patterns of external control signals
that may alter the dynamics of a systemin a desired way. An interesting
development for NCT in the neuroscience field is its application to study
behavior and mental health symptoms. To date, NCT has been validated to
study different aspects of the human structural connectome. NCT outputs
canbe monitored throughout developmental stages to study the effects

of connectome topology on neural dynamics and, separately, to test the
coherence of empirical datasets with brain function and stimulation.

Here, we provide acomprehensive pipeline for applying NCT to structural
connectomes by following two procedures. The main procedure focuses on
computing the control energy associated with the transitions between specific
neural activity states. The second procedure focuses on computing average
controllability, which indexes nodes’ general capacity to control the dynamics
of the system. We provide recommendations for comparing NCT outputs
against null network models, and we further support this approach witha
Python-based software package called ‘network control theory for python’.
The procedures in this protocol are appropriate for users with abackground
innetwork neuroscience and experience in dynamical systems theory.

A full list of affiliations appears at the end of the paper. "< e-mail: linden.parkes@rutgers.edu

e We present a protocol on

how to model the dynamics of
neural connectivity states using
network control theory (NCT) via
a software package written in
Python to compute the control
energy associated with the
transitions between states and
the average controllability of the
network’s dynamics.

e NCT complements
biophysical models of
neuronal communication and
graph-theoretical measures
of internodal communication.
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Introduction

Network neuroscience is principally concerned with studying the connectome’, the
description of whole brain connectivity. The connectome is often encoded as a graph of
nodes interconnected by edges that can be defined across multiple scales, species and data
modalities®. In any case, this description of brain connectivity gives rise to complex topology,
including hubs, modules, small-worldness and core-periphery structure*, and understanding
how this topology shapes and constrains the brain’s rich repertoire of dynamicsis a central
goal of network neuroscience.

Network control theory (NCT) provides an approach to studying these dynamics and
yields insights into the relationship between patterns of neural dynamics and the topology of
the underlying structural connectome®®. The application of NCT has revolutionized both the
understanding and design of complex networks in contexts as diverse as space and terrestrial
exploration and modeling of financial markets, airline networks and fire-control systems.
Briefly, NCT assumes that inter-nodal communication follows a linear model of diffusion,
inwhich activity from one set of nodes (i.e., an initial state) spreads across the network over
time along a series of fronts*’. Then, upon this dynamical system, NCT models a set of external
control signals designed to guide the diffusing activity patterns toward a chosen target state.
This choice can be informed by a measurement of activity evoked by behavior, spontaneous
activity or the type of brain system. These control signals are found by minimizing the total
magnitude of their input over agiven time horizon; thatis, they are designed to achieve a
desired state transition with the lowest amount of control energy. Once modeled, these
control signals can be examined to determine to what extent, and how, they were constrained
by topology, thus allowing researchers to study how the connectome might be leveraged to
control dynamics.

Recently, we have developed and tested the application of NCT to brain network data
across multiple contexts, scales and definitions of connectivity'° 2. Here, we present a protocol
for applying NCT to two different structural connectomes: one defined using undirected
connectivity estimated in the human brain*?* and the other using directed connectivity
estimated in the mouse brain®?’. Briefly, we detail two common applications of NCT that we—as
well as other groups®>*—have deployed and that focus on (i) quantifying the amount of energy
thatis required to complete transitions between specific brain states (Fig. 1) and (ii) modeling
regional capacity to control unspecified state transitions (Fig. 2). The former approach is useful
for researchersinterested in testing whether dynamic state changes can be controlled and
induced across the network, while the latter is useful for researchers interested in analyzing
topographic maps of control. In addition, we provide recommendations for the visualization
of model outputs and discuss the use of null network models to examine which topological
features affect model outputs.

Development of the procedure
The methods that underlie NCT are based on the established fields of control theory and
dynamical systems theory. Dating back to at least the 19th century®, control theory is primarily
concerned with engineering perturbations to achieve desired behaviorsin the states of a
system, and specifically the evolution of such states over time. Hence, one of the most natural
ways to formulate theories of control is through differential and difference equations that
mathematically define the next state of a system given its current state. Acommon example
ofacontrol systemisaninverted pendulum on a cart: the system states are the positions and
velocities of the cart and pendulum, the differential equations are determined through the
governing Newtonian physics and the control task is to perturb the cart so that the cart and
pendulumend up inadesired state. For example, one might want to push the cart back and
forthin such away as to stabilize the pendulum so that it remains upright*.

From one perspective, the inverted pendulum is not unlike the brain, where the system
states are the activities of neural units (e.g., brainregions), the differential equations are
determined through the diffusion of activity through structural connections between those
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Fig.1|Modeling the control energy required to complete astate transition. NCT finds the control signals that, when
injected into a networked system, will guide simulated neural activity from aninitial state to a target state. Here, we show a
two-node toy network (x;, x,) that illustrates the difference between neural activity (solid orange lines) in the absence (a) and
presence (b) of a control signal (dashed blue line). a, Uncontrolled linear dynamics on a two-node network. Given an initial
state in whichx;=0.3 and x,=-0.2, as well as coupling between nodes encoded by A, uncontrolled neural activity unfolds as
shownontheleft. These dynamic trajectories can also be represented in two dimensions as a vector field as shown on the
right. Under this uncontrolled regime, the state of the system culminates inx; =-0.24 and x, = 0.06 at time T. b, Controlled
linear dynamics on a two-node network. By contrast, when we introduce a control signal to x,, the trajectory changes to now
culminateinx;=0.12and x,=0.39 at time 7. Thus, NCT has found the control signal that drove our system from our initial
state [x,=0.3,x,=-0.2] to our desired target state [x, = 0.12, x,=0.39]. ¢, NCT applied to the human connectome. The above
model can be extended to the scale of N brain regions that constitute a whole-brain connectome (left). In doing so, we can
model and examine the control signals required to transition the brain between various states of interest (right).

units and the control task is to perturb the brain to steer it to a desired state. Thereisarich
history of such modeling of the brain as a dynamical system using differential equations,
ranging from biophysical models of single neurons® to phenomenological®® and coarse-
grained® models of neural populations. In tandem, there is a very practical translational need
to understand how to control brain dynamics*° to compensate for abnormal dynamics that
may be present in neurological and neuropsychiatric disorders. For example, there is growing
interest in using neuroimaging to personalize non-invasive neurostimulation techniques, such
as transcranial magnetic stimulation, for depression*. NCT is well positioned to assist in these
endeavors and may provide insight into the propagating dynamics that these techniques elicit.
Despite the above, the analogy between the brain and an inverted pendulumis insufficient
for several reasons. First, the dimensionality and complexity of the brain cannot be reduced to
such simple models. Understanding how the topology of the structural connectome gives rise
to brain function s a difficult task that has motivated alarge body of work in the last two decades.
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Fig. 2| Average controllability: modeling the impulse response of the system from eachnode. NCT can be used to
probe regions’ general capacity to control dynamics. This is achieved by studying how the system responds to animpulse
delivered to each node. Here, we show a two-node toy network (x;, x,) coupled by A. Upon this network, we demonstrate
how neural activity (solid orange lines) unfolds when an impulse (dashed blue line) is delivered to x; (a) and x, (b).

a, Animpulse is delivered to x; that sets the initial state of the system to [x; = 0.4, x,=0]. b, Animpulse is delivered to x,
that sets the initial state of the system to [x; = 0, x,=-0.4]. In each case, theimpulse response of the system is quantified
as the area under the squared curves of the two orange traces. Intuitively, this measurement corresponds to the amount
of activity propagated throughout the system over time. We refer to this measure as the average controllability. Thus, for
agiventime horizon (7), aregion with higher average controllability is better able to broadcast animpulse. ¢, Impulse
response modeled for the human connectome. The above model can be extended to the scale of N brain regions that
constitute awhole-brain connectome. In doing so, we can compare each region’s capacity to broadcast animpulse across
the whole brain.

This research has revealed that structure-function coupling is not one to one; instead it

varies spatially across the cortex***®and is stronger when indirect structural pathways are
accounted for under multiple models of network communication**%, Second is the distributed
nature of brain states for human function. Although some brain regions may be thought of

as supporting specific functions (e.g., the fusiform face area), carrying out complex human
functions typically requires the recruitment of a network of brain regions to a distributed brain
state®. Finally, biology imposes relatively tight operating constraints. To support complex
human functions, the brain needs to optimize for efficient signaling while balancing the need
to minimize wiring cost within the spatial constraints of the cranial cavity. Hence, there is aneed
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to express the unique complexities and constraints of controlling brain structure-function
coupling in the quantitative formalism of dynamics and control.

NCT emerges as a flexible framework to address this need that is methodologically
based in optimal control theory*® and can accommodate a wide range of theoretical and
experimental hypotheses and constraints about structure-function coupling through a
consistent mathematical framework?**"**, Because NCT posits a model of neural dynamics at
thelevel of individual neural interactions, it allows us to probe the role of the complex structural
connectome on brain function at the level of those interactions'**>**. Inaddition, because NCT
parameterizes which regions to control and how, as well as the precise patterns of initial and
target neural activity, it can answer questions ranging from the importance of a single region
for propagating activity'® to the cost of transitioning between specific brain states". Hence, the
development of NCT has largely served to provide a simple, first-order biophysical model with
the flexibility and power to study more advanced hypotheses of brain function.

