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Abstract

Network control theory (NCT) is a simple and powerful tool for studying 
how network topology informs and constrains the dynamics of a system. 
Compared to other structure–function coupling approaches, the strength 
of NCT lies in its capacity to predict the patterns of external control signals 
that may alter the dynamics of a system in a desired way. An interesting 
development for NCT in the neuroscience field is its application to study 
behavior and mental health symptoms. To date, NCT has been validated to 
study different aspects of the human structural connectome. NCT outputs 
can be monitored throughout developmental stages to study the effects 
of connectome topology on neural dynamics and, separately, to test the 
coherence of empirical datasets with brain function and stimulation. 
Here, we provide a comprehensive pipeline for applying NCT to structural 
connectomes by following two procedures. The main procedure focuses on 
computing the control energy associated with the transitions between specific 
neural activity states. The second procedure focuses on computing average 
controllability, which indexes nodes’ general capacity to control the dynamics 
of the system. We provide recommendations for comparing NCT outputs 
against null network models, and we further support this approach with a 
Python-based software package called ‘network control theory for python’. 
The procedures in this protocol are appropriate for users with a background 
in network neuroscience and experience in dynamical systems theory.

Key points

•• We present a protocol on 
how to model the dynamics of 
neural connectivity states using 
network control theory (NCT) via 
a software package written in 
Python to compute the control 
energy associated with the 
transitions between states and 
the average controllability of the 
network’s dynamics.

•• NCT complements 
biophysical models of 
neuronal communication and 
graph-theoretical measures 
of internodal communication.
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Introduction

Network neuroscience is principally concerned with studying the connectome1, the 
description of whole brain connectivity. The connectome is often encoded as a graph of 
nodes interconnected by edges that can be defined across multiple scales, species and data 
modalities2,3. In any case, this description of brain connectivity gives rise to complex topology, 
including hubs, modules, small-worldness and core-periphery structure4, and understanding 
how this topology shapes and constrains the brain’s rich repertoire of dynamics is a central 
goal of network neuroscience.

Network control theory (NCT) provides an approach to studying these dynamics and 
yields insights into the relationship between patterns of neural dynamics and the topology of 
the underlying structural connectome5–8. The application of NCT has revolutionized both the 
understanding and design of complex networks in contexts as diverse as space and terrestrial 
exploration and modeling of financial markets, airline networks and fire-control systems. 
Briefly, NCT assumes that inter-nodal communication follows a linear model of diffusion, 
in which activity from one set of nodes (i.e., an initial state) spreads across the network over 
time along a series of fronts4,9. Then, upon this dynamical system, NCT models a set of external 
control signals designed to guide the diffusing activity patterns toward a chosen target state. 
This choice can be informed by a measurement of activity evoked by behavior, spontaneous 
activity or the type of brain system. These control signals are found by minimizing the total 
magnitude of their input over a given time horizon; that is, they are designed to achieve a 
desired state transition with the lowest amount of control energy. Once modeled, these 
control signals can be examined to determine to what extent, and how, they were constrained 
by topology, thus allowing researchers to study how the connectome might be leveraged to 
control dynamics.

Recently, we have developed and tested the application of NCT to brain network data 
across multiple contexts, scales and definitions of connectivity10–22. Here, we present a protocol 
for applying NCT to two different structural connectomes: one defined using undirected 
connectivity estimated in the human brain23,24 and the other using directed connectivity 
estimated in the mouse brain25–27. Briefly, we detail two common applications of NCT that we—as 
well as other groups28–34—have deployed and that focus on (i) quantifying the amount of energy 
that is required to complete transitions between specific brain states (Fig. 1) and (ii) modeling 
regional capacity to control unspecified state transitions (Fig. 2). The former approach is useful 
for researchers interested in testing whether dynamic state changes can be controlled and 
induced across the network, while the latter is useful for researchers interested in analyzing 
topographic maps of control. In addition, we provide recommendations for the visualization 
of model outputs and discuss the use of null network models to examine which topological 
features affect model outputs.

Development of the procedure
The methods that underlie NCT are based on the established fields of control theory and 
dynamical systems theory. Dating back to at least the 19th century35, control theory is primarily 
concerned with engineering perturbations to achieve desired behaviors in the states of a 
system, and specifically the evolution of such states over time. Hence, one of the most natural 
ways to formulate theories of control is through differential and difference equations that 
mathematically define the next state of a system given its current state. A common example 
of a control system is an inverted pendulum on a cart: the system states are the positions and 
velocities of the cart and pendulum, the differential equations are determined through the 
governing Newtonian physics and the control task is to perturb the cart so that the cart and 
pendulum end up in a desired state. For example, one might want to push the cart back and 
forth in such a way as to stabilize the pendulum so that it remains upright36.

From one perspective, the inverted pendulum is not unlike the brain, where the system 
states are the activities of neural units (e.g., brain regions), the differential equations are 
determined through the diffusion of activity through structural connections between those 



Nature Protocols 3

Protocol

units and the control task is to perturb the brain to steer it to a desired state. There is a rich 
history of such modeling of the brain as a dynamical system using differential equations, 
ranging from biophysical models of single neurons37 to phenomenological38 and coarse-
grained39 models of neural populations. In tandem, there is a very practical translational need 
to understand how to control brain dynamics40 to compensate for abnormal dynamics that 
may be present in neurological and neuropsychiatric disorders. For example, there is growing 
interest in using neuroimaging to personalize non-invasive neurostimulation techniques, such 
as transcranial magnetic stimulation, for depression41. NCT is well positioned to assist in these 
endeavors and may provide insight into the propagating dynamics that these techniques elicit.

Despite the above, the analogy between the brain and an inverted pendulum is insufficient 
for several reasons. First, the dimensionality and complexity of the brain cannot be reduced to 
such simple models. Understanding how the topology of the structural connectome gives rise 
to brain function is a difficult task that has motivated a large body of work in the last two decades.  
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Fig. 1 | Modeling the control energy required to complete a state transition. NCT finds the control signals that, when 
injected into a networked system, will guide simulated neural activity from an initial state to a target state. Here, we show a 
two-node toy network (x1, x2) that illustrates the difference between neural activity (solid orange lines) in the absence (a) and 
presence (b) of a control signal (dashed blue line). a, Uncontrolled linear dynamics on a two-node network. Given an initial 
state in which x1 = 0.3 and x1 = −0.2, as well as coupling between nodes encoded by A, uncontrolled neural activity unfolds as 
shown on the left. These dynamic trajectories can also be represented in two dimensions as a vector field as shown on the 
right. Under this uncontrolled regime, the state of the system culminates in x1 = −0.24 and x2 = 0.06 at time T. b, Controlled 
linear dynamics on a two-node network. By contrast, when we introduce a control signal to x2, the trajectory changes to now 
culminate in x1 = 0.12 and x1 = 0.39 at time T. Thus, NCT has found the control signal that drove our system from our initial 
state [x1 = 0.3, x2 = −0.2] to our desired target state [x1 = 0.12, x2 = 0.39]. c, NCT applied to the human connectome. The above 
model can be extended to the scale of N brain regions that constitute a whole-brain connectome (left). In doing so, we can 
model and examine the control signals required to transition the brain between various states of interest (right).
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This research has revealed that structure–function coupling is not one to one; instead it 
varies spatially across the cortex42–46 and is stronger when indirect structural pathways are 
accounted for under multiple models of network communication47,48. Second is the distributed 
nature of brain states for human function. Although some brain regions may be thought of 
as supporting specific functions (e.g., the fusiform face area), carrying out complex human 
functions typically requires the recruitment of a network of brain regions to a distributed brain 
state49. Finally, biology imposes relatively tight operating constraints. To support complex 
human functions, the brain needs to optimize for efficient signaling while balancing the need 
to minimize wiring cost within the spatial constraints of the cranial cavity. Hence, there is a need 
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Fig. 2 | Average controllability: modeling the impulse response of the system from each node. NCT can be used to 
probe regions’ general capacity to control dynamics. This is achieved by studying how the system responds to an impulse 
delivered to each node. Here, we show a two-node toy network (x1, x2) coupled by A. Upon this network, we demonstrate 
how neural activity (solid orange lines) unfolds when an impulse (dashed blue line) is delivered to x1 (a) and x2 (b). 
a, An impulse is delivered to x1 that sets the initial state of the system to [x1 = 0.4, x2 = 0]. b, An impulse is delivered to x2 
that sets the initial state of the system to [x1 = 0, x2 = −0.4]. In each case, the impulse response of the system is quantified 
as the area under the squared curves of the two orange traces. Intuitively, this measurement corresponds to the amount 
of activity propagated throughout the system over time. We refer to this measure as the average controllability. Thus, for 
a given time horizon (T), a region with higher average controllability is better able to broadcast an impulse. c, Impulse 
response modeled for the human connectome. The above model can be extended to the scale of N brain regions that 
constitute a whole-brain connectome. In doing so, we can compare each region’s capacity to broadcast an impulse across 
the whole brain.
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to express the unique complexities and constraints of controlling brain structure–function 
coupling in the quantitative formalism of dynamics and control.