The modeling framework of NCT comprises Nnodes (e.g., neurons or brain regions) and
minputs and stipulates that the state of each node, x,(t), evolves in time as aweighted sum of
thesstate of all upstream nodes, x;(t), and any inputs, u,,(t). If the evolution of the system can
be framed in terms of discrete states, in which the activity of upstream nodes determines the
state of downstream nodes at the next discrete point in time, then the model takes the form
of adifference equation:

X(t+1) = Ax(t) + Bu(t), 1)
where x(¢) = [x,(8), %), -+, x,(0)]" is the vector of neural states, 4 is the NxN connectome that
comprises Nnodes along the rows and columns interconnected by N? edges, u(t) = [u,(¢),
u,(0), ..., u, (O] is the vector of independent control signals and Bis the Nxm matrix that
quantifies how eachinput affects the nodes. Ifinstead the evolution of the system can be
framed in terms of rates, in which the activity of upstream nodes affects the continuous rate
at which the state of downstream nodes change, then the model takes the form of the
differential equation:

d
X0 = Ax(©) + Bu(o). )

Although these two models appear similar because the right side of the equations
areidentical, their definition, properties and behavior differ substantially. In turn, the
interpretation of the model parameters and outputs can vary dramatically between them.

We discuss several implications of this difference in Experimental design.

Inthe Procedure, we discuss two common operationalizations of NCT that can be
derived from either of these models. The first (Procedure 1) uses a time-varying perturbation,
u(t), todrive the neural activity, x(¢), from aninitial state, x,, to a target state, x; givena
balance of constraints on the magnitude of both the neural states and the perturbations.

The magnitude of these perturbations is summarized as the control energy, which we
interpret as the amount of effort that the model system must exert to complete a given state
transition. The second (Procedure 2) is average controllability, which is the magnitude of the
neural activity, x(¢), in response to an impulse stimulus delivered to a single node; anode with
higher average controllability is better able to leverage graph topology to spread animpulse
throughout the system. Note that average controllability is only one example of a node-level
NCT metric that falls within the broader category of controllability statistics. This category
encompasses NCT outputs that describe different ways in which the nodes of the system may
control its dynamics. Although we have used other controllability statistics in our previous
work (e.g., modal controllability; see Understanding the influence of topology below), we
focus on average controllability in this protocol because of its simple intuitive nature and
broad appeal.

We focus on these two operationalizations, control energy and average controllability,
because they encompass two common sets of questions about the brain. The first set of
questions stems from advances in neuroimaging that allow us to empirically measure neural

Nature Protocols



Protocol

states via functional MRI (FMRI), electrophysiology and calcium imaging>*. Given these
state-level empirical data, a natural question is “how does the brain reach or switch between
these states using regimens of internal or external control?” Optimal control theory provides
apowerful and flexible set of tools to explore these questions under various constraints and

at different spatiotemporal scales. For example, in human neuroimaging, it iscommon to
study different brain activity states and their relation to cognitive function. By leveraging
control energy, NCT enables researchers to study how the topology of the brain’s underlying
structural connectivity enablesit to transition between activity states that are relevant to

(i) different cognitive functions® or (ii) different conditions within a single cognitive domain®.
The second set of questions stems from empirical evidence demonstrating that individual and
groups of brainregions (i) may be important for enabling specific functions, such as visual
processing®, motor processing*” and cognition®**’; (ii) may be important for supporting critical
functional processes in the brain, such as segregation and integration®®®; and (iii) may be
disproportionately affected by disease processes®***. Given these data, a natural question to
askis “what is the contribution of these sets of regions to the control of brain activity?” Average
controllability measures the magnitude of propagation of stimulation along neural tracts. In
turn, average controllability provides a coarse-grained understanding of individual regions’
control over brain activity, insofar as it probes their general importance to guiding diverse
ensembles of state transitions. This general nature stands in contrast to control energy, which
requires that specific state transitions be defined a priori.

Applications

The analysis of brain data using a network representation is increasingly popular in
neuroscience, and researchers have used awide range of connectomic data to perform NCT
analysis. For example, the availability of multimodal neuroimaging datain large cohorts
accompanied by clinical and cognitive data®?***%¢, as well as indices of neurobiology not
measurableinvivo (e.g., high-resolution histology® and gene expression®®), enable researchers
to validate NCT against brain function and biology, as well as examine differences between
individuals. Indeed, we have applied NCT in our research with a view toward achieving these
goals. Here, we briefly review selections of this work to show how our protocol may be applied to
study the brain. Specifically, we discuss how model outputs from NCT link to network topology;
explain differences between individuals in mental health symptoms, cognition and age; predict
the effects of neurostimulation; explain switching between functional task states; and link to
neuroanatomy. Note that unless otherwise specified, all the specific studies described below
used NCT to examine the structural connectome.

Understanding the influence of topology

Inour early work, we began by contextualizing nodal controllability statistics against what

we know about connectome topology from graph theory. Specifically, Gu et al.'° examined
how nodal control properties—specifically average controllability and modal controllability—
correlated with nodes’ strength (the sum of anode’s edge weights). Gu et al.”° found that nodes’
strength correlated strongly positively and negatively with average and modal controllability,
respectively. These relationships were conserved across both humans and macaques.
Collectively, these results indicate that anode’s local topological importance predictsits
capacity to control the dynamics of a system.

We have also examined how connectome topology influences the control energy associated
with specific state transitions. Betzel et al.** found that nodes’ topological importance predicted
their capacity to facilitate transitions between eight canonical brain states (seven resting-state
cortical networks as well as a subcortical network®®). Specifically, Betzel et al. found that target
states that intersected with the brain’s rich club®, a set of highly interconnected nodes that
form the connectome’s core, exhibited low transition energy. This result demonstrates that the
rich clubis well positioned in the network to act as an efficient target state to which a diverse
set of initial states can transition with low control energy. Thus, the topology of the human
connectome may be optimized to guide dynamics toward the rich club, bolstering the idea that
these nodes support functional integration®®”°7”",
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Given these advances in understanding how connectome topology contributes to
control, we subsequently analyzed what the underlying control equations could tell us about
network topology. Starting from the NCT equations, Kim et al.” derived the features of
network architecture that were the most important for determining control energy. Kim et al.*
discovered that astrong and diverse set of connections from stimulated nodes to unstimulated
nodes were the leading-order contributors to the control cost. Using this discovery, the authors
reduced the cost of controlling connectomes in Drosophila, mice and humans by virtually
resecting edges and developed a method to meaningfully compare the control cost between
different species and connectomes. These results provide simple and quantitative knowledge
about the most important features of topology according to NCT.

Individual differences
Although the strong correlation between average controllability and strength reported by
Gu et al.' may seem to imply redundancy between nodal controllability statistics and measures
from graph theory incorporating weighted degree, we note that this correlation was spatial
(i.e.,across the brain) rather than between subjects. In subsequent work examining individual
differences, Parkes et al.” compared the capacity of average controllability and strength
to predict psychosis spectrum symptoms using out-of-sample testing. Parkes et al.” found
that average controllability significantly outperformed strength in this predictive task and
demonstrated that thisimproved performance was concentrated in higher-order default
mode cortex’’. These results show that although high average controllability may depend
upon high strength, there exists unique inter-individual variation between the metrics and
that this variance in average controllability couples more tightly to mental health symptoms.
Furthermore, these results support the use of NCT in population-based predictive modeling
studies.

We have also shown that average controllability exhibits robust developmental and sex
effects. Average controllability increases between the ages of 8 and 22 years'? and is higher
in femalesin the cortex but higher in males in the subcortex'. Furthermore, Tang et al.”?
showed that age effects were strongest in nodes with higher controllability, underscoring
the developmental importance of nodes that are well positioned in the network to control
dynamics. When examining control energy, Cui et al.”” demonstrated that the amount of energy
required to activate the fronto-parietal system, a brain network thought to support executive
function™, was negatively correlated with both age and executive function in the same sample.
This result suggests that the developmental emergence of executive function is associated
withincreased efficiency of neural signaling within the human connectome.

Predicting stimulation effects
Anapplication of NCT that has clear translational impact is modeling the relationship between
brain structure and function. To this end, we have examined whether NCT can predict the
brain’s functional response to neurostimulation from its structural connectome. For example,
in patients with epilepsy, Stiso et al."* found that NCT was able to predict electrophysiological
neuronal responses (measured with electrocorticography) after direct electrical stimulation.
This result shows that our model, wherein neural activity is simulated upon the structural
connectome, explains variance in experimentally manipulated empirical changes in brain state.
We have also examined NCT in the context of noninvasive neurostimulation techniques.Ina
pair of studies, Medaglia et al.'>" delivered transcranial magnetic stimulation to the left inferior
frontal gyrus between repeated sessions of a set of language tasks. Across both studies, the
authors found that NCT metrics extracted from the left inferior frontal gyrus explained variance
in changes to task performance before and after transcranial magnetic stimulation. These
results demonstrate that NCT can be used to probe the network mechanisms that underpin
how neurostimulation elicits changes in behavior.

Modeling switches between functional brain states
Inaddition to predicting the effects of neurostimulation, NCT can be used to investigate how
the topology of the structural connectome supports transitions between empirically observed
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functional brain states. Our group has studied this process using brain states derived from
fMRI. Cornblath et al.”° clustered resting-state fMRI (rs-fMRI) into brain states representing
instantaneous co-activations among canonical brain networks and used NCT to model the
energy required to transition between those states. Using a series of null network models,
Cornblath et al.?° found that the topology of the structural connectome was wired to support
efficient switching between brain states. This result demonstrates that the topology of the
connectome is optimized to support dynamic fluctuations in resting-state activity.
Subsequent work by Braun et al.”> examined transitions between brain states elicited by
aworking memory task. Braun et al.>> found that transitioning from a 0-back brain state to
the more cognitively demanding 2-back brain state required more energy than the reverse
transition, demonstrating an asymmetry in control energy. Braun et al.”* also found that this
energy asymmetry was more pronounced in patients with schizophrenia than in healthy control
subjects. Thus, while connectome topology may be set up to enable low-cost fluctuationsin
resting state?’, activating cognitively demanding brain states may require more control effort.
Furthermore, thisincreased control effort appears to scale with within-task differencesin
cognitive demand and is further elevated in psychopathology.

Biologically informed NCT

Neuroscience is increasingly moving toward a multi-scale approach that seeks to understand
how features of the brain observed at one scale link to properties observed at another, and
vice versa®” % Recently, we have applied this multi-scale approach to NCT by examining
how dynamics within the model are influenced by variations to regions’ cellular composition.
Specifically, we examined how regions’ profiles of cytoarchitecture affected the energy
associated with state transitions that spanned the cortical hierarchy* (i.e., the sensory-fugal
axis®*). We found that state transitions traversing bottom up along the cortical hierarchy of
cytoarchitecture required lower control energy to complete compared to their top-down
counterparts, and we observed that nodes’ position along this hierarchy predicted their
importance in facilitating these transitions. This result shows that spatial variationsin cortical
microstructure constrain macroscopic connectome topology; this effect is consistent with
work from neuroanatomy that describes a precise relationship between regions’ profiles of
cytoarchitecture and their extrinsic connectivity®.

Inrecent work from outside our group, Luppi et al.>* characterized how the control energy
associated with alarge set of activity maps derived from NeuroSynth® related to cognition. In
addition, the authors examined how these transition energies varied when they used abroad
range of neurotransmitter density maps to modify the control weights. This work ties together
switching between functional brain states and biologically informed connectome analysis to
provide the field with a comprehensive ‘look-up table’ of how regions’ diverse biology affects
control energy.

Alternative methods

We consider NCT with respect to other models that also seek to understand how communication
unfolds within a structurally interconnected complex system. For neuroscientists, NCT
complements both more complex biophysical models of dynamics and graph-theoretical
measures of inter-nodal communication. Although both of these approaches model
communication, they differ in their biological plausibility and complexity. Biophysical models
aim to capture neuronal communication by distilling the various biophysical processes
necessary for functional activity into separate model parameters. These parameters are tuned
to simulate biologically plausible nonlinear dynamics within and between neurons at multiple
scales. For example, at the scale of single neurons, the Hodgkin-Huxley model is concerned with
modeling neuronal spiking activity®” and is based on parameterizing the flow of sodium and
potassiumions across the cell membrane. At the next scale up, mean-field models focus on the
collective activity patterns of co-located populations of neurons®***°. Coupling multiple mean-
field models together—where each model represents distinct neuronal populations—enables
researchers to study how nonlinear dynamics emerge from brain structure at the macroscale®.
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Inturn, this approach gives rises to awide range of complex dynamical behaviors, including
synchronized oscillators®®, learning®®”, large-scale traveling brain waves® and structure-
function coupling® . Broadly, NCT trades biophysical accuracy and the complexity of specific
model behaviors for more power in designing and studying stimuli. For example, in lieu of
studying state transitions that emerge from different models of associative memory®® and
context integration®, NCT allows us to design specific stimuli to transition the model system

to states that are known to be important for memory and cognitive control under specific
constraints™.

By contrast, graph-theoretic approaches instantiate relatively simple models of inter-nodal
communication that rely on assumptions such as shortest-path routing, spatial proximity,
random walks and diffusion processes*’. Although these assumptions are an oversimplification
of brain dynamics and are thus less biologically plausible, their simplicity confers greater
analytic tractability and scalability, which are both desirable features when studying the human
brain. This benefit compounds when the goal of a given study is to examine inter-individual
differences, wherein dynamical models may be fit to thousands of participants. As such,
despite their relative simplicity, graph-theoretic approaches have deepened our insights
into large-scale brain organization®®****"°! improved our understanding of the link between
the brain and mental disorders®*'°>'°* and helped elucidate the link between structure and
funCti on43,47,48,1057107'

We consider NCT as situated between these two modeling approaches. As discussed in
Development of the procedure, NCT is essentially amodel of two parts, dynamics and control.
For the former component, NCT models dynamics according to a diffusion process; thus,
like graph theory, NCT makes simplifying assumptions of inter-nodal communication, which
confers the advantages of analytic tractability and scalability. However, the second component,
control, adds an additional layer of model parameterization that allows researchers to probe
how the system might behave under different contexts (e.g., in response to task manipulations,
cognitive control or neurostimulation protocols). This added flexibility brings NCT closer to
biophysical modeling, insofar as they both seek to understand how the dynamics of a system
respond to external perturbation. Indeed, we have shown that NCT can be used to predict
changes in the dynamics of coupled Wilson-Cowan oscillators after simulated stimulation'®,
suggesting that NCT can explain some of the behaviors engendered by nonlinear biophysical
models. We have also shown that the underlying diffusion modelis able to predict empirical
neural responses measured with fMRI and electroencephalography'®®, suggesting that NCT is
well positioned to explain the types of data that are typically acquired to study the human brain.

Limitations and ongoing development

NCT can flexibly accommodate many scientific questions and generate concise knowledge from
asimple model. However, NCT also has several limitations for the study of high-dimensional
complex systems, such as numerical stability of algorithms, validation against empirical data,
approximations of complex interactions and interpretation of model parameters.

Numerical stability of optimization

One limitation is the numerical stability of Procedure 1 under certain parameter conditions,
which arises fromill-conditioned matrices that are built while solving for the control signals.
This issue occurs most frequently when using arelatively small control set—a small min the
Nxm matrix B—to control a network with large N. It isintuitive that precisely controlling the initial
and target states of the whole brain from only a few nodes is difficult. In light of this limitation,
itis crucial that the researcher carefully study the generated trajectories of the neural activity
to ensure that the desired initial and target states are reached and that the numerical integrator
does not generate a warning of numerically ill-conditioned matrices (see the Troubleshooting
section). Inthe event that the control set must be small for the purposes of the research question,
one solution may be to extend the control set by heavily weighting the desired control nodes
and lightly weighting the remaining nodes™. Another option s to use Procedure 2 to study the
average controllability of the control set.
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Validation of NCT against empirical data

Asecond limitation is the validation of the model at the level of individual neural states.
Phrased another way: given a connectome, A, and stimulations u(t) delivered to brain regions
Bstarting at neural activations x(0), does experimentally measured neural activity agree with
the simulated trajectory x(t)? The challenges associated with addressing this sort of question
extend far beyond NCT and to a significant portion of systems and network neuroscience.
Microstate validation between neural structure and activity is most evident in small systems
of neural circuits'®’, but how to perform similar validations for large-scale systems such

as the human brain remains an open area of research. Challenges include (i) the multiple
possible scales of constructing brain networks>"°, (ii) differing measures of inter-areal
connectivity""?, (iii) multiple definitions of simulated neural activity®**"*" and (iv) the diverse
spatial and temporal resolutions at which we can record whole-brain activity®*. Along this
active area of research, we have demonstrated that linear models outperform nonlinear and
kernel-based models in both one-step prediction and model complexity for both fMRIand
electroencephalography data'®®, as well as correspondence between control energy and local
metabolism"®, We have also shown that NCT is able to explain variance in neuronal responses
recorded using electrocorticography data', but more work is needed to fully validate NCT
against empirical data.

Linear dynamics

Athird limitation is the assumption of linear dynamics, which enables the calculation of
powerful measures such as optimal control trajectories but hinders the biophysical realism
of the framework. More sophisticated nonlinear models capture complex dynamics from
individual neurons® to neural populations®, thereby enabling the study of fine-grained
experimental behavior'” and complex nonlinear phenomena'®, These models make

fewer simplifying assumptions to capture nonlinear behaviors of biological systems such
as complex memory landscapes™. Although prior work has shown that linear models
outperform several classes of nonlinear models in describing and predicting brain-wide
neural activity'*®, extensions of NCT to nonlinear systems will enable greater flexibility to
accommodate and explore the impact of nonlinear biophysical constraints. Although the
theory of nonlinear control is an active area of research'?’, there are immediate applications
of NCT to nonlinear systems and many exciting potential extensions of NCT to capture more
biophysical realism.

Broadly speaking, the linear dynamics assumed by NCT can be thought of as being valid for
anonlinear system within small deviations of an operating state’. Hence, the most immediate
application of NCT to nonlinear systems is to linearize the model about an operating point,
such as the upright position of an inverted pendulum'?. Along these lines, the nextimmediate
generalization to NCT is to linear time-varying systems*’, in which the model is linearized not
abouta point, but about atrajectory. Although methods to implement control for linearized and
time-varying systems are well established in the control community, a biophysically meaningful
implementation and interpretation of the parameters—namely A(t) and B(f)—remains an area of
active work'>%. Another approximation that is particularly relevant for high-dimensional neural
systems is at the limit of weakly coupled oscillators'***?*, whereby a high-dimensional system of
oscillators with weak interactions can be reduced to alow-dimensional phase-response curve,
allowing for the potential linearization of the system about phase-locked states.