NCT emerges as a flexible framework to address this need that is methodologically 
based in optimal control theory50 and can accommodate a wide range of theoretical and 
experimental hypotheses and constraints about structure–function coupling through a 
consistent mathematical framework20,51,52. Because NCT posits a model of neural dynamics at 
the level of individual neural interactions, it allows us to probe the role of the complex structural 
connectome on brain function at the level of those interactions14,22,53. In addition, because NCT 
parameterizes which regions to control and how, as well as the precise patterns of initial and 
target neural activity, it can answer questions ranging from the importance of a single region 
for propagating activity10 to the cost of transitioning between specific brain states11. Hence, the 
development of NCT has largely served to provide a simple, first-order biophysical model with 
the flexibility and power to study more advanced hypotheses of brain function.

The modeling framework of NCT comprises N nodes (e.g., neurons or brain regions) and 
m inputs and stipulates that the state of each node, xi(t), evolves in time as a weighted sum of 
the state of all upstream nodes, xj(t), and any inputs, um(t). If the evolution of the system can 
be framed in terms of discrete states, in which the activity of upstream nodes determines the 
state of downstream nodes at the next discrete point in time, then the model takes the form 
of a difference equation:

xxx(t + 1) = Axxx(t) + Buuu(t) , (1)

where xxx(t) = [x1(t) , x2(t) ,⋯ , xn(t)]
⊤ is the vector of neural states, A is the N×N connectome that 

comprises N nodes along the rows and columns interconnected by N2 edges, u(t) = [u1(t), 
u2(t), …, um(t)]T is the vector of independent control signals and B is the N×m matrix that 
quantifies how each input affects the nodes. If instead the evolution of the system can be 
framed in terms of rates, in which the activity of upstream nodes affects the continuous rate  
at which the state of downstream nodes change, then the model takes the form of the 
differential equation:

d
dt

xxx(t) = Axxx(t) + Buuu(t) . (2)

Although these two models appear similar because the right side of the equations 
are identical, their definition, properties and behavior differ substantially. In turn, the 
interpretation of the model parameters and outputs can vary dramatically between them. 
We discuss several implications of this difference in Experimental design.

In the Procedure, we discuss two common operationalizations of NCT that can be 
derived from either of these models. The first (Procedure 1) uses a time-varying perturbation, 
u(t), to drive the neural activity, x(t), from an initial state, x0, to a target state, xf, given a 
balance of constraints on the magnitude of both the neural states and the perturbations. 
The magnitude of these perturbations is summarized as the control energy, which we 
interpret as the amount of effort that the model system must exert to complete a given state 
transition. The second (Procedure 2) is average controllability, which is the magnitude of the 
neural activity, x(t), in response to an impulse stimulus delivered to a single node; a node with 
higher average controllability is better able to leverage graph topology to spread an impulse 
throughout the system. Note that average controllability is only one example of a node-level 
NCT metric that falls within the broader category of controllability statistics. This category 
encompasses NCT outputs that describe different ways in which the nodes of the system may 
control its dynamics. Although we have used other controllability statistics in our previous 
work (e.g., modal controllability; see Understanding the influence of topology below), we 
focus on average controllability in this protocol because of its simple intuitive nature and 
broad appeal.

We focus on these two operationalizations, control energy and average controllability, 
because they encompass two common sets of questions about the brain. The first set of 
questions stems from advances in neuroimaging that allow us to empirically measure neural 
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states via functional MRI (fMRI), electrophysiology and calcium imaging54. Given these 
state-level empirical data, a natural question is “how does the brain reach or switch between 
these states using regimens of internal or external control?” Optimal control theory provides 
a powerful and flexible set of tools to explore these questions under various constraints and 
at different spatiotemporal scales. For example, in human neuroimaging, it is common to 
study different brain activity states and their relation to cognitive function. By leveraging 
control energy, NCT enables researchers to study how the topology of the brain’s underlying 
structural connectivity enables it to transition between activity states that are relevant to 
(i) different cognitive functions52 or (ii) different conditions within a single cognitive domain55. 
The second set of questions stems from empirical evidence demonstrating that individual and 
groups of brain regions (i) may be important for enabling specific functions, such as visual 
processing56, motor processing57 and cognition58,59; (ii) may be important for supporting critical 
functional processes in the brain, such as segregation and integration60,61; and (iii) may be 
disproportionately affected by disease processes62,63. Given these data, a natural question to 
ask is “what is the contribution of these sets of regions to the control of brain activity?” Average 
controllability measures the magnitude of propagation of stimulation along neural tracts. In 
turn, average controllability provides a coarse-grained understanding of individual regions’ 
control over brain activity, insofar as it probes their general importance to guiding diverse 
ensembles of state transitions. This general nature stands in contrast to control energy, which 
requires that specific state transitions be defined a priori.

Applications
The analysis of brain data using a network representation is increasingly popular in 
neuroscience, and researchers have used a wide range of connectomic data to perform NCT 
analysis. For example, the availability of multimodal neuroimaging data in large cohorts 
accompanied by clinical and cognitive data23,24,64–66, as well as indices of neurobiology not 
measurable in vivo (e.g., high-resolution histology67 and gene expression68), enable researchers 
to validate NCT against brain function and biology, as well as examine differences between 
individuals. Indeed, we have applied NCT in our research with a view toward achieving these 
goals. Here, we briefly review selections of this work to show how our protocol may be applied to 
study the brain. Specifically, we discuss how model outputs from NCT link to network topology; 
explain differences between individuals in mental health symptoms, cognition and age; predict 
the effects of neurostimulation; explain switching between functional task states; and link to 
neuroanatomy. Note that unless otherwise specified, all the specific studies described below 
used NCT to examine the structural connectome.

Understanding the influence of topology
In our early work, we began by contextualizing nodal controllability statistics against what 
we know about connectome topology from graph theory. Specifically, Gu et al.10 examined 
how nodal control properties—specifically average controllability and modal controllability—
correlated with nodes’ strength (the sum of a node’s edge weights). Gu et al.10 found that nodes’ 
strength correlated strongly positively and negatively with average and modal controllability, 
respectively. These relationships were conserved across both humans and macaques. 
Collectively, these results indicate that a node’s local topological importance predicts its 
capacity to control the dynamics of a system.

We have also examined how connectome topology influences the control energy associated 
with specific state transitions. Betzel et al.52 found that nodes’ topological importance predicted 
their capacity to facilitate transitions between eight canonical brain states (seven resting-state 
cortical networks as well as a subcortical network69). Specifically, Betzel et al. found that target 
states that intersected with the brain’s rich club61, a set of highly interconnected nodes that 
form the connectome’s core, exhibited low transition energy. This result demonstrates that the 
rich club is well positioned in the network to act as an efficient target state to which a diverse 
set of initial states can transition with low control energy. Thus, the topology of the human 
connectome may be optimized to guide dynamics toward the rich club, bolstering the idea that 
these nodes support functional integration60,70,71.
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Given these advances in understanding how connectome topology contributes to 
control, we subsequently analyzed what the underlying control equations could tell us about 
network topology. Starting from the NCT equations, Kim et al.53 derived the features of 
network architecture that were the most important for determining control energy. Kim et al.53 
discovered that a strong and diverse set of connections from stimulated nodes to unstimulated 
nodes were the leading-order contributors to the control cost. Using this discovery, the authors 
reduced the cost of controlling connectomes in Drosophila, mice and humans by virtually 
resecting edges and developed a method to meaningfully compare the control cost between 
different species and connectomes. These results provide simple and quantitative knowledge 
about the most important features of topology according to NCT.

Individual differences
Although the strong correlation between average controllability and strength reported by 
Gu et al.10 may seem to imply redundancy between nodal controllability statistics and measures 
from graph theory incorporating weighted degree, we note that this correlation was spatial 
(i.e., across the brain) rather than between subjects. In subsequent work examining individual 
differences, Parkes et al.21 compared the capacity of average controllability and strength 
to predict psychosis spectrum symptoms using out-of-sample testing. Parkes et al.21 found 
that average controllability significantly outperformed strength in this predictive task and 
demonstrated that this improved performance was concentrated in higher-order default 
mode cortex72. These results show that although high average controllability may depend 
upon high strength, there exists unique inter-individual variation between the metrics and 
that this variance in average controllability couples more tightly to mental health symptoms. 
Furthermore, these results support the use of NCT in population-based predictive modeling 
studies.

We have also shown that average controllability exhibits robust developmental and sex 
effects. Average controllability increases between the ages of 8 and 22 years12 and is higher 
in females in the cortex but higher in males in the subcortex19. Furthermore, Tang et al.12 
showed that age effects were strongest in nodes with higher controllability, underscoring 
the developmental importance of nodes that are well positioned in the network to control 
dynamics. When examining control energy, Cui et al.73 demonstrated that the amount of energy 
required to activate the fronto-parietal system, a brain network thought to support executive 
function74, was negatively correlated with both age and executive function in the same sample. 
This result suggests that the developmental emergence of executive function is associated 
with increased efficiency of neural signaling within the human connectome.

Predicting stimulation effects
An application of NCT that has clear translational impact is modeling the relationship between 
brain structure and function. To this end, we have examined whether NCT can predict the 
brain’s functional response to neurostimulation from its structural connectome. For example, 
in patients with epilepsy, Stiso et al.14 found that NCT was able to predict electrophysiological 
neuronal responses (measured with electrocorticography) after direct electrical stimulation. 
This result shows that our model, wherein neural activity is simulated upon the structural 
connectome, explains variance in experimentally manipulated empirical changes in brain state.