Inaddition tolinearizing dynamics about points and trajectories, NCT can also meaningfully
be applied to nonlinear dynamical systems that can be made linear through a nonlinear change
of variables. One such example is by using finite-dimensional Koopman subspaces, which allow
for the recasting of nonlinear systems with single fixed points as higher-dimensional linear
systems'”, and closely related methods in dynamic mode decomposition'*. Furthermore,
advancesin nonlinear control enable us to probe important coarse-grained questions such as
the control set necessary to push nonlinear systems between attracting states'”’. Other control
strategies take advantage of the ability of nonlinear systems to access states that lie outside of
their linearization',
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Experimental design

The adjacency matrix

The goal of an NCT analysis, as it is conceptualized in this protocol, is to understand how the
topology of the structural connectome supports and constrains spreading dynamics and to
what extent those dynamics can be controlled. Thus, core to this analysis is the acquisition

of one or more structural connectomes from a model organism. For input to our protocol,

we represent a given connectome as an adjacency matrix, A. In A, the Nnodes of the system
arestored on the rows and columns, and the NxN edge values are stored in the entries (for
adiscussion of size limits for A, see Supplementary Information, Theoretical and practical
limitations on system size). Both the nodes and the edges of A can be defined in numerous
ways. For example, the nodes of the system may be defined as single neurons in organisms such
as Caenorhabditis elegans®'*° or as brain regions of varying size and definition in organisms
such as the mouse”, Drosophila®, macaque®”® and human®. The edges of A may be defined as
either the directed or undirected connectivity between nodes. In humans, we typically extract
structural connectomes from diffusion-weighted imaging (DWI) sequences obtained using
MRI. Tractography algorithms are applied to DWI scans to model the white matter pathways
intersecting pairs of brain regions, which are then used to populate connectome edges

with the number of those pathways (e.g., the streamline count)*. This example constitutes a
weighted undirected connectome upon which NCT can be conducted. Critically, our model
assumes that A;encodes the strength of diffusion of activity along the edge connecting node
jtonodei.Inother words, our model assumes that the columns of A store the source nodes
(i.e., projections from node,), while the rows store the target nodes (i.e., projections to node i).
Although this distinctionis irrelevant for undirected connectomes in which A;=A;, itis crucial
for directed connectomes, and researchers must ensure that their directed A matrix conforms
to the above assumptions. Relatedly, although A may be dense or sparse, special care must

be takenif Ais not one connected component (i.e., node i cannot reach every nodej through
apathofanylength). Disconnected components will not be able to influence each other, and
control signals cannot propagate between them, such that every disconnected component
must receive its own subset of inputs. Overall, NCT can be flexibly applied to directed and
undirected connectomes, dense and sparse connectomes and human and non-human
connectomes.

The best choice of connectome will depend upon researchers’ goals and available data.
Ifresearchers are primarily interested in studying a specific transition or set of transitions,
thenagroup-averaged connectome is preferable. In this case, a group-averaged connectome
will allow researchers to closely study how topology constrains their transitions of interest
while minimizing the sources of noise present in subject-specific connectomes (see below).
Furthermore, if the data are available, a directed structural connectome is preferable to an
undirected structural connectome, because the former will yield state transitions with greater
biological plausibility. On the other hand, if researchers are interested in studying individual
differences, then it will be necessary to use subject-specific connectomes. In this case, as with
other techniques, replication across multiple datasets is desirable to ensure generalizability
of findings. We focus on group-averaged structural connectomes in this protocol and provide
examples of applying NCT to both directed and undirected edge weights.

Given that connectomes are central to the application of NCT, any artefacts present in
the connectomes will be reflected in model outputs. For example, connectomes populated
by DWI estimates of connectivity are known to contain false positives and false negatives,
which may be partly mitigated by the use of thresholding techniques™"*. In-scanner head
motion is well known to spuriously affect these estimates of connectivity as well®>'*, Finally,
connectome reconstruction is affected by acquisition parameters™* and benefits from
parameters that resultin higher signal-to-noise ratio and angular resolution. Thus, the accurate
generation and rigorous quality control of connectomes are both crucial considerations for
experimental design. For human connectomes, we recommend that researchers consult
the extant literature on the acquisition, processing and quality control of DWIscans'"*13¢
(seealso https://qsiprep.readthedocs.io/).
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Another consideration for connectome estimation is the brain parcellation used to define
system nodes. If, as mentioned above, structural connectivity is determined by streamline
count, then variations in the size of regions across the parcellation will bias connectome
edge weights; larger brain regions will intersect with more white matter pathways and thus
show higher connectivity to the remaining regions. As with any analysis of graph topology,
this bias will affect the outputs of NCT; for example, larger regions may show higher average
controllability just by virtue of being more directly connected to the system. It is for this reason
that we recommend that researchers reproduce their results using several different parcellation
definitions and resolutions. Doing so ensures that their results are not driven by a specific
parcellation choice.

Defining a time system

Once an adjacency matrix (A) has been defined, the next decision is whether to model the
linear dynamical system in discrete or continuous time. As discussed in Development of the
procedure, in adiscrete-time system, the states of the system, x(¢), evolve forward in time
according to a set of discrete steps (x(¢) — x(t + 1)). Ina continuous-time system, the states of the
system are continuously changing in time (x(¢) — x(¢) + X(¢) dt). The choice of time system will
depend upon the research question and affects all subsequent analyses because of differences
in the mathematical implementation of NCT under each system. We refer the reader to

Karrer et al.?, Kim and Bassett’, Hespanha®® and other texts in linear systems theory for
extended discussion.

One guiding principle for choosing a time system can be seen in the following simple
example. Consider al1D discrete-time system x(¢ + 1) = —x(¢) starting at an initial condition of
x(0) =1.This system evolves by jumping between 1and -1 without visiting any intermediate
value. By contrast, the state of a continuous-time system can transition between1and -1 only
by smoothly visiting all values in between. The former process is reminiscent of ‘all-or-nothing’
phenomena such as neuron spiking, whereas the latter process is closer to population-level
average activity in macroscopic connectomes. As such, when studying the macroscopic human
connectome, we generally recommend the use of continuous-time systems. Note that one
seemingly reasonable justification for using a discrete-time system would be to model fMRI
activity, whichis sampled at discrete time intervals on the order of ~1s. However, care must be
taken with this line of reasoning because the discretization of alinear continuous-time system
atsome sampling interval At produces an equivalent discrete-time system matrix with
non-negative eigenvalues through the conversion Agiseree = econtinuous®?, This conversion
exponentiates all eigenvalues such that they are non-negative. As such, using an adjacency
matrix with negative eigenvalues in a discrete-time system cannot truly be seen as a discrete
sampling of alinear time-invariant continuous-time system. In general, we recommend
continuous-time systems as the default choice. If researchers choose to use discrete-time
systems, then we suggest that they replicate their primary results using continuous-time
systems.

Normalizing the adjacency matrix
Once atime systemis chosen, A needs to be normalized before analysis. If a discrete-time system
is chosen, we normalize A according to the following equation:

Anorm = ;
A (A ax +€

Here, |A(A)|,..x denotes the largest absolute eigenvalue of the system. In addition, cisa
user-defined input parameter that determines the rate of decay of system dynamics. Wesetc=1
by default, which ensures that all modes of the system decay and thus that activity goes to zero
over time (note that this is true of any positive c value). This normalization ensures that internal
dynamics decay in amanner that is necessary for the stabilization of the system. Specifically,
thelargest absolute value of a matrix’s eigenvalues is called the ‘spectral radius’, and this
normalization ensures that the spectral radius is <1: a condition known as Schur stability.
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Intuitively, a discrete-time system given by Eq.1withnoinput (i.e., u(t) = 0) will evolve as
x(n) = A"x(0), and the most unstable eigenmode of the system will evolve as A (A)’,;ax. To ensure
that this mode does not grow infinitely with n, it must have a magnitude <1.

Ifa continuous-time system is chosen, we normalize A according to the following equation:

A
Anorm = ————— — 1.
norm |/1(A)|max P

Here, /denotes the identity matrix of size NxN. As above, we normalize such that the
spectral radius is <1, but we take the additional step of subtracting the identity. This step exists
because a continuous-time system given by Eq. 2 with no input will evolve as x(¢) = A4x(0), and
the eigenmodes of the system will evolve as !¢, Hence, for the system to decay, all A, must have
anegative real component, whichis achieved through the subtraction of /.

Apart from the above approaches, there are alternatives to normalizing A. One could divide
different edges of A by different amounts instead of uniformly by |1 (4)| .. + c. One could also
subtract the diagonals of A by some other matrix besides the identity (for continuous-time
systems). If there exists sufficient empirical evidence to use more specific normalization
parameters, then they may be used. For example, the timescales of regions’ neuronal dynamics
are known to vary across the brain*’*°, and this variance could be incorporated into
normalization by subtracting non-uniform values from the diagonal of A. In this case, for a
continuous-time system, subtracting larger values from the diagonal of A will yield dynamics
that decay more quickly, akin to relatively fast neuronal dynamics. What we present here
isasimple method for stabilizing A in the absence of additional empirical constraints. Key
properties that are preserved after our normalization approach are (i) the rank ordering of the
eigenvalues of A and (ii) the eigenspaces (eigenvectors) of those modes; this preservationis a
direct result of uniform normalization by ascalar (1 (4)|max + ¢) and subtraction of the identity
matrix. Thus, this minimal normalization approach preserves the necessary properties to run
NCT analysis while also maintaining comparability between studies.

Defining brain states

Beyond the core requirement of a connectome, the flexibility of NCT makes it applicable to a
broad range of experimental designs (see Applications); the most critical component is that
researchers have hypotheses that pertain to studying the control of brain dynamics. However, in
the case of Procedure1(control energy), in which researchers will study the control signals, u(¢),
there are some additional considerations. Specifically, to analyze state transitions, researchers
need to provide a pair of brain states relevant to their hypotheses. Providing these states

allows NCT to find the control signals, u(t), that are required to transition between them and

to summarize those control signals as control energy.

Brain states can be defined in a number of ways. The simplest approachis to define each
brainstate as a binary vector, in which nodes that are within a given state are assigned an
arbitrary constant value (e.g., 1), and any remaining nodes are assigned a value of 0. In this
setup, NCT is tasked with transitioning the brain between actuating different sets of nodes to
aconstant arbitrary level of neural activity. An alternative approach is to allow brain states to
represent a variable pattern of activity. As mentioned above, Cornblath et al.”” modeled the
energy required to transition between brain states derived from clustering of fMRI data, while
Braun et al.” used task-activation maps extracted from an fMRI contrast. These approaches
allowed the authors to generate state vectors that encode non-zero activity across all nodes of
the system. The choice to study binary or non-binary brain states depends on researchers’ goals
and available data. For example, using non-binary brain states confers the advantage of studying
empirical neural activity, which may lead to more biologically plausible state transitions.