We have also examined NCT in the context of noninvasive neurostimulation techniques. In a 
pair of studies, Medaglia et al.16,17 delivered transcranial magnetic stimulation to the left inferior 
frontal gyrus between repeated sessions of a set of language tasks. Across both studies, the 
authors found that NCT metrics extracted from the left inferior frontal gyrus explained variance 
in changes to task performance before and after transcranial magnetic stimulation. These 
results demonstrate that NCT can be used to probe the network mechanisms that underpin 
how neurostimulation elicits changes in behavior.

Modeling switches between functional brain states
In addition to predicting the effects of neurostimulation, NCT can be used to investigate how 
the topology of the structural connectome supports transitions between empirically observed 
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functional brain states. Our group has studied this process using brain states derived from 
fMRI. Cornblath et al.20 clustered resting-state fMRI (rs-fMRI) into brain states representing 
instantaneous co-activations among canonical brain networks and used NCT to model the 
energy required to transition between those states. Using a series of null network models, 
Cornblath et al.20 found that the topology of the structural connectome was wired to support 
efficient switching between brain states. This result demonstrates that the topology of the 
connectome is optimized to support dynamic fluctuations in resting-state activity.

Subsequent work by Braun et al.55 examined transitions between brain states elicited by 
a working memory task. Braun et al.55 found that transitioning from a 0-back brain state to 
the more cognitively demanding 2-back brain state required more energy than the reverse 
transition, demonstrating an asymmetry in control energy. Braun et al.55 also found that this 
energy asymmetry was more pronounced in patients with schizophrenia than in healthy control 
subjects. Thus, while connectome topology may be set up to enable low-cost fluctuations in 
resting state20, activating cognitively demanding brain states may require more control effort. 
Furthermore, this increased control effort appears to scale with within-task differences in 
cognitive demand and is further elevated in psychopathology.

Biologically informed NCT
Neuroscience is increasingly moving toward a multi-scale approach that seeks to understand 
how features of the brain observed at one scale link to properties observed at another, and 
vice versa3,75–83. Recently, we have applied this multi-scale approach to NCT by examining 
how dynamics within the model are influenced by variations to regions’ cellular composition. 
Specifically, we examined how regions’ profiles of cytoarchitecture affected the energy 
associated with state transitions that spanned the cortical hierarchy22 (i.e., the sensory-fugal 
axis84). We found that state transitions traversing bottom up along the cortical hierarchy of 
cytoarchitecture required lower control energy to complete compared to their top-down 
counterparts, and we observed that nodes’ position along this hierarchy predicted their 
importance in facilitating these transitions. This result shows that spatial variations in cortical 
microstructure constrain macroscopic connectome topology; this effect is consistent with 
work from neuroanatomy that describes a precise relationship between regions’ profiles of 
cytoarchitecture and their extrinsic connectivity85.

In recent work from outside our group, Luppi et al.34 characterized how the control energy 
associated with a large set of activity maps derived from NeuroSynth86 related to cognition. In 
addition, the authors examined how these transition energies varied when they used a broad 
range of neurotransmitter density maps to modify the control weights. This work ties together 
switching between functional brain states and biologically informed connectome analysis to 
provide the field with a comprehensive ‘look-up table’ of how regions’ diverse biology affects 
control energy.

Alternative methods
We consider NCT with respect to other models that also seek to understand how communication 
unfolds within a structurally interconnected complex system. For neuroscientists, NCT 
complements both more complex biophysical models of dynamics and graph-theoretical 
measures of inter-nodal communication. Although both of these approaches model 
communication, they differ in their biological plausibility and complexity. Biophysical models 
aim to capture neuronal communication by distilling the various biophysical processes 
necessary for functional activity into separate model parameters. These parameters are tuned 
to simulate biologically plausible nonlinear dynamics within and between neurons at multiple 
scales. For example, at the scale of single neurons, the Hodgkin-Huxley model is concerned with 
modeling neuronal spiking activity87 and is based on parameterizing the flow of sodium and 
potassium ions across the cell membrane. At the next scale up, mean-field models focus on the 
collective activity patterns of co-located populations of neurons88,89. Coupling multiple mean-
field models together—where each model represents distinct neuronal populations—enables 
researchers to study how nonlinear dynamics emerge from brain structure at the macroscale88. 
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In turn, this approach gives rises to a wide range of complex dynamical behaviors, including 
synchronized oscillators38, learning90,91, large-scale traveling brain waves92 and structure–
function coupling93–95. Broadly, NCT trades biophysical accuracy and the complexity of specific 
model behaviors for more power in designing and studying stimuli. For example, in lieu of 
studying state transitions that emerge from different models of associative memory96 and 
context integration97, NCT allows us to design specific stimuli to transition the model system 
to states that are known to be important for memory and cognitive control under specific 
constraints52.

By contrast, graph-theoretic approaches instantiate relatively simple models of inter-nodal 
communication that rely on assumptions such as shortest-path routing, spatial proximity, 
random walks and diffusion processes4,9. Although these assumptions are an oversimplification 
of brain dynamics and are thus less biologically plausible, their simplicity confers greater 
analytic tractability and scalability, which are both desirable features when studying the human 
brain. This benefit compounds when the goal of a given study is to examine inter-individual 
differences, wherein dynamical models may be fit to thousands of participants. As such, 
despite their relative simplicity, graph-theoretic approaches have deepened our insights 
into large-scale brain organization58,59,98–101, improved our understanding of the link between 
the brain and mental disorders62,102–104 and helped elucidate the link between structure and 
function43,47,48,105–107.

We consider NCT as situated between these two modeling approaches. As discussed in 
Development of the procedure, NCT is essentially a model of two parts, dynamics and control. 
For the former component, NCT models dynamics according to a diffusion process; thus, 
like graph theory, NCT makes simplifying assumptions of inter-nodal communication, which 
confers the advantages of analytic tractability and scalability. However, the second component, 
control, adds an additional layer of model parameterization that allows researchers to probe 
how the system might behave under different contexts (e.g., in response to task manipulations, 
cognitive control or neurostimulation protocols). This added flexibility brings NCT closer to 
biophysical modeling, insofar as they both seek to understand how the dynamics of a system 
respond to external perturbation. Indeed, we have shown that NCT can be used to predict 
changes in the dynamics of coupled Wilson-Cowan oscillators after simulated stimulation18, 
suggesting that NCT can explain some of the behaviors engendered by nonlinear biophysical 
models. We have also shown that the underlying diffusion model is able to predict empirical 
neural responses measured with fMRI and electroencephalography108, suggesting that NCT is 
well positioned to explain the types of data that are typically acquired to study the human brain.

Limitations and ongoing development
NCT can flexibly accommodate many scientific questions and generate concise knowledge from 
a simple model. However, NCT also has several limitations for the study of high-dimensional 
complex systems, such as numerical stability of algorithms, validation against empirical data, 
approximations of complex interactions and interpretation of model parameters.

Numerical stability of optimization
One limitation is the numerical stability of Procedure 1 under certain parameter conditions, 
which arises from ill-conditioned matrices that are built while solving for the control signals. 
This issue occurs most frequently when using a relatively small control set—a small m in the 
N×m matrix B—to control a network with large N. It is intuitive that precisely controlling the initial 
and target states of the whole brain from only a few nodes is difficult. In light of this limitation, 
it is crucial that the researcher carefully study the generated trajectories of the neural activity 
to ensure that the desired initial and target states are reached and that the numerical integrator 
does not generate a warning of numerically ill-conditioned matrices (see the Troubleshooting 
section). In the event that the control set must be small for the purposes of the research question, 
one solution may be to extend the control set by heavily weighting the desired control nodes 
and lightly weighting the remaining nodes14. Another option is to use Procedure 2 to study the 
average controllability of the control set.
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Validation of NCT against empirical data
A second limitation is the validation of the model at the level of individual neural states. 
Phrased another way: given a connectome, A, and stimulations u(t) delivered to brain regions 
B starting at neural activations x(0), does experimentally measured neural activity agree with 
the simulated trajectory x(t)? The challenges associated with addressing this sort of question 
extend far beyond NCT and to a significant portion of systems and network neuroscience. 
Microstate validation between neural structure and activity is most evident in small systems 
of neural circuits109, but how to perform similar validations for large-scale systems such 
as the human brain remains an open area of research. Challenges include (i) the multiple 
possible scales of constructing brain networks2,110, (ii) differing measures of inter-areal 
connectivity111,112, (iii) multiple definitions of simulated neural activity88,113–115 and (iv) the diverse 
spatial and temporal resolutions at which we can record whole-brain activity54. Along this 
active area of research, we have demonstrated that linear models outperform nonlinear and 
kernel-based models in both one-step prediction and model complexity for both fMRI and 
electroencephalography data108, as well as correspondence between control energy and local 
metabolism116. We have also shown that NCT is able to explain variance in neuronal responses 
recorded using electrocorticography data14, but more work is needed to fully validate NCT 
against empirical data.

Linear dynamics
A third limitation is the assumption of linear dynamics, which enables the calculation of 
powerful measures such as optimal control trajectories but hinders the biophysical realism 
of the framework. More sophisticated nonlinear models capture complex dynamics from 
individual neurons87 to neural populations39, thereby enabling the study of fine-grained 
experimental behavior117 and complex nonlinear phenomena118. These models make 
fewer simplifying assumptions to capture nonlinear behaviors of biological systems such 
as complex memory landscapes119. Although prior work has shown that linear models 
outperform several classes of nonlinear models in describing and predicting brain-wide 
neural activity108, extensions of NCT to nonlinear systems will enable greater flexibility to 
accommodate and explore the impact of nonlinear biophysical constraints. Although the 
theory of nonlinear control is an active area of research120, there are immediate applications 
of NCT to nonlinear systems and many exciting potential extensions of NCT to capture more 
biophysical realism.

Broadly speaking, the linear dynamics assumed by NCT can be thought of as being valid for 
a nonlinear system within small deviations of an operating state7. Hence, the most immediate 
application of NCT to nonlinear systems is to linearize the model about an operating point, 
such as the upright position of an inverted pendulum121. Along these lines, the next immediate 
generalization to NCT is to linear time-varying systems50, in which the model is linearized not 
about a point, but about a trajectory. Although methods to implement control for linearized and 
time-varying systems are well established in the control community, a biophysically meaningful 
implementation and interpretation of the parameters—namely A(t) and B(t)—remains an area of 
active work122. Another approximation that is particularly relevant for high-dimensional neural 
systems is at the limit of weakly coupled oscillators123,124, whereby a high-dimensional system of 
oscillators with weak interactions can be reduced to a low-dimensional phase-response curve, 
allowing for the potential linearization of the system about phase-locked states.

In addition to linearizing dynamics about points and trajectories, NCT can also meaningfully 
be applied to nonlinear dynamical systems that can be made linear through a nonlinear change 
of variables. One such example is by using finite-dimensional Koopman subspaces, which allow 
for the recasting of nonlinear systems with single fixed points as higher-dimensional linear 
systems125, and closely related methods in dynamic mode decomposition126. Furthermore, 
advances in nonlinear control enable us to probe important coarse-grained questions such as 
the control set necessary to push nonlinear systems between attracting states127. Other control 
strategies take advantage of the ability of nonlinear systems to access states that lie outside of 
their linearization128.
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Experimental design
The adjacency matrix
The goal of an NCT analysis, as it is conceptualized in this protocol, is to understand how the 
topology of the structural connectome supports and constrains spreading dynamics and to 
what extent those dynamics can be controlled. Thus, core to this analysis is the acquisition 
of one or more structural connectomes from a model organism. For input to our protocol, 
we represent a given connectome as an adjacency matrix, A. In A, the N nodes of the system 
are stored on the rows and columns, and the N×N edge values are stored in the entries (for 
a discussion of size limits for A, see Supplementary Information, Theoretical and practical 
limitations on system size). Both the nodes and the edges of A can be defined in numerous 
ways. For example, the nodes of the system may be defined as single neurons in organisms such 
as Caenorhabditis elegans51,129 or as brain regions of varying size and definition in organisms 
such as the mouse77, Drosophila53, macaque130 and human4. The edges of A may be defined as 
either the directed or undirected connectivity between nodes. In humans, we typically extract 
structural connectomes from diffusion-weighted imaging (DWI) sequences obtained using 
MRI. Tractography algorithms are applied to DWI scans to model the white matter pathways 
intersecting pairs of brain regions, which are then used to populate connectome edges 
with the number of those pathways (e.g., the streamline count)4. This example constitutes a 
weighted undirected connectome upon which NCT can be conducted. Critically, our model 
assumes that Aij encodes the strength of diffusion of activity along the edge connecting node 
j to node i. In other words, our model assumes that the columns of A store the source nodes 
(i.e., projections from node j), while the rows store the target nodes (i.e., projections to node i). 
Although this distinction is irrelevant for undirected connectomes in which Aij = Aji, it is crucial 
for directed connectomes, and researchers must ensure that their directed A matrix conforms 
to the above assumptions. Relatedly, although A may be dense or sparse, special care must 
be taken if A is not one connected component (i.e., node i cannot reach every node j through 
a path of any length). Disconnected components will not be able to influence each other, and 
control signals cannot propagate between them, such that every disconnected component 
must receive its own subset of inputs. Overall, NCT can be flexibly applied to directed and 
undirected connectomes, dense and sparse connectomes and human and non-human 
connectomes.

The best choice of connectome will depend upon researchers’ goals and available data. 
If researchers are primarily interested in studying a specific transition or set of transitions, 
then a group-averaged connectome is preferable. In this case, a group-averaged connectome 
will allow researchers to closely study how topology constrains their transitions of interest 
while minimizing the sources of noise present in subject-specific connectomes (see below). 
Furthermore, if the data are available, a directed structural connectome is preferable to an 
undirected structural connectome, because the former will yield state transitions with greater 
biological plausibility. On the other hand, if researchers are interested in studying individual 
differences, then it will be necessary to use subject-specific connectomes. In this case, as with 
other techniques, replication across multiple datasets is desirable to ensure generalizability 
of findings. We focus on group-averaged structural connectomes in this protocol and provide 
examples of applying NCT to both directed and undirected edge weights.

Given that connectomes are central to the application of NCT, any artefacts present in 
the connectomes will be reflected in model outputs. For example, connectomes populated 
by DWI estimates of connectivity are known to contain false positives and false negatives, 
which may be partly mitigated by the use of thresholding techniques111,131. In-scanner head 
motion is well known to spuriously affect these estimates of connectivity as well132,133. Finally, 
connectome reconstruction is affected by acquisition parameters134 and benefits from 
parameters that result in higher signal-to-noise ratio and angular resolution. Thus, the accurate 
generation and rigorous quality control of connectomes are both crucial considerations for 
experimental design. For human connectomes, we recommend that researchers consult 
the extant literature on the acquisition, processing and quality control of DWI scans111,134–136 
(see also https://qsiprep.readthedocs.io/).

https://qsiprep.readthedocs.io/
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Another consideration for connectome estimation is the brain parcellation used to define 
system nodes. If, as mentioned above, structural connectivity is determined by streamline 
count, then variations in the size of regions across the parcellation will bias connectome 
edge weights; larger brain regions will intersect with more white matter pathways and thus 
show higher connectivity to the remaining regions. As with any analysis of graph topology, 
this bias will affect the outputs of NCT; for example, larger regions may show higher average 
controllability just by virtue of being more directly connected to the system. It is for this reason 
that we recommend that researchers reproduce their results using several different parcellation 
definitions and resolutions. Doing so ensures that their results are not driven by a specific 
parcellation choice.

Defining a time system
Once an adjacency matrix (A) has been defined, the next decision is whether to model the 
linear dynamical system in discrete or continuous time. As discussed in Development of the 
procedure, in a discrete-time system, the states of the system, x(t), evolve forward in time 
according to a set of discrete steps (xxx(t) → xxx(t + 1)). In a continuous-time system, the states of the 
system are continuously changing in time (xxx(t) → xxx(t) + ̇xxx(t)dt). The choice of time system will 
depend upon the research question and affects all subsequent analyses because of differences 
in the mathematical implementation of NCT under each system. We refer the reader to 
Karrer et al.8, Kim and Bassett7, Hespanha50 and other texts in linear systems theory for 
extended discussion.

One guiding principle for choosing a time system can be seen in the following simple 
example. Consider a 1D discrete-time system xxx(t + 1) = −xxx(t) starting at an initial condition of 
x(0) = 1. This system evolves by jumping between 1 and −1 without visiting any intermediate 
value. By contrast, the state of a continuous-time system can transition between 1 and −1 only 
by smoothly visiting all values in between. The former process is reminiscent of ‘all-or-nothing’ 
phenomena such as neuron spiking, whereas the latter process is closer to population-level 
average activity in macroscopic connectomes. As such, when studying the macroscopic human 
connectome, we generally recommend the use of continuous-time systems. Note that one 
seemingly reasonable justification for using a discrete-time system would be to model fMRI 
activity, which is sampled at discrete time intervals on the order of ~1 s. However, care must be 
taken with this line of reasoning because the discretization of a linear continuous-time system 
at some sampling interval ∆t produces an equivalent discrete-time system matrix with 
non-negative eigenvalues through the conversion Adiscrete = eAcontinuousΔt . This conversion 
exponentiates all eigenvalues such that they are non-negative. As such, using an adjacency 
matrix with negative eigenvalues in a discrete-time system cannot truly be seen as a discrete 
sampling of a linear time-invariant continuous-time system. In general, we recommend 
continuous-time systems as the default choice. If researchers choose to use discrete-time 
systems, then we suggest that they replicate their primary results using continuous-time 
systems.

Normalizing the adjacency matrix
Once a time system is chosen, A needs to be normalized before analysis. If a discrete-time system 
is chosen, we normalize A according to the following equation:

Anorm = A
||λ (A)||max + c

.

Here, |λ(A)|max denotes the largest absolute eigenvalue of the system. In addition, c is a 
user-defined input parameter that determines the rate of decay of system dynamics. We set c = 1 
by default, which ensures that all modes of the system decay and thus that activity goes to zero 
over time (note that this is true of any positive c value). This normalization ensures that internal 
dynamics decay in a manner that is necessary for the stabilization of the system. Specifically, 
the largest absolute value of a matrix’s eigenvalues is called the ‘spectral radius’, and this 
normalization ensures that the spectral radius is <1: a condition known as Schur stability. 
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Intuitively, a discrete-time system given by Eq. 1 with no input (i.e., u(t) = 0) will evolve as 
xxx(n) = Anxxx(0), and the most unstable eigenmode of the system will evolve as λ (A)nmax. To ensure 
that this mode does not grow infinitely with n, it must have a magnitude <1.

If a continuous-time system is chosen, we normalize A according to the following equation:

Anorm = A
||λ (A)||max + c

− I.