By contrast, binary brain states are typically more easily defined because they do not depend
onthe presence of functional data. In addition, binary states confer the advantage of studying
more focused transitions on the connectome because they involve guiding activity from one
focal point on the network to another, simulating system-to-system communication. Thus,
generally, if researchers wish to maximize the biological plausibility of their state transitions,
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then we recommend that they use non-binary brain states derived from empirical neural data
(e.g., fMRI). If instead researchers wish to study transitions from one specific point on the
network to another (e.g., between canonical brain systems® or between specific node types®),
then we argue that binary brain states are the better choice. In either case, if researchers choose
to study subject-specific states (which is possible for both binary and non-binary states), then
they must take particular care to ensure that their results are not confounded by issues of state
definition (see below). In this protocol, we illustrate examples using both binary (see Procedure 1)
and non-binary (see Supplementary Information, Variations to Procedure 1) brain states, both
defined at the group level.

Differencesin brain states’ magnitude will affect control energy, potentially necessitating
the normalization of state magnitude. For example, if researchers are examining transitions
between patterns of brain activity (e.g., using functional data as inrefs. 20,55), then differences
between states’ mean activity will affect control energy; assuming acommon initial state, target
states with higher activity will require more energy to transition to compared to target states
with lower activity. This effect generalizes to binary brain states as well. In this case, differences
instatesize (i.e., the number of regions in each state) constitute differences in state magnitude;
transitioning to larger target states will require more energy. If there are differences in state
magnitude, we recommend normalizing states before computing control energy (see Step 3in
Procedure1). Note that the need for this normalization will depend upon researchers’ analyses.
For example, if researchers are studying individual differences in the energy associated with
asingle transition, then normalization may not be necessary as long as state definition is
consistent across subjects. What s critical is that researchers consider what comparisons they
want to make and whether variations in state definition would confound those comparisons.

Defining a control set

Inadditionto brain states, for Procedure 1, researchers also need to designate a control set; these
are the nodes that NCT will use to complete state transitions. As discussed in Development of the
procedure, the Nxm control set defines the extent to which the nodes of the system can affect
changesinits dynamics. In turn, the definition of B determines the dimensions of u(t); the greater
the number of control nodes, the more independent control signals will be generated. In our work,
we have often deployed a uniform full control set, which means that all of the nodes of the system
are designated as controllers (full), and all are given equivalent control over dynamics (uniform).
Inthis case, m=N.Intuitively, this approach assumes that the entire brain is being controlled—
either internally or externally—when completing a state transition. However, dependingon a
researcher’s hypotheses, this assumption may not be appropriate. Instead, researchers may
want to define only a subset of nodes as controllers (e.g., refs. 52,53) or assign variable weights to
control nodes (e.g., refs. 22,32-34), or both. Note that assigning variable control weights serves
to give some nodes more control over system dynamics than others. In any case, it is critical that
researchers check whether their designated control set was able to complete the associated state
transition (see Procedure 1, Step 5); successful completion of a state transition is not guaranteed
inthe model, and completionis less likely when transitions are driven by a small control set.

Expertise needed toimplement the protocol
We provide open-source and broadly accessible tools that implement optimal control and
average controllability in a Python-based software package called ‘network control theory for
python’ (nctpy). In nctpy, we provide a flexible implementation that enables researchers to make
model assumptions that best fit their research question. As aresult, while a full understanding
of linear systems and optimal control theory are not required, the researcher must have enough
expertise to make key modeling decisions that best represent the data (see above).

Thefirst piece of expertise needed is to understand the differences between (and
implications of) discrete-time systems and continuous-time systems. As discussed above,
this difference is not merely a conceptual one, because discrete-time systems display a
fundamentally different set of behaviors than continuous-time systems. That is, a discrete-time
system is not simply atemporally coarse-grained version of a continuous-time system. Instead,
each system exhibits different dynamics.
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Fig.3|Schematic representation of the NCT protocol. Our protocol is splitinto
two procedures. Primarily, our protocol focuses on modeling the control energy
associated with user-defined control tasks. We refer to this part of our protocol as
Procedurel(a-c).Procedure1will be of interest to researchers who seek to study
specific state transitions. We also outline a brief protocol for estimating nodes’
average controllability. We refer to this part of our protocol as Procedure 2 (d).
Procedure 2 will be of interest to researchers who want to examine nodes’ general
capacity to control system dynamics. a, Inputs required for Procedure 1. To
compute control energy, researchers must provide a structural connectome (A),
aninitial state (x,) and a target state (x) and must also define a control set (B).

b, Model outputs from Procedure 1. Given these inputs, our protocol will output
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the state trajectory (neural activity, x(¢)) and the control signals (u(t)). Once
inspected, the control signals can be integrated over time to obtain node-level
energy (e), whichin turn can be summed over nodes to get the control energy
(E). c, Variations to Procedure 1. Procedure 1 can handle a diverse range of inputs,
including but not limited to undirected and directed connectomes (left), binary
and non-binary brain states (middle) and control sets with uniform or variable
weights (right). d, Procedure 2: average controllability. Procedure 2 requires only
astructural connectome (A) as input and will return the average controllability
of each node. This metric quantifies the impulse response of the system from
agiven node. Higher average controllability indicates that anode is better
positioned in the network to propagate dynamics.

The second piece of expertise needed is to understand the nature of Procedure 1 (control
energy) and Procedure 2 (average controllability) to interpret the outputs. Procedure 1solves
anoptimization problem. Specifically, we first provide amodel of the dynamics (i.e., A4, B),
theinitial and target states and some optimization parameters. Then, we solve for the control
signals, u(¢), that minimize the cost. Hence, all interpretations of u(¢) should be made with
the understanding that they were determined by the user-defined optimization parameters.
Procedure 2 does not solve an optimization problem and thus does not receive any optimization
parameters. Rather, it measures the magnitude of the neural states over time as aresult of an
impulse stimulation. Because Procedure 1and Procedure 2 use the same dynamics but output
different quantities through different means, more expertise in linear systems and optimal
controlis needed to meaningfully compare and contrast the two pathways.

Overview of the procedure

As discussed above, we split our protocolinto two procedures (Fig. 3). The primary procedure of
our protocol focuses on computing control energy (Procedure 1). This procedure isillustrated
inFig. 3a-c. Briefly, Fig. 3a outlines the inputs required to run Procedure 1, Fig. 3b outlines

the corresponding model outputs and Fig. 3c outlines some of the variations to model inputs
that we have discussed thus far. Note that example implementations of all these variations

are presented in the Supplementary Information (see Variations to Procedure 1). The second
procedure focuses on computing nodes’ average controllability (Procedure 2; Fig. 3d). Both

of these procedures are underpinned by the same set of core steps, which are (i) defining a
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time system and (ii) normalizing the adjacency matrix. After these core steps, the protocol
bifurcates, and most of the subsequent steps focus on computing control energy. Broadly,
computing control energy requires (i) defining a control task, (ii) computing control signals
and (iii) summarizing those control signals into control energy. By contrast, computing average
controllability is done ina single step after the two core steps.

Materials

Equipment
« Acomputer with Python (tested on version 3.9) and nctpy installed alongside its

dependencies. This protocol has been tested on Mac OS running on Intel Core i5/i7/i9
processors as well as on Apple Silicon. We have also tested this protocol on Linux Ubuntu
running on Intel processors. Random access memory (RAM) requirements will vary
depending onresearchers’ data and analyses, but we recommend =16 GB. Finally, we
recommend installing nctpy inside a virtual environment managed by Anaconda (https://
www.anaconda.com/). The following core dependencies are required to run nctpy:
- numpy (https://numpy.org/), tested on version1.24.3
- scipy (https://scipy.org/), tested on version 1.10.1
- tqdm (https://github.com/tqdm/tqdm), tested on version 4.65

Inaddition, there are some functionsinnctpy.plottingandnctpy.utilsthatrequire
the following:

- statsmodels (https://www.statsmodels.org/), tested on version 0.13.5

- matplotlib (https://matplotlib.org/), tested on version 3.7.1

- seaborn (https://seaborn.pydata.org/), tested on version 0.12.2

- nibabel (https://nipy.org/nibabel/), tested on version 5.1

- nilearn (https://nilearn.github.io/), tested on version 0.10.1

Finally, the following optional packages were used to run the analyses illustrated in this

protocols paper:

- (Optional) pandas (https:/pandas.pydata.org/), tested on version 1.5.3

- (Optional) scikit-learn (https://scikit-learn.org/), tested on version 1.2.2

See https://github.com/LindenParkesLab/nctpy for more details. Creating a Python
environment using Anaconda and installing the above dependencies should take <30 min.

Inputdata
« Adjacency matrix, A (required for Procedure 1and Procedure 2)
+ Brainstates, x,and x;(required for Procedure1)
« Controlset, B(required for Procedurel)

Example dataset

Here, we primarily used undirected structural connectomes derived from DWI performed on
the human brain. We obtained these connectomes from the Philadelphia Neurodevelopmental
Cohort (PNC)**?*, a community-based study of brain development in youths aged 8-22 years.
The neuroimaging sample of the PNC consists of 1,601 participants. From this original
sample, we retained 253 typically developing participants who had no medical co-morbidity
orradiological abnormalities and who were not taking psychoactive medications at the time
of assessment. In addition, these participants’ T1-weighted, DWI and rs-fMRI scans all passed
stringent quality control procedures™*'**2,

» Structural connectome reconstruction was performed using QSIprep 0.14.2", which is
based on Nipype 1.6.1'*, Connectomes were extracted using the 200-node variant of the
Schaefer parcellation'?, ordered according to seven canonical brain systems®. The strength of
inter-regional connectivity was summarized using the number of streamlines that intersected
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each pair of parcels. Connectomes were averaged over subjects. This group-averaged

connectome was thresholded by retaining the edges that were present in >60% of participants

connectomes™. This process resulted in a final connectome with 98% edge density.

+ rs-fMRIwas also obtained from the same 253 PNC participants®. These data were used
to generate empirical brain activity states to perform non-binary state transitions (see
Supplementary Information, Variations to Procedure 1). The eXtensible Connectivity
Pipeline'**"**was used to post-process the outputs of fMRIPrep version 20.2.3'*, The
eXtensible Connectivity Pipeline was built with Nipype 1.7.0'*. Processed rs-fMRI time
series were extracted from the same 200-node parcellation mentioned above™.

We also studied a directed structural connectome obtained from the Allen Mouse Brain
Connectivity Atlas®? (see Supplementary Information, Variations to Procedure 1).

» Whole-brainstructural connectomes were constructed with 2 x 10° voxels at a spatial
resolution of 100 pm (see refs. 25,27 for more details). Voxels were assigned to regions
(coarse structures) according to a 3-D Allen Mouse Brain Reference Atlas. Isocortex was
further divided into six systems (auditory, lateral, medial, prefrontal, somatomotor and
visual) on the basis of prior work that applied community detection to identify stable
modules®. Connection strengths were modeled for all source and target voxels by using
data from 428 anterograde tracing experiments in wild-type C57BL/6) mice”. Normalized

connection strengths were obtained by dividing the connection strengths by the source and
target region sizes. Here, we retained only the 43 isocortical regions. This process resulted

inafully connected directed structural connectome.

In all of the below code, we assume the existence of a Python environment with nctpy installed
alongsideits dependencies. First, we import all the functions we need to run our protocol:

# import

import os

import numpy as np

import pandas as pd

import scipy as sp

from scipy import stats

from scipy.spatial import distance

from sklearn.cluster import KMeans

from tgdm import tgdm

# import plotting libraries

import matplotlib.pyplot as plt

import seaborn as sns

from nilearn import datasets

from nilearn import plotting

# import nctpy functions

from nctpy.energies import integrate u, get control inputs
from nctpy.pipelines import ComputeControlEnergy,
ComputeOptimizedControlEnergy

from nctpy.metrics import ave control

from nctpy.utils import matrix normalization, convert states str2int,
normalize state, normalize_weights, get_null p, get_fdr p
from nctpy.plotting import roi to vtx, null plot, surface plot, add_
module lines

from null models.geomsurr import geomsurr

Note that depending on their goals, researchers may need only a subset of this import call.
Next, we load a structural connectome as our adjacency matrix:

# directory where data is stored
datadir = '/path/to/data’
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adjacency file = 'structural connectome.npy'

# load adjacency matrix

adjacency = np.load(os.path.join(datadir, adjacency file))
n nodes = adjacency.shape [0]

print (adjacency. shape)

(200, 200)

# check for self-connections

print (np.any (np.diag(adjacency) > 0))

True
# get density including self connections
density = np.count nonzero (np.triu(adjacency, k=0)) / (n nodes**2 / 2)

print (density)
0.9768

The above code demonstrates that our connectome comprises 200 nodes, includes
self-connections (i.e., A; > 0) and has an edge density of 98%. See Supplementary Fig. 1 for
control energy plotted as afunction of edge density.

Procedure1

Core ssteps
O TIMING <5s

1

Define a time system. Determine whether to model the linear dynamical system in discrete
or continuous time:

# determine time system. Note, delete the line below that is not needed.

system = "discrete"
# or
system = "continuous"

2. Normalizethe adjacency matrix. Once a time system has been determined, normalize the
adjacency matrix, A:
# normalize adjacency matrix
adjacency norm = matrix normalization(A=adjacency, system=system, c=1)
Irrespective of the chosen time system, the above step outputs adjacency norm, which
contains the structural connectome as a normalized adjacency matrix that is ready for NCT
analysis. See Supplementary Fig. 2 for control energy plotted as a function of ¢ (as well as
other user-defined input parameters outlined in subsequent sections), which demonstrates
that control energy remains stable with increasing c. In all of the code and results shown
below, adjacency normwas produced for a continuous-time system.

Define a control task

O TIMING <5s

3. Defineacontroltask. Define a control task that comprises aninitial state, x,, a target

state, x;, and a control set, B. Here, we illustrate an example control task that involves
transitioning between a pair of binary brain states controlled by a uniform full control set.
Ouradjacency normisorderedaccordingto seven canonical brain systems'®. We leverage
this grouping to define a state transition between the visual system and the default mode
network. To begin, we set up a vector, states, that stores integer values denoting to which
brain system each node belongs. Thatis, states == 0represents nodesthatbelongto
system],states == 1representsnodesthatbelongtosystem2,etc.
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(A)

(B)

©

(D)

Create states from a list of strings that groups nodes into the aforementioned
canonical brain systems (this file can be found here):

# load node-to-system mapping

system labels = list(

np.loadtxt (os.path.join(datadir, "pnc schaefer200 system labels.txt"),
dtype=str)

)

print (len(system labels))

200

print (system labels[:20])

['Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis',6 'Vis',
'Vis', 'Vis', 'Vis', 'Vis', 'SomMot', 'SomMot', 'SomMot', 'SomMot',
'SomMot ', 'SomMot']

Use convert states str2int to convert this list of strings:

# use list of system names to create states

states, state labels = convert states str2int (system labels)
print (type(state_labels), len(state labels), state labels)

<class 'list's 7 ['Cont', 'Default',6 'DorsAttn', 'Limbic',
'SalventAttn', 'SomMot', 'Vis']

print (type (states), states.shape, states)

<class 'numpy.ndarray's (200,) [6 6 6 6 6 6 6 6 6 6 6 6 6 6 55 5

555555555505

552222222222222444444 44444333333
0000O0OO0COOOOOO
0111111111111111111111111111¢6%6°¢6°F6F6
6 6 6 6 6 6 6 6 6 65

5555555555555 555552222222222222434
4 4 4 4 4 4 44433
3330000000000O0O0OO0ODO0ODO0ODO0OO01111111111111
111111]

—~
~

As can be seen from the above print commands, our system labels variable
comprises a string variable for every node in our system that denotes to which
brain system that node belongs. convert states_str2int takes thatlist of
strings and returns an array of integers, states, with a corresponding list of
labels, state labels.

Extract x, and x; by using the integers that correspond to the visual system
('vis')and the default mode system ('Default'):

# extract initial state

initial state = states == state labels.index('Vis')
# extract target state
target state = states == state labels.index('Default')

(i) initial stateandtarget_ state willbe Boolean vectors, wherein True
encodes the nodes that belong to a given state.
Normalize state magnitude:

# normalize state magnitude
initial state = normalize state(initial state)
target state = normalize state(target state)
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(i) Thisprocesswillconvertinitial stateandtarget statefromBoolean
entries to floating point numbers that have been normalized using the Euclidean
norm of the vector. This normalization constrains state magnitude to a unit
sphere (see Experimental design).

(E) Finally, define a control set. Unlike the initial and target states, the control set is
encoded along the diagonal of an NxN matrix, B. To define a uniform full control
set, use the identity matrix:

# specify a uniform full control set: all nodes are control nodes
# and all control nodes are assigned equal control weight
control set = np.eye(n nodes)

Compute control energy

@ TIMING ~1min

4. Computecontrolsignals and state trajectory. After the definition of a control task, the next step
is to find the control signals, u(t), that drive the system to transition between x, and x;. u(¢) will
be an mxTmatrix of mtime-varying signals injected into the control nodes over a specified
time horizon T. Here, because of our use of a full control set, m= N. Critically, injecting these
control signals into a system whose initial state is encoded by x, should resultin a system
whose final state is encoded by x;at time T. Alongside the control signals, we also extract the
state trajectory, x(t). The state trajectory, which will be an NxT matrix, is the time-varying
pattern of simulated neural activity that unfolds as the system traverses between x, and x;.
(A) Compute u(t) and x(¢):

# set parameters

time horizon = 1 # time horizon (T)

rho = 1 # mixing parameter for state trajectory constraint
trajectory constraints = np.eye(n nodes) # nodes in state
trajectory to be constrained

# get the state trajectory, x(t), and the control signals, u(t)
state trajectory, control signals, numerical error = get control
inputs (

A norm=adjacency norm,

T=time horizon,

B=control_ set,
x0=initial state,
xf=target state,

system=system,

rho=rho,

S=trajectory constraints,

)

(i) Bydefault, weset time horizon=1.Note that this valueis arbitrary and does
not correspond to any real-world time units (e.g., seconds). Importantly, get
control_inputs ussa costfunction thatincludes both the magnitude of the
control signals and the magnitude of the state trajectory. The input parameter
rho allows researchers to tune the mixture of these two costs while finding the
input u(¢) that achieves the state transition. Specifically, rho=1 places equal cost
over the magnitude of the control signals and the state trajectory. Reducing rho
below 1increases the extent to which the state trajectory adds to the cost function
alongside the control signals. Conversely, increasing rho beyond 1 reduces the
state trajectory contribution, thus increasing the relative prioritization of the
control signals. Lastly, s takes in an NxN matrix whose diagonal elements define
which nodes’ activity will be constrained in the state trajectory. In summary,
s designates which nodes’ neural activity will be constrained while rho determines
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by how much it will be constrained, relative to the control signals. Here, by
setting rho=1and S=np.eye (n_nodes), we are implementing what we refer
to as ‘optimal control™. If sis instead set to an NxN matrix of zeros, then the
state trajectory is completely unconstrained, a setup we refer to as ‘minimum
control?®?, In this case, rhois ignored.