Here, I denotes the identity matrix of size N×N. As above, we normalize such that the 
spectral radius is <1, but we take the additional step of subtracting the identity. This step exists 
because a continuous-time system given by Eq. 2 with no input will evolve as xxx(t) = AAtxxx(0), and 
the eigenmodes of the system will evolve as eλit . Hence, for the system to decay, all λi must have 
a negative real component, which is achieved through the subtraction of I.

Apart from the above approaches, there are alternatives to normalizing A. One could divide 
different edges of A by different amounts instead of uniformly by ||λ (A)||max + c. One could also 
subtract the diagonals of A by some other matrix besides the identity (for continuous-time 
systems). If there exists sufficient empirical evidence to use more specific normalization 
parameters, then they may be used. For example, the timescales of regions’ neuronal dynamics 
are known to vary across the brain137–140, and this variance could be incorporated into 
normalization by subtracting non-uniform values from the diagonal of A. In this case, for a 
continuous-time system, subtracting larger values from the diagonal of A will yield dynamics 
that decay more quickly, akin to relatively fast neuronal dynamics. What we present here 
is a simple method for stabilizing A in the absence of additional empirical constraints. Key 
properties that are preserved after our normalization approach are (i) the rank ordering of the 
eigenvalues of A and (ii) the eigenspaces (eigenvectors) of those modes; this preservation is a 
direct result of uniform normalization by a scalar (|λ (A)|max + c) and subtraction of the identity 
matrix. Thus, this minimal normalization approach preserves the necessary properties to run 
NCT analysis while also maintaining comparability between studies.

Defining brain states
Beyond the core requirement of a connectome, the flexibility of NCT makes it applicable to a 
broad range of experimental designs (see Applications); the most critical component is that 
researchers have hypotheses that pertain to studying the control of brain dynamics. However, in 
the case of Procedure 1 (control energy), in which researchers will study the control signals, u(t), 
there are some additional considerations. Specifically, to analyze state transitions, researchers 
need to provide a pair of brain states relevant to their hypotheses. Providing these states 
allows NCT to find the control signals, u(t), that are required to transition between them and 
to summarize those control signals as control energy.

Brain states can be defined in a number of ways. The simplest approach is to define each 
brain state as a binary vector, in which nodes that are within a given state are assigned an 
arbitrary constant value (e.g., 1), and any remaining nodes are assigned a value of 0. In this 
setup, NCT is tasked with transitioning the brain between actuating different sets of nodes to 
a constant arbitrary level of neural activity. An alternative approach is to allow brain states to 
represent a variable pattern of activity. As mentioned above, Cornblath et al.20 modeled the 
energy required to transition between brain states derived from clustering of fMRI data, while 
Braun et al.55 used task-activation maps extracted from an fMRI contrast. These approaches 
allowed the authors to generate state vectors that encode non-zero activity across all nodes of 
the system. The choice to study binary or non-binary brain states depends on researchers’ goals 
and available data. For example, using non-binary brain states confers the advantage of studying 
empirical neural activity, which may lead to more biologically plausible state transitions. 
By contrast, binary brain states are typically more easily defined because they do not depend 
on the presence of functional data. In addition, binary states confer the advantage of studying 
more focused transitions on the connectome because they involve guiding activity from one 
focal point on the network to another, simulating system-to-system communication. Thus, 
generally, if researchers wish to maximize the biological plausibility of their state transitions, 
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then we recommend that they use non-binary brain states derived from empirical neural data 
(e.g., fMRI). If instead researchers wish to study transitions from one specific point on the 
network to another (e.g., between canonical brain systems52 or between specific node types22), 
then we argue that binary brain states are the better choice. In either case, if researchers choose 
to study subject-specific states (which is possible for both binary and non-binary states), then 
they must take particular care to ensure that their results are not confounded by issues of state 
definition (see below). In this protocol, we illustrate examples using both binary (see Procedure 1) 
and non-binary (see Supplementary Information, Variations to Procedure 1) brain states, both 
defined at the group level.

Differences in brain states’ magnitude will affect control energy, potentially necessitating 
the normalization of state magnitude. For example, if researchers are examining transitions 
between patterns of brain activity (e.g., using functional data as in refs. 20,55), then differences 
between states’ mean activity will affect control energy; assuming a common initial state, target 
states with higher activity will require more energy to transition to compared to target states 
with lower activity. This effect generalizes to binary brain states as well. In this case, differences 
in state size (i.e., the number of regions in each state) constitute differences in state magnitude; 
transitioning to larger target states will require more energy. If there are differences in state 
magnitude, we recommend normalizing states before computing control energy (see Step 3 in 
Procedure 1). Note that the need for this normalization will depend upon researchers’ analyses. 
For example, if researchers are studying individual differences in the energy associated with 
a single transition, then normalization may not be necessary as long as state definition is 
consistent across subjects. What is critical is that researchers consider what comparisons they 
want to make and whether variations in state definition would confound those comparisons.

Defining a control set
In addition to brain states, for Procedure 1, researchers also need to designate a control set; these 
are the nodes that NCT will use to complete state transitions. As discussed in Development of the 
procedure, the N×m control set defines the extent to which the nodes of the system can affect 
changes in its dynamics. In turn, the definition of B determines the dimensions of u(t); the greater 
the number of control nodes, the more independent control signals will be generated. In our work, 
we have often deployed a uniform full control set, which means that all of the nodes of the system 
are designated as controllers (full), and all are given equivalent control over dynamics (uniform). 
In this case, m = N. Intuitively, this approach assumes that the entire brain is being controlled—
either internally or externally—when completing a state transition. However, depending on a 
researcher’s hypotheses, this assumption may not be appropriate. Instead, researchers may 
want to define only a subset of nodes as controllers (e.g., refs. 52,53) or assign variable weights to 
control nodes (e.g., refs. 22,32–34), or both. Note that assigning variable control weights serves 
to give some nodes more control over system dynamics than others. In any case, it is critical that 
researchers check whether their designated control set was able to complete the associated state 
transition (see Procedure 1, Step 5); successful completion of a state transition is not guaranteed 
in the model, and completion is less likely when transitions are driven by a small control set.

Expertise needed to implement the protocol
We provide open-source and broadly accessible tools that implement optimal control and 
average controllability in a Python-based software package called ‘network control theory for 
python’ (nctpy). In nctpy, we provide a flexible implementation that enables researchers to make 
model assumptions that best fit their research question. As a result, while a full understanding 
of linear systems and optimal control theory are not required, the researcher must have enough 
expertise to make key modeling decisions that best represent the data (see above).

The first piece of expertise needed is to understand the differences between (and 
implications of) discrete-time systems and continuous-time systems. As discussed above, 
this difference is not merely a conceptual one, because discrete-time systems display a 
fundamentally different set of behaviors than continuous-time systems. That is, a discrete-time 
system is not simply a temporally coarse-grained version of a continuous-time system. Instead, 
each system exhibits different dynamics.

https://github.com/LindenParkesLab/nctpy
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The second piece of expertise needed is to understand the nature of Procedure 1 (control 
energy) and Procedure 2 (average controllability) to interpret the outputs. Procedure 1 solves 
an optimization problem. Specifically, we first provide a model of the dynamics (i.e., A, B), 
the initial and target states and some optimization parameters. Then, we solve for the control 
signals, u(t), that minimize the cost. Hence, all interpretations of u(t) should be made with 
the understanding that they were determined by the user-defined optimization parameters. 
Procedure 2 does not solve an optimization problem and thus does not receive any optimization 
parameters. Rather, it measures the magnitude of the neural states over time as a result of an 
impulse stimulation. Because Procedure 1 and Procedure 2 use the same dynamics but output 
different quantities through different means, more expertise in linear systems and optimal 
control is needed to meaningfully compare and contrast the two pathways.

Overview of the procedure
As discussed above, we split our protocol into two procedures (Fig. 3). The primary procedure of 
our protocol focuses on computing control energy (Procedure 1). This procedure is illustrated 
in Fig. 3a–c. Briefly, Fig. 3a outlines the inputs required to run Procedure 1, Fig. 3b outlines 
the corresponding model outputs and Fig. 3c outlines some of the variations to model inputs 
that we have discussed thus far. Note that example implementations of all these variations 
are presented in the Supplementary Information (see Variations to Procedure 1). The second 
procedure focuses on computing nodes’ average controllability (Procedure 2; Fig. 3d). Both 
of these procedures are underpinned by the same set of core steps, which are (i) defining a 
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Fig. 3 | Schematic representation of the NCT protocol. Our protocol is split into 
two procedures. Primarily, our protocol focuses on modeling the control energy 
associated with user-defined control tasks. We refer to this part of our protocol as 
Procedure 1 (a–c). Procedure 1 will be of interest to researchers who seek to study 
specific state transitions. We also outline a brief protocol for estimating nodes’ 
average controllability. We refer to this part of our protocol as Procedure 2 (d). 
Procedure 2 will be of interest to researchers who want to examine nodes’ general 
capacity to control system dynamics. a, Inputs required for Procedure 1. To 
compute control energy, researchers must provide a structural connectome (A), 
an initial state (x0) and a target state (xf) and must also define a control set (B). 
b, Model outputs from Procedure 1. Given these inputs, our protocol will output 

the state trajectory (neural activity, x(t)) and the control signals (u(t)). Once 
inspected, the control signals can be integrated over time to obtain node-level 
energy (e), which in turn can be summed over nodes to get the control energy 
(E). c, Variations to Procedure 1. Procedure 1 can handle a diverse range of inputs, 
including but not limited to undirected and directed connectomes (left), binary 
and non-binary brain states (middle) and control sets with uniform or variable 
weights (right). d, Procedure 2: average controllability. Procedure 2 requires only 
a structural connectome (A) as input and will return the average controllability 
of each node. This metric quantifies the impulse response of the system from 
a given node. Higher average controllability indicates that a node is better 
positioned in the network to propagate dynamics.
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time system and (ii) normalizing the adjacency matrix. After these core steps, the protocol 
bifurcates, and most of the subsequent steps focus on computing control energy. Broadly, 
computing control energy requires (i) defining a control task, (ii) computing control signals 
and (iii) summarizing those control signals into control energy. By contrast, computing average 
controllability is done in a single step after the two core steps.

Materials

Equipment
•	 A computer with Python (tested on version 3.9) and nctpy installed alongside its 

dependencies. This protocol has been tested on Mac OS running on Intel Core i5/i7/i9 
processors as well as on Apple Silicon. We have also tested this protocol on Linux Ubuntu 
running on Intel processors. Random access memory (RAM) requirements will vary 
depending on researchers’ data and analyses, but we recommend ≥16 GB. Finally, we 
recommend installing nctpy inside a virtual environment managed by Anaconda (https://
www.anaconda.com/). The following core dependencies are required to run nctpy:
-- numpy (https://numpy.org/), tested on version 1.24.3
-- scipy (https://scipy.org/), tested on version 1.10.1
-- tqdm (https://github.com/tqdm/tqdm), tested on version 4.65

In addition, there are some functions in nctpy.plotting and nctpy.utils that require 
the following:
-- statsmodels (https://www.statsmodels.org/), tested on version 0.13.5
-- matplotlib (https://matplotlib.org/), tested on version 3.7.1
-- seaborn (https://seaborn.pydata.org/), tested on version 0.12.2
-- nibabel (https://nipy.org/nibabel/), tested on version 5.1
-- nilearn (https://nilearn.github.io/), tested on version 0.10.1

Finally, the following optional packages were used to run the analyses illustrated in this 
protocols paper:
-- (Optional) pandas (https://pandas.pydata.org/), tested on version 1.5.3
-- (Optional) scikit-learn (https://scikit-learn.org/), tested on version 1.2.2

See https://github.com/LindenParkesLab/nctpy for more details. Creating a Python 
environment using Anaconda and installing the above dependencies should take ≤30 min.

Input data
•	 Adjacency matrix, A (required for Procedure 1 and Procedure 2)
•	 Brain states, x0 and xf (required for Procedure 1)
•	 Control set, B (required for Procedure 1)

Example dataset
Here, we primarily used undirected structural connectomes derived from DWI performed on 
the human brain. We obtained these connectomes from the Philadelphia Neurodevelopmental 
Cohort (PNC)23,24, a community-based study of brain development in youths aged 8–22 years. 
The neuroimaging sample of the PNC consists of 1,601 participants. From this original 
sample, we retained 253 typically developing participants who had no medical co-morbidity 
or radiological abnormalities and who were not taking psychoactive medications at the time 
of assessment. In addition, these participants’ T1-weighted, DWI and rs-fMRI scans all passed 
stringent quality control procedures136,141,142.
•	 Structural connectome reconstruction was performed using QSIprep 0.14.2135, which is 

based on Nipype 1.6.1143. Connectomes were extracted using the 200-node variant of the 
Schaefer parcellation110, ordered according to seven canonical brain systems69. The strength of 
inter-regional connectivity was summarized using the number of streamlines that intersected 

https://www.anaconda.com/
https://www.anaconda.com/
https://numpy.org/
https://scipy.org/
https://github.com/tqdm/tqdm
https://www.statsmodels.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://nipy.org/nibabel/
https://nilearn.github.io/
https://pandas.pydata.org/
https://scikit-learn.org/
https://github.com/LindenParkesLab/nctpy
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each pair of parcels. Connectomes were averaged over subjects. This group-averaged 
connectome was thresholded by retaining the edges that were present in ≥60% of participants’ 
connectomes131. This process resulted in a final connectome with 98% edge density.

•	 rs-fMRI was also obtained from the same 253 PNC participants23. These data were used 
to generate empirical brain activity states to perform non-binary state transitions (see 
Supplementary Information, Variations to Procedure 1). The eXtensible Connectivity 
Pipeline142,144 was used to post-process the outputs of fMRIPrep version 20.2.3145. The 
eXtensible Connectivity Pipeline was built with Nipype 1.7.0143. Processed rs-fMRI time 
series were extracted from the same 200-node parcellation mentioned above110.
We also studied a directed structural connectome obtained from the Allen Mouse Brain 
Connectivity Atlas25,27 (see Supplementary Information, Variations to Procedure 1).

•	 Whole-brain structural connectomes were constructed with 2 × 105 voxels at a spatial 
resolution of 100 µm (see refs. 25,27 for more details). Voxels were assigned to regions 
(coarse structures) according to a 3-D Allen Mouse Brain Reference Atlas. Isocortex was 
further divided into six systems (auditory, lateral, medial, prefrontal, somatomotor and 
visual) on the basis of prior work that applied community detection to identify stable 
modules26. Connection strengths were modeled for all source and target voxels by using 
data from 428 anterograde tracing experiments in wild-type C57BL/6J mice27. Normalized 
connection strengths were obtained by dividing the connection strengths by the source and 
target region sizes. Here, we retained only the 43 isocortical regions. This process resulted 
in a fully connected directed structural connectome.

In all of the below code, we assume the existence of a Python environment with nctpy installed 
alongside its dependencies. First, we import all the functions we need to run our protocol:

# import 
import os 
import numpy as np 
import pandas as pd 
import scipy as sp 
from scipy import stats 
from scipy.spatial import distance 
from sklearn.cluster import KMeans 
from tqdm import tqdm 
# import plotting libraries 
import matplotlib.pyplot as plt 
import seaborn as sns 
from nilearn import datasets 
from nilearn import plotting 
# import nctpy functions 
from nctpy.energies import integrate_u, get_control_inputs 
from nctpy.pipelines import ComputeControlEnergy, 
ComputeOptimizedControlEnergy 
from nctpy.metrics import ave_control 
from nctpy.utils import matrix_normalization, convert_states_str2int, 
normalize_state, normalize_weights, get_null_p, get_fdr_p 
from nctpy.plotting import roi_to_vtx, null_plot, surface_plot, add_
module_lines 
from null_models.geomsurr import geomsurr

Note that depending on their goals, researchers may need only a subset of this import call. 
Next, we load a structural connectome as our adjacency matrix:

# directory where data is stored 
datadir = '/path/to/data' 
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adjacency_file = 'structural_connectome.npy' 
# load adjacency matrix 
adjacency = np.load(os.path.join(datadir, adjacency_file)) 
n_nodes = adjacency.shape[0] 
print(adjacency.shape) 
(200, 200) 
# check for self-connections 
print(np.any(np.diag(adjacency) > 0)) 
True 
# get density including self connections 
density = np.count_nonzero(np.triu(adjacency, k=0)) / (n_nodes**2 / 2) 
print(density) 
0.9768

The above code demonstrates that our connectome comprises 200 nodes, includes 
self-connections (i.e., Aii > 0) and has an edge density of 98%. See Supplementary Fig. 1 for 
control energy plotted as a function of edge density.

Procedure 1

Core steps
● Timing  <5 s
1.	 Define a time system. Determine whether to model the linear dynamical system in discrete 

or continuous time:

# determine time system. Note, delete the line below that is not needed. 
system = "discrete" 
# or 
system = "continuous"

2.	 Normalize the adjacency matrix. Once a time system has been determined, normalize the 
adjacency matrix, A:

# normalize adjacency matrix 
adjacency_norm = matrix_normalization(A=adjacency, system=system, c=1)

Irrespective of the chosen time system, the above step outputs adjacency_norm, which 
contains the structural connectome as a normalized adjacency matrix that is ready for NCT 
analysis. See Supplementary Fig. 2 for control energy plotted as a function of c (as well as 
other user-defined input parameters outlined in subsequent sections), which demonstrates 
that control energy remains stable with increasing c. In all of the code and results shown 
below, adjacency_norm was produced for a continuous-time system.

Define a control task
● Timing  <5 s
3.	 Define a control task. Define a control task that comprises an initial state, x0, a target 

state, xf, and a control set, B. Here, we illustrate an example control task that involves 
transitioning between a pair of binary brain states controlled by a uniform full control set. 
Our adjacency_norm is ordered according to seven canonical brain systems110. We leverage 
this grouping to define a state transition between the visual system and the default mode 
network. To begin, we set up a vector, states, that stores integer values denoting to which 
brain system each node belongs. That is, states == 0 represents nodes that belong to 
system 1, states == 1 represents nodes that belong to system 2, etc.
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(A)	� Create states from a list of strings that groups nodes into the aforementioned 
canonical brain systems (this file can be found here):

# load node-to-system mapping 
system_labels = list( 
 np.loadtxt(os.path.join(datadir, "pnc_schaefer200_system_labels.txt"), 
dtype=str) 
) 
print(len(system_labels)) 
200 
print(system_labels[:20]) 
['Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 'Vis', 
'Vis', 'Vis', 'Vis', 'Vis', 'SomMot', 'SomMot', 'SomMot', 'SomMot', 
'SomMot', 'SomMot']

(B)	 Use convert_states_str2int to convert this list of strings:

# use list of system names to create states 
states, state_labels = convert_states_str2int(system_labels) 
print(type(state_labels), len(state_labels), state_labels) 
<class 'list'> 7 ['Cont', 'Default', 'DorsAttn', 'Limbic', 
'SalVentAttn', 'SomMot', 'Vis'] 
print(type(states), states.shape, states) 
<class 'numpy.ndarray'> (200,) [6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 
5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 
0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 6 6 
6 6 6 6 6 6 6 6 6 6 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 
4 4 4 4 4 4 4 4 4 3 3 
3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1]

(i)	 As can be seen from the above print commands, our system_labels variable 
comprises a string variable for every node in our system that denotes to which 
brain system that node belongs. convert_states_str2int takes that list of 
strings and returns an array of integers, states, with a corresponding list of 
labels, state_labels.