(ii) Alternatively, researchers may choose to constrain only a subset of the state
trajectory by defining partial constraint sets. See Supplementary Fig. 2 for control
energy plotted as a function of different combinations of time _horizonand
rho. Also see here for a notebook outlining different use cases of get _control
inputs. However, to avoid issues associated with researcher degrees of freedom,
we recommend that users implement either optimal control, by setting rho=1
paired with their chosen s matrix, or minimum control, by setting S=np.
zeros ( (n_nodes, n nodes)).

(iii) Inadditionto state trajectoryandcontrol signals, get control
inputs alsooutputsnumerical error, which stores two forms of numerical
error. The first error is the inversion error, which measures the conditioning of the
optimization problem. If this error is small, then solving for the control signals
was well conditioned. The second error is the reconstruction error, which is a
measure of the distance between x-and x(7). If this error is small, then the state
transition was successfully completed; that is, the neural activity at the end of the
simulation was equivalent to the neural activity encoded by x;. We consider errors
<10"%as adequately small.

(iv) Check theinversion and reconstruction errors:

# print errors

thr = le-8
# the first numerical error corresponds to the inversion error
print (

"inversion error = {:.2E} (<{:.2E}={:})".

format (numerical error[0], thr, numerical error[0] < thr
)

)

inversion error = 1.36E-15 (<1.00E-08=True)

# the second numerical error corresponds to the reconstruction

error

print (
"reconstruction error = {:.2E} (<{:.2E}={:})".

format (numerical error[l], thr, numerical error([l] < thr
)

)

reconstruction error = 5.16E-14 (<1.00E-08=True)

5. Visualizestatetrajectory and control signals. Once x(t) and u(t) have been derived, they
should be visualized before computing control energy. Visualization provides intuition
regarding how the model is behaving and is helpful for confirming that the state transition
was completed successfully (see Fig. 4 and Box 1).

4 TROUBLESHOOTING

6. Computecontrolenergy. The final step is to summarize the control signals into control
energy. Thisis done by numerically integrating the control signals over time. In this step,
we use Simpson’s rule—an extension of the trapezoidal rule that fits a polynomial through

neighboring sets of points—to achieve this integration, yielding a vector of node-level energy.

(A) Compute node-level control energy:

# integrate control signals to get control energy
node energy = integrate u(control signals)
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print (node energy.shape)

(200,)

print (np.round(node energyl[:5], 2))
[21.13 37.65 23.55 21.55 28.34]

(B) Summarize node-level energies to produce a single estimate of control energy:

# summarize nodal energy
energy = np.sum(node_ energy)
print (np.round (energy, 2))

2604.71
a Control signals (from initial state) b Neural activity (from initial state)
-0.15 | 0.15 |
z z
> 0.20 1 S 010+
© ©
< <
-0.25 0.05
-0.30 | o
T T T T
0 ) 1 0 ) 1
Time (a.u.) Time (a.u.)
€ Control signals (from target state) d Neural activity (from target state)
0.15 |
0.3 -
0.10
z z
= =
3 0.2+ 5
< < 0.05
0.1+
0 .
T T T T
) 1 0 1
Time (a.u.) Time (a.u.)
€ Control signals (from bystanders) f Neural activity (from bystanders)
07 0.006
2z Z 0.004
2 -0.05 2
Q Q
< <
0.002
-0.10 o
T T T T
o 1 0 1
Time (a.u.) Time (a.u.)

Fig. 4| Visualize the control signals and the state trajectory. For a given state transition, the control signals (u(t), left
column) and the state trajectory (x(t), right column) should be visualized. Here, because of our use of binary brain states,
we group this visualization by nodes in the initial state (x,, top row), the target state (x;, middle row) and the remaining
nodes (bystanders, bottom row). Across all subplots, differently colored line plots represent different system nodes (brain
regions) within each group. This plot provides intuition on model behavior by showing the kinds of control signals that
drive specific changes in neural activity. The top row shows that the model drives negative time-varying control signalsinto
the nodes of the initial state (a), which drives their activity to O over time (b). The middle row shows that the model drives
positive time-varying control signals into the nodes of the target state (c¢), which drives their activity from O to -0.15 over
time (d). The bottom row shows that the model drives diverse time-varying control signals into the bystander nodes (e),
whichin turnguide changesin these regions’ activity (f).
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BOX1
Checking completion of the state transition

As noted in Experimental design, completion of a state transition is not guaranteed by the model, and an
incomplete transition may necessitate revising either the control set (e.g., to provide more control over
the system if a partial control set was used) or the time horizon (e.g., to provide more time for the model
to complete the transition). We suggest the following simple plot:

f, ax = plt.subplots(3, 2, figsize=(7, 7)

# plot control signals for initial state

ax[0, 0] .plot(control signals[:, initial state != 0], linewidth=0.75)

ax[0, 0] .set title("A | control signals, x0")

# plot state trajectory for initial state

ax[0, 1] .plot(state trajectoryl[:, initial state != 0], linewidth=0.75)

ax[0, 1] .set title("B | neural activity, x0")

# plot control signals for target state

ax[1l, 0] .plot(control signals[:, target state != 0], linewidth=0.75)

ax[1l, 0].set title("C | control signals, xf")

# plot state trajectory for target state

ax[1l, 1] .plot(state trajectoryl[:, target state != 0], linewidth=0.75)

ax[1, 1] .set title("D | neural activity, xf")

# plot control signals for bystanders

ax[2, 0].plot(

control signals[:, np.logical and(initial state == 0, target state == 0)],
linewidth=0.75,

)

ax[2, 0] .set title("E | control signals, bystanders")

# plot state trajectory for bystanders

ax[2, 1].plot(
state trajectoryl[:, np.logical and(initial state == 0, target state == 0)],
linewidth=0.75,

)

ax[2, 1].set title("F | neural activity, bystanders")

for cax in ax.reshape(-1):

cax.set ylabel ("activity")

cax.set xlabel ("time (a.u.)")

cax.set xticks ([0, state trajectory.shape[0]])

cax.set_xticklabels ([0, time_ horizon])

f.tight layout ()

plt.show ()

Figure 4 shows the control signals (left column) alongside the state trajectory (i.e., neural activity; right
column) separately for nodes within the initial state (top row) and the target state (middle row), as well as
the bystanders (bottom row). Note that we define bystanders as nodes that are outside both the initial and
target states. We choose this division of nodes because it provides several simple intuitions about model
behavior. First, we can see that the model drives negative time-varying control signals into the nodes of
the initial state (Fig. 4a), which drives their activity to O over time (Fig. 4b). Second, we can see that the
model drives positive time-varying control signals into the nodes of the target state (Fig. 4c), which drives
their activity from O to ~0.15 over time (Fig. 4d). Note that ~0.15 represents the maximum neural activity
after state normalization for the states presented here; this maximum activity may vary depending on
state definition. Finally, we can see that diverse time-varying control signals are injected into the bystander
nodes (Fig. 4€), which in turn guide changes in these regions’ activity (Fig. 4f). In other words, Fig. 4
shows that the model performs a combination of ‘turning off’ the initial state, ‘turning on’ the target state
and guiding diffusing activity toward the target state via the bystanders. Figure 4 also provides a simple
visual way to check whether the state transition completed successfully; at the end of the simulation,
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(continued from previous page)

it is apparent that activity in the target state is maximal whereas activity in the initial state and bystanders
is O, which accords with our definition of x;. This behavior explains the low reconstruction error reported for
this transition (see the main text). In addition, this plot allows researchers to visualize how model behavior
varies under different control sets (Supplementary Figs. 3-6) and time horizons (Supplementary Figs. 7-9).
Note that while we view Fig. 4 as the simplest way to plot initial model outputs, it is only one of many
options. Researchers may choose to plot x(t) and u(t) as heatmaps or on the brain’s surface, which would
facilitate visualization of spatial patterning (see Supplementary Information, Variations to Procedure 1).

A CRITICAL There are multiple variations to Steps 1-6 that researchers may wish to consider
depending on their research goals. In the Supplementary Information, weillustrate a selection
of these variants that are likely to be of broad interest to the field of neuroscience (Fig. 3c). These
variations include studying non-binary brain states, implementing partial and non-uniform
control sets and examining directed structural connectomes (see Supplementary Information,
Variations to Procedure1).

A CRITICALSTEP Steps1-6above outline how to extract the control energy for asingle

control task, which we defined as completing a state transition between the visual system

and the default mode system by using control signals delivered to all system nodes (to view

the above stepsin asingle notebook, see https://github.com/LindenParkesLab/nctpy/blob/
f69ec009d70a46cb019da7c59a0d00b3e254731a/scripts/path_a_control_energy binary.
ipynb). Alternatively, researchers may want to examine many control tasks within the context
of asingle study. Thus, in nctpy, we include a Python class called ComputeControlEnergy
that wraps all of the above steps (excluding Step 5) and applies them over a list of control tasks
(see Supplementary Information, Wrapping Procedure 1 for ease of use).

Procedure 2

O TIMING <1-20s

A CRITICAL Procedurelisthe primary component of our protocol. Implementing these

steps assumes that researchers are interested in studying a specific set of state transitions

definedinaccordance with their research questions and hypotheses. In the absence of such

hypotheses, researchers may instead wish to examine nodes’ general capacity to control a

broad range of unspecified state transitions. To support these types of hypotheses, we present

acomplementary set of steps that yields estimates of average controllability, in which higher

valuesindicate that aregionis better positioned in the network to control dynamics:

1. Compute average controllability (discrete time, <1sfor 200 nodes; continuous time,
10-20sfor200 nodes).

# compute average controllability

average_controllability = ave_control (A norm=adjacency_norm,
system=system)

Fig. 5| Average controllability. Each system node receives animpulse of equal
magnitude. Nodes with higher average controllability are able to broadcast that
impulse throughout the system to a greater extent than nodes with lower average
0.50 controllability. Thus, nodes with high average controllability are better positioned
' within the network to control dynamics. Distribution of average controllability
0.475
4
0.450 | 0.45

values are displayed using a box plot (left) and are projected onto the cortical
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average controllabilitywillbeavectorcontainingthe average controllability of each
node of the system.