(C)	� Extract x0 and xf by using the integers that correspond to the visual system 
('Vis') and the default mode system ('Default'):

# extract initial state 
initial_state = states == state_labels.index('Vis') 
# extract target state 
target_state = states == state_labels.index('Default')

(i)	 initial_state and target_state will be Boolean vectors, wherein True 
encodes the nodes that belong to a given state.

(D)	 Normalize state magnitude:

# normalize state magnitude 
initial_state = normalize_state(initial_state) 
target_state = normalize_state(target_state)

https://github.com/LindenParkesLab/nctpy/blob/c38ada559d60fd2e97cfc8ed84486d42da442504/data/pnc_schaefer200_system_labels.txt
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(i)	 This process will convert initial_state and target_state from Boolean 
entries to floating point numbers that have been normalized using the Euclidean 
norm of the vector. This normalization constrains state magnitude to a unit 
sphere (see Experimental design).

(E)	� Finally, define a control set. Unlike the initial and target states, the control set is 
encoded along the diagonal of an N×N matrix, B. To define a uniform full control 
set, use the identity matrix:

# specify a uniform full control set: all nodes are control nodes 
# and all control nodes are assigned equal control weight 
control_set = np.eye(n_nodes)

Compute control energy
● Timing  ~1 min
4.	 Compute control signals and state trajectory. After the definition of a control task, the next step 

is to find the control signals, u(t), that drive the system to transition between x0 and xf. u(t) will 
be an m×T matrix of m time-varying signals injected into the control nodes over a specified 
time horizon T. Here, because of our use of a full control set, m = N. Critically, injecting these 
control signals into a system whose initial state is encoded by x0 should result in a system 
whose final state is encoded by xf at time T. Alongside the control signals, we also extract the 
state trajectory, x(t). The state trajectory, which will be an N×T matrix, is the time-varying 
pattern of simulated neural activity that unfolds as the system traverses between x0 and xf.
(A)	 Compute u(t) and x(t):

# set parameters 
time_horizon = 1 # time horizon (T) 
rho = 1 # mixing parameter for state trajectory constraint 
trajectory_constraints = np.eye(n_nodes) # nodes in state 
trajectory to be constrained 
# get the state trajectory, x(t), and the control signals, u(t) 
state_trajectory, control_signals, numerical_error = get_control_
inputs( 
 A_norm=adjacency_norm, 
T=time_horizon, 
B=control_set, 
x0=initial_state, 
xf=target_state, 
system=system, 
 rho=rho, 
 S=trajectory_constraints, 
)

(i)	 By default, we set time_horizon=1. Note that this value is arbitrary and does 
not correspond to any real-world time units (e.g., seconds). Importantly, get_
control_inputs uss a cost function that includes both the magnitude of the 
control signals and the magnitude of the state trajectory. The input parameter 
rho allows researchers to tune the mixture of these two costs while finding the 
input u(t) that achieves the state transition. Specifically, rho=1 places equal cost 
over the magnitude of the control signals and the state trajectory. Reducing rho 
below 1 increases the extent to which the state trajectory adds to the cost function 
alongside the control signals. Conversely, increasing rho beyond 1 reduces the 
state trajectory contribution, thus increasing the relative prioritization of the 
control signals. Lastly, S takes in an N×N matrix whose diagonal elements define 
which nodes’ activity will be constrained in the state trajectory. In summary, 
S designates which nodes’ neural activity will be constrained while rho determines 
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by how much it will be constrained, relative to the control signals. Here, by 
setting rho=1 and S=np.eye(n_nodes), we are implementing what we refer 
to as ‘optimal control’11. If S is instead set to an N×N matrix of zeros, then the 
state trajectory is completely unconstrained, a setup we refer to as ‘minimum 
control’20,22. In this case, rho is ignored.

(ii)	 Alternatively, researchers may choose to constrain only a subset of the state 
trajectory by defining partial constraint sets. See Supplementary Fig. 2 for control 
energy plotted as a function of different combinations of time_horizon and 
rho. Also see here for a notebook outlining different use cases of get_control_
inputs. However, to avoid issues associated with researcher degrees of freedom, 
we recommend that users implement either optimal control, by setting rho=1 
paired with their chosen S matrix, or minimum control, by setting S=np.
zeros((n_nodes, n_nodes)).

(iii)	 In addition to state_trajectory and control_signals, get_control_
inputs also outputs numerical_error, which stores two forms of numerical 
error. The first error is the inversion error, which measures the conditioning of the 
optimization problem. If this error is small, then solving for the control signals 
was well conditioned. The second error is the reconstruction error, which is a 
measure of the distance between xf and x(T). If this error is small, then the state 
transition was successfully completed; that is, the neural activity at the end of the 
simulation was equivalent to the neural activity encoded by xf. We consider errors 
<10−8 as adequately small.

(iv)	 Check the inversion and reconstruction errors:

# print errors 
thr = 1e-8 
# the first numerical error corresponds to the inversion error 
print( 
 "inversion error = {:.2E} (<{:.2E}={:})".
format(numerical_error[0], thr, numerical_error[0] < thr 
 ) 
) 
inversion error = 1.36E-15 (<1.00E-08=True) 
# the second numerical error corresponds to the reconstruction 
error 
print( 
 "reconstruction error = {:.2E} (<{:.2E}={:})".
format(numerical_error[1], thr, numerical_error[1] < thr 
 ) 
) 
reconstruction error = 5.16E-14 (<1.00E-08=True)

5.	 Visualize state trajectory and control signals. Once x(t) and u(t) have been derived, they 
should be visualized before computing control energy. Visualization provides intuition 
regarding how the model is behaving and is helpful for confirming that the state transition 
was completed successfully (see Fig. 4 and Box 1).

	 ◆ Troubleshooting
6.	 Compute control energy. The final step is to summarize the control signals into control 

energy. This is done by numerically integrating the control signals over time. In this step, 
we use Simpson’s rule—an extension of the trapezoidal rule that fits a polynomial through 
neighboring sets of points—to achieve this integration, yielding a vector of node-level energy.
(A)	 Compute node-level control energy:

# integrate control signals to get control energy 
node_energy = integrate_u(control_signals) 
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print(node_energy.shape) 
(200,) 
print(np.round(node_energy[:5], 2)) 
[21.13 37.65 23.55 21.55 28.34]

(B)	 Summarize node-level energies to produce a single estimate of control energy:

# summarize nodal energy 
energy = np.sum(node_energy) 
print(np.round(energy, 2)) 
2604.71
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a    Control signals (from initial state) b    Neural activity (from initial state)

c    Control signals (from target state) d    Neural activity (from target state)

e    Control signals (from bystanders) f    Neural activity (from bystanders)

Fig. 4 | Visualize the control signals and the state trajectory. For a given state transition, the control signals (u(t), left 
column) and the state trajectory (x(t), right column) should be visualized. Here, because of our use of binary brain states, 
we group this visualization by nodes in the initial state (x0, top row), the target state (xf, middle row) and the remaining 
nodes (bystanders, bottom row). Across all subplots, differently colored line plots represent different system nodes (brain 
regions) within each group. This plot provides intuition on model behavior by showing the kinds of control signals that 
drive specific changes in neural activity. The top row shows that the model drives negative time-varying control signals into 
the nodes of the initial state (a), which drives their activity to 0 over time (b). The middle row shows that the model drives 
positive time-varying control signals into the nodes of the target state (c), which drives their activity from 0 to ~0.15 over 
time (d). The bottom row shows that the model drives diverse time-varying control signals into the bystander nodes (e), 
which in turn guide changes in these regions’ activity (f).
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Box 1