2. Visualize average controllability. Because average controllability is a regional metric, we can
simply plotits distribution of values on the surface of the cortex (Fig. 5).

Troubleshooting

Troubleshooting advice canbe found in Table 1.

Table 1| Troubleshooting table for Procedure 1

Step Problem Possible reason Solution
5 Inversion error out of Ill-conditioned optimization If using a partial control set, try using a full control set
bounds problem

nodes in A)

If using a full control set, try reducing the size of the system (i.e., reduce the number of

Check whether A has disconnected components (i.e., groups of nodes that cannot

communicate with each other)

Reconstruction error Failure of the state transition to Increase time horizon, T

out of bounds complete (i.e., x; not equal to x(T))

If using a partial control set, try using a full control set

If using a full control set, try reducing the size of the system (i.e., reduce the number of

nodes in A)

Check whether A has disconnected components (i.e., groups of nodes that cannot

communicate with each other)

Timing

As noted throughout the Procedure, the timing of each step is relatively short.

Procedurel

Steps1-2, normalize the adjacency matrix:1-5s
Step 3, define a control task:1-5s

Step 4-6, compute control energy: ~1 min

Procedure 2
Step 1, compute average controllability: <1-20 s

We note two clarifications to the above timing information. First, these time estimates
are only for asingle execution of each step as shown in the protocol. In reality, these steps
will probably need to be executed many times over to achieve researchers’ goals. For
example, agiven study may need to compute control energy for multiple control tasks
across multiple subjects, which will increase total run time. This run time will increase
further if null network models are used (see Supplementary Information, Null network
models), wherein each step may be run thousands of times for a single control task. However,
inthese instances, protocol steps can be trivially parallelized using high-performance
computing infrastructure, which will reduce total run time. Second, timing will vary as a
function of researchers’ data specifications. For example, in this protocol, we performed
analysis on a structural connectome comprising 200 nodes. Increasing parcellation
resolution will increase run time.
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Anticipated results

The final outputs of our protocol will depend on whether researchers choose to follow
Procedurelor Procedure 2. For the former, the output will be one estimate of control energy
per control task, or one estimate per brain region per task if energy was not summarized across
regions. This value will be positive and can be thought of as the amount of effort the model

has to exert to complete a specific control task; higher energy corresponds to greater effort.
For the latter, the output will be one estimate of average controllability for each brain region,
aregional map of control over system dynamics (Fig. 5). These regional values will also be
positive. Greater average controllability indicates that regions are better positioned within the
network’s topology to broadcast animpulse and, as such, may better orchestrate control of

brain dynamics.

What canresearchers do with these outputs? The answers to this question are diverse
and depend heavily on the researchers’ goals. As we discussed in Applications, we have used
NCT toinvestigate arange of research questions that spanned from examining the influence
of topology'**>%, to predicting state transitions observed in functional data'**, to studying
individual differences, including psychosis symptoms?, executive function” and sex effects”.
Providing detailed guidance on each of these applications is beyond the scope of this
protocol. However, to support this protocol, we outline the use of null network models as
aninitial analysis that we believe is an essential step irrespective of researchers’ study goals

(see Supplementary Information, Null network models).

Reporting summary

Further information onresearch design is available in the Nature Portfolio Reporting Summary

linked to this article.

Data availability

The PNC data are publicly available in the Database of Genotypes and Phenotypes under
accession number phs00607.v3.p2 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000607.v3.p2).

Code availability

Allanalysis code is freely available at https://github.com/LindenParkesLab/nctpy/.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX 00 0O OK 07 00

X0

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code
Data collection  n/a

Data analysis All analysis code is freely available at https://github.com/LindenParkesLab/nctpy/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The PNC data are publicly available in the Database of Genotypes and Phenotypes: accession number: phs00607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000607.v3.p2
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size 253
Data exclusions  N/A
Replication N/A
Randomization  N/A

Blinding N/A

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
XI|[] Antibodies XI|[] chip-seq

XI|[] Eukaryotic cell lines X|[] Flow cytometry

|Z |:| Palaeontology and archaeology |:| |Z| MRI-based neuroimaging
|Z |:| Animals and other organisms

|Z |:| Clinical data

X |:| Dual use research of concern

Magnetic resonance imaging

Experimental design

1202 Y210\

Design type diffusion weighted and resting-state and MRI
Design specifications 120 timepoints of resting state data per subject

Behavioral performance measures  N/A




Acquisition
Imaging type(s)

Field strength

functional, diffusion

3T

Sequence & imaging parameters MRI data were acquired on a 3 Tesla Siemens Tim Trio scanner with a 32-channel head coil at the Hospital of the

University of Pennsylvania. Diffusion weighted imaging (DWI) scans were acquired via a twice-refocused spin-echo
(TRSE) single-shot echo-planar imaging (EPI) sequence (TR=8100 ms, TE=82 ms, FOV=240mm2/240mm?2; Matrix=RL:
128, AP: 128, Slices: 70, in-plane resolution of 1.875 mm?2; slice thickness=2 mm, gap=0; flip angle=90&/1807/1808, 71
volumes, GRAPPA factor=3, bandwidth=2170 Hz/pixel, PE direction=AP). The sequence utilized a four-lobed diffusion
encoding gradient scheme combined with a 90-180-180 spin-echo sequence designed to minimize eddy-current
artifacts. The sequence consisted of 64 diffusion-weighted directions with b=1000 s/mm2 and 7 interspersed scans
where b=0 s/mm2. The imaging volume was prescribed in axial orientation and covered the entire brain.

In addition to the DWI scan, a BO map of the main magnetic field was derived from a double-echo, gradient-recalled
echo (GRE) sequence, allowing for the estimation and correction of field distortions. Prior to DWI acquisition, a 5-min
magnetization-prepared, rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR=1810 ms, TE=3.51 ms,
FOV=180 x 240 mm, matrix 256 x 192, effective voxel resolution of 0.94 x 0.94 x 1 mm) was acquired for each
participant.

Finally, approximately 6 minutes of rs-fMRI data was acquired using a blood oxygen level-dependent (BOLD-weighted)
sequence (TR=3000 ms; TE=32 ms; FoV=192 x 192 mm); resolution 3 mm isotropic; 124 volumes).

Area of acquisition whole brain
Diffusion MRI Used [ ] Notused

Parameters

Preprocessing

Preprocessing software

MRI data were acquired on a 3 Tesla Siemens Tim Trio scanner with a 32-channel head coil at the Hospital of the University of
Pennsylvania. Diffusion weighted imaging (DWI) scans were acquired via a twice-refocused spin-echo (TRSE) single-shot echo-planar
imaging (EPI) sequence (TR=8100 ms, TE=82 ms, FOV=240mm?2/240mm2; Matrix=RL: 128, AP: 128, Slices: 70, in-plane resolution of
1.875 mm?2; slice thickness=2 mm, gap=0; flip angle=90@/180R/180@, 71 volumes, GRAPPA factor=3, bandwidth=2170 Hz/pixel, PE
direction=AP). The sequence utilized a four-lobed diffusion encoding gradient scheme combined with a 90-180-180 spin-echo
sequence designed to minimize eddy-current artifacts. The sequence consisted of 64 diffusion-weighted directions with b=1000 s/
mm2 and 7 interspersed scans where b=0 s/mm2. The imaging volume was prescribed in axial orientation and covered the entire
brain.

In addition to the DWI scan, a BO map of the main magnetic field was derived from a double-echo, gradient-recalled echo (GRE)
sequence, allowing for the estimation and correction of field distortions. Prior to DWI acquisition, a 5-min magnetization-prepared,
rapid acquisition gradient-echo T1-weighted (MPRAGE) image (TR=1810 ms, TE=3.51 ms, FOV=180 x 240 mm), matrix 256 x 192,
effective voxel resolution of 0.94 x 0.94 x 1 mm) was acquired for each participant.

Finally, approximately 6 minutes of rs-fMRI data was acquired using a blood oxygen level-dependent (BOLD-weighted) sequence
(TR=3000 ms; TE=32 ms; FoV=192 x 192 mm; resolution 3 mm isotropic; 124 volumes).

- Structural connectome reconstruction was performed using QSIprep 0.14.2135, which is based on Nipype 1.6.1143.
Connectomes were extracted using the 200-node variant of the Schaefer parcellation, ordered according to 7 canonical brain
systems. The strength of inter-regional connectivity was summarized using the number of streamlines that intersected each
pair of parcels. Connectomes were averaged over subjects. This group-averaged connectome was thresholded by retaining
the edges that were present in at least 60% of participants’ connectomes. This process resulted in a final connectome with
98% edge density.

- rs-fMRI was also obtained from the same 253 PNC participants. These data were used to generate empirical brain activity
states in order to perform non-binary state transitions (see Variations to Procedure 1 in the Supplementary Information). The
eXtensible Connectivity Pipeline (XCP-D) was used to post-process the outputs of fMRIPrep version 20.2.3145. XCP was built
with Nipype 1.7.0143. Processed rs-fMRI time series were extracted from the same 200-node parcellation mentioned above.

Normalization see above
Normalization template see above
Noise and artifact removal see above
Volume censoring see above

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type of analysis:

N/A
N/A

X Whole brain [ ] ROI-based [ | Both

Statistic type for inference N/A

(See Eklund et al. 2016)
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Correction N/A

Models & analysis

n/a | Involved in the study
IZ |:| Functional and/or effective connectivity

|:| Graph analysis

IZ |:| Multivariate modeling or predictive analysis

Graph analysis undirected diffusion-weighted structural connectome comprising 200 nodes averaged over 250 subjects
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