Checking completion of the state transition
As noted in Experimental design, completion of a state transition is not guaranteed by the model, and an 
incomplete transition may necessitate revising either the control set (e.g., to provide more control over 
the system if a partial control set was used) or the time horizon (e.g., to provide more time for the model 
to complete the transition). We suggest the following simple plot:

f, ax = plt.subplots(3, 2, figsize=(7, 7)) 
# plot control signals for initial state 
ax[0, 0].plot(control_signals[:, initial_state != 0], linewidth=0.75) 
ax[0, 0].set_title("A | control signals, x0") 
# plot state trajectory for initial state 
ax[0, 1].plot(state_trajectory[:, initial_state != 0], linewidth=0.75) 
ax[0, 1].set_title("B | neural activity, x0") 
# plot control signals for target state 
ax[1, 0].plot(control_signals[:, target_state != 0], linewidth=0.75) 
ax[1, 0].set_title("C | control signals, xf") 
# plot state trajectory for target state 
ax[1, 1].plot(state_trajectory[:, target_state != 0], linewidth=0.75) 
ax[1, 1].set_title("D | neural activity, xf") 
# plot control signals for bystanders 
ax[2, 0].plot( 
 control_signals[:, np.logical_and(initial_state == 0, target_state == 0)], 
 linewidth=0.75, 
) 
ax[2, 0].set_title("E | control signals, bystanders") 
# plot state trajectory for bystanders 
ax[2, 1].plot( 
 state_trajectory[:, np.logical_and(initial_state == 0, target_state == 0)], 
 linewidth=0.75, 
) 
ax[2, 1].set_title("F | neural activity, bystanders") 
for cax in ax.reshape(-1): 
cax.set_ylabel("activity") 
cax.set_xlabel("time (a.u.)") 
cax.set_xticks([0, state_trajectory.shape[0]]) 
cax.set_xticklabels([0, time_horizon]) 
f.tight_layout() 
plt.show()

Figure 4 shows the control signals (left column) alongside the state trajectory (i.e., neural activity; right 
column) separately for nodes within the initial state (top row) and the target state (middle row), as well as 
the bystanders (bottom row). Note that we define bystanders as nodes that are outside both the initial and 
target states. We choose this division of nodes because it provides several simple intuitions about model 
behavior. First, we can see that the model drives negative time-varying control signals into the nodes of 
the initial state (Fig. 4a), which drives their activity to 0 over time (Fig. 4b). Second, we can see that the 
model drives positive time-varying control signals into the nodes of the target state (Fig. 4c), which drives 
their activity from 0 to ~0.15 over time (Fig. 4d). Note that ~0.15 represents the maximum neural activity 
after state normalization for the states presented here; this maximum activity may vary depending on 
state definition. Finally, we can see that diverse time-varying control signals are injected into the bystander 
nodes (Fig. 4e), which in turn guide changes in these regions’ activity (Fig. 4f). In other words, Fig. 4 
shows that the model performs a combination of ‘turning off’ the initial state, ‘turning on’ the target state 
and guiding diffusing activity toward the target state via the bystanders. Figure 4 also provides a simple 
visual way to check whether the state transition completed successfully; at the end of the simulation, 
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▲ Critical  There are multiple variations to Steps 1–6 that researchers may wish to consider 
depending on their research goals. In the Supplementary Information, we illustrate a selection 
of these variants that are likely to be of broad interest to the field of neuroscience (Fig. 3c). These 
variations include studying non-binary brain states, implementing partial and non-uniform 
control sets and examining directed structural connectomes (see Supplementary Information, 
Variations to Procedure 1).
▲ Critical step  Steps 1–6 above outline how to extract the control energy for a single 
control task, which we defined as completing a state transition between the visual system 
and the default mode system by using control signals delivered to all system nodes (to view 
the above steps in a single notebook, see https://github.com/LindenParkesLab/nctpy/blob/
f69ec009d70a46cb019da7c59a0d00b3e254731a/scripts/path_a_control_energy_binary.
ipynb). Alternatively, researchers may want to examine many control tasks within the context 
of a single study. Thus, in nctpy, we include a Python class called ComputeControlEnergy 
that wraps all of the above steps (excluding Step 5) and applies them over a list of control tasks 
(see Supplementary Information, Wrapping Procedure 1 for ease of use).

Procedure 2

● Timing  <1–20 s
▲ Critical  Procedure 1 is the primary component of our protocol. Implementing these 
steps assumes that researchers are interested in studying a specific set of state transitions 
defined in accordance with their research questions and hypotheses. In the absence of such 
hypotheses, researchers may instead wish to examine nodes’ general capacity to control a 
broad range of unspecified state transitions. To support these types of hypotheses, we present 
a complementary set of steps that yields estimates of average controllability, in which higher 
values indicate that a region is better positioned in the network to control dynamics:
1.	 Compute average controllability (discrete time, <1 s for 200 nodes; continuous time, 

10–20 s for 200 nodes).

# compute average controllability 
average_controllability = ave_control(A_norm=adjacency_norm, 
system=system)

it is apparent that activity in the target state is maximal whereas activity in the initial state and bystanders 
is 0, which accords with our definition of xf. This behavior explains the low reconstruction error reported for 
this transition (see the main text). In addition, this plot allows researchers to visualize how model behavior 
varies under different control sets (Supplementary Figs. 3–6) and time horizons (Supplementary Figs. 7–9). 
Note that while we view Fig. 4 as the simplest way to plot initial model outputs, it is only one of many 
options. Researchers may choose to plot x(t) and u(t) as heatmaps or on the brain’s surface, which would 
facilitate visualization of spatial patterning (see Supplementary Information, Variations to Procedure 1).

(continued from previous page)
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Fig. 5 | Average controllability. Each system node receives an impulse of equal 
magnitude. Nodes with higher average controllability are able to broadcast that 
impulse throughout the system to a greater extent than nodes with lower average 
controllability. Thus, nodes with high average controllability are better positioned 
within the network to control dynamics. Distribution of average controllability 
values are displayed using a box plot (left) and are projected onto the cortical 
surface (right). In the box plot, the orange line represents the median, the box 
spans the middle 50% of the data, the whiskers span 1.5 times the interquartile 
range on either side and the ‘x’ marks represent outliers beyond this limit.

https://github.com/LindenParkesLab/nctpy/blob/f69ec009d70a46cb019da7c59a0d00b3e254731a/scripts/path_a_control_energy_binary.ipynb
https://github.com/LindenParkesLab/nctpy/blob/f69ec009d70a46cb019da7c59a0d00b3e254731a/scripts/path_a_control_energy_binary.ipynb
https://github.com/LindenParkesLab/nctpy/blob/f69ec009d70a46cb019da7c59a0d00b3e254731a/scripts/path_a_control_energy_binary.ipynb
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average_controllability will be a vector containing the average controllability of each 
node of the system.

2.	 Visualize average controllability. Because average controllability is a regional metric, we can 
simply plot its distribution of values on the surface of the cortex (Fig. 5).

Troubleshooting

Troubleshooting advice can be found in Table 1.

Timing

As noted throughout the Procedure, the timing of each step is relatively short.

Procedure 1
Steps 1–2, normalize the adjacency matrix: 1–5 s
Step 3, define a control task: 1–5 s
Step 4–6, compute control energy: ~1 min

Procedure 2
Step 1, compute average controllability: <1–20 s

We note two clarifications to the above timing information. First, these time estimates 
are only for a single execution of each step as shown in the protocol. In reality, these steps 
will probably need to be executed many times over to achieve researchers’ goals. For 
example, a given study may need to compute control energy for multiple control tasks 
across multiple subjects, which will increase total run time. This run time will increase 
further if null network models are used (see Supplementary Information, Null network 
models), wherein each step may be run thousands of times for a single control task. However, 
in these instances, protocol steps can be trivially parallelized using high-performance 
computing infrastructure, which will reduce total run time. Second, timing will vary as a 
function of researchers’ data specifications. For example, in this protocol, we performed 
analysis on a structural connectome comprising 200 nodes. Increasing parcellation 
resolution will increase run time.

Table 1 | Troubleshooting table for Procedure 1

Step Problem Possible reason Solution

5 Inversion error out of 
bounds

Ill-conditioned optimization 
problem

If using a partial control set, try using a full control set

If using a full control set, try reducing the size of the system (i.e., reduce the number of 
nodes in A)

Check whether A has disconnected components (i.e., groups of nodes that cannot 
communicate with each other)

Reconstruction error 
out of bounds

Failure of the state transition to 
complete (i.e., xf not equal to x(T))

Increase time horizon, T

If using a partial control set, try using a full control set

If using a full control set, try reducing the size of the system (i.e., reduce the number of 
nodes in A)

Check whether A has disconnected components (i.e., groups of nodes that cannot 
communicate with each other)
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Anticipated results

The final outputs of our protocol will depend on whether researchers choose to follow 
Procedure 1 or Procedure 2. For the former, the output will be one estimate of control energy 
per control task, or one estimate per brain region per task if energy was not summarized across 
regions. This value will be positive and can be thought of as the amount of effort the model 
has to exert to complete a specific control task; higher energy corresponds to greater effort. 
For the latter, the output will be one estimate of average controllability for each brain region, 
a regional map of control over system dynamics (Fig. 5). These regional values will also be 
positive. Greater average controllability indicates that regions are better positioned within the 
network’s topology to broadcast an impulse and, as such, may better orchestrate control of 
brain dynamics.

What can researchers do with these outputs? The answers to this question are diverse 
and depend heavily on the researchers’ goals. As we discussed in Applications, we have used 
NCT to investigate a range of research questions that spanned from examining the influence 
of topology10,52,53, to predicting state transitions observed in functional data14,55, to studying 
individual differences, including psychosis symptoms21, executive function73 and sex effects19. 
Providing detailed guidance on each of these applications is beyond the scope of this 
protocol. However, to support this protocol, we outline the use of null network models as 
an initial analysis that we believe is an essential step irrespective of researchers’ study goals 
(see Supplementary Information, Null network models).

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary 
linked to this article.

Data availability
The PNC data are publicly available in the Database of Genotypes and Phenotypes under 
accession number phs00607.v3.p2 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/ 
study.cgi?study_id=phs000607.v3.p2).

Code availability
All analysis code is freely available at https://github.com/LindenParkesLab/nctpy/.
